Early Diabetic Retinopathy Detection from OCT Images Using Multifractal Analysis and Multi-Layer Perceptron Classification
Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed...
Saved in:
| Published in | Diagnostics (Basel) Vol. 15; no. 13; p. 1616 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
25.06.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics15131616 |
Cover
| Abstract | Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care. |
|---|---|
| AbstractList | Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02% , along with precision, recall, and F1-score values of 98.24% , 97.80% , and 98.01% , respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care. Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care. Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care.Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care. |
| Audience | Academic |
| Author | Tezel, Necmi Serkan Kaçmaz, Seydi Aziz, Ahlem Attallah, Youcef |
| AuthorAffiliation | 2 Department of Electrical and Electronical Engineering, Gaziantep University, 27310 Gaziantep, Türkiye; seydikacmaz@gantep.edu.tr 1 Electrical and Electronics Engineering Department, Karabuk University, 78050 Karabuk, Türkiye; nstezel@karabuk.edu.tr 3 Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), Oran 31000, Algeria; youcef.attallah@univ-usto.dz |
| AuthorAffiliation_xml | – name: 1 Electrical and Electronics Engineering Department, Karabuk University, 78050 Karabuk, Türkiye; nstezel@karabuk.edu.tr – name: 3 Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), Oran 31000, Algeria; youcef.attallah@univ-usto.dz – name: 2 Department of Electrical and Electronical Engineering, Gaziantep University, 27310 Gaziantep, Türkiye; seydikacmaz@gantep.edu.tr |
| Author_xml | – sequence: 1 givenname: Ahlem orcidid: 0009-0001-5806-1901 surname: Aziz fullname: Aziz, Ahlem – sequence: 2 givenname: Necmi Serkan orcidid: 0000-0002-9452-677X surname: Tezel fullname: Tezel, Necmi Serkan – sequence: 3 givenname: Seydi orcidid: 0000-0001-5669-760X surname: Kaçmaz fullname: Kaçmaz, Seydi – sequence: 4 givenname: Youcef orcidid: 0000-0003-2623-7412 surname: Attallah fullname: Attallah, Youcef |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40647615$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQQCNUREvpL0BCkbhw2RJ_xIlPqFoKrLSoCLXnaGKPU68Se7ET0PLr8ZJSuqgHYim2xm-eMxk_z46cd5hlL0lxzpgs3moLnfNxtCqSkjAiiHiSndCiKheck_rowfo4O4txU6RHElbT8ll2zAvBK0HKk-znJYR-l7-30GKS5V_T2_ktjLcpiCOq0XqXm-CH_Gp5na8G6DDmN9G6Lv889aM1AdQIfX7hoN9FG3Nwet5ZrGGHIf-CQeF2DEmz7CFGa6yCvfVF9tRAH_Hsbj7Nbj5cXi8_LdZXH1fLi_VClUSOCwk1NVxSRmWrEFrdKsWhhoK0RQncSI6aEGR1KaRQWgipW0rAcABiUCE7zVazV3vYNNtgBwi7xoNtfgd86BoIqfYeG9AVkhqMKBB4VYu6llxTplEYw6SpkovPrsltYfcD-v5eSIpm35nmkc6ktHdz2nZqB9QK3RigP_iWwx1nb5vOf28IpbwuK5oMb-4MwX-bMI7NYKPCvgeHfooNo1QKWqYpoa__QTd-Cqk9M0X4HvpLdZAKt874dLDaS5uLmlecMy5kos4fodLQOFiVrqSxKX6Q8Ophpfcl_rlxCWAzoIKPMaD5rx_4C8jE7zI |
| Cites_doi | 10.1016/j.media.2009.05.003 10.1016/j.preteyeres.2007.07.005 10.1161/CIRCULATIONAHA.121.057709 10.1109/ACCESS.2021.3054743 10.1186/s40662-019-0160-3 10.1017/S0952523824000038 10.1117/1.3115362 10.1088/978-0-7503-4982-6 10.1109/IADCC.2015.7154781 10.1016/j.heliyon.2024.e27391 10.1155/2023/2728719 10.1109/ACCESS.2022.3157632 10.1016/j.jneumeth.2017.12.002 10.1038/s41598-021-83735-7 10.3390/electronics9020274 10.1109/CBMS.2019.00066 10.1109/ACCESS.2020.2974158 10.1038/eye.2017.181 10.1017/S0952523823000032 10.1038/s41598-019-52659-8 10.1016/j.ophtha.2012.02.021 10.1016/j.softx.2020.100574 10.1007/978-3-030-56005-8_9 10.3390/s22093490 10.1007/978-3-030-16638-0_3 10.1186/s40942-015-0005-8 10.1017/jfm.2020.19 10.3390/s22207833 10.1016/j.matpr.2021.04.070 10.3390/app11052376 10.1109/INDICON49873.2020.9342576 10.1080/16583655.2020.1796244 10.1038/nmeth.2019 10.1007/s11277-022-10079-4 10.4103/ijem.ijem_480_21 10.1016/B978-0-12-817438-8.00009-2 10.1155/2018/2159702 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/diagnostics15131616 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_ad7e18af60ea47868894d23de6ff39f7 10.3390/diagnostics15131616 PMC12248572 A847443469 40647615 10_3390_diagnostics15131616 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c519t-9a82f492329bceabdbcc4a8a01b05a4f94ed11e385696cd669db21af4aa1fece3 |
| IEDL.DBID | M48 |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:51:43 EDT 2025 Sun Oct 26 03:40:38 EDT 2025 Tue Sep 30 17:01:24 EDT 2025 Fri Sep 05 15:40:14 EDT 2025 Sat Jul 12 03:28:55 EDT 2025 Mon Oct 20 22:41:17 EDT 2025 Mon Oct 20 16:54:40 EDT 2025 Tue Jul 15 01:30:43 EDT 2025 Thu Oct 16 04:41:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Optical Coherence Tomography (OCT) Multi-Layer Perceptron (MLP) early detection computer-aided diagnosis machine learning multifractal analysis retinal imaging Diabetic Retinopathy |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c519t-9a82f492329bceabdbcc4a8a01b05a4f94ed11e385696cd669db21af4aa1fece3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5669-760X 0000-0002-9452-677X 0009-0001-5806-1901 0000-0003-2623-7412 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-4418/15/13/1616/pdf?version=1750861193 |
| PMID | 40647615 |
| PQID | 3229143223 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ad7e18af60ea47868894d23de6ff39f7 unpaywall_primary_10_3390_diagnostics15131616 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12248572 proquest_miscellaneous_3229625322 proquest_journals_3229143223 gale_infotracmisc_A847443469 gale_infotracacademiconefile_A847443469 pubmed_primary_40647615 crossref_primary_10_3390_diagnostics15131616 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-25 |
| PublicationDateYYYYMMDD | 2025-06-25 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Uppamma (ref_15) 2023; 2023 Drexler (ref_4) 2008; 27 Li (ref_22) 2022; 2022 Lopes (ref_11) 2009; 13 Atwany (ref_16) 2022; 10 Kremers (ref_44) 2024; 41 ref_14 ref_36 Mounirou (ref_1) 2022; 26 ref_13 Schindelin (ref_29) 2012; 9 ref_10 Lin (ref_39) 2018; 2018 ref_31 ref_30 Garg (ref_33) 2018; 10 Tan (ref_17) 2018; 32 Abdelsalam (ref_12) 2021; 9 Jirarattanasopa (ref_7) 2012; 119 ref_38 Kumar (ref_2) 2012; 1 Tey (ref_3) 2019; 6 Zahran (ref_20) 2020; 14 Raghunathan (ref_35) 2020; 888 Devi (ref_25) 2021; 47 Ghazal (ref_42) 2020; 8 ref_24 ref_23 ref_21 Torre (ref_34) 2020; 12 ref_41 ref_40 Zekavat (ref_18) 2022; 145 ref_28 Tsay (ref_43) 2023; 40 ref_27 ref_26 ref_9 Romano (ref_6) 2015; 1 ref_8 Yang (ref_19) 2024; 10 ref_5 Naskath (ref_37) 2023; 128 Healy (ref_32) 2018; 295 |
| References_xml | – ident: ref_28 – volume: 13 start-page: 634 year: 2009 ident: ref_11 article-title: Fractal and multifractal analysis: A review publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.05.003 – volume: 27 start-page: 45 year: 2008 ident: ref_4 article-title: State-of-the-art retinal optical coherence tomography publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2007.07.005 – volume: 145 start-page: 134 year: 2022 ident: ref_18 article-title: Deep learning of the retina enables phenome-and genome-wide analyses of the microvasculature publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.057709 – volume: 9 start-page: 22844 year: 2021 ident: ref_12 article-title: A novel approach of diabetic retinopathy early detection based on multifractal geometry analysis for OCTA macular images using support vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054743 – volume: 6 start-page: 37 year: 2019 ident: ref_3 article-title: Optical coherence tomography angiography in diabetic retinopathy: A review of current applications publication-title: Eye Vis. doi: 10.1186/s40662-019-0160-3 – volume: 41 start-page: E004 year: 2024 ident: ref_44 article-title: Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies publication-title: Vis. Neurosci. doi: 10.1017/S0952523824000038 – ident: ref_30 doi: 10.1117/1.3115362 – ident: ref_36 doi: 10.1088/978-0-7503-4982-6 – volume: 10 start-page: 1777 year: 2018 ident: ref_33 article-title: Generation of Binary Mask of Retinal Fundus Image Using Bimodal Masking publication-title: J. Adv. Res. Dyn. Control Syst. – ident: ref_41 doi: 10.1109/IADCC.2015.7154781 – volume: 10 start-page: e27391 year: 2024 ident: ref_19 article-title: Retina images classification based on 2D empirical mode decomposition and multifractal analysis publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e27391 – volume: 2023 start-page: 2728719 year: 2023 ident: ref_15 article-title: Deep learning and medical image processing techniques for diabetic retinopathy: A survey of applications, challenges, and future trends publication-title: J. Healthc. Eng. doi: 10.1155/2023/2728719 – volume: 10 start-page: 28642 year: 2022 ident: ref_16 article-title: Deep learning techniques for diabetic retinopathy classification: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3157632 – volume: 295 start-page: 87 year: 2018 ident: ref_32 article-title: Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.12.002 – ident: ref_26 doi: 10.1038/s41598-021-83735-7 – ident: ref_40 doi: 10.3390/electronics9020274 – volume: 2022 start-page: 4316507 year: 2022 ident: ref_22 article-title: Diagnosing diabetic retinopathy in OCTA images based on multilevel information fusion using a deep learning framework publication-title: Comput. Math. Methods Med. – ident: ref_24 doi: 10.1109/CBMS.2019.00066 – volume: 8 start-page: 34387 year: 2020 ident: ref_42 article-title: Accurate detection of non-proliferative diabetic retinopathy in optical coherence tomography images using convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974158 – volume: 32 start-page: 262 year: 2018 ident: ref_17 article-title: An overview of the clinical applications of optical coherence tomography angiography publication-title: Eye doi: 10.1038/eye.2017.181 – volume: 40 start-page: E004 year: 2023 ident: ref_43 article-title: Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background publication-title: Vis. Neurosci. doi: 10.1017/S0952523823000032 – ident: ref_9 doi: 10.1038/s41598-019-52659-8 – volume: 119 start-page: 1666 year: 2012 ident: ref_7 article-title: Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.02.021 – ident: ref_31 – volume: 12 start-page: 100574 year: 2020 ident: ref_34 article-title: MULTIFRAC: An ImageJ plugin for multiscale characterization of 2D and 3D stack images publication-title: SoftwareX doi: 10.1016/j.softx.2020.100574 – ident: ref_14 doi: 10.1007/978-3-030-56005-8_9 – ident: ref_5 doi: 10.3390/s22093490 – ident: ref_8 doi: 10.1007/978-3-030-16638-0_3 – volume: 1 start-page: 5 year: 2015 ident: ref_6 article-title: A review of optical coherence tomography angiography (OCTA) publication-title: Int. J. Retin. Vitr. doi: 10.1186/s40942-015-0005-8 – volume: 888 start-page: A14 year: 2020 ident: ref_35 article-title: Multifractal analysis of flame dynamics during transition to thermoacoustic instability in a turbulent combustor publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.19 – ident: ref_27 doi: 10.3390/s22207833 – ident: ref_13 – volume: 1 start-page: 7 year: 2012 ident: ref_2 article-title: Diabetic retinopathy-symptoms, causes, risk factors and treatment publication-title: Pharma Innov. – ident: ref_38 – volume: 47 start-page: 185 year: 2021 ident: ref_25 article-title: Detection of Diabetic Retinopathy Using OCT Image publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.04.070 – ident: ref_10 doi: 10.3390/app11052376 – ident: ref_21 doi: 10.1109/INDICON49873.2020.9342576 – volume: 14 start-page: 1067 year: 2020 ident: ref_20 article-title: Enforcing artificial neural network in the early detection of diabetic retinopathy OCTA images analysed by multifractal geometry publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2020.1796244 – volume: 9 start-page: 676 year: 2012 ident: ref_29 article-title: Fiji: An open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 128 start-page: 2913 year: 2023 ident: ref_37 article-title: A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-022-10079-4 – volume: 26 start-page: 111 year: 2022 ident: ref_1 article-title: Diabetic retinopathy: An overview of treatments publication-title: Indian J. Endocrinol. Metab. doi: 10.4103/ijem.ijem_480_21 – ident: ref_23 doi: 10.1016/B978-0-12-817438-8.00009-2 – volume: 2018 start-page: 2159702 year: 2018 ident: ref_39 article-title: Transforming retinal photographs to entropy images in deep learning to improve automated detection for diabetic retinopathy publication-title: J. Ophthalmol. doi: 10.1155/2018/2159702 |
| SSID | ssj0000913825 |
| Score | 2.3050454 |
| Snippet | Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals... Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1616 |
| SubjectTerms | Accuracy Algorithms Automation Blindness Blood vessels Classification Data mining Decision-making Development and progression Diabetes Diabetic Retinopathy Disease early detection Fractals Geometry Machine learning Medical imaging Medical imaging equipment Multi-Layer Perceptron (MLP) multifractal analysis Neural networks Ophthalmology Optical Coherence Tomography (OCT) Photography Retina Tomography |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Sg3oRv12tEkHwYujuJptNjrVYqlgVaaG3ZfKFhbqvtO8h-tc7k2wfb1XQg6eFJJvdZGYyM2TmN4y9CKmtTS-lCBqcUF7XAmoLIsgQgkktgKMb3cMP-uBYvTvpTjZKfVFMWIEHLhu3A6GPjYGk6wiqN9oYq0IrQ9QpSZtyHnlt7IYzlc9gS9h6XYEZkujX74QSuUbYx6jkJBo6eqaKMmL_7-fyhmL6NWjyxmo8h-_f4OxsQyPt32a3JlOS75Yl3GHX4niXXT-cLsvvsR8ZvJiXmJdTzz9TdvOCShBjY1zmGKyRU34J_7h3xN9-xaPlkucYAp7zchNlUNEXJuASDmMoPeI9oKnOP5WomAucJhfXpLCjTOn77Hj_zdHegZhKLQiPJtxSWDBtIqy21jofwQXnvQIDdePqDlSyKoamidJ02moftLbBtQ0kBdCk6KN8wLbGxRgfMa5MdHUbNAp7VM7jTDL43qbszcQuVezV1a4P5wVRY0BPhIg0_IFIFXtNlFkPJTjs3IBMMkxMMvyNSSr2kug6kNAi8TxMuQf4xwR_NeyijlZKKm0rtj0bicLm591XnDFMwn454Jlo0exEQ6tiz9fd9CYFsI1xsSpj0NXER8UeFkZaL0lRwi9alhUzMxabrXneM55-yVDgdC9quh4nFWtu_Jddffw_dvUJu9lSNeRai7bbZlvLi1V8iiba0j3L0vgT1uY_XQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFbQv4rfRKisIvhiaZDeb3QeRtrRUsWcpLfQtTPajFmruer1D9K93ZpM7GxXxKZDdbLKZ2fnYnfkNY69dKDJdCZE6BU0qrcpSyAykTjjndCgAGjrRPRyrg1P58aw8W2PjZS4MhVUuZWIU1G5iaY98CxnPoG5HbfZ-epVS1Sg6XV2W0IC-tIJ7FyHGbrH1gpCxRmx9Z298dLzadSEUTPSJOvghgf7-lusi2ggTGZWfQANIDVRURPL_U17fUFi_B1PeWbRT-P4NLi9vaKr9e-xub2Ly7Y4n7rM13z5gtw_7Q_SH7EcENeZdLMyF5ceU9Tyh0sR4089jbFbLKe-Ef9494R--osi55jG2gMd83UCZVfSGHtCEQ-u6lvQToAnPj7pomRkOE4tuUjhS5IBH7HR_72T3IO1LMKQWTbt5akAXgTDcCtNYD41rrJWgIcubrAQZjPQuz73QpTLKOqWMa4ocggTIg7dePGajdtL6p4xL7ZuscAqFgJeNxZGEs5UJ0cvxZUjY2-Vfr6cd0kaNHgoRqf4LkRK2Q5RZdSWY7HhjMjuv-1VXg6t8riGozIOstNLaSFcI51UIwoQqYW-IrjUtZiSehT4nAb-YYLHqbdTdUgqpTMI2Bz1xEdph85Iz6l4IXNe_WDZhr1bN9CQFtrV-suj6oAuKl4Q96RhpNSVJicBocSZMD1hsMOdhS3vxJUKE03mpLiscNF1x4__81Wf_nsdztlFQ_eNMpUW5yUbz2cK_QKNs3rzsV9pPGfw8lA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagk4AXfg8CAwUJiRe8JrHj2E-oTEwDsTGhVRpPkX9CxUirrgWxv547J62awQOIp0qx48bN-e67-rvPhDx3ochkxRh1QhvKrciozpSmjjnnZCi0Nrije3gkDsb83Wl5ulHFj7RKSMUn0UkXEM8oxGs5zMthzoaATsRw5sKr791_SRD7AJLnAEKuki1RAhofkK3x0fHoE54pt7q7FRtikN0PXctfQwVkCHUMB-wFpKjb_7t33ghPl6mT15fNTP_8oc_ONuLS_i2iVzNq6Shfd5cLs2svLok9_s-Ub5ObHWhNR62V3SFXfHOXXDvstuXvkYsok5y27JqJTT9iHfUUDzuGi34R2V5NipUs6Ye9k_TtN3Bi52lkK6SxAjhgrRZ-QyeRkurGtS30vYakID1u-TdzGCYe44kEp2hT98l4_83J3gHtDnWgFsDigioti4CqcIUy1mvjjLVcS53lJis1D4p7l-eeyVIoYZ0Qypki14FrnQdvPdsmg2ba-Ick5dKbrHAC3IrnxsJIzNlKhZg3-TIk5OXqzdazVrujhpwHDaH-gyEk5DW-_XVXFN6OF6bzz3W3jmvtKp9LHUTmNa-kkFJxVzDnRQhMhSohL9B2anQPYCBWd1UO8MQotFWPAA1wzrhQCdnp9YRlbfvNK-urO7dyXoP3VQBwAdIl5Nm6Ge9Eqlzjp8u2DyS18JGQB62xrqfEsbQYMGxCZM-Me3PutzSTL1F0HHdgZVnBoHRt8X_zqz76x_6PyY0Cj1jOBC3KHTJYzJf-CeC-hXnaLe1fbc1X2w priority: 102 providerName: Unpaywall |
| Title | Early Diabetic Retinopathy Detection from OCT Images Using Multifractal Analysis and Multi-Layer Perceptron Classification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40647615 https://www.proquest.com/docview/3229143223 https://www.proquest.com/docview/3229625322 https://pubmed.ncbi.nlm.nih.gov/PMC12248572 https://www.mdpi.com/2075-4418/15/13/1616/pdf?version=1750861193 https://doaj.org/article/ad7e18af60ea47868894d23de6ff39f7 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJsFeEN8LjMpICF4w5MNx7AeEumnTQLRU0yqNp8jxB0wqade1gvHXc-ek1QJD2lMl23UT39l3V__ud4S8tD6NZZFlzApdMW5EzHSsNLOZtVb6VOsKb3QHQ3E05p9O89MNsgJktgt4cW1oh_WkxvPJ21_nlx9gw7_HiBNC9ne2AaUhrTHYrwx8GPFqds6wshTewLZlNm6RLbBeCss7DNoQIJzWCln4EOmYgvVk4B3Ihpzof1N3DFjg-f_3NL9izv6GWt5Z1jN9-VNPJlfs2OE9crd1QGm_0Zj7ZMPVD8jtQXvF_pD8DpTHtEHKnBl6jDnRUyxcDI1uEZBbNcWsFPpl_4R-_AEH0gUNyAMasnk95l3hL7R0J1TXtulhnzU4-HTUYGnmME0oyYlgpaAfj8j48OBk_4i1BRqYAcdvwZSWqUeGt1RVxunKVsZwLXWcVHGuuVfc2SRxmcyFEsYKoWyVJtpzrRPvjMsek816WrsdQrl0VZxaAUeE45WBmTJrCuVDDORyH5E3q1UvZw0PRwnxCwqpvEZIEdlDyayHIol2aJjOv5Xtniy1LVwitRex07yQQkrFbZpZJ7zPlC8i8hrlWqLygfCMbjMW4ImRNKvsg2XnPONCRWS3MxK2qOl2rzSjXGl4CSepAmcV3LOIvFh34zcR9la76bIZAwEqfETkSaNI61fimCYM_mhEZEfFOu_c7anPvgcCcbxNlXkBk7K1Nt5kVZ_e4EGfke0USyTHgqX5LtlczJfuOfhti6pHtvYOhqPjXvjfoxe2IbSNh6P-1z805Etd |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjFeEHcCA4wE4oVoSew49sOEtrFpZW2Zpk7aW3B8gUkjLb1oGj-O38Y5TlpWQIiXPUWKXafOucfnfIeQV9ZniSwYi63QVcyNSGKdKB1bZq2VPtO6whPdXl8cnPAPp_npCvkxr4XBtMq5TgyK2g4NfiPfBMZTYNvBmr0bfYuxaxSers5baOi2tYLdChBjbWHHobu8gBBustV5D_R-nWX7e4Pdg7jtMhAb8F6msdIy8whTlqnKOF3ZyhiupU7SKsk194o7m6aOyVwoYawQylZZqj3XOvXOOAbr3iBrnHEFwd_azl7_6HjxlQdRNyEGa-COGFPJpm0y6BCDGYwtA4dLLJnE0DngT_twxUD-nry5PqtH-vJCn59fsYz7d8jt1qWl2w0P3iUrrr5HbvbaQ_v75HsAUaZN7s2ZocdYZT3EVshw001DLlhNsc6Fftwd0M5XUHETGnIZaKgP9ljJhU9oAVSorm0zEnc1hAz0qMnOGcMyocknpj8FjntATq6FGA_Jaj2s3WNCuXRVklkBSsfxysBKzJpC-RBVudxH5O38rZejBtmjhIgIiVT-hUgR2UHKLKYiLHe4MRx_LlspL7UtXCq1F4nTvJBCSsVtxqwT3jPli4i8QbqWqDyAeEa3NRDwjxGGq9wGX4EDJwkVkY2lmSD0Znl4zhllq3Qm5S8RicjLxTD-EhPpajecNXMg5IVLRB41jLTYEsfCY_BwIyKXWGxpz8sj9dmXAEmO57MyL2DReMGN__NWn_x7Hy_I-sGg1y27nf7hU3Irw97LiYizfIOsTscz9wwcwmn1vJU6Sj5dt6D_BInIe-A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJg1eEN8EBhgJxAtRk9hx7YcJ7ata2VaqaZP2ljn-gEkjLW2nafyJ_FXcOWlZACFe9hQpdp06d76P3N3vCHljfZbILmOxFbqMuRFJrBOlY8ustdJnWpcY0T0YiN1j_vEkP1kiP-a1MJhWOZeJQVDbkcFv5B1gPAW6HbRZxzdpEcPt3ofxtxg7SGGkdd5OQzdtFux6gBtrijz23NUluHPT9f420P5tlvV2jrZ246bjQGzAkpnFSsvMI2RZpkrjdGlLY7iWOknLJNfcK-5smjomc6GEsUIoW2ap9lzr1DvjGKx7i6xg8AuExMrmzmB4uPjigwic4I_V0EeMqaRj62w6xGMGxcvA-BIt9Ri6CPypK64py98TOW9fVGN9danPz69pyd49crcxb-lGzY_3yZKrHpDVgyaA_5B8D4DKtM7DOTP0ECuuR9gWGW66WcgLqyjWvNBPW0e0_xXE3ZSGvAYaaoU9VnXhExowFaorW4_E-xrcBzqsM3UmsExo-ImpUIH7HpHjGyHGY7JcjSr3lFAuXZlkVoAAcrw0sBKzpqt88LBc7iPyfv7Wi3GN8lGAd4REKv5CpIhsImUWUxGiO9wYTT4XzYkvtO26VGovEqd5VwopFbcZs054z5TvRuQd0rVAQQLEM7qph4B_jJBcxQbYDZwzLlRE1lozQQCY9vCcM4pGAE2LX8clIq8Xw_hLTKqr3OiingPuL1wi8qRmpMWWOBYhg7UbEdlisdae2yPV2ZcAT46xWpl3YdF4wY3_81af_Xsfr8gqHPhivz_Ye07uZNiGORFxlq-R5dnkwr0A23BWvmwOHSWnN33OfwLT0IAP |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagk4AXfg8CAwUJiRe8JrHj2E-oTEwDsTGhVRpPkX9CxUirrgWxv547J62awQOIp0qx48bN-e67-rvPhDx3ochkxRh1QhvKrciozpSmjjnnZCi0Nrije3gkDsb83Wl5ulHFj7RKSMUn0UkXEM8oxGs5zMthzoaATsRw5sKr791_SRD7AJLnAEKuki1RAhofkK3x0fHoE54pt7q7FRtikN0PXctfQwVkCHUMB-wFpKjb_7t33ghPl6mT15fNTP_8oc_ONuLS_i2iVzNq6Shfd5cLs2svLok9_s-Ub5ObHWhNR62V3SFXfHOXXDvstuXvkYsok5y27JqJTT9iHfUUDzuGi34R2V5NipUs6Ye9k_TtN3Bi52lkK6SxAjhgrRZ-QyeRkurGtS30vYakID1u-TdzGCYe44kEp2hT98l4_83J3gHtDnWgFsDigioti4CqcIUy1mvjjLVcS53lJis1D4p7l-eeyVIoYZ0Qypki14FrnQdvPdsmg2ba-Ick5dKbrHAC3IrnxsJIzNlKhZg3-TIk5OXqzdazVrujhpwHDaH-gyEk5DW-_XVXFN6OF6bzz3W3jmvtKp9LHUTmNa-kkFJxVzDnRQhMhSohL9B2anQPYCBWd1UO8MQotFWPAA1wzrhQCdnp9YRlbfvNK-urO7dyXoP3VQBwAdIl5Nm6Ge9Eqlzjp8u2DyS18JGQB62xrqfEsbQYMGxCZM-Me3PutzSTL1F0HHdgZVnBoHRt8X_zqz76x_6PyY0Cj1jOBC3KHTJYzJf-CeC-hXnaLe1fbc1X2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Diabetic+Retinopathy+Detection+from+OCT+Images+Using+Multifractal+Analysis+and+Multi-Layer+Perceptron+Classification&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Aziz%2C+Ahlem&rft.au=Tezel%2C+Necmi+Serkan&rft.au=Ka%C3%A7maz%2C+Seydi&rft.au=Attallah%2C+Youcef&rft.date=2025-06-25&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=13&rft_id=info:doi/10.3390%2Fdiagnostics15131616&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |