Revisiting the droplet simulation approach to derive force-field parameters for water on molybdenum disulfide from wetting angle measurements

Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 145; no. 16; pp. 164705 - 164716
Main Author Leroy, Frédéric
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.10.2016
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.4966215

Cover

Abstract Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.
AbstractList Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.
Owing to its peculiar electronic properties, molybdenum disulfide (MoS ) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS monolayers is necessary to capture the wetting behavior of bulk MoS . It is found that the Coulomb interaction between water and monolayer and bilayer MoS plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.
Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.
Author Leroy, Frédéric
Author_xml – sequence: 1
  givenname: Frédéric
  surname: Leroy
  fullname: Leroy, Frédéric
  organization: Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany and Institut für Chemie, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27802664$$D View this record in MEDLINE/PubMed
BookMark eNp9kctq3DAUhkVJaSbTLvoCRdBNW3Ciiy1ZyxJ6g0AgtGsj20eJgmS5kjwhD5F3jiYzSSEtXekgvv8_l_8IHUxhAoTeUnJMieAn9LhWQjDavEArSlpVSaHIAVoRwmilBBGH6Cila0IIlax-hQ6ZbAkTol6huwvY2GSznS5xvgI8xjA7yDhZvzidbZiwnucY9HCFc8AjRLsBbEIcoDIW3IhnHbWHDDFtv_GNLiUuMh_cbT_CtHg82rQ4Y8cijMHjG8gP_fR06QB70GmJ4GHK6TV6abRL8Gb_rtGvr19-nn6vzs6__Tj9fFYNDVW50lT0hg6ctpJxKQbZKDUOxvSylr2ua6F0KamqGVdSg2ibljNW8Nq0TBrN1-jDzrds9nuBlDtv0wDO6QnCkjra8qbhDeeyoO-foddhiVOZrmO0nFw22wjW6N2eWnoPYzdH63W87R4PXYCPO2CIIaUI5gmhpNs6dLTbh1jYk2fsYPNDFjlq6_6p-LRTpEfyyX4T4h-wm0fzP_hv53sIxrrm
CODEN JCPSA6
CitedBy_id crossref_primary_10_1103_PhysRevResearch_5_023018
crossref_primary_10_1021_acs_jpcc_1c07313
crossref_primary_10_1063_1_5019185
crossref_primary_10_1016_j_cjph_2020_02_004
crossref_primary_10_1088_1361_648X_aadf51
crossref_primary_10_1039_C8SM02317D
crossref_primary_10_1021_acs_jpcc_7b00484
crossref_primary_10_1063_5_0040900
crossref_primary_10_2514_1_T5417
crossref_primary_10_1016_j_petrol_2021_108649
crossref_primary_10_1039_C8RA03509A
crossref_primary_10_1016_j_mtcomm_2023_106356
crossref_primary_10_1021_acs_jpcb_7b11173
crossref_primary_10_1021_acs_jpca_2c03934
crossref_primary_10_1039_C7CP08140E
crossref_primary_10_1063_1_4999337
crossref_primary_10_1016_j_fuel_2023_129973
crossref_primary_10_1063_1_4990741
crossref_primary_10_1016_j_ces_2019_115270
crossref_primary_10_1039_D1CC00426C
crossref_primary_10_1103_PhysRevE_98_032804
crossref_primary_10_1016_j_coche_2019_03_012
crossref_primary_10_1063_1_4994088
crossref_primary_10_1021_acs_jpcc_8b00481
crossref_primary_10_1002_cbic_202100581
crossref_primary_10_1063_5_0020720
crossref_primary_10_3389_fchem_2021_706917
crossref_primary_10_1021_acs_jpcb_9b02797
Cites_doi 10.1063/1.445869
10.1021/la401995v
10.1063/1.4922049
10.1039/c3cs60091b
10.1016/j.commatsci.2009.12.009
10.1021/j100308a038
10.1039/B514811C
10.1021/nn5072073
10.1039/C4CS00102H
10.1063/1.4944840
10.1088/0965-0393/21/4/045003
10.1038/nnano.2012.193
10.1021/jp0268112
10.1021/la304645w
10.1021/acs.jpcc.5b10267
10.1021/nl501106v
10.1063/1.2121687
10.1002/jcc.21224
10.1088/2053-1583/2/3/032001
10.1063/1.2715577
10.1021/acs.langmuir.5b02057
10.1016/0166-6622(90)80287-E
10.1021/acsnano.5b05250
10.1186/1556-276X-8-425
10.1063/1.4947094
10.1021/nn400971k
10.1021/nn5029295
10.1016/j.carbon.2014.03.025
10.1103/PhysRevB.85.199903
10.1038/ncomms9616
10.1038/srep07352
10.1103/PhysRevB.84.033402
10.1038/ncomms9294
10.1039/C5RA24592C
10.1021/acs.langmuir.5b01394
10.1021/nl502837d
10.1038/nmat3709
10.1039/C5NR06705G
10.1063/1.4948459
10.1103/PhysRevB.79.245110
10.1063/1.448118
10.1021/acsnano.6b04276
10.1021/acs.jpcc.5b11236
10.1063/1.1931662
10.1006/jcph.1995.1039
10.1016/j.apsusc.2014.07.136
ContentType Journal Article
Copyright Author(s)
2016 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2016 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/1.4966215
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
CrossRef
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 27802664
10_1063_1_4966215
jcp
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: SFB TRR 146
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c519t-a16bf1c31872376c7599dcffb747ba4469ab741942397ae68583223184f827fa3
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 09:41:13 EDT 2025
Sun Jun 29 16:42:34 EDT 2025
Wed Feb 19 02:17:16 EST 2025
Tue Jul 01 04:16:14 EDT 2025
Thu Apr 24 22:49:20 EDT 2025
Fri Jun 21 00:17:28 EDT 2024
Sun Jul 14 10:28:28 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License 0021-9606/2016/145(16)/164705/12/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c519t-a16bf1c31872376c7599dcffb747ba4469ab741942397ae68583223184f827fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8470-5811
PMID 27802664
PQID 2121575106
PQPubID 2050685
PageCount 12
ParticipantIDs pubmed_primary_27802664
scitation_primary_10_1063_1_4966215
proquest_journals_2121575106
crossref_primary_10_1063_1_4966215
crossref_citationtrail_10_1063_1_4966215
proquest_miscellaneous_1835535337
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161028
2016-10-28
2016-Oct-28
PublicationDateYYYYMMDD 2016-10-28
PublicationDate_xml – month: 10
  year: 2016
  text: 20161028
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Werder, Walther, Jaffe, Halicioglu, Koumoutsakos (c42) 2003
Luan, Zhou (c29) 2016
Ling, Gu, Kang, Luo, Zhou (c23) 2016
Martinez, Andrade, Birgin, Martinez (c37) 2009
Elias, Perea-López, Castro-Beltrán, Berkdemir, Lv, Feng, Long, Hayashi, Kim, Endo, Gutierrez, Pradhan, Balicas, Houk, López-Urias, Terrones, Terrones (c2) 2013
Plimpton (c35) 1995
Heiranian, Farimani, Aluru (c6) 2015
Jorgensen, Chandrasekhar, Madura, Impey, Klein (c24) 1983
Sun, Lin, Ren, Tang, Yang, Zhao (c20) 2016
Annamalai, Gopinadhan, Han, Saha, Park, Cho, Kumar, Patra, Kim, Venkatesan (c18) 2016
Marmur (c11) 2006
Yue, Shao, Chang, Li (c19) 2013
Kozbial, Gong, Liu, Li (c14) 2015
Pallas, Harrison (c45) 1990
Farimani, Min, Aluru (c10) 2014
Zhou, Yang, Zhu (c21) 2015
Li, Wang, Kozbial, Shenoy, Zhou, McGinley, Ireland, Morganstein, Kunkel, Surwade, Li, Liu (c15) 2013
Fogarty, Duboué-Dijon, Sterpone, Hynes, Laage (c46) 2013
Berendsen, Postma, van Gunsteren, Dinola, Haak (c36) 1984
Kozbial, Li, Sun, Gong, Zhou, Wang, Xu, Liu, Lei (c16) 2014
Parobek, Liu (c17) 2015
Gaur, Sahoo, Ahmadi, Dash, Guinel, Katiyar (c12) 2014
Berendsen, Grigera, Straatsma (c26) 1987
Leroy, Liu, Zhang (c38) 2015
Wu, Wagner, Aluru (c48) 2016
Abascal, Vega (c31) 2005
Tocci, Joly, Michaelides (c47) 2014
Ma, Michaelides, Alfè, Schimka, Kresse, Wang (c22) 2011
Taherian, Marcon, van der Vegt, Leroy (c43) 2013
Stewart, Spearot (c33) 2013
Taherian, Leroy, van der Vegt (c44) 2013
Kim, Kwon, Cho, Kang, Kwon, Kim, Park, Jung, Shin, Kim, Lee, Ryu, Choi, Kim, Oh, Park, Kwak, Yoon, Byun, Lee, Lee (c3) 2015
Wang, Kalantar-Zadeh, Kis, Coleman, Strano (c4) 2012
Abascal, Sanz, Fernandez, Vega (c32) 2005
Li, Yang, Weber, Zhang, Zhou (c7) 2016
Miró, Audiffred, Heine (c1) 2014
Gu, Li, Hong, Zhou (c8) 2016
Varshney, Patnaik, Muratore, Roy, Voevodin, Farmer (c25) 2010
Chow, Singh, Viana, Gao, Luo, Li, Lin, Elias, Shi, Wang, Terrones, Koratkar (c13) 2015
Vega, de Miguel (c30) 2007
Zhou, Liu, Wen, Hu, Gui (c5) 2014
Govind Rajan, Sresht, Pádua, Strano, Blankschtein (c34)
Liang, Phillpot, Sinnott (c27) 2009
Lee, Dak, Lee, Park, Choi, Alam, Kim (c9) 2014
Liang, Phillpot, Sinnott (c28) 2012
Leroy, Müller-Plathe (c39) 2015
(2023080203293461900_c12) 2014; 14
(2023080203293461900_c35) 1995; 117
(2023080203293461900_c9) 2014; 4
(2023080203293461900_c18) 2016; 8
(2023080203293461900_c31) 2005; 123
(2023080203293461900_c36) 1984; 81
(2023080203293461900_c2) 2013; 7
(2023080203293461900_c13) 2015; 9
(2023080203293461900_c48) 2016; 144
(2023080203293461900_c45) 1990; 43
(2023080203293461900_c40) 2002
(2023080203293461900_c32) 2005; 122
(2023080203293461900_c27) 2009; 79
(2023080203293461900_c11) 2006; 2
(2023080203293461900_c37) 2009; 30
(2023080203293461900_c1) 2014; 43
(2023080203293461900_c14) 2015; 31
(2023080203293461900_c38) 2015; 119
(2023080203293461900_c29) 2016; 108
(2023080203293461900_c19) 2013; 8
(2023080203293461900_c44) 2013; 29
(2023080203293461900_c16) 2014; 74
(2023080203293461900_c15) 2013; 12
(2023080203293461900_c33) 2013; 21
(2023080203293461900_c42) 2003; 107
(2023080203293461900_c21) 2015; 142
(2023080203293461900_c6) 2015; 6
(2023080203293461900_c46) 2013; 42
(2023080203293461900_c3) 2015; 6
2023080203293461900_c34
(2023080203293461900_c25) 2010; 48
(2023080203293461900_c10) 2014; 8
(2023080203293461900_c23) 2016; 120
(2023080203293461900_c39) 2015; 31
(2023080203293461900_c20) 2016; 6
(2023080203293461900_c22) 2011; 84
(2023080203293461900_c30) 2007; 126
(2023080203293461900_c24) 1983; 79
(2023080203293461900_c41) 1991
(2023080203293461900_c8) 2016; 144
(2023080203293461900_c17) 2015; 2
(2023080203293461900_c4) 2012; 7
(2023080203293461900_c26) 1987; 91
(2023080203293461900_c47) 2014; 14
(2023080203293461900_c5) 2014; 316
(2023080203293461900_c7) 2016; 10
(2023080203293461900_c43) 2013; 29
(2023080203293461900_c28) 2012; 85
References_xml – start-page: 7914
  year: 2014
  ident: c10
  publication-title: ACS Nano
– start-page: 925
  year: 2013
  ident: c15
  publication-title: Nat. Mater.
– start-page: 3684
  year: 1984
  ident: c36
  publication-title: J. Chem. Phys.
– start-page: 1345
  year: 2003
  ident: c42
  publication-title: J. Phys. Chem. B
– ident: c34
  article-title: Dominance of dispersion interactions and entropy over electrostatics in determining the wettability and friction of two-dimensional MoS surfaces
  publication-title: ACS Nano
– start-page: 6796
  year: 2016
  ident: c23
  publication-title: J. Phys. Chem. C
– start-page: 6537
  year: 2014
  ident: c1
  publication-title: Chem. Soc. Rev.
– start-page: 175103
  year: 2016
  ident: c8
  publication-title: J. Chem. Phys.
– start-page: 131601
  year: 2016
  ident: c29
  publication-title: Appl. Phys. Lett.
– start-page: 245110
  year: 2009
  ident: c27
  publication-title: Phys. Rev. B
– start-page: 237
  year: 2014
  ident: c5
  publication-title: Appl. Surf. Sci.
– start-page: 4314
  year: 2014
  ident: c12
  publication-title: Nano Lett.
– start-page: 6269
  year: 1987
  ident: c26
  publication-title: J. Phys. Chem.
– start-page: 1829
  year: 2016
  ident: c7
  publication-title: ACS Nano
– start-page: 8616
  year: 2015
  ident: c6
  publication-title: Nat. Commun.
– start-page: 5764
  year: 2016
  ident: c18
  publication-title: Nanoscale
– start-page: 1457
  year: 2013
  ident: c43
  publication-title: Langmuir
– start-page: 12
  year: 2006
  ident: c11
  publication-title: Soft Matter
– start-page: 218
  year: 2014
  ident: c16
  publication-title: Carbon
– start-page: 425
  year: 2013
  ident: c19
  publication-title: Nanoscale Res. Lett.
– start-page: 164118
  year: 2016
  ident: c48
  publication-title: J. Chem. Phys.
– start-page: 033402
  year: 2011
  ident: c22
  publication-title: Phys. Rev. B
– start-page: 234505
  year: 2005
  ident: c31
  publication-title: J. Chem. Phys.
– start-page: 1
  year: 1995
  ident: c35
  publication-title: J. Comput. Phys.
– start-page: 699
  year: 2012
  ident: c4
  publication-title: Nat. Nanotechnol.
– start-page: 214704
  year: 2015
  ident: c21
  publication-title: J. Chem. Phys.
– start-page: 926
  year: 1983
  ident: c24
  publication-title: J. Chem. Phys.
– start-page: 17494
  year: 2016
  ident: c20
  publication-title: RSC Adv.
– start-page: 032001
  year: 2015
  ident: c17
  publication-title: 2D Mater.
– start-page: 045003
  year: 2013
  ident: c33
  publication-title: Modell. Simul. Mater. Sci. Eng.
– start-page: 7352
  year: 2014
  ident: c9
  publication-title: Sci. Rep.
– start-page: 9807
  year: 2013
  ident: c44
  publication-title: Langmuir
– start-page: 3023
  year: 2015
  ident: c13
  publication-title: ACS Nano
– start-page: 8335
  year: 2015
  ident: c39
  publication-title: Langmuir
– start-page: 5672
  year: 2013
  ident: c46
  publication-title: Chem. Soc. Rev.
– start-page: 154707
  year: 2007
  ident: c30
  publication-title: J. Chem. Phys.
– start-page: 8294
  year: 2015
  ident: c3
  publication-title: Nat. Commun.
– start-page: 8429
  year: 2015
  ident: c14
  publication-title: Langmuir
– start-page: 28470
  year: 2015
  ident: c38
  publication-title: J. Phys. Chem. C
– start-page: 169
  year: 1990
  ident: c45
  publication-title: Colloids Surf.
– start-page: 5235
  year: 2013
  ident: c2
  publication-title: ACS Nano
– start-page: 199903E
  year: 2012
  ident: c28
  publication-title: Phys. Rev. B
– start-page: 6872
  year: 2014
  ident: c47
  publication-title: Nano Lett.
– start-page: 101
  year: 2010
  ident: c25
  publication-title: Comput. Mater. Sci.
– start-page: 234511
  year: 2005
  ident: c32
  publication-title: J. Chem. Phys.
– start-page: 2157
  year: 2009
  ident: c37
  publication-title: J. Comput. Chem.
– volume: 79
  start-page: 926
  issue: 2
  year: 1983
  ident: 2023080203293461900_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 29
  start-page: 9807
  issue: 31
  year: 2013
  ident: 2023080203293461900_c44
  publication-title: Langmuir
  doi: 10.1021/la401995v
– volume: 142
  start-page: 214704
  issue: 21
  year: 2015
  ident: 2023080203293461900_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4922049
– volume: 42
  start-page: 5672
  issue: 13
  year: 2013
  ident: 2023080203293461900_c46
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60091b
– volume: 48
  start-page: 101
  issue: 1
  year: 2010
  ident: 2023080203293461900_c25
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2009.12.009
– volume: 91
  start-page: 6269
  issue: 24
  year: 1987
  ident: 2023080203293461900_c26
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 2
  start-page: 12
  issue: 1
  year: 2006
  ident: 2023080203293461900_c11
  publication-title: Soft Matter
  doi: 10.1039/B514811C
– volume: 9
  start-page: 3023
  issue: 3
  year: 2015
  ident: 2023080203293461900_c13
  publication-title: ACS Nano
  doi: 10.1021/nn5072073
– volume: 43
  start-page: 6537
  issue: 18
  year: 2014
  ident: 2023080203293461900_c1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00102H
– volume: 108
  start-page: 131601
  issue: 13
  year: 2016
  ident: 2023080203293461900_c29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4944840
– volume: 21
  start-page: 045003
  issue: 4
  year: 2013
  ident: 2023080203293461900_c33
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/21/4/045003
– volume: 7
  start-page: 699
  issue: 11
  year: 2012
  ident: 2023080203293461900_c4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 107
  start-page: 1345
  issue: 6
  year: 2003
  ident: 2023080203293461900_c42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0268112
– volume: 29
  start-page: 1457
  issue: 5
  year: 2013
  ident: 2023080203293461900_c43
  publication-title: Langmuir
  doi: 10.1021/la304645w
– volume: 119
  start-page: 28470
  issue: 51
  year: 2015
  ident: 2023080203293461900_c38
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10267
– volume: 14
  start-page: 4314
  issue: 8
  year: 2014
  ident: 2023080203293461900_c12
  publication-title: Nano Lett.
  doi: 10.1021/nl501106v
– volume: 123
  start-page: 234505
  issue: 23
  year: 2005
  ident: 2023080203293461900_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2121687
– volume: 30
  start-page: 2157
  issue: 13
  year: 2009
  ident: 2023080203293461900_c37
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 2
  start-page: 032001
  year: 2015
  ident: 2023080203293461900_c17
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/3/032001
– volume: 126
  start-page: 154707
  issue: 15
  year: 2007
  ident: 2023080203293461900_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2715577
– volume: 31
  start-page: 8429
  issue: 30
  year: 2015
  ident: 2023080203293461900_c14
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02057
– volume: 43
  start-page: 169
  issue: 2-4
  year: 1990
  ident: 2023080203293461900_c45
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(90)80287-E
– volume: 10
  start-page: 1829
  issue: 2
  year: 2016
  ident: 2023080203293461900_c7
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05250
– volume: 8
  start-page: 425
  year: 2013
  ident: 2023080203293461900_c19
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-425
– volume: 144
  start-page: 164118
  issue: 16
  year: 2016
  ident: 2023080203293461900_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4947094
– volume: 7
  start-page: 5235
  issue: 6
  year: 2013
  ident: 2023080203293461900_c2
  publication-title: ACS Nano
  doi: 10.1021/nn400971k
– volume: 8
  start-page: 7914
  issue: 8
  year: 2014
  ident: 2023080203293461900_c10
  publication-title: ACS Nano
  doi: 10.1021/nn5029295
– volume: 74
  start-page: 218
  year: 2014
  ident: 2023080203293461900_c16
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.03.025
– volume: 85
  start-page: 199903E
  year: 2012
  ident: 2023080203293461900_c28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.199903
– volume: 6
  start-page: 8616
  year: 2015
  ident: 2023080203293461900_c6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9616
– volume: 4
  start-page: 7352
  year: 2014
  ident: 2023080203293461900_c9
  publication-title: Sci. Rep.
  doi: 10.1038/srep07352
– volume: 84
  start-page: 033402
  issue: 3
  year: 2011
  ident: 2023080203293461900_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.033402
– volume-title: Understanding Molecular Simulation. From Algortihms to Aplications
  year: 2002
  ident: 2023080203293461900_c40
– volume: 6
  start-page: 8294
  year: 2015
  ident: 2023080203293461900_c3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9294
– volume: 6
  start-page: 17494
  issue: 21
  year: 2016
  ident: 2023080203293461900_c20
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24592C
– volume: 31
  start-page: 8335
  issue: 30
  year: 2015
  ident: 2023080203293461900_c39
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01394
– volume: 14
  start-page: 6872
  issue: 12
  year: 2014
  ident: 2023080203293461900_c47
  publication-title: Nano Lett.
  doi: 10.1021/nl502837d
– volume: 12
  start-page: 925
  issue: 10
  year: 2013
  ident: 2023080203293461900_c15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3709
– volume-title: Intermolecular and Surface Forces
  year: 1991
  ident: 2023080203293461900_c41
– volume: 8
  start-page: 5764
  issue: 10
  year: 2016
  ident: 2023080203293461900_c18
  publication-title: Nanoscale
  doi: 10.1039/C5NR06705G
– volume: 144
  start-page: 175103
  issue: 17
  year: 2016
  ident: 2023080203293461900_c8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4948459
– volume: 79
  start-page: 245110
  issue: 24
  year: 2009
  ident: 2023080203293461900_c27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.245110
– volume: 81
  start-page: 3684
  issue: 8
  year: 1984
  ident: 2023080203293461900_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– ident: 2023080203293461900_c34
  article-title: Dominance of dispersion interactions and entropy over electrostatics in determining the wettability and friction of two-dimensional MoS2 surfaces
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04276
– volume: 120
  start-page: 6796
  issue: 12
  year: 2016
  ident: 2023080203293461900_c23
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11236
– volume: 122
  start-page: 234511
  issue: 23
  year: 2005
  ident: 2023080203293461900_c32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1931662
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 2023080203293461900_c35
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 316
  start-page: 237
  year: 2014
  ident: 2023080203293461900_c5
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.07.136
SSID ssj0001724
Score 2.3560767
Snippet Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In...
Owing to its peculiar electronic properties, molybdenum disulfide (MoS ) has been the subject of a growing number of studies in the recent years. In...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164705
SubjectTerms Basal plane
Bilayers
Biomolecules
Computer simulation
Droplets
Graphite
Interaction parameters
Molecular dynamics
Molybdenum
Molybdenum disulfide
Monolayers
Transition metal compounds
Wetting
Title Revisiting the droplet simulation approach to derive force-field parameters for water on molybdenum disulfide from wetting angle measurements
URI http://dx.doi.org/10.1063/1.4966215
https://www.ncbi.nlm.nih.gov/pubmed/27802664
https://www.proquest.com/docview/2121575106
https://www.proquest.com/docview/1835535337
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJzR4QDAYFAYyP4SQKo8kTeLkcRqbJtQNBK3Ut8ixHVSpTUqbMpX_gf-Zc-w4qagm4CWNXCexcl98d_bddwi9ESBVDoYBCdKUErXTRFIqApLyjNFAUulV0YSXV-HF2P84CSadzqYVtbQu02P-c2deyf9IFdpAripL9h8ka28KDXAO8oUjSBiOfyXjL1VqeFlnPImligYv-6vp3BTlspThysQUMCTN8c0lqSLX-or4e64CYipWhv41U5SJcNm8mG1SUUXJi-lqPcumQupMlGupA6VZ_m0m-_NmhXHVNnObhLPK1OU1K4FeR7Fm_FAuiw3Yznq3Xuif5ZS3lyLcUM3hJrW7if5n-Xacw-fWnesEApcox0mrID3vOlFMaKgrh9qJWRNN1ggMd874YGKpxYdjH_w2T2eGbrNqX31KzsfDYTI6m4zeLr4TVXBMbcyb6iu30J4HCsHpor2TD5fDr1aNg2VnKLz1aGtaqnDw3j5t25j5w0O5i_bBjtEhFS2rZXQf3TMywCcaOw9QR-YHaP-0rvJ3gG6bF_cQ_WrQhAFN2KAJN2jCNZpwWWCNJtxCE27QpJpxhSYMlzVowhZNWKEJGzThCk24jaZHaHx-Njq9IKZYB-HgBJSEuWGauRxUBFWBVpwGcSx4lqXgr6bM98OYwakbK8JJyqQqewC6BLr7WeTRjA0OUTcvcvkE4SyKAs4d5see40tXKk5C4WQOi6NBxHzRQ-_qt57Ur1cVVJklVURFOEjcxAioh17ZrgtN37Kr01EtusR83avEU7QrFDRW2EMv7d8gHLWhxnJZrFcJqMMgGIDDRHvosRa5fYpHIweMX7-HXlsM3DSEHb1-FMumR7IQ2dObB_oM3Wm-yiPULZdr-RxM5jJ9YcD9G-UMyQ8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+droplet+simulation+approach+to+derive+force-field+parameters+for+water+on+molybdenum+disulfide+from+wetting+angle+measurements&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Leroy+Fr%C3%A9d%C3%A9ric&rft.date=2016-10-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=145&rft.issue=16&rft_id=info:doi/10.1063%2F1.4966215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon