Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae
In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we...
Saved in:
Published in | mBio Vol. 11; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
03.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2161-2129 2150-7511 2150-7511 |
DOI | 10.1128/mBio.02930-19 |
Cover
Abstract | In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant
Enterobacteriaceae
, the most problematic pathogens in human clinical settings—especially carbapenem-resistant
K.
pneumoniae
. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among
K. pneumoniae
isolates from food animals.
tmexCD1-toprJ1
appears to have originated from the chromosome of a
Pseudomonas
species and may have been transferred onto plasmids by adjacent site-specific integrases. Although
tmexCD1-toprJ1
still appears to be rare in human clinical isolates, considering the transferability of the
tmexCD1-toprJ1
gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.
Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated
tmexCD1-toprJ1
, on plasmids from five pandrug-resistant
Klebsiella pneumoniae
isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for
K.
pneumoniae
,
Escherichia coli
, and
Salmonella
. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of
Pseudomonas aeruginosa
. In an IncFIA plasmid, pHNAH8I, the
tmexCD1-toprJ1
gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in
E. coli
resulted in increased tigecycline efflux and in
K. pneumoniae
negated the efficacy of tigecycline in an
in vivo
infection model. Expression of TMexCD1-TOprJ1 reduced the growth of
E. coli
and
Salmonella
but not
K. pneumoniae
.
tmexCD1-toprJ1
-positive
Enterobacteriaceae
isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne
tmexCD1-toprJ1
-like gene clusters were identified in sequences in GenBank from
Enterobacteriaceae
and
Pseudomonas
strains from multiple continents. The possibility of further global dissemination of the
tmexCD1
-
toprJ1
gene cluster and its analogues in
Enterobacteriaceae
via plasmids may be an important consideration for public health planning.
IMPORTANCE
In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant
Enterobacteriaceae
, the most problematic pathogens in human clinical settings—especially carbapenem-resistant
K.
pneumoniae
. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among
K. pneumoniae
isolates from food animals.
tmexCD1-toprJ1
appears to have originated from the chromosome of a
Pseudomonas
species and may have been transferred onto plasmids by adjacent site-specific integrases. Although
tmexCD1-toprJ1
still appears to be rare in human clinical isolates, considering the transferability of the
tmexCD1-toprJ1
gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. |
---|---|
AbstractList | In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant
Enterobacteriaceae
, the most problematic pathogens in human clinical settings—especially carbapenem-resistant
K.
pneumoniae
. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among
K. pneumoniae
isolates from food animals.
tmexCD1-toprJ1
appears to have originated from the chromosome of a
Pseudomonas
species and may have been transferred onto plasmids by adjacent site-specific integrases. Although
tmexCD1-toprJ1
still appears to be rare in human clinical isolates, considering the transferability of the
tmexCD1-toprJ1
gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.
Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated
tmexCD1-toprJ1
, on plasmids from five pandrug-resistant
Klebsiella pneumoniae
isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for
K.
pneumoniae
,
Escherichia coli
, and
Salmonella
. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of
Pseudomonas aeruginosa
. In an IncFIA plasmid, pHNAH8I, the
tmexCD1-toprJ1
gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in
E. coli
resulted in increased tigecycline efflux and in
K. pneumoniae
negated the efficacy of tigecycline in an
in vivo
infection model. Expression of TMexCD1-TOprJ1 reduced the growth of
E. coli
and
Salmonella
but not
K. pneumoniae
.
tmexCD1-toprJ1
-positive
Enterobacteriaceae
isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne
tmexCD1-toprJ1
-like gene clusters were identified in sequences in GenBank from
Enterobacteriaceae
and
Pseudomonas
strains from multiple continents. The possibility of further global dissemination of the
tmexCD1
-
toprJ1
gene cluster and its analogues in
Enterobacteriaceae
via plasmids may be an important consideration for public health planning.
IMPORTANCE
In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant
Enterobacteriaceae
, the most problematic pathogens in human clinical settings—especially carbapenem-resistant
K.
pneumoniae
. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among
K. pneumoniae
isolates from food animals.
tmexCD1-toprJ1
appears to have originated from the chromosome of a
Pseudomonas
species and may have been transferred onto plasmids by adjacent site-specific integrases. Although
tmexCD1-toprJ1
still appears to be rare in human clinical isolates, considering the transferability of the
tmexCD1-toprJ1
gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated , on plasmids from five pandrug-resistant isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for , , and TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of In an IncFIA plasmid, pHNAH8I, the gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in resulted in increased tigecycline efflux and in negated the efficacy of tigecycline in an infection model. Expression of TMexCD1-TOprJ1 reduced the growth of and but not -positive isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne -like gene clusters were identified in sequences in GenBank from and strains from multiple continents. The possibility of further global dissemination of the - gene cluster and its analogues in via plasmids may be an important consideration for public health planning. In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant , the most problematic pathogens in human clinical settings-especially carbapenem-resistant Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among isolates from food animals. appears to have originated from the chromosome of a species and may have been transferred onto plasmids by adjacent site-specific integrases. Although still appears to be rare in human clinical isolates, considering the transferability of the gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1 , on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae , Escherichia coli , and Salmonella . TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa . In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae . tmexCD1-toprJ1 -positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1 -like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1 - toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K.pneumoniae, Escherichia coli, and Salmonella TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniaetmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings-especially carbapenem-resistant K.pneumoniae Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K.pneumoniae, Escherichia coli, and Salmonella TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniaetmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings-especially carbapenem-resistant K.pneumoniae Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. |
Author | Jia, Peiyao Shen, Jianzhong Yang, Jun Song, Qianhua Partridge, Sally R. Wang, Yang Zong, Zhiyong Wang, Minggui Doi, Yohei Huang, Xianhui Wang, Chengzhen Lv, Luchao Yang, Qiwen Zhang, Qianhui Liu, Jian-Hua Gao, Xun Wan, Miao |
Author_xml | – sequence: 1 givenname: Luchao surname: Lv fullname: Lv, Luchao organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China – sequence: 2 givenname: Miao surname: Wan fullname: Wan, Miao organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China – sequence: 3 givenname: Chengzhen surname: Wang fullname: Wang, Chengzhen organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China – sequence: 4 givenname: Xun surname: Gao fullname: Gao, Xun organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China – sequence: 5 givenname: Qiwen surname: Yang fullname: Yang, Qiwen organization: Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China – sequence: 6 givenname: Sally R. orcidid: 0000-0002-0666-8330 surname: Partridge fullname: Partridge, Sally R. organization: Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia – sequence: 7 givenname: Yang surname: Wang fullname: Wang, Yang organization: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China – sequence: 8 givenname: Zhiyong surname: Zong fullname: Zong, Zhiyong organization: Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China – sequence: 9 givenname: Yohei surname: Doi fullname: Doi, Yohei organization: Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA – sequence: 10 givenname: Jianzhong surname: Shen fullname: Shen, Jianzhong organization: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China – sequence: 11 givenname: Peiyao surname: Jia fullname: Jia, Peiyao organization: Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China – sequence: 12 givenname: Qianhua surname: Song fullname: Song, Qianhua organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China – sequence: 13 givenname: Qianhui surname: Zhang fullname: Zhang, Qianhui organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China – sequence: 14 givenname: Jun surname: Yang fullname: Yang, Jun organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China – sequence: 15 givenname: Xianhui surname: Huang fullname: Huang, Xianhui organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China – sequence: 16 givenname: Minggui surname: Wang fullname: Wang, Minggui organization: Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China – sequence: 17 givenname: Jian-Hua orcidid: 0000-0002-3930-7857 surname: Liu fullname: Liu, Jian-Hua organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32127452$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNUREvpkSvykUNT_JVkc0GC7RZWFKhQOVu2Mw6uHHtrJxX9O_zSOrstahG-eDTzzvNannlZ7PngoSheE3xCCF28Gz7acIJpy3BJ2mfFASUVLpuKkL05rklJCW33i6OUrnA-jJEFwy-KfZbzDa_oQfFnNUDswWtAwSCJLpxMg-3Kldehgw79gGTTKHO9_Ba6ycnRBl-e2hubcoBWxrjpN7qYhg1aBm8gRuv7R11oDOjr5Ea7cYBO49SnY7T22k3drLu0Pehb7ayHY2Q9-uJAJQvOSbTxMA3BWwmviudGugRH9_dh8fNsdbn8XJ5__7RefjgvdUXasdRUU2UoLDrNMdNYKk1BSVI1NcFacmo4kQvT1lpWWHOdS6wxBDiuFCwwYYfFesftgrwSm2gHGW9FkFZsEyH2QsbRageCNpVsVXbAhnMGqu20qhWHSuKGqLbOrPc71mZSA3Qa_BilewJ9WvH2l-jDjWhwzZu6zYC394AYridIoxhs0vPPeAhTEpQ1hHCGa5albx57_TV5GHIWsJ1Ax5BSBCO0HbeDzNbWCYLFvE1i3iax3SZB5heU_3Q9gP-vvwMfOdB0 |
CitedBy_id | crossref_primary_10_1093_jac_dkae095 crossref_primary_10_3390_ijms232415779 crossref_primary_10_3389_fcimb_2023_1130333 crossref_primary_10_1128_mSphere_00592_21 crossref_primary_10_1128_spectrum_03874_23 crossref_primary_10_3390_microorganisms10122432 crossref_primary_10_3389_fmicb_2023_1293443 crossref_primary_10_1021_acsinfecdis_3c00408 crossref_primary_10_1016_j_jgar_2023_10_020 crossref_primary_10_1128_aac_00047_23 crossref_primary_10_1128_AAC_00625_21 crossref_primary_10_3389_fcimb_2022_902774 crossref_primary_10_3389_fmicb_2021_781306 crossref_primary_10_3389_fcimb_2023_1203487 crossref_primary_10_1186_s12934_024_02410_4 crossref_primary_10_3389_fmicb_2022_846954 crossref_primary_10_1089_fpd_2020_2847 crossref_primary_10_1093_jleuko_qiae154 crossref_primary_10_1002_med_21946 crossref_primary_10_1016_j_cmi_2023_07_030 crossref_primary_10_1128_AAC_02340_20 crossref_primary_10_3389_fmicb_2024_1519319 crossref_primary_10_1186_s13100_023_00295_5 crossref_primary_10_1038_s41598_022_07778_0 crossref_primary_10_1016_j_micres_2025_128051 crossref_primary_10_1007_s00253_024_13055_z crossref_primary_10_1016_j_jgar_2022_09_004 crossref_primary_10_1128_spectrum_03223_22 crossref_primary_10_1128_spectrum_01094_22 crossref_primary_10_3390_antibiotics12081304 crossref_primary_10_1080_14787210_2021_1935237 crossref_primary_10_1016_j_ijantimicag_2021_106504 crossref_primary_10_1016_j_ijantimicag_2024_107322 crossref_primary_10_1016_j_biopha_2024_117666 crossref_primary_10_3389_fmed_2022_759214 crossref_primary_10_1016_j_micres_2024_127747 crossref_primary_10_1016_S2666_5247_23_00338_5 crossref_primary_10_3389_fcimb_2024_1471469 crossref_primary_10_1093_jac_dkab005 crossref_primary_10_1016_j_jece_2022_108585 crossref_primary_10_1128_spectrum_02786_22 crossref_primary_10_1016_j_foodcont_2020_107761 crossref_primary_10_1016_j_drup_2023_100989 crossref_primary_10_1080_21505594_2021_2018768 crossref_primary_10_1186_s12941_024_00727_x crossref_primary_10_1016_j_pharmthera_2023_108550 crossref_primary_10_1016_j_ijfoodmicro_2024_110574 crossref_primary_10_1016_S1473_3099_20_30149_3 crossref_primary_10_1128_spectrum_02283_22 crossref_primary_10_1016_j_ijantimicag_2022_106619 crossref_primary_10_3389_fcimb_2021_809542 crossref_primary_10_1128_msystems_00797_24 crossref_primary_10_3390_microorganisms11081912 crossref_primary_10_3389_fcimb_2023_1122532 crossref_primary_10_1016_j_ijantimicag_2023_107069 crossref_primary_10_1021_acsinfecdis_3c00478 crossref_primary_10_22207_JPAM_18_1_42 crossref_primary_10_3390_microorganisms10091818 crossref_primary_10_1055_s_0041_1731914 crossref_primary_10_1093_jac_dkae223 crossref_primary_10_1128_Spectrum_00058_21 crossref_primary_10_21307_pm_2021_60_4_20 crossref_primary_10_1016_j_ijfoodmicro_2023_110138 crossref_primary_10_3389_fmicb_2021_759208 crossref_primary_10_1016_j_phymed_2024_156319 crossref_primary_10_22207_JPAM_16_3_59 crossref_primary_10_1016_j_chemosphere_2025_144109 crossref_primary_10_3389_fcimb_2024_1387497 crossref_primary_10_1038_s43856_024_00439_5 crossref_primary_10_1016_j_jhazmat_2020_124921 crossref_primary_10_1128_spectrum_05364_22 crossref_primary_10_1016_j_jgar_2023_07_018 crossref_primary_10_1080_26896583_2020_1781494 crossref_primary_10_1128_msystems_00429_23 crossref_primary_10_1093_jac_dkaa497 crossref_primary_10_1016_j_drup_2023_100925 crossref_primary_10_3390_antibiotics10040361 crossref_primary_10_3390_microorganisms11123000 crossref_primary_10_1016_j_micpath_2022_105570 crossref_primary_10_32895_UMP_MPR_9_1_2 crossref_primary_10_1016_j_jgar_2025_01_021 crossref_primary_10_1093_jac_dkad080 crossref_primary_10_3389_fcimb_2025_1540967 crossref_primary_10_3389_fmicb_2021_702006 crossref_primary_10_3389_fmicb_2023_1282988 crossref_primary_10_3390_foods13111766 crossref_primary_10_1186_s12941_024_00676_5 crossref_primary_10_1016_j_micres_2022_127151 crossref_primary_10_15252_embr_202051034 crossref_primary_10_3389_fmicb_2022_911777 crossref_primary_10_1128_AAC_02229_20 crossref_primary_10_1007_s12033_022_00585_y crossref_primary_10_1007_s42770_023_01036_9 crossref_primary_10_3390_ijms25031466 crossref_primary_10_1128_AAC_02178_20 crossref_primary_10_1016_j_resmic_2023_104114 crossref_primary_10_3390_ijms24086923 crossref_primary_10_1016_j_heliyon_2023_e14639 crossref_primary_10_1016_j_toxicon_2022_09_004 crossref_primary_10_1128_spectrum_01333_22 crossref_primary_10_3389_fmicb_2022_800993 crossref_primary_10_3389_fmicb_2023_1207441 crossref_primary_10_1007_s12010_025_05182_8 crossref_primary_10_3389_fmicb_2023_1115740 crossref_primary_10_1093_jac_dkad075 crossref_primary_10_1099_jmm_0_001320 crossref_primary_10_1186_s44280_023_00025_9 crossref_primary_10_1016_j_jgar_2024_04_001 crossref_primary_10_3389_fcimb_2021_673503 crossref_primary_10_3389_fvets_2021_693506 crossref_primary_10_3389_fcimb_2023_1260066 crossref_primary_10_3389_fmicb_2022_808744 crossref_primary_10_1111_1462_2920_15387 crossref_primary_10_1080_22221751_2020_1768805 crossref_primary_10_1016_j_jgar_2022_05_028 crossref_primary_10_1128_AAC_02075_20 crossref_primary_10_1128_Spectrum_01310_21 crossref_primary_10_3389_fmicb_2023_1277320 crossref_primary_10_3390_foods11142010 crossref_primary_10_1038_s41467_020_18475_9 crossref_primary_10_1016_j_ijantimicag_2024_107368 crossref_primary_10_1016_S2666_5247_22_00325_1 crossref_primary_10_3389_fcimb_2022_943735 crossref_primary_10_1002_pro_4323 crossref_primary_10_1016_j_jgar_2022_01_007 crossref_primary_10_1093_jac_dkab325 crossref_primary_10_1128_mbio_00218_24 crossref_primary_10_1128_msystems_00702_21 crossref_primary_10_1128_spectrum_00549_22 crossref_primary_10_1128_spectrum_00767_23 crossref_primary_10_1093_jac_dkac136 crossref_primary_10_3389_fcimb_2022_1108817 crossref_primary_10_1016_j_foodres_2024_113952 crossref_primary_10_1128_spectrum_04795_22 crossref_primary_10_1128_Spectrum_00416_21 crossref_primary_10_3389_fcimb_2021_638087 crossref_primary_10_1016_j_scitotenv_2023_161790 crossref_primary_10_1093_jac_dkab044 crossref_primary_10_1093_jac_dkae395 crossref_primary_10_1016_j_scitotenv_2023_167373 crossref_primary_10_1016_j_bsheal_2024_02_004 crossref_primary_10_1016_j_ijantimicag_2024_107390 crossref_primary_10_1128_Spectrum_00286_21 crossref_primary_10_1128_spectrum_02655_21 crossref_primary_10_3390_pathogens14030253 crossref_primary_10_1016_S0140_6736_24_02081_6 crossref_primary_10_1128_spectrum_00634_23 crossref_primary_10_3390_ph14090907 crossref_primary_10_1007_s40726_023_00270_x crossref_primary_10_1016_j_micres_2024_127730 crossref_primary_10_1038_s41598_024_55705_2 crossref_primary_10_1093_jac_dkab434 crossref_primary_10_1155_2021_6630379 crossref_primary_10_2147_IDR_S426148 crossref_primary_10_1016_S2666_5247_22_00221_X crossref_primary_10_1016_j_jgar_2022_02_012 crossref_primary_10_2217_fmb_2022_0097 crossref_primary_10_1016_j_jgar_2025_02_013 crossref_primary_10_1016_j_scitotenv_2021_151767 crossref_primary_10_1097_MRM_0000000000000379 crossref_primary_10_3389_fmicb_2022_969769 crossref_primary_10_1016_j_micpath_2024_106668 crossref_primary_10_1016_j_micpath_2020_104244 crossref_primary_10_1039_D2CP05059E crossref_primary_10_1128_spectrum_03468_22 crossref_primary_10_1021_acs_chemrev_1c00055 crossref_primary_10_1007_s11356_024_35287_2 crossref_primary_10_3390_antibiotics11020162 crossref_primary_10_1016_j_ijfoodmicro_2022_109612 crossref_primary_10_1016_j_phymed_2024_155421 crossref_primary_10_1016_j_engmic_2024_100165 crossref_primary_10_3390_microorganisms11112795 crossref_primary_10_3389_fmicb_2023_1130708 crossref_primary_10_3389_fmicb_2023_1221428 crossref_primary_10_1128_mSystems_00988_21 crossref_primary_10_1128_spectrum_03324_22 crossref_primary_10_1164_rccm_202306_1059OC crossref_primary_10_1128_AAC_02712_20 crossref_primary_10_1016_j_scitotenv_2021_150687 crossref_primary_10_1128_aac_01678_23 |
Cites_doi | 10.1093/jac/dks357 10.1128/JB.180.21.5505-5514.1998 10.18632/oncotarget.19496 10.1038/s41564-019-0492-8 10.1016/j.jmb.2003.09.082 10.1128/CMR.00117-14 10.1093/jac/28.5.639 10.1126/science.aav6390 10.1128/AAC.48.6.2179-2184.2004 10.3389/fcimb.2017.00037 10.1007/s00438-002-0785-z 10.1016/j.drup.2016.09.001 10.1016/S1473-3099(17)30628-X 10.1186/s12941-017-0191-3 10.1038/nm1116-1197 10.1128/aac.47.3.972-978.2003 10.1093/jac/dkx513 10.1016/j.jchromb.2004.09.011 10.1128/AAC.01326-19 10.1038/s41564-019-0496-4 10.3389/fmicb.2018.02928 10.1016/j.ijmm.2013.02.001 10.1126/science.277.5331.1453 10.1371/journal.pcbi.1005595 10.1128/AAC.00476-17 10.1128/AAC.03808-14 10.1016/j.meegid.2018.09.025 10.1093/jac/dkx381 10.1038/nature05076 10.1128/AAC.42.1.65 10.1093/cid/ciy660 10.1046/j.1365-2958.1996.281397.x 10.1080/14787210.2018.1481749 10.1128/mBio.01801-14 10.1093/femsre/fux013 10.3389/fmicb.2019.00080 10.1093/jac/dku340 10.1016/S1473-3099(17)30753-3 10.1016/j.ijantimicag.2014.12.022 10.1073/pnas.1218348109 10.1038/s41564-019-0445-2 10.1128/AAC.40.4.909 10.1038/s41598-018-28531-6 10.1016/S1473-3099(12)70317-1 10.1128/AAC.01019-15 10.1038/35023079 10.1093/jac/dkv167 10.1038/s41579-018-0048-6 10.1101/cshperspect.a025387 10.1073/pnas.1503141112 10.1016/S1473-3099(15)00424-7 10.1128/microbiolspec.PLAS-0006-2013 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Lv et al. Copyright © 2020 Lv et al. 2020 Lv et al. |
Copyright_xml | – notice: Copyright © 2020 Lv et al. – notice: Copyright © 2020 Lv et al. 2020 Lv et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.02930-19 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Plasmid-Encoded Tigecycline Resistance Gene Cluster |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_275a9babc0f443eb9dcb6b4e5a071b96 PMC7064769 32127452 10_1128_mBio_02930_19 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 31625026 – fundername: ; grantid: 81661138002 – fundername: ; grantid: 31930110 – fundername: ; grantid: 31830099 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c519t-c2c2bf2e8dc403c0abc2eba157610ca42f41a8f96ca50c4cba137f1e405be8013 |
IEDL.DBID | DOA |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:31:06 EDT 2025 Thu Aug 21 18:33:00 EDT 2025 Thu Jul 10 17:45:31 EDT 2025 Wed Feb 19 02:28:58 EST 2025 Thu Apr 24 23:06:35 EDT 2025 Tue Jul 01 01:52:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | mechanisms of resistance multidrug resistance antimicrobial agents efflux pumps plasmid-mediated resistance Enterobacteriaceae |
Language | English |
License | Copyright © 2020 Lv et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-c2c2bf2e8dc403c0abc2eba157610ca42f41a8f96ca50c4cba137f1e405be8013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Luchao Lv, Miao Wan, Chengzhen Wang, Xun Gao, and Qiwen Yang contributed equally to this work. Author order is explained in Acknowledgments. |
ORCID | 0000-0002-0666-8330 0000-0002-3930-7857 |
OpenAccessLink | https://doaj.org/article/275a9babc0f443eb9dcb6b4e5a071b96 |
PMID | 32127452 |
PQID | 2371143063 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_275a9babc0f443eb9dcb6b4e5a071b96 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064769 proquest_miscellaneous_2371143063 pubmed_primary_32127452 crossref_citationtrail_10_1128_mBio_02930_19 crossref_primary_10_1128_mBio_02930_19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200303 |
PublicationDateYYYYMMDD | 2020-03-03 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200303 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2020 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 Clinical and Laboratory Standards Institute (e_1_3_2_54_2) 2017 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_28_2 doi: 10.1093/jac/dks357 – ident: e_1_3_2_32_2 doi: 10.1128/JB.180.21.5505-5514.1998 – ident: e_1_3_2_27_2 doi: 10.18632/oncotarget.19496 – ident: e_1_3_2_13_2 doi: 10.1038/s41564-019-0492-8 – ident: e_1_3_2_33_2 doi: 10.1016/j.jmb.2003.09.082 – ident: e_1_3_2_5_2 doi: 10.1128/CMR.00117-14 – ident: e_1_3_2_51_2 doi: 10.1093/jac/28.5.639 – ident: e_1_3_2_31_2 doi: 10.1126/science.aav6390 – ident: e_1_3_2_41_2 doi: 10.1128/AAC.48.6.2179-2184.2004 – ident: e_1_3_2_18_2 doi: 10.3389/fcimb.2017.00037 – ident: e_1_3_2_7_2 doi: 10.1007/s00438-002-0785-z – ident: e_1_3_2_37_2 doi: 10.1016/j.drup.2016.09.001 – ident: e_1_3_2_20_2 doi: 10.1016/S1473-3099(17)30628-X – ident: e_1_3_2_14_2 doi: 10.1186/s12941-017-0191-3 – ident: e_1_3_2_38_2 doi: 10.1038/nm1116-1197 – ident: e_1_3_2_24_2 doi: 10.1128/aac.47.3.972-978.2003 – ident: e_1_3_2_50_2 doi: 10.1093/jac/dkx513 – ident: e_1_3_2_52_2 doi: 10.1016/j.jchromb.2004.09.011 – ident: e_1_3_2_23_2 doi: 10.1128/AAC.01326-19 – ident: e_1_3_2_22_2 doi: 10.1038/s41564-019-0496-4 – ident: e_1_3_2_45_2 doi: 10.3389/fmicb.2018.02928 – ident: e_1_3_2_4_2 doi: 10.1016/j.ijmm.2013.02.001 – ident: e_1_3_2_30_2 doi: 10.1126/science.277.5331.1453 – ident: e_1_3_2_49_2 doi: 10.1371/journal.pcbi.1005595 – ident: e_1_3_2_53_2 doi: 10.1128/AAC.00476-17 – ident: e_1_3_2_15_2 doi: 10.1128/AAC.03808-14 – ident: e_1_3_2_19_2 doi: 10.1016/j.meegid.2018.09.025 – ident: e_1_3_2_26_2 doi: 10.1093/jac/dkx381 – ident: e_1_3_2_42_2 doi: 10.1038/nature05076 – ident: e_1_3_2_40_2 doi: 10.1128/AAC.42.1.65 – ident: e_1_3_2_11_2 doi: 10.1093/cid/ciy660 – ident: e_1_3_2_35_2 doi: 10.1046/j.1365-2958.1996.281397.x – ident: e_1_3_2_47_2 doi: 10.1080/14787210.2018.1481749 – ident: e_1_3_2_34_2 doi: 10.1128/mBio.01801-14 – ident: e_1_3_2_3_2 doi: 10.1093/femsre/fux013 – ident: e_1_3_2_8_2 doi: 10.3389/fmicb.2019.00080 – ident: e_1_3_2_16_2 doi: 10.1093/jac/dku340 – ident: e_1_3_2_2_2 doi: 10.1016/S1473-3099(17)30753-3 – ident: e_1_3_2_17_2 doi: 10.1016/j.ijantimicag.2014.12.022 – ident: e_1_3_2_43_2 doi: 10.1073/pnas.1218348109 – ident: e_1_3_2_21_2 doi: 10.1038/s41564-019-0445-2 – ident: e_1_3_2_39_2 doi: 10.1128/AAC.40.4.909 – ident: e_1_3_2_44_2 doi: 10.1038/s41598-018-28531-6 – ident: e_1_3_2_46_2 doi: 10.1016/S1473-3099(12)70317-1 – ident: e_1_3_2_12_2 doi: 10.1128/AAC.01019-15 – ident: e_1_3_2_29_2 doi: 10.1038/35023079 – ident: e_1_3_2_25_2 doi: 10.1093/jac/dkv167 – ident: e_1_3_2_6_2 doi: 10.1038/s41579-018-0048-6 – volume-title: Performance standards for antimicrobial susceptibility testing, 27th ed year: 2017 ident: e_1_3_2_54_2 – ident: e_1_3_2_10_2 doi: 10.1101/cshperspect.a025387 – ident: e_1_3_2_48_2 doi: 10.1073/pnas.1503141112 – ident: e_1_3_2_9_2 doi: 10.1016/S1473-3099(15)00424-7 – ident: e_1_3_2_36_2 doi: 10.1128/microbiolspec.PLAS-0006-2013 |
SSID | ssj0000331830 |
Score | 2.6203043 |
Snippet | In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of... Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria.... ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Anti-Bacterial Agents - pharmacology antimicrobial agents Clinical Science and Epidemiology Drug Resistance, Multiple, Bacterial efflux pumps Enterobacteriaceae Escherichia coli - genetics Female Klebsiella Infections - microbiology Klebsiella pneumoniae - drug effects Klebsiella pneumoniae - genetics mechanisms of resistance Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Mice Microbial Sensitivity Tests multidrug resistance Multigene Family plasmid-mediated resistance Plasmids - genetics Tigecycline - pharmacology |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBLadOX-wgqlJ5WqS1r_TiU0iQbQsuGULKQm5Hk0dbg2Ol6Ddm_01_aGdu7yYb01qslYckzo_kkz3zD2MdASUss4CI3uAWqOFIiUdoJI02a5AjoZU7JydPT6GSmvl-ML24ohYYP2Nx7tKN6UrNFuX_9e_UVDf5LnwCTfL48KOp9H_2WL4gA9CE6pYjOYdMB6XebckjK669ZNu-O2vJKHXn_fYjzbuDkLU90_JQ9GSAk_9bL_Bl7ANUue9QXlVw9Z38mQ0Yl8Npxzc8QH18WuZhUlL6e85_QEGbEdnFa50P1LnFU9FnmfOJc2V7zMxQz79MB6ebv1ii-rPl0CEPkR4t23ow47jJlS16QnxdzsCvKt4QRLyr-owTTFBRixa8qaFHpCw0v2Ox4cn54IoZKDMIiwlsKK600TkKSW-WH1tfGSjA6wMNK4FutpFOBTlwaUYEFqyw2hbELANGgAfSB4Uu2U9UVvGY8JAiHqAeIKhD9J_FausgEvgFfmjz22GgticwONOVULaPMuuOKTDISXNYJLgtSj33adL_q-Tn-1fGAxLrpRLTa3YN6Mc8GK81kPNapwdX5TqkQTJpbExkFY41IzKSRxz6slSJDM6R_K7qCum0yicuh9UShx171SrJ5VUgs-mosPRZvqc_WXLZbquJXR_UdUy5wlL75H5N_yx5LuiygALrwHdtZLlp4j4hqafY6W_kLZNwkoQ priority: 102 providerName: Scholars Portal |
Title | Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32127452 https://www.proquest.com/docview/2371143063 https://pubmed.ncbi.nlm.nih.gov/PMC7064769 https://doaj.org/article/275a9babc0f443eb9dcb6b4e5a071b96 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgoyEOK2p43jzOFK6pQJtVaFW2lvkx7hE2iZVdyO1f4dfykySXWURiAsXH2JHsT1jz2dn5hvG3sdaOWIBF97iFqizVItcmyCsskXuEdArT8HJ89P05EJ_XUwXo1Rf5BPW0wP3E3egsqkprLFOBq0TsIV3NrUapgaNoy06sm1ZyNFhqtuDE9JVuSHVVPnB1WHVfJRo3KQgVp2REeq4-v8EMH_3kxwZnuNH7OGAGPmnvqeP2T2on7D7fQ7Ju6fs52wIoATeBG74GcLhq8qLWU3R6p5_hxVBRKwXp40fknWJo6oPKuezEJbtLT9DqfI--o8u-kZv8XXD54PXIT-6aS9XE46byrIlo8fPq0twdxReCRNe1fzbEuyqIo8qfl1DizpeGXjGLo5n559PxJB4QTgEdGvhlFM2KMi90zJxEmdfgTUxnk1i6YxWQccmD0VK-RScdliVZCEGBH8W0OQlz9le3dTwkvGEEBuCHCBmQDSXRGMZUhtLC1JZn0VsspFE6QZWckqOsSy704nKSxJc2QmujIuIfdg2v-7pOP7W8JDEum1ELNrdA9StctCt8l-6FbF3G6UocdXRrxRTQ9OuSoXDofGkScRe9Eqy_VRCpPl6qiKW7ajPTl92a-rqR8fsnVHob1q8-h-df80eKLobIH-5ZJ_trW9aeIMAam3fdmsFyy-LGMu5zn8Blj8f1A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+a+Plasmid-Encoded+Resistance-Nodulation-Division+Efflux+Pump+Conferring+Resistance+to+Multiple+Drugs%2C+Including+Tigecycline%2C+in+Klebsiella+pneumoniae&rft.jtitle=mBio&rft.au=Luchao+Lv&rft.au=Miao+Wan&rft.au=Chengzhen+Wang&rft.au=Xun+Gao&rft.date=2020-03-03&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.02930-19&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_275a9babc0f443eb9dcb6b4e5a071b96 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |