Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae

In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 11; no. 2
Main Authors Lv, Luchao, Wan, Miao, Wang, Chengzhen, Gao, Xun, Yang, Qiwen, Partridge, Sally R., Wang, Yang, Zong, Zhiyong, Doi, Yohei, Shen, Jianzhong, Jia, Peiyao, Song, Qianhua, Zhang, Qianhui, Yang, Jun, Huang, Xianhui, Wang, Minggui, Liu, Jian-Hua
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 03.03.2020
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.02930-19

Cover

Abstract In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1 , on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae , Escherichia coli , and Salmonella . TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa . In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae . tmexCD1-toprJ1 -positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1 -like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1 - toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.
AbstractList In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1 , on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae , Escherichia coli , and Salmonella . TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa . In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae . tmexCD1-toprJ1 -positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1 -like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1 - toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.
ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.
Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated , on plasmids from five pandrug-resistant isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for , , and TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of In an IncFIA plasmid, pHNAH8I, the gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in resulted in increased tigecycline efflux and in negated the efficacy of tigecycline in an infection model. Expression of TMexCD1-TOprJ1 reduced the growth of and but not -positive isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne -like gene clusters were identified in sequences in GenBank from and strains from multiple continents. The possibility of further global dissemination of the - gene cluster and its analogues in via plasmids may be an important consideration for public health planning. In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant , the most problematic pathogens in human clinical settings-especially carbapenem-resistant Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among isolates from food animals. appears to have originated from the chromosome of a species and may have been transferred onto plasmids by adjacent site-specific integrases. Although still appears to be rare in human clinical isolates, considering the transferability of the gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.
In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae , the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae . Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1 , on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae , Escherichia coli , and Salmonella . TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa . In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae . tmexCD1-toprJ1 -positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1 -like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1 - toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.
Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K.pneumoniae, Escherichia coli, and Salmonella TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniaetmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings-especially carbapenem-resistant K.pneumoniae Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K.pneumoniae, Escherichia coli, and Salmonella TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniaetmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings-especially carbapenem-resistant K.pneumoniae Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.
Author Jia, Peiyao
Shen, Jianzhong
Yang, Jun
Song, Qianhua
Partridge, Sally R.
Wang, Yang
Zong, Zhiyong
Wang, Minggui
Doi, Yohei
Huang, Xianhui
Wang, Chengzhen
Lv, Luchao
Yang, Qiwen
Zhang, Qianhui
Liu, Jian-Hua
Gao, Xun
Wan, Miao
Author_xml – sequence: 1
  givenname: Luchao
  surname: Lv
  fullname: Lv, Luchao
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
– sequence: 2
  givenname: Miao
  surname: Wan
  fullname: Wan, Miao
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
– sequence: 3
  givenname: Chengzhen
  surname: Wang
  fullname: Wang, Chengzhen
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
– sequence: 4
  givenname: Xun
  surname: Gao
  fullname: Gao, Xun
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
– sequence: 5
  givenname: Qiwen
  surname: Yang
  fullname: Yang, Qiwen
  organization: Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
– sequence: 6
  givenname: Sally R.
  orcidid: 0000-0002-0666-8330
  surname: Partridge
  fullname: Partridge, Sally R.
  organization: Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia
– sequence: 7
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
– sequence: 8
  givenname: Zhiyong
  surname: Zong
  fullname: Zong, Zhiyong
  organization: Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
– sequence: 9
  givenname: Yohei
  surname: Doi
  fullname: Doi, Yohei
  organization: Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
– sequence: 10
  givenname: Jianzhong
  surname: Shen
  fullname: Shen, Jianzhong
  organization: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
– sequence: 11
  givenname: Peiyao
  surname: Jia
  fullname: Jia, Peiyao
  organization: Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
– sequence: 12
  givenname: Qianhua
  surname: Song
  fullname: Song, Qianhua
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
– sequence: 13
  givenname: Qianhui
  surname: Zhang
  fullname: Zhang, Qianhui
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
– sequence: 14
  givenname: Jun
  surname: Yang
  fullname: Yang, Jun
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
– sequence: 15
  givenname: Xianhui
  surname: Huang
  fullname: Huang, Xianhui
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
– sequence: 16
  givenname: Minggui
  surname: Wang
  fullname: Wang, Minggui
  organization: Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 17
  givenname: Jian-Hua
  orcidid: 0000-0002-3930-7857
  surname: Liu
  fullname: Liu, Jian-Hua
  organization: College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32127452$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpkSvykUNT_JVkc0GC7RZWFKhQOVu2Mw6uHHtrJxX9O_zSOrstahG-eDTzzvNannlZ7PngoSheE3xCCF28Gz7acIJpy3BJ2mfFASUVLpuKkL05rklJCW33i6OUrnA-jJEFwy-KfZbzDa_oQfFnNUDswWtAwSCJLpxMg-3Kldehgw79gGTTKHO9_Ba6ycnRBl-e2hubcoBWxrjpN7qYhg1aBm8gRuv7R11oDOjr5Ea7cYBO49SnY7T22k3drLu0Pehb7ayHY2Q9-uJAJQvOSbTxMA3BWwmviudGugRH9_dh8fNsdbn8XJ5__7RefjgvdUXasdRUU2UoLDrNMdNYKk1BSVI1NcFacmo4kQvT1lpWWHOdS6wxBDiuFCwwYYfFesftgrwSm2gHGW9FkFZsEyH2QsbRageCNpVsVXbAhnMGqu20qhWHSuKGqLbOrPc71mZSA3Qa_BilewJ9WvH2l-jDjWhwzZu6zYC394AYridIoxhs0vPPeAhTEpQ1hHCGa5albx57_TV5GHIWsJ1Ax5BSBCO0HbeDzNbWCYLFvE1i3iax3SZB5heU_3Q9gP-vvwMfOdB0
CitedBy_id crossref_primary_10_1093_jac_dkae095
crossref_primary_10_3390_ijms232415779
crossref_primary_10_3389_fcimb_2023_1130333
crossref_primary_10_1128_mSphere_00592_21
crossref_primary_10_1128_spectrum_03874_23
crossref_primary_10_3390_microorganisms10122432
crossref_primary_10_3389_fmicb_2023_1293443
crossref_primary_10_1021_acsinfecdis_3c00408
crossref_primary_10_1016_j_jgar_2023_10_020
crossref_primary_10_1128_aac_00047_23
crossref_primary_10_1128_AAC_00625_21
crossref_primary_10_3389_fcimb_2022_902774
crossref_primary_10_3389_fmicb_2021_781306
crossref_primary_10_3389_fcimb_2023_1203487
crossref_primary_10_1186_s12934_024_02410_4
crossref_primary_10_3389_fmicb_2022_846954
crossref_primary_10_1089_fpd_2020_2847
crossref_primary_10_1093_jleuko_qiae154
crossref_primary_10_1002_med_21946
crossref_primary_10_1016_j_cmi_2023_07_030
crossref_primary_10_1128_AAC_02340_20
crossref_primary_10_3389_fmicb_2024_1519319
crossref_primary_10_1186_s13100_023_00295_5
crossref_primary_10_1038_s41598_022_07778_0
crossref_primary_10_1016_j_micres_2025_128051
crossref_primary_10_1007_s00253_024_13055_z
crossref_primary_10_1016_j_jgar_2022_09_004
crossref_primary_10_1128_spectrum_03223_22
crossref_primary_10_1128_spectrum_01094_22
crossref_primary_10_3390_antibiotics12081304
crossref_primary_10_1080_14787210_2021_1935237
crossref_primary_10_1016_j_ijantimicag_2021_106504
crossref_primary_10_1016_j_ijantimicag_2024_107322
crossref_primary_10_1016_j_biopha_2024_117666
crossref_primary_10_3389_fmed_2022_759214
crossref_primary_10_1016_j_micres_2024_127747
crossref_primary_10_1016_S2666_5247_23_00338_5
crossref_primary_10_3389_fcimb_2024_1471469
crossref_primary_10_1093_jac_dkab005
crossref_primary_10_1016_j_jece_2022_108585
crossref_primary_10_1128_spectrum_02786_22
crossref_primary_10_1016_j_foodcont_2020_107761
crossref_primary_10_1016_j_drup_2023_100989
crossref_primary_10_1080_21505594_2021_2018768
crossref_primary_10_1186_s12941_024_00727_x
crossref_primary_10_1016_j_pharmthera_2023_108550
crossref_primary_10_1016_j_ijfoodmicro_2024_110574
crossref_primary_10_1016_S1473_3099_20_30149_3
crossref_primary_10_1128_spectrum_02283_22
crossref_primary_10_1016_j_ijantimicag_2022_106619
crossref_primary_10_3389_fcimb_2021_809542
crossref_primary_10_1128_msystems_00797_24
crossref_primary_10_3390_microorganisms11081912
crossref_primary_10_3389_fcimb_2023_1122532
crossref_primary_10_1016_j_ijantimicag_2023_107069
crossref_primary_10_1021_acsinfecdis_3c00478
crossref_primary_10_22207_JPAM_18_1_42
crossref_primary_10_3390_microorganisms10091818
crossref_primary_10_1055_s_0041_1731914
crossref_primary_10_1093_jac_dkae223
crossref_primary_10_1128_Spectrum_00058_21
crossref_primary_10_21307_pm_2021_60_4_20
crossref_primary_10_1016_j_ijfoodmicro_2023_110138
crossref_primary_10_3389_fmicb_2021_759208
crossref_primary_10_1016_j_phymed_2024_156319
crossref_primary_10_22207_JPAM_16_3_59
crossref_primary_10_1016_j_chemosphere_2025_144109
crossref_primary_10_3389_fcimb_2024_1387497
crossref_primary_10_1038_s43856_024_00439_5
crossref_primary_10_1016_j_jhazmat_2020_124921
crossref_primary_10_1128_spectrum_05364_22
crossref_primary_10_1016_j_jgar_2023_07_018
crossref_primary_10_1080_26896583_2020_1781494
crossref_primary_10_1128_msystems_00429_23
crossref_primary_10_1093_jac_dkaa497
crossref_primary_10_1016_j_drup_2023_100925
crossref_primary_10_3390_antibiotics10040361
crossref_primary_10_3390_microorganisms11123000
crossref_primary_10_1016_j_micpath_2022_105570
crossref_primary_10_32895_UMP_MPR_9_1_2
crossref_primary_10_1016_j_jgar_2025_01_021
crossref_primary_10_1093_jac_dkad080
crossref_primary_10_3389_fcimb_2025_1540967
crossref_primary_10_3389_fmicb_2021_702006
crossref_primary_10_3389_fmicb_2023_1282988
crossref_primary_10_3390_foods13111766
crossref_primary_10_1186_s12941_024_00676_5
crossref_primary_10_1016_j_micres_2022_127151
crossref_primary_10_15252_embr_202051034
crossref_primary_10_3389_fmicb_2022_911777
crossref_primary_10_1128_AAC_02229_20
crossref_primary_10_1007_s12033_022_00585_y
crossref_primary_10_1007_s42770_023_01036_9
crossref_primary_10_3390_ijms25031466
crossref_primary_10_1128_AAC_02178_20
crossref_primary_10_1016_j_resmic_2023_104114
crossref_primary_10_3390_ijms24086923
crossref_primary_10_1016_j_heliyon_2023_e14639
crossref_primary_10_1016_j_toxicon_2022_09_004
crossref_primary_10_1128_spectrum_01333_22
crossref_primary_10_3389_fmicb_2022_800993
crossref_primary_10_3389_fmicb_2023_1207441
crossref_primary_10_1007_s12010_025_05182_8
crossref_primary_10_3389_fmicb_2023_1115740
crossref_primary_10_1093_jac_dkad075
crossref_primary_10_1099_jmm_0_001320
crossref_primary_10_1186_s44280_023_00025_9
crossref_primary_10_1016_j_jgar_2024_04_001
crossref_primary_10_3389_fcimb_2021_673503
crossref_primary_10_3389_fvets_2021_693506
crossref_primary_10_3389_fcimb_2023_1260066
crossref_primary_10_3389_fmicb_2022_808744
crossref_primary_10_1111_1462_2920_15387
crossref_primary_10_1080_22221751_2020_1768805
crossref_primary_10_1016_j_jgar_2022_05_028
crossref_primary_10_1128_AAC_02075_20
crossref_primary_10_1128_Spectrum_01310_21
crossref_primary_10_3389_fmicb_2023_1277320
crossref_primary_10_3390_foods11142010
crossref_primary_10_1038_s41467_020_18475_9
crossref_primary_10_1016_j_ijantimicag_2024_107368
crossref_primary_10_1016_S2666_5247_22_00325_1
crossref_primary_10_3389_fcimb_2022_943735
crossref_primary_10_1002_pro_4323
crossref_primary_10_1016_j_jgar_2022_01_007
crossref_primary_10_1093_jac_dkab325
crossref_primary_10_1128_mbio_00218_24
crossref_primary_10_1128_msystems_00702_21
crossref_primary_10_1128_spectrum_00549_22
crossref_primary_10_1128_spectrum_00767_23
crossref_primary_10_1093_jac_dkac136
crossref_primary_10_3389_fcimb_2022_1108817
crossref_primary_10_1016_j_foodres_2024_113952
crossref_primary_10_1128_spectrum_04795_22
crossref_primary_10_1128_Spectrum_00416_21
crossref_primary_10_3389_fcimb_2021_638087
crossref_primary_10_1016_j_scitotenv_2023_161790
crossref_primary_10_1093_jac_dkab044
crossref_primary_10_1093_jac_dkae395
crossref_primary_10_1016_j_scitotenv_2023_167373
crossref_primary_10_1016_j_bsheal_2024_02_004
crossref_primary_10_1016_j_ijantimicag_2024_107390
crossref_primary_10_1128_Spectrum_00286_21
crossref_primary_10_1128_spectrum_02655_21
crossref_primary_10_3390_pathogens14030253
crossref_primary_10_1016_S0140_6736_24_02081_6
crossref_primary_10_1128_spectrum_00634_23
crossref_primary_10_3390_ph14090907
crossref_primary_10_1007_s40726_023_00270_x
crossref_primary_10_1016_j_micres_2024_127730
crossref_primary_10_1038_s41598_024_55705_2
crossref_primary_10_1093_jac_dkab434
crossref_primary_10_1155_2021_6630379
crossref_primary_10_2147_IDR_S426148
crossref_primary_10_1016_S2666_5247_22_00221_X
crossref_primary_10_1016_j_jgar_2022_02_012
crossref_primary_10_2217_fmb_2022_0097
crossref_primary_10_1016_j_jgar_2025_02_013
crossref_primary_10_1016_j_scitotenv_2021_151767
crossref_primary_10_1097_MRM_0000000000000379
crossref_primary_10_3389_fmicb_2022_969769
crossref_primary_10_1016_j_micpath_2024_106668
crossref_primary_10_1016_j_micpath_2020_104244
crossref_primary_10_1039_D2CP05059E
crossref_primary_10_1128_spectrum_03468_22
crossref_primary_10_1021_acs_chemrev_1c00055
crossref_primary_10_1007_s11356_024_35287_2
crossref_primary_10_3390_antibiotics11020162
crossref_primary_10_1016_j_ijfoodmicro_2022_109612
crossref_primary_10_1016_j_phymed_2024_155421
crossref_primary_10_1016_j_engmic_2024_100165
crossref_primary_10_3390_microorganisms11112795
crossref_primary_10_3389_fmicb_2023_1130708
crossref_primary_10_3389_fmicb_2023_1221428
crossref_primary_10_1128_mSystems_00988_21
crossref_primary_10_1128_spectrum_03324_22
crossref_primary_10_1164_rccm_202306_1059OC
crossref_primary_10_1128_AAC_02712_20
crossref_primary_10_1016_j_scitotenv_2021_150687
crossref_primary_10_1128_aac_01678_23
Cites_doi 10.1093/jac/dks357
10.1128/JB.180.21.5505-5514.1998
10.18632/oncotarget.19496
10.1038/s41564-019-0492-8
10.1016/j.jmb.2003.09.082
10.1128/CMR.00117-14
10.1093/jac/28.5.639
10.1126/science.aav6390
10.1128/AAC.48.6.2179-2184.2004
10.3389/fcimb.2017.00037
10.1007/s00438-002-0785-z
10.1016/j.drup.2016.09.001
10.1016/S1473-3099(17)30628-X
10.1186/s12941-017-0191-3
10.1038/nm1116-1197
10.1128/aac.47.3.972-978.2003
10.1093/jac/dkx513
10.1016/j.jchromb.2004.09.011
10.1128/AAC.01326-19
10.1038/s41564-019-0496-4
10.3389/fmicb.2018.02928
10.1016/j.ijmm.2013.02.001
10.1126/science.277.5331.1453
10.1371/journal.pcbi.1005595
10.1128/AAC.00476-17
10.1128/AAC.03808-14
10.1016/j.meegid.2018.09.025
10.1093/jac/dkx381
10.1038/nature05076
10.1128/AAC.42.1.65
10.1093/cid/ciy660
10.1046/j.1365-2958.1996.281397.x
10.1080/14787210.2018.1481749
10.1128/mBio.01801-14
10.1093/femsre/fux013
10.3389/fmicb.2019.00080
10.1093/jac/dku340
10.1016/S1473-3099(17)30753-3
10.1016/j.ijantimicag.2014.12.022
10.1073/pnas.1218348109
10.1038/s41564-019-0445-2
10.1128/AAC.40.4.909
10.1038/s41598-018-28531-6
10.1016/S1473-3099(12)70317-1
10.1128/AAC.01019-15
10.1038/35023079
10.1093/jac/dkv167
10.1038/s41579-018-0048-6
10.1101/cshperspect.a025387
10.1073/pnas.1503141112
10.1016/S1473-3099(15)00424-7
10.1128/microbiolspec.PLAS-0006-2013
ContentType Journal Article
Copyright Copyright © 2020 Lv et al.
Copyright © 2020 Lv et al. 2020 Lv et al.
Copyright_xml – notice: Copyright © 2020 Lv et al.
– notice: Copyright © 2020 Lv et al. 2020 Lv et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.02930-19
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Plasmid-Encoded Tigecycline Resistance Gene Cluster
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_275a9babc0f443eb9dcb6b4e5a071b96
PMC7064769
32127452
10_1128_mBio_02930_19
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 31625026
– fundername: ;
  grantid: 81661138002
– fundername: ;
  grantid: 31930110
– fundername: ;
  grantid: 31830099
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c519t-c2c2bf2e8dc403c0abc2eba157610ca42f41a8f96ca50c4cba137f1e405be8013
IEDL.DBID DOA
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:31:06 EDT 2025
Thu Aug 21 18:33:00 EDT 2025
Thu Jul 10 17:45:31 EDT 2025
Wed Feb 19 02:28:58 EST 2025
Thu Apr 24 23:06:35 EDT 2025
Tue Jul 01 01:52:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords mechanisms of resistance
multidrug resistance
antimicrobial agents
efflux pumps
plasmid-mediated resistance
Enterobacteriaceae
Language English
License Copyright © 2020 Lv et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-c2c2bf2e8dc403c0abc2eba157610ca42f41a8f96ca50c4cba137f1e405be8013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Luchao Lv, Miao Wan, Chengzhen Wang, Xun Gao, and Qiwen Yang contributed equally to this work. Author order is explained in Acknowledgments.
ORCID 0000-0002-0666-8330
0000-0002-3930-7857
OpenAccessLink https://doaj.org/article/275a9babc0f443eb9dcb6b4e5a071b96
PMID 32127452
PQID 2371143063
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_275a9babc0f443eb9dcb6b4e5a071b96
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064769
proquest_miscellaneous_2371143063
pubmed_primary_32127452
crossref_citationtrail_10_1128_mBio_02930_19
crossref_primary_10_1128_mBio_02930_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200303
PublicationDateYYYYMMDD 2020-03-03
PublicationDate_xml – month: 3
  year: 2020
  text: 20200303
  day: 3
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
Clinical and Laboratory Standards Institute (e_1_3_2_54_2) 2017
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_28_2
  doi: 10.1093/jac/dks357
– ident: e_1_3_2_32_2
  doi: 10.1128/JB.180.21.5505-5514.1998
– ident: e_1_3_2_27_2
  doi: 10.18632/oncotarget.19496
– ident: e_1_3_2_13_2
  doi: 10.1038/s41564-019-0492-8
– ident: e_1_3_2_33_2
  doi: 10.1016/j.jmb.2003.09.082
– ident: e_1_3_2_5_2
  doi: 10.1128/CMR.00117-14
– ident: e_1_3_2_51_2
  doi: 10.1093/jac/28.5.639
– ident: e_1_3_2_31_2
  doi: 10.1126/science.aav6390
– ident: e_1_3_2_41_2
  doi: 10.1128/AAC.48.6.2179-2184.2004
– ident: e_1_3_2_18_2
  doi: 10.3389/fcimb.2017.00037
– ident: e_1_3_2_7_2
  doi: 10.1007/s00438-002-0785-z
– ident: e_1_3_2_37_2
  doi: 10.1016/j.drup.2016.09.001
– ident: e_1_3_2_20_2
  doi: 10.1016/S1473-3099(17)30628-X
– ident: e_1_3_2_14_2
  doi: 10.1186/s12941-017-0191-3
– ident: e_1_3_2_38_2
  doi: 10.1038/nm1116-1197
– ident: e_1_3_2_24_2
  doi: 10.1128/aac.47.3.972-978.2003
– ident: e_1_3_2_50_2
  doi: 10.1093/jac/dkx513
– ident: e_1_3_2_52_2
  doi: 10.1016/j.jchromb.2004.09.011
– ident: e_1_3_2_23_2
  doi: 10.1128/AAC.01326-19
– ident: e_1_3_2_22_2
  doi: 10.1038/s41564-019-0496-4
– ident: e_1_3_2_45_2
  doi: 10.3389/fmicb.2018.02928
– ident: e_1_3_2_4_2
  doi: 10.1016/j.ijmm.2013.02.001
– ident: e_1_3_2_30_2
  doi: 10.1126/science.277.5331.1453
– ident: e_1_3_2_49_2
  doi: 10.1371/journal.pcbi.1005595
– ident: e_1_3_2_53_2
  doi: 10.1128/AAC.00476-17
– ident: e_1_3_2_15_2
  doi: 10.1128/AAC.03808-14
– ident: e_1_3_2_19_2
  doi: 10.1016/j.meegid.2018.09.025
– ident: e_1_3_2_26_2
  doi: 10.1093/jac/dkx381
– ident: e_1_3_2_42_2
  doi: 10.1038/nature05076
– ident: e_1_3_2_40_2
  doi: 10.1128/AAC.42.1.65
– ident: e_1_3_2_11_2
  doi: 10.1093/cid/ciy660
– ident: e_1_3_2_35_2
  doi: 10.1046/j.1365-2958.1996.281397.x
– ident: e_1_3_2_47_2
  doi: 10.1080/14787210.2018.1481749
– ident: e_1_3_2_34_2
  doi: 10.1128/mBio.01801-14
– ident: e_1_3_2_3_2
  doi: 10.1093/femsre/fux013
– ident: e_1_3_2_8_2
  doi: 10.3389/fmicb.2019.00080
– ident: e_1_3_2_16_2
  doi: 10.1093/jac/dku340
– ident: e_1_3_2_2_2
  doi: 10.1016/S1473-3099(17)30753-3
– ident: e_1_3_2_17_2
  doi: 10.1016/j.ijantimicag.2014.12.022
– ident: e_1_3_2_43_2
  doi: 10.1073/pnas.1218348109
– ident: e_1_3_2_21_2
  doi: 10.1038/s41564-019-0445-2
– ident: e_1_3_2_39_2
  doi: 10.1128/AAC.40.4.909
– ident: e_1_3_2_44_2
  doi: 10.1038/s41598-018-28531-6
– ident: e_1_3_2_46_2
  doi: 10.1016/S1473-3099(12)70317-1
– ident: e_1_3_2_12_2
  doi: 10.1128/AAC.01019-15
– ident: e_1_3_2_29_2
  doi: 10.1038/35023079
– ident: e_1_3_2_25_2
  doi: 10.1093/jac/dkv167
– ident: e_1_3_2_6_2
  doi: 10.1038/s41579-018-0048-6
– volume-title: Performance standards for antimicrobial susceptibility testing, 27th ed
  year: 2017
  ident: e_1_3_2_54_2
– ident: e_1_3_2_10_2
  doi: 10.1101/cshperspect.a025387
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.1503141112
– ident: e_1_3_2_9_2
  doi: 10.1016/S1473-3099(15)00424-7
– ident: e_1_3_2_36_2
  doi: 10.1128/microbiolspec.PLAS-0006-2013
SSID ssj0000331830
Score 2.6203043
Snippet In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of...
Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria....
ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Anti-Bacterial Agents - pharmacology
antimicrobial agents
Clinical Science and Epidemiology
Drug Resistance, Multiple, Bacterial
efflux pumps
Enterobacteriaceae
Escherichia coli - genetics
Female
Klebsiella Infections - microbiology
Klebsiella pneumoniae - drug effects
Klebsiella pneumoniae - genetics
mechanisms of resistance
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Mice
Microbial Sensitivity Tests
multidrug resistance
Multigene Family
plasmid-mediated resistance
Plasmids - genetics
Tigecycline - pharmacology
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBLadOX-wgqlJ5WqS1r_TiU0iQbQsuGULKQm5Hk0dbg2Ol6Ddm_01_aGdu7yYb01qslYckzo_kkz3zD2MdASUss4CI3uAWqOFIiUdoJI02a5AjoZU7JydPT6GSmvl-ML24ohYYP2Nx7tKN6UrNFuX_9e_UVDf5LnwCTfL48KOp9H_2WL4gA9CE6pYjOYdMB6XebckjK669ZNu-O2vJKHXn_fYjzbuDkLU90_JQ9GSAk_9bL_Bl7ANUue9QXlVw9Z38mQ0Yl8Npxzc8QH18WuZhUlL6e85_QEGbEdnFa50P1LnFU9FnmfOJc2V7zMxQz79MB6ebv1ii-rPl0CEPkR4t23ow47jJlS16QnxdzsCvKt4QRLyr-owTTFBRixa8qaFHpCw0v2Ox4cn54IoZKDMIiwlsKK600TkKSW-WH1tfGSjA6wMNK4FutpFOBTlwaUYEFqyw2hbELANGgAfSB4Uu2U9UVvGY8JAiHqAeIKhD9J_FausgEvgFfmjz22GgticwONOVULaPMuuOKTDISXNYJLgtSj33adL_q-Tn-1fGAxLrpRLTa3YN6Mc8GK81kPNapwdX5TqkQTJpbExkFY41IzKSRxz6slSJDM6R_K7qCum0yicuh9UShx171SrJ5VUgs-mosPRZvqc_WXLZbquJXR_UdUy5wlL75H5N_yx5LuiygALrwHdtZLlp4j4hqafY6W_kLZNwkoQ
  priority: 102
  providerName: Scholars Portal
Title Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae
URI https://www.ncbi.nlm.nih.gov/pubmed/32127452
https://www.proquest.com/docview/2371143063
https://pubmed.ncbi.nlm.nih.gov/PMC7064769
https://doaj.org/article/275a9babc0f443eb9dcb6b4e5a071b96
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgoyEOK2p43jzOFK6pQJtVaFW2lvkx7hE2iZVdyO1f4dfykySXWURiAsXH2JHsT1jz2dn5hvG3sdaOWIBF97iFqizVItcmyCsskXuEdArT8HJ89P05EJ_XUwXo1Rf5BPW0wP3E3egsqkprLFOBq0TsIV3NrUapgaNoy06sm1ZyNFhqtuDE9JVuSHVVPnB1WHVfJRo3KQgVp2REeq4-v8EMH_3kxwZnuNH7OGAGPmnvqeP2T2on7D7fQ7Ju6fs52wIoATeBG74GcLhq8qLWU3R6p5_hxVBRKwXp40fknWJo6oPKuezEJbtLT9DqfI--o8u-kZv8XXD54PXIT-6aS9XE46byrIlo8fPq0twdxReCRNe1fzbEuyqIo8qfl1DizpeGXjGLo5n559PxJB4QTgEdGvhlFM2KMi90zJxEmdfgTUxnk1i6YxWQccmD0VK-RScdliVZCEGBH8W0OQlz9le3dTwkvGEEBuCHCBmQDSXRGMZUhtLC1JZn0VsspFE6QZWckqOsSy704nKSxJc2QmujIuIfdg2v-7pOP7W8JDEum1ELNrdA9StctCt8l-6FbF3G6UocdXRrxRTQ9OuSoXDofGkScRe9Eqy_VRCpPl6qiKW7ajPTl92a-rqR8fsnVHob1q8-h-df80eKLobIH-5ZJ_trW9aeIMAam3fdmsFyy-LGMu5zn8Blj8f1A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+a+Plasmid-Encoded+Resistance-Nodulation-Division+Efflux+Pump+Conferring+Resistance+to+Multiple+Drugs%2C+Including+Tigecycline%2C+in+Klebsiella+pneumoniae&rft.jtitle=mBio&rft.au=Luchao+Lv&rft.au=Miao+Wan&rft.au=Chengzhen+Wang&rft.au=Xun+Gao&rft.date=2020-03-03&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.02930-19&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_275a9babc0f443eb9dcb6b4e5a071b96
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon