Revisiting the droplet simulation approach to derive force-field parameters for water on molybdenum disulfide from wetting angle measurements
Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions...
        Saved in:
      
    
          | Published in | The Journal of chemical physics Vol. 145; no. 16; pp. 164705 - 164716 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Institute of Physics
    
        28.10.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9606 1089-7690 1089-7690  | 
| DOI | 10.1063/1.4966215 | 
Cover
| Abstract | Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials. | 
    
|---|---|
| AbstractList | Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials. Owing to its peculiar electronic properties, molybdenum disulfide (MoS ) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS monolayers is necessary to capture the wetting behavior of bulk MoS . It is found that the Coulomb interaction between water and monolayer and bilayer MoS plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials. Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.  | 
    
| Author | Leroy, Frédéric | 
    
| Author_xml | – sequence: 1 givenname: Frédéric surname: Leroy fullname: Leroy, Frédéric organization: Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany and Institut für Chemie, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27802664$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kctq3DAUhkVJaSbTLvoCRdBNW3Ciiy1ZyxJ6g0AgtGsj20eJgmS5kjwhD5F3jiYzSSEtXekgvv8_l_8IHUxhAoTeUnJMieAn9LhWQjDavEArSlpVSaHIAVoRwmilBBGH6Cila0IIlax-hQ6ZbAkTol6huwvY2GSznS5xvgI8xjA7yDhZvzidbZiwnucY9HCFc8AjRLsBbEIcoDIW3IhnHbWHDDFtv_GNLiUuMh_cbT_CtHg82rQ4Y8cijMHjG8gP_fR06QB70GmJ4GHK6TV6abRL8Gb_rtGvr19-nn6vzs6__Tj9fFYNDVW50lT0hg6ctpJxKQbZKDUOxvSylr2ua6F0KamqGVdSg2ibljNW8Nq0TBrN1-jDzrds9nuBlDtv0wDO6QnCkjra8qbhDeeyoO-foddhiVOZrmO0nFw22wjW6N2eWnoPYzdH63W87R4PXYCPO2CIIaUI5gmhpNs6dLTbh1jYk2fsYPNDFjlq6_6p-LRTpEfyyX4T4h-wm0fzP_hv53sIxrrm | 
    
| CODEN | JCPSA6 | 
    
| CitedBy_id | crossref_primary_10_1103_PhysRevResearch_5_023018 crossref_primary_10_1021_acs_jpcc_1c07313 crossref_primary_10_1063_1_5019185 crossref_primary_10_1016_j_cjph_2020_02_004 crossref_primary_10_1088_1361_648X_aadf51 crossref_primary_10_1039_C8SM02317D crossref_primary_10_1021_acs_jpcc_7b00484 crossref_primary_10_1063_5_0040900 crossref_primary_10_2514_1_T5417 crossref_primary_10_1016_j_petrol_2021_108649 crossref_primary_10_1039_C8RA03509A crossref_primary_10_1016_j_mtcomm_2023_106356 crossref_primary_10_1021_acs_jpcb_7b11173 crossref_primary_10_1021_acs_jpca_2c03934 crossref_primary_10_1039_C7CP08140E crossref_primary_10_1063_1_4999337 crossref_primary_10_1016_j_fuel_2023_129973 crossref_primary_10_1063_1_4990741 crossref_primary_10_1016_j_ces_2019_115270 crossref_primary_10_1039_D1CC00426C crossref_primary_10_1103_PhysRevE_98_032804 crossref_primary_10_1016_j_coche_2019_03_012 crossref_primary_10_1063_1_4994088 crossref_primary_10_1021_acs_jpcc_8b00481 crossref_primary_10_1002_cbic_202100581 crossref_primary_10_1063_5_0020720 crossref_primary_10_3389_fchem_2021_706917 crossref_primary_10_1021_acs_jpcb_9b02797  | 
    
| Cites_doi | 10.1063/1.445869 10.1021/la401995v 10.1063/1.4922049 10.1039/c3cs60091b 10.1016/j.commatsci.2009.12.009 10.1021/j100308a038 10.1039/B514811C 10.1021/nn5072073 10.1039/C4CS00102H 10.1063/1.4944840 10.1088/0965-0393/21/4/045003 10.1038/nnano.2012.193 10.1021/jp0268112 10.1021/la304645w 10.1021/acs.jpcc.5b10267 10.1021/nl501106v 10.1063/1.2121687 10.1002/jcc.21224 10.1088/2053-1583/2/3/032001 10.1063/1.2715577 10.1021/acs.langmuir.5b02057 10.1016/0166-6622(90)80287-E 10.1021/acsnano.5b05250 10.1186/1556-276X-8-425 10.1063/1.4947094 10.1021/nn400971k 10.1021/nn5029295 10.1016/j.carbon.2014.03.025 10.1103/PhysRevB.85.199903 10.1038/ncomms9616 10.1038/srep07352 10.1103/PhysRevB.84.033402 10.1038/ncomms9294 10.1039/C5RA24592C 10.1021/acs.langmuir.5b01394 10.1021/nl502837d 10.1038/nmat3709 10.1039/C5NR06705G 10.1063/1.4948459 10.1103/PhysRevB.79.245110 10.1063/1.448118 10.1021/acsnano.6b04276 10.1021/acs.jpcc.5b11236 10.1063/1.1931662 10.1006/jcph.1995.1039 10.1016/j.apsusc.2014.07.136  | 
    
| ContentType | Journal Article | 
    
| Copyright | Author(s) 2016 Author(s). Published by AIP Publishing.  | 
    
| Copyright_xml | – notice: Author(s) – notice: 2016 Author(s). Published by AIP Publishing.  | 
    
| DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8  | 
    
| DOI | 10.1063/1.4966215 | 
    
| DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef Technology Research Database PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Physics  | 
    
| EISSN | 1089-7690 | 
    
| ExternalDocumentID | 27802664 10_1063_1_4966215 jcp  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: SFB TRR 146 funderid: http://dx.doi.org/10.13039/501100001659  | 
    
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8  | 
    
| ID | FETCH-LOGICAL-c519t-a16bf1c31872376c7599dcffb747ba4469ab741942397ae68583223184f827fa3 | 
    
| ISSN | 0021-9606 1089-7690  | 
    
| IngestDate | Fri Jul 11 09:41:13 EDT 2025 Sun Jun 29 16:42:34 EDT 2025 Wed Feb 19 02:17:16 EST 2025 Tue Jul 01 04:16:14 EDT 2025 Thu Apr 24 22:49:20 EDT 2025 Fri Jun 21 00:17:28 EDT 2024 Sun Jul 14 10:28:28 EDT 2019  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 16 | 
    
| Language | English | 
    
| License | 0021-9606/2016/145(16)/164705/12/$30.00 Published by AIP Publishing.  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c519t-a16bf1c31872376c7599dcffb747ba4469ab741942397ae68583223184f827fa3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-8470-5811 | 
    
| PMID | 27802664 | 
    
| PQID | 2121575106 | 
    
| PQPubID | 2050685 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | pubmed_primary_27802664 scitation_primary_10_1063_1_4966215 proquest_journals_2121575106 crossref_primary_10_1063_1_4966215 crossref_citationtrail_10_1063_1_4966215 proquest_miscellaneous_1835535337  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20161028 2016-10-28 2016-Oct-28  | 
    
| PublicationDateYYYYMMDD | 2016-10-28 | 
    
| PublicationDate_xml | – month: 10 year: 2016 text: 20161028 day: 28  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Melville  | 
    
| PublicationTitle | The Journal of chemical physics | 
    
| PublicationTitleAlternate | J Chem Phys | 
    
| PublicationYear | 2016 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | Werder, Walther, Jaffe, Halicioglu, Koumoutsakos (c42) 2003 Luan, Zhou (c29) 2016 Ling, Gu, Kang, Luo, Zhou (c23) 2016 Martinez, Andrade, Birgin, Martinez (c37) 2009 Elias, Perea-López, Castro-Beltrán, Berkdemir, Lv, Feng, Long, Hayashi, Kim, Endo, Gutierrez, Pradhan, Balicas, Houk, López-Urias, Terrones, Terrones (c2) 2013 Plimpton (c35) 1995 Heiranian, Farimani, Aluru (c6) 2015 Jorgensen, Chandrasekhar, Madura, Impey, Klein (c24) 1983 Sun, Lin, Ren, Tang, Yang, Zhao (c20) 2016 Annamalai, Gopinadhan, Han, Saha, Park, Cho, Kumar, Patra, Kim, Venkatesan (c18) 2016 Marmur (c11) 2006 Yue, Shao, Chang, Li (c19) 2013 Kozbial, Gong, Liu, Li (c14) 2015 Pallas, Harrison (c45) 1990 Farimani, Min, Aluru (c10) 2014 Zhou, Yang, Zhu (c21) 2015 Li, Wang, Kozbial, Shenoy, Zhou, McGinley, Ireland, Morganstein, Kunkel, Surwade, Li, Liu (c15) 2013 Fogarty, Duboué-Dijon, Sterpone, Hynes, Laage (c46) 2013 Berendsen, Postma, van Gunsteren, Dinola, Haak (c36) 1984 Kozbial, Li, Sun, Gong, Zhou, Wang, Xu, Liu, Lei (c16) 2014 Parobek, Liu (c17) 2015 Gaur, Sahoo, Ahmadi, Dash, Guinel, Katiyar (c12) 2014 Berendsen, Grigera, Straatsma (c26) 1987 Leroy, Liu, Zhang (c38) 2015 Wu, Wagner, Aluru (c48) 2016 Abascal, Vega (c31) 2005 Tocci, Joly, Michaelides (c47) 2014 Ma, Michaelides, Alfè, Schimka, Kresse, Wang (c22) 2011 Taherian, Marcon, van der Vegt, Leroy (c43) 2013 Stewart, Spearot (c33) 2013 Taherian, Leroy, van der Vegt (c44) 2013 Kim, Kwon, Cho, Kang, Kwon, Kim, Park, Jung, Shin, Kim, Lee, Ryu, Choi, Kim, Oh, Park, Kwak, Yoon, Byun, Lee, Lee (c3) 2015 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (c4) 2012 Abascal, Sanz, Fernandez, Vega (c32) 2005 Li, Yang, Weber, Zhang, Zhou (c7) 2016 Miró, Audiffred, Heine (c1) 2014 Gu, Li, Hong, Zhou (c8) 2016 Varshney, Patnaik, Muratore, Roy, Voevodin, Farmer (c25) 2010 Chow, Singh, Viana, Gao, Luo, Li, Lin, Elias, Shi, Wang, Terrones, Koratkar (c13) 2015 Vega, de Miguel (c30) 2007 Zhou, Liu, Wen, Hu, Gui (c5) 2014 Govind Rajan, Sresht, Pádua, Strano, Blankschtein (c34) Liang, Phillpot, Sinnott (c27) 2009 Lee, Dak, Lee, Park, Choi, Alam, Kim (c9) 2014 Liang, Phillpot, Sinnott (c28) 2012 Leroy, Müller-Plathe (c39) 2015 (2023080203293461900_c12) 2014; 14 (2023080203293461900_c35) 1995; 117 (2023080203293461900_c9) 2014; 4 (2023080203293461900_c18) 2016; 8 (2023080203293461900_c31) 2005; 123 (2023080203293461900_c36) 1984; 81 (2023080203293461900_c2) 2013; 7 (2023080203293461900_c13) 2015; 9 (2023080203293461900_c48) 2016; 144 (2023080203293461900_c45) 1990; 43 (2023080203293461900_c40) 2002 (2023080203293461900_c32) 2005; 122 (2023080203293461900_c27) 2009; 79 (2023080203293461900_c11) 2006; 2 (2023080203293461900_c37) 2009; 30 (2023080203293461900_c1) 2014; 43 (2023080203293461900_c14) 2015; 31 (2023080203293461900_c38) 2015; 119 (2023080203293461900_c29) 2016; 108 (2023080203293461900_c19) 2013; 8 (2023080203293461900_c44) 2013; 29 (2023080203293461900_c16) 2014; 74 (2023080203293461900_c15) 2013; 12 (2023080203293461900_c33) 2013; 21 (2023080203293461900_c42) 2003; 107 (2023080203293461900_c21) 2015; 142 (2023080203293461900_c6) 2015; 6 (2023080203293461900_c46) 2013; 42 (2023080203293461900_c3) 2015; 6 2023080203293461900_c34 (2023080203293461900_c25) 2010; 48 (2023080203293461900_c10) 2014; 8 (2023080203293461900_c23) 2016; 120 (2023080203293461900_c39) 2015; 31 (2023080203293461900_c20) 2016; 6 (2023080203293461900_c22) 2011; 84 (2023080203293461900_c30) 2007; 126 (2023080203293461900_c24) 1983; 79 (2023080203293461900_c41) 1991 (2023080203293461900_c8) 2016; 144 (2023080203293461900_c17) 2015; 2 (2023080203293461900_c4) 2012; 7 (2023080203293461900_c26) 1987; 91 (2023080203293461900_c47) 2014; 14 (2023080203293461900_c5) 2014; 316 (2023080203293461900_c7) 2016; 10 (2023080203293461900_c43) 2013; 29 (2023080203293461900_c28) 2012; 85  | 
    
| References_xml | – start-page: 7914 year: 2014 ident: c10 publication-title: ACS Nano – start-page: 925 year: 2013 ident: c15 publication-title: Nat. Mater. – start-page: 3684 year: 1984 ident: c36 publication-title: J. Chem. Phys. – start-page: 1345 year: 2003 ident: c42 publication-title: J. Phys. Chem. B – ident: c34 article-title: Dominance of dispersion interactions and entropy over electrostatics in determining the wettability and friction of two-dimensional MoS surfaces publication-title: ACS Nano – start-page: 6796 year: 2016 ident: c23 publication-title: J. Phys. Chem. C – start-page: 6537 year: 2014 ident: c1 publication-title: Chem. Soc. Rev. – start-page: 175103 year: 2016 ident: c8 publication-title: J. Chem. Phys. – start-page: 131601 year: 2016 ident: c29 publication-title: Appl. Phys. Lett. – start-page: 245110 year: 2009 ident: c27 publication-title: Phys. Rev. B – start-page: 237 year: 2014 ident: c5 publication-title: Appl. Surf. Sci. – start-page: 4314 year: 2014 ident: c12 publication-title: Nano Lett. – start-page: 6269 year: 1987 ident: c26 publication-title: J. Phys. Chem. – start-page: 1829 year: 2016 ident: c7 publication-title: ACS Nano – start-page: 8616 year: 2015 ident: c6 publication-title: Nat. Commun. – start-page: 5764 year: 2016 ident: c18 publication-title: Nanoscale – start-page: 1457 year: 2013 ident: c43 publication-title: Langmuir – start-page: 12 year: 2006 ident: c11 publication-title: Soft Matter – start-page: 218 year: 2014 ident: c16 publication-title: Carbon – start-page: 425 year: 2013 ident: c19 publication-title: Nanoscale Res. Lett. – start-page: 164118 year: 2016 ident: c48 publication-title: J. Chem. Phys. – start-page: 033402 year: 2011 ident: c22 publication-title: Phys. Rev. B – start-page: 234505 year: 2005 ident: c31 publication-title: J. Chem. Phys. – start-page: 1 year: 1995 ident: c35 publication-title: J. Comput. Phys. – start-page: 699 year: 2012 ident: c4 publication-title: Nat. Nanotechnol. – start-page: 214704 year: 2015 ident: c21 publication-title: J. Chem. Phys. – start-page: 926 year: 1983 ident: c24 publication-title: J. Chem. Phys. – start-page: 17494 year: 2016 ident: c20 publication-title: RSC Adv. – start-page: 032001 year: 2015 ident: c17 publication-title: 2D Mater. – start-page: 045003 year: 2013 ident: c33 publication-title: Modell. Simul. Mater. Sci. Eng. – start-page: 7352 year: 2014 ident: c9 publication-title: Sci. Rep. – start-page: 9807 year: 2013 ident: c44 publication-title: Langmuir – start-page: 3023 year: 2015 ident: c13 publication-title: ACS Nano – start-page: 8335 year: 2015 ident: c39 publication-title: Langmuir – start-page: 5672 year: 2013 ident: c46 publication-title: Chem. Soc. Rev. – start-page: 154707 year: 2007 ident: c30 publication-title: J. Chem. Phys. – start-page: 8294 year: 2015 ident: c3 publication-title: Nat. Commun. – start-page: 8429 year: 2015 ident: c14 publication-title: Langmuir – start-page: 28470 year: 2015 ident: c38 publication-title: J. Phys. Chem. C – start-page: 169 year: 1990 ident: c45 publication-title: Colloids Surf. – start-page: 5235 year: 2013 ident: c2 publication-title: ACS Nano – start-page: 199903E year: 2012 ident: c28 publication-title: Phys. Rev. B – start-page: 6872 year: 2014 ident: c47 publication-title: Nano Lett. – start-page: 101 year: 2010 ident: c25 publication-title: Comput. Mater. Sci. – start-page: 234511 year: 2005 ident: c32 publication-title: J. Chem. Phys. – start-page: 2157 year: 2009 ident: c37 publication-title: J. Comput. Chem. – volume: 79 start-page: 926 issue: 2 year: 1983 ident: 2023080203293461900_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 29 start-page: 9807 issue: 31 year: 2013 ident: 2023080203293461900_c44 publication-title: Langmuir doi: 10.1021/la401995v – volume: 142 start-page: 214704 issue: 21 year: 2015 ident: 2023080203293461900_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.4922049 – volume: 42 start-page: 5672 issue: 13 year: 2013 ident: 2023080203293461900_c46 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60091b – volume: 48 start-page: 101 issue: 1 year: 2010 ident: 2023080203293461900_c25 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2009.12.009 – volume: 91 start-page: 6269 issue: 24 year: 1987 ident: 2023080203293461900_c26 publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 2 start-page: 12 issue: 1 year: 2006 ident: 2023080203293461900_c11 publication-title: Soft Matter doi: 10.1039/B514811C – volume: 9 start-page: 3023 issue: 3 year: 2015 ident: 2023080203293461900_c13 publication-title: ACS Nano doi: 10.1021/nn5072073 – volume: 43 start-page: 6537 issue: 18 year: 2014 ident: 2023080203293461900_c1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00102H – volume: 108 start-page: 131601 issue: 13 year: 2016 ident: 2023080203293461900_c29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4944840 – volume: 21 start-page: 045003 issue: 4 year: 2013 ident: 2023080203293461900_c33 publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/21/4/045003 – volume: 7 start-page: 699 issue: 11 year: 2012 ident: 2023080203293461900_c4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 107 start-page: 1345 issue: 6 year: 2003 ident: 2023080203293461900_c42 publication-title: J. Phys. Chem. B doi: 10.1021/jp0268112 – volume: 29 start-page: 1457 issue: 5 year: 2013 ident: 2023080203293461900_c43 publication-title: Langmuir doi: 10.1021/la304645w – volume: 119 start-page: 28470 issue: 51 year: 2015 ident: 2023080203293461900_c38 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10267 – volume: 14 start-page: 4314 issue: 8 year: 2014 ident: 2023080203293461900_c12 publication-title: Nano Lett. doi: 10.1021/nl501106v – volume: 123 start-page: 234505 issue: 23 year: 2005 ident: 2023080203293461900_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.2121687 – volume: 30 start-page: 2157 issue: 13 year: 2009 ident: 2023080203293461900_c37 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 2 start-page: 032001 year: 2015 ident: 2023080203293461900_c17 publication-title: 2D Mater. doi: 10.1088/2053-1583/2/3/032001 – volume: 126 start-page: 154707 issue: 15 year: 2007 ident: 2023080203293461900_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.2715577 – volume: 31 start-page: 8429 issue: 30 year: 2015 ident: 2023080203293461900_c14 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b02057 – volume: 43 start-page: 169 issue: 2-4 year: 1990 ident: 2023080203293461900_c45 publication-title: Colloids Surf. doi: 10.1016/0166-6622(90)80287-E – volume: 10 start-page: 1829 issue: 2 year: 2016 ident: 2023080203293461900_c7 publication-title: ACS Nano doi: 10.1021/acsnano.5b05250 – volume: 8 start-page: 425 year: 2013 ident: 2023080203293461900_c19 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-425 – volume: 144 start-page: 164118 issue: 16 year: 2016 ident: 2023080203293461900_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.4947094 – volume: 7 start-page: 5235 issue: 6 year: 2013 ident: 2023080203293461900_c2 publication-title: ACS Nano doi: 10.1021/nn400971k – volume: 8 start-page: 7914 issue: 8 year: 2014 ident: 2023080203293461900_c10 publication-title: ACS Nano doi: 10.1021/nn5029295 – volume: 74 start-page: 218 year: 2014 ident: 2023080203293461900_c16 publication-title: Carbon doi: 10.1016/j.carbon.2014.03.025 – volume: 85 start-page: 199903E year: 2012 ident: 2023080203293461900_c28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.199903 – volume: 6 start-page: 8616 year: 2015 ident: 2023080203293461900_c6 publication-title: Nat. Commun. doi: 10.1038/ncomms9616 – volume: 4 start-page: 7352 year: 2014 ident: 2023080203293461900_c9 publication-title: Sci. Rep. doi: 10.1038/srep07352 – volume: 84 start-page: 033402 issue: 3 year: 2011 ident: 2023080203293461900_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.033402 – volume-title: Understanding Molecular Simulation. From Algortihms to Aplications year: 2002 ident: 2023080203293461900_c40 – volume: 6 start-page: 8294 year: 2015 ident: 2023080203293461900_c3 publication-title: Nat. Commun. doi: 10.1038/ncomms9294 – volume: 6 start-page: 17494 issue: 21 year: 2016 ident: 2023080203293461900_c20 publication-title: RSC Adv. doi: 10.1039/C5RA24592C – volume: 31 start-page: 8335 issue: 30 year: 2015 ident: 2023080203293461900_c39 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b01394 – volume: 14 start-page: 6872 issue: 12 year: 2014 ident: 2023080203293461900_c47 publication-title: Nano Lett. doi: 10.1021/nl502837d – volume: 12 start-page: 925 issue: 10 year: 2013 ident: 2023080203293461900_c15 publication-title: Nat. Mater. doi: 10.1038/nmat3709 – volume-title: Intermolecular and Surface Forces year: 1991 ident: 2023080203293461900_c41 – volume: 8 start-page: 5764 issue: 10 year: 2016 ident: 2023080203293461900_c18 publication-title: Nanoscale doi: 10.1039/C5NR06705G – volume: 144 start-page: 175103 issue: 17 year: 2016 ident: 2023080203293461900_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.4948459 – volume: 79 start-page: 245110 issue: 24 year: 2009 ident: 2023080203293461900_c27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.245110 – volume: 81 start-page: 3684 issue: 8 year: 1984 ident: 2023080203293461900_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – ident: 2023080203293461900_c34 article-title: Dominance of dispersion interactions and entropy over electrostatics in determining the wettability and friction of two-dimensional MoS2 surfaces publication-title: ACS Nano doi: 10.1021/acsnano.6b04276 – volume: 120 start-page: 6796 issue: 12 year: 2016 ident: 2023080203293461900_c23 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11236 – volume: 122 start-page: 234511 issue: 23 year: 2005 ident: 2023080203293461900_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.1931662 – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 2023080203293461900_c35 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 316 start-page: 237 year: 2014 ident: 2023080203293461900_c5 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.07.136  | 
    
| SSID | ssj0001724 | 
    
| Score | 2.3560767 | 
    
| Snippet | Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In... Owing to its peculiar electronic properties, molybdenum disulfide (MoS ) has been the subject of a growing number of studies in the recent years. In...  | 
    
| SourceID | proquest pubmed crossref scitation  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 164705 | 
    
| SubjectTerms | Basal plane Bilayers Biomolecules Computer simulation Droplets Graphite Interaction parameters Molecular dynamics Molybdenum Molybdenum disulfide Monolayers Transition metal compounds Wetting  | 
    
| Title | Revisiting the droplet simulation approach to derive force-field parameters for water on molybdenum disulfide from wetting angle measurements | 
    
| URI | http://dx.doi.org/10.1063/1.4966215 https://www.ncbi.nlm.nih.gov/pubmed/27802664 https://www.proquest.com/docview/2121575106 https://www.proquest.com/docview/1835535337  | 
    
| Volume | 145 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJzR4QDAYFAYyP4SQKo8kTeLkcRqbJtQNBK3Ut8ixHVSpTUqbMpX_gf-Zc-w4qagm4CWNXCexcl98d_bddwi9ESBVDoYBCdKUErXTRFIqApLyjNFAUulV0YSXV-HF2P84CSadzqYVtbQu02P-c2deyf9IFdpAripL9h8ka28KDXAO8oUjSBiOfyXjL1VqeFlnPImligYv-6vp3BTlspThysQUMCTN8c0lqSLX-or4e64CYipWhv41U5SJcNm8mG1SUUXJi-lqPcumQupMlGupA6VZ_m0m-_NmhXHVNnObhLPK1OU1K4FeR7Fm_FAuiw3Yznq3Xuif5ZS3lyLcUM3hJrW7if5n-Xacw-fWnesEApcox0mrID3vOlFMaKgrh9qJWRNN1ggMd874YGKpxYdjH_w2T2eGbrNqX31KzsfDYTI6m4zeLr4TVXBMbcyb6iu30J4HCsHpor2TD5fDr1aNg2VnKLz1aGtaqnDw3j5t25j5w0O5i_bBjtEhFS2rZXQf3TMywCcaOw9QR-YHaP-0rvJ3gG6bF_cQ_WrQhAFN2KAJN2jCNZpwWWCNJtxCE27QpJpxhSYMlzVowhZNWKEJGzThCk24jaZHaHx-Njq9IKZYB-HgBJSEuWGauRxUBFWBVpwGcSx4lqXgr6bM98OYwakbK8JJyqQqewC6BLr7WeTRjA0OUTcvcvkE4SyKAs4d5see40tXKk5C4WQOi6NBxHzRQ-_qt57Ur1cVVJklVURFOEjcxAioh17ZrgtN37Kr01EtusR83avEU7QrFDRW2EMv7d8gHLWhxnJZrFcJqMMgGIDDRHvosRa5fYpHIweMX7-HXlsM3DSEHb1-FMumR7IQ2dObB_oM3Wm-yiPULZdr-RxM5jJ9YcD9G-UMyQ8 | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+droplet+simulation+approach+to+derive+force-field+parameters+for+water+on+molybdenum+disulfide+from+wetting+angle+measurements&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Leroy+Fr%C3%A9d%C3%A9ric&rft.date=2016-10-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=145&rft.issue=16&rft_id=info:doi/10.1063%2F1.4966215&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |