Early Diabetic Retinopathy Detection from OCT Images Using Multifractal Analysis and Multi-Layer Perceptron Classification

Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 15; no. 13; p. 1616
Main Authors Aziz, Ahlem, Tezel, Necmi Serkan, Kaçmaz, Seydi, Attallah, Youcef
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics15131616

Cover

Abstract Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care.
AbstractList Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02% , along with precision, recall, and F1-score values of 98.24% , 97.80% , and 98.01% , respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care.
Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care.
Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care.Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care.
Audience Academic
Author Tezel, Necmi Serkan
Kaçmaz, Seydi
Aziz, Ahlem
Attallah, Youcef
AuthorAffiliation 2 Department of Electrical and Electronical Engineering, Gaziantep University, 27310 Gaziantep, Türkiye; seydikacmaz@gantep.edu.tr
1 Electrical and Electronics Engineering Department, Karabuk University, 78050 Karabuk, Türkiye; nstezel@karabuk.edu.tr
3 Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), Oran 31000, Algeria; youcef.attallah@univ-usto.dz
AuthorAffiliation_xml – name: 1 Electrical and Electronics Engineering Department, Karabuk University, 78050 Karabuk, Türkiye; nstezel@karabuk.edu.tr
– name: 3 Department of Electronics, Faculty of Electrical Engineering, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), Oran 31000, Algeria; youcef.attallah@univ-usto.dz
– name: 2 Department of Electrical and Electronical Engineering, Gaziantep University, 27310 Gaziantep, Türkiye; seydikacmaz@gantep.edu.tr
Author_xml – sequence: 1
  givenname: Ahlem
  orcidid: 0009-0001-5806-1901
  surname: Aziz
  fullname: Aziz, Ahlem
– sequence: 2
  givenname: Necmi Serkan
  orcidid: 0000-0002-9452-677X
  surname: Tezel
  fullname: Tezel, Necmi Serkan
– sequence: 3
  givenname: Seydi
  orcidid: 0000-0001-5669-760X
  surname: Kaçmaz
  fullname: Kaçmaz, Seydi
– sequence: 4
  givenname: Youcef
  orcidid: 0000-0003-2623-7412
  surname: Attallah
  fullname: Attallah, Youcef
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40647615$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQQCNUREvpL0BCkbhw2RJ_xIlPqFoKrLSoCLXnaGKPU68Se7ET0PLr8ZJSuqgHYim2xm-eMxk_z46cd5hlL0lxzpgs3moLnfNxtCqSkjAiiHiSndCiKheck_rowfo4O4txU6RHElbT8ll2zAvBK0HKk-znJYR-l7-30GKS5V_T2_ktjLcpiCOq0XqXm-CH_Gp5na8G6DDmN9G6Lv889aM1AdQIfX7hoN9FG3Nwet5ZrGGHIf-CQeF2DEmz7CFGa6yCvfVF9tRAH_Hsbj7Nbj5cXi8_LdZXH1fLi_VClUSOCwk1NVxSRmWrEFrdKsWhhoK0RQncSI6aEGR1KaRQWgipW0rAcABiUCE7zVazV3vYNNtgBwi7xoNtfgd86BoIqfYeG9AVkhqMKBB4VYu6llxTplEYw6SpkovPrsltYfcD-v5eSIpm35nmkc6ktHdz2nZqB9QK3RigP_iWwx1nb5vOf28IpbwuK5oMb-4MwX-bMI7NYKPCvgeHfooNo1QKWqYpoa__QTd-Cqk9M0X4HvpLdZAKt874dLDaS5uLmlecMy5kos4fodLQOFiVrqSxKX6Q8Ophpfcl_rlxCWAzoIKPMaD5rx_4C8jE7zI
Cites_doi 10.1016/j.media.2009.05.003
10.1016/j.preteyeres.2007.07.005
10.1161/CIRCULATIONAHA.121.057709
10.1109/ACCESS.2021.3054743
10.1186/s40662-019-0160-3
10.1017/S0952523824000038
10.1117/1.3115362
10.1088/978-0-7503-4982-6
10.1109/IADCC.2015.7154781
10.1016/j.heliyon.2024.e27391
10.1155/2023/2728719
10.1109/ACCESS.2022.3157632
10.1016/j.jneumeth.2017.12.002
10.1038/s41598-021-83735-7
10.3390/electronics9020274
10.1109/CBMS.2019.00066
10.1109/ACCESS.2020.2974158
10.1038/eye.2017.181
10.1017/S0952523823000032
10.1038/s41598-019-52659-8
10.1016/j.ophtha.2012.02.021
10.1016/j.softx.2020.100574
10.1007/978-3-030-56005-8_9
10.3390/s22093490
10.1007/978-3-030-16638-0_3
10.1186/s40942-015-0005-8
10.1017/jfm.2020.19
10.3390/s22207833
10.1016/j.matpr.2021.04.070
10.3390/app11052376
10.1109/INDICON49873.2020.9342576
10.1080/16583655.2020.1796244
10.1038/nmeth.2019
10.1007/s11277-022-10079-4
10.4103/ijem.ijem_480_21
10.1016/B978-0-12-817438-8.00009-2
10.1155/2018/2159702
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics15131616
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_ad7e18af60ea47868894d23de6ff39f7
10.3390/diagnostics15131616
PMC12248572
A847443469
40647615
10_3390_diagnostics15131616
Genre Journal Article
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c519t-9a82f492329bceabdbcc4a8a01b05a4f94ed11e385696cd669db21af4aa1fece3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Fri Oct 03 12:51:43 EDT 2025
Sun Oct 26 03:40:38 EDT 2025
Tue Sep 30 17:01:24 EDT 2025
Fri Sep 05 15:40:14 EDT 2025
Sat Jul 12 03:28:55 EDT 2025
Mon Oct 20 22:41:17 EDT 2025
Mon Oct 20 16:54:40 EDT 2025
Tue Jul 15 01:30:43 EDT 2025
Thu Oct 16 04:41:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Optical Coherence Tomography (OCT)
Multi-Layer Perceptron (MLP)
early detection
computer-aided diagnosis
machine learning
multifractal analysis
retinal imaging
Diabetic Retinopathy
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-9a82f492329bceabdbcc4a8a01b05a4f94ed11e385696cd669db21af4aa1fece3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5669-760X
0000-0002-9452-677X
0009-0001-5806-1901
0000-0003-2623-7412
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-4418/15/13/1616/pdf?version=1750861193
PMID 40647615
PQID 3229143223
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_ad7e18af60ea47868894d23de6ff39f7
unpaywall_primary_10_3390_diagnostics15131616
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12248572
proquest_miscellaneous_3229625322
proquest_journals_3229143223
gale_infotracmisc_A847443469
gale_infotracacademiconefile_A847443469
pubmed_primary_40647615
crossref_primary_10_3390_diagnostics15131616
PublicationCentury 2000
PublicationDate 2025-06-25
PublicationDateYYYYMMDD 2025-06-25
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Uppamma (ref_15) 2023; 2023
Drexler (ref_4) 2008; 27
Li (ref_22) 2022; 2022
Lopes (ref_11) 2009; 13
Atwany (ref_16) 2022; 10
Kremers (ref_44) 2024; 41
ref_14
ref_36
Mounirou (ref_1) 2022; 26
ref_13
Schindelin (ref_29) 2012; 9
ref_10
Lin (ref_39) 2018; 2018
ref_31
ref_30
Garg (ref_33) 2018; 10
Tan (ref_17) 2018; 32
Abdelsalam (ref_12) 2021; 9
Jirarattanasopa (ref_7) 2012; 119
ref_38
Kumar (ref_2) 2012; 1
Tey (ref_3) 2019; 6
Zahran (ref_20) 2020; 14
Raghunathan (ref_35) 2020; 888
Devi (ref_25) 2021; 47
Ghazal (ref_42) 2020; 8
ref_24
ref_23
ref_21
Torre (ref_34) 2020; 12
ref_41
ref_40
Zekavat (ref_18) 2022; 145
ref_28
Tsay (ref_43) 2023; 40
ref_27
ref_26
ref_9
Romano (ref_6) 2015; 1
ref_8
Yang (ref_19) 2024; 10
ref_5
Naskath (ref_37) 2023; 128
Healy (ref_32) 2018; 295
References_xml – ident: ref_28
– volume: 13
  start-page: 634
  year: 2009
  ident: ref_11
  article-title: Fractal and multifractal analysis: A review
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.05.003
– volume: 27
  start-page: 45
  year: 2008
  ident: ref_4
  article-title: State-of-the-art retinal optical coherence tomography
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2007.07.005
– volume: 145
  start-page: 134
  year: 2022
  ident: ref_18
  article-title: Deep learning of the retina enables phenome-and genome-wide analyses of the microvasculature
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.057709
– volume: 9
  start-page: 22844
  year: 2021
  ident: ref_12
  article-title: A novel approach of diabetic retinopathy early detection based on multifractal geometry analysis for OCTA macular images using support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054743
– volume: 6
  start-page: 37
  year: 2019
  ident: ref_3
  article-title: Optical coherence tomography angiography in diabetic retinopathy: A review of current applications
  publication-title: Eye Vis.
  doi: 10.1186/s40662-019-0160-3
– volume: 41
  start-page: E004
  year: 2024
  ident: ref_44
  article-title: Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523824000038
– ident: ref_30
  doi: 10.1117/1.3115362
– ident: ref_36
  doi: 10.1088/978-0-7503-4982-6
– volume: 10
  start-page: 1777
  year: 2018
  ident: ref_33
  article-title: Generation of Binary Mask of Retinal Fundus Image Using Bimodal Masking
  publication-title: J. Adv. Res. Dyn. Control Syst.
– ident: ref_41
  doi: 10.1109/IADCC.2015.7154781
– volume: 10
  start-page: e27391
  year: 2024
  ident: ref_19
  article-title: Retina images classification based on 2D empirical mode decomposition and multifractal analysis
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e27391
– volume: 2023
  start-page: 2728719
  year: 2023
  ident: ref_15
  article-title: Deep learning and medical image processing techniques for diabetic retinopathy: A survey of applications, challenges, and future trends
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2023/2728719
– volume: 10
  start-page: 28642
  year: 2022
  ident: ref_16
  article-title: Deep learning techniques for diabetic retinopathy classification: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3157632
– volume: 295
  start-page: 87
  year: 2018
  ident: ref_32
  article-title: Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.12.002
– ident: ref_26
  doi: 10.1038/s41598-021-83735-7
– ident: ref_40
  doi: 10.3390/electronics9020274
– volume: 2022
  start-page: 4316507
  year: 2022
  ident: ref_22
  article-title: Diagnosing diabetic retinopathy in OCTA images based on multilevel information fusion using a deep learning framework
  publication-title: Comput. Math. Methods Med.
– ident: ref_24
  doi: 10.1109/CBMS.2019.00066
– volume: 8
  start-page: 34387
  year: 2020
  ident: ref_42
  article-title: Accurate detection of non-proliferative diabetic retinopathy in optical coherence tomography images using convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974158
– volume: 32
  start-page: 262
  year: 2018
  ident: ref_17
  article-title: An overview of the clinical applications of optical coherence tomography angiography
  publication-title: Eye
  doi: 10.1038/eye.2017.181
– volume: 40
  start-page: E004
  year: 2023
  ident: ref_43
  article-title: Pre-stimulus bioelectrical activity in light-adapted ERG under blue versus white background
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523823000032
– ident: ref_9
  doi: 10.1038/s41598-019-52659-8
– volume: 119
  start-page: 1666
  year: 2012
  ident: ref_7
  article-title: Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.02.021
– ident: ref_31
– volume: 12
  start-page: 100574
  year: 2020
  ident: ref_34
  article-title: MULTIFRAC: An ImageJ plugin for multiscale characterization of 2D and 3D stack images
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100574
– ident: ref_14
  doi: 10.1007/978-3-030-56005-8_9
– ident: ref_5
  doi: 10.3390/s22093490
– ident: ref_8
  doi: 10.1007/978-3-030-16638-0_3
– volume: 1
  start-page: 5
  year: 2015
  ident: ref_6
  article-title: A review of optical coherence tomography angiography (OCTA)
  publication-title: Int. J. Retin. Vitr.
  doi: 10.1186/s40942-015-0005-8
– volume: 888
  start-page: A14
  year: 2020
  ident: ref_35
  article-title: Multifractal analysis of flame dynamics during transition to thermoacoustic instability in a turbulent combustor
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.19
– ident: ref_27
  doi: 10.3390/s22207833
– ident: ref_13
– volume: 1
  start-page: 7
  year: 2012
  ident: ref_2
  article-title: Diabetic retinopathy-symptoms, causes, risk factors and treatment
  publication-title: Pharma Innov.
– ident: ref_38
– volume: 47
  start-page: 185
  year: 2021
  ident: ref_25
  article-title: Detection of Diabetic Retinopathy Using OCT Image
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.04.070
– ident: ref_10
  doi: 10.3390/app11052376
– ident: ref_21
  doi: 10.1109/INDICON49873.2020.9342576
– volume: 14
  start-page: 1067
  year: 2020
  ident: ref_20
  article-title: Enforcing artificial neural network in the early detection of diabetic retinopathy OCTA images analysed by multifractal geometry
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1080/16583655.2020.1796244
– volume: 9
  start-page: 676
  year: 2012
  ident: ref_29
  article-title: Fiji: An open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 128
  start-page: 2913
  year: 2023
  ident: ref_37
  article-title: A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-022-10079-4
– volume: 26
  start-page: 111
  year: 2022
  ident: ref_1
  article-title: Diabetic retinopathy: An overview of treatments
  publication-title: Indian J. Endocrinol. Metab.
  doi: 10.4103/ijem.ijem_480_21
– ident: ref_23
  doi: 10.1016/B978-0-12-817438-8.00009-2
– volume: 2018
  start-page: 2159702
  year: 2018
  ident: ref_39
  article-title: Transforming retinal photographs to entropy images in deep learning to improve automated detection for diabetic retinopathy
  publication-title: J. Ophthalmol.
  doi: 10.1155/2018/2159702
SSID ssj0000913825
Score 2.3050454
Snippet Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals...
Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1616
SubjectTerms Accuracy
Algorithms
Automation
Blindness
Blood vessels
Classification
Data mining
Decision-making
Development and progression
Diabetes
Diabetic Retinopathy
Disease
early detection
Fractals
Geometry
Machine learning
Medical imaging
Medical imaging equipment
Multi-Layer Perceptron (MLP)
multifractal analysis
Neural networks
Ophthalmology
Optical Coherence Tomography (OCT)
Photography
Retina
Tomography
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Sg3oRv12tEkHwYujuJptNjrVYqlgVaaG3ZfKFhbqvtO8h-tc7k2wfb1XQg6eFJJvdZGYyM2TmN4y9CKmtTS-lCBqcUF7XAmoLIsgQgkktgKMb3cMP-uBYvTvpTjZKfVFMWIEHLhu3A6GPjYGk6wiqN9oYq0IrQ9QpSZtyHnlt7IYzlc9gS9h6XYEZkujX74QSuUbYx6jkJBo6eqaKMmL_7-fyhmL6NWjyxmo8h-_f4OxsQyPt32a3JlOS75Yl3GHX4niXXT-cLsvvsR8ZvJiXmJdTzz9TdvOCShBjY1zmGKyRU34J_7h3xN9-xaPlkucYAp7zchNlUNEXJuASDmMoPeI9oKnOP5WomAucJhfXpLCjTOn77Hj_zdHegZhKLQiPJtxSWDBtIqy21jofwQXnvQIDdePqDlSyKoamidJ02moftLbBtQ0kBdCk6KN8wLbGxRgfMa5MdHUbNAp7VM7jTDL43qbszcQuVezV1a4P5wVRY0BPhIg0_IFIFXtNlFkPJTjs3IBMMkxMMvyNSSr2kug6kNAi8TxMuQf4xwR_NeyijlZKKm0rtj0bicLm591XnDFMwn454Jlo0exEQ6tiz9fd9CYFsI1xsSpj0NXER8UeFkZaL0lRwi9alhUzMxabrXneM55-yVDgdC9quh4nFWtu_Jddffw_dvUJu9lSNeRai7bbZlvLi1V8iiba0j3L0vgT1uY_XQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFbQv4rfRKisIvhiaZDeb3QeRtrRUsWcpLfQtTPajFmruer1D9K93ZpM7GxXxKZDdbLKZ2fnYnfkNY69dKDJdCZE6BU0qrcpSyAykTjjndCgAGjrRPRyrg1P58aw8W2PjZS4MhVUuZWIU1G5iaY98CxnPoG5HbfZ-epVS1Sg6XV2W0IC-tIJ7FyHGbrH1gpCxRmx9Z298dLzadSEUTPSJOvghgf7-lusi2ggTGZWfQANIDVRURPL_U17fUFi_B1PeWbRT-P4NLi9vaKr9e-xub2Ly7Y4n7rM13z5gtw_7Q_SH7EcENeZdLMyF5ceU9Tyh0sR4089jbFbLKe-Ef9494R--osi55jG2gMd83UCZVfSGHtCEQ-u6lvQToAnPj7pomRkOE4tuUjhS5IBH7HR_72T3IO1LMKQWTbt5akAXgTDcCtNYD41rrJWgIcubrAQZjPQuz73QpTLKOqWMa4ocggTIg7dePGajdtL6p4xL7ZuscAqFgJeNxZGEs5UJ0cvxZUjY2-Vfr6cd0kaNHgoRqf4LkRK2Q5RZdSWY7HhjMjuv-1VXg6t8riGozIOstNLaSFcI51UIwoQqYW-IrjUtZiSehT4nAb-YYLHqbdTdUgqpTMI2Bz1xEdph85Iz6l4IXNe_WDZhr1bN9CQFtrV-suj6oAuKl4Q96RhpNSVJicBocSZMD1hsMOdhS3vxJUKE03mpLiscNF1x4__81Wf_nsdztlFQ_eNMpUW5yUbz2cK_QKNs3rzsV9pPGfw8lA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagk4AXfg8CAwUJiRe8JrHj2E-oTEwDsTGhVRpPkX9CxUirrgWxv547J62awQOIp0qx48bN-e67-rvPhDx3ochkxRh1QhvKrciozpSmjjnnZCi0Nrije3gkDsb83Wl5ulHFj7RKSMUn0UkXEM8oxGs5zMthzoaATsRw5sKr791_SRD7AJLnAEKuki1RAhofkK3x0fHoE54pt7q7FRtikN0PXctfQwVkCHUMB-wFpKjb_7t33ghPl6mT15fNTP_8oc_ONuLS_i2iVzNq6Shfd5cLs2svLok9_s-Ub5ObHWhNR62V3SFXfHOXXDvstuXvkYsok5y27JqJTT9iHfUUDzuGi34R2V5NipUs6Ye9k_TtN3Bi52lkK6SxAjhgrRZ-QyeRkurGtS30vYakID1u-TdzGCYe44kEp2hT98l4_83J3gHtDnWgFsDigioti4CqcIUy1mvjjLVcS53lJis1D4p7l-eeyVIoYZ0Qypki14FrnQdvPdsmg2ba-Ick5dKbrHAC3IrnxsJIzNlKhZg3-TIk5OXqzdazVrujhpwHDaH-gyEk5DW-_XVXFN6OF6bzz3W3jmvtKp9LHUTmNa-kkFJxVzDnRQhMhSohL9B2anQPYCBWd1UO8MQotFWPAA1wzrhQCdnp9YRlbfvNK-urO7dyXoP3VQBwAdIl5Nm6Ge9Eqlzjp8u2DyS18JGQB62xrqfEsbQYMGxCZM-Me3PutzSTL1F0HHdgZVnBoHRt8X_zqz76x_6PyY0Cj1jOBC3KHTJYzJf-CeC-hXnaLe1fbc1X2w
  priority: 102
  providerName: Unpaywall
Title Early Diabetic Retinopathy Detection from OCT Images Using Multifractal Analysis and Multi-Layer Perceptron Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/40647615
https://www.proquest.com/docview/3229143223
https://www.proquest.com/docview/3229625322
https://pubmed.ncbi.nlm.nih.gov/PMC12248572
https://www.mdpi.com/2075-4418/15/13/1616/pdf?version=1750861193
https://doaj.org/article/ad7e18af60ea47868894d23de6ff39f7
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJsFeEN8LjMpICF4w5MNx7AeEumnTQLRU0yqNp8jxB0wqade1gvHXc-ek1QJD2lMl23UT39l3V__ud4S8tD6NZZFlzApdMW5EzHSsNLOZtVb6VOsKb3QHQ3E05p9O89MNsgJktgt4cW1oh_WkxvPJ21_nlx9gw7_HiBNC9ne2AaUhrTHYrwx8GPFqds6wshTewLZlNm6RLbBeCss7DNoQIJzWCln4EOmYgvVk4B3Ihpzof1N3DFjg-f_3NL9izv6GWt5Z1jN9-VNPJlfs2OE9crd1QGm_0Zj7ZMPVD8jtQXvF_pD8DpTHtEHKnBl6jDnRUyxcDI1uEZBbNcWsFPpl_4R-_AEH0gUNyAMasnk95l3hL7R0J1TXtulhnzU4-HTUYGnmME0oyYlgpaAfj8j48OBk_4i1BRqYAcdvwZSWqUeGt1RVxunKVsZwLXWcVHGuuVfc2SRxmcyFEsYKoWyVJtpzrRPvjMsek816WrsdQrl0VZxaAUeE45WBmTJrCuVDDORyH5E3q1UvZw0PRwnxCwqpvEZIEdlDyayHIol2aJjOv5Xtniy1LVwitRex07yQQkrFbZpZJ7zPlC8i8hrlWqLygfCMbjMW4ImRNKvsg2XnPONCRWS3MxK2qOl2rzSjXGl4CSepAmcV3LOIvFh34zcR9la76bIZAwEqfETkSaNI61fimCYM_mhEZEfFOu_c7anPvgcCcbxNlXkBk7K1Nt5kVZ_e4EGfke0USyTHgqX5LtlczJfuOfhti6pHtvYOhqPjXvjfoxe2IbSNh6P-1z805Etd
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjFeEHcCA4wE4oVoSew49sOEtrFpZW2Zpk7aW3B8gUkjLb1oGj-O38Y5TlpWQIiXPUWKXafOucfnfIeQV9ZniSwYi63QVcyNSGKdKB1bZq2VPtO6whPdXl8cnPAPp_npCvkxr4XBtMq5TgyK2g4NfiPfBMZTYNvBmr0bfYuxaxSers5baOi2tYLdChBjbWHHobu8gBBustV5D_R-nWX7e4Pdg7jtMhAb8F6msdIy8whTlqnKOF3ZyhiupU7SKsk194o7m6aOyVwoYawQylZZqj3XOvXOOAbr3iBrnHEFwd_azl7_6HjxlQdRNyEGa-COGFPJpm0y6BCDGYwtA4dLLJnE0DngT_twxUD-nry5PqtH-vJCn59fsYz7d8jt1qWl2w0P3iUrrr5HbvbaQ_v75HsAUaZN7s2ZocdYZT3EVshw001DLlhNsc6Fftwd0M5XUHETGnIZaKgP9ljJhU9oAVSorm0zEnc1hAz0qMnOGcMyocknpj8FjntATq6FGA_Jaj2s3WNCuXRVklkBSsfxysBKzJpC-RBVudxH5O38rZejBtmjhIgIiVT-hUgR2UHKLKYiLHe4MRx_LlspL7UtXCq1F4nTvJBCSsVtxqwT3jPli4i8QbqWqDyAeEa3NRDwjxGGq9wGX4EDJwkVkY2lmSD0Znl4zhllq3Qm5S8RicjLxTD-EhPpajecNXMg5IVLRB41jLTYEsfCY_BwIyKXWGxpz8sj9dmXAEmO57MyL2DReMGN__NWn_x7Hy_I-sGg1y27nf7hU3Irw97LiYizfIOsTscz9wwcwmn1vJU6Sj5dt6D_BInIe-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJg1eEN8EBhgJxAtRk9hx7YcJ7ata2VaqaZP2ljn-gEkjLW2nafyJ_FXcOWlZACFe9hQpdp06d76P3N3vCHljfZbILmOxFbqMuRFJrBOlY8ustdJnWpcY0T0YiN1j_vEkP1kiP-a1MJhWOZeJQVDbkcFv5B1gPAW6HbRZxzdpEcPt3ofxtxg7SGGkdd5OQzdtFux6gBtrijz23NUluHPT9f420P5tlvV2jrZ246bjQGzAkpnFSsvMI2RZpkrjdGlLY7iWOknLJNfcK-5smjomc6GEsUIoW2ap9lzr1DvjGKx7i6xg8AuExMrmzmB4uPjigwic4I_V0EeMqaRj62w6xGMGxcvA-BIt9Ri6CPypK64py98TOW9fVGN9danPz69pyd49crcxb-lGzY_3yZKrHpDVgyaA_5B8D4DKtM7DOTP0ECuuR9gWGW66WcgLqyjWvNBPW0e0_xXE3ZSGvAYaaoU9VnXhExowFaorW4_E-xrcBzqsM3UmsExo-ImpUIH7HpHjGyHGY7JcjSr3lFAuXZlkVoAAcrw0sBKzpqt88LBc7iPyfv7Wi3GN8lGAd4REKv5CpIhsImUWUxGiO9wYTT4XzYkvtO26VGovEqd5VwopFbcZs054z5TvRuQd0rVAQQLEM7qph4B_jJBcxQbYDZwzLlRE1lozQQCY9vCcM4pGAE2LX8clIq8Xw_hLTKqr3OiingPuL1wi8qRmpMWWOBYhg7UbEdlisdae2yPV2ZcAT46xWpl3YdF4wY3_81af_Xsfr8gqHPhivz_Ye07uZNiGORFxlq-R5dnkwr0A23BWvmwOHSWnN33OfwLT0IAP
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagk4AXfg8CAwUJiRe8JrHj2E-oTEwDsTGhVRpPkX9CxUirrgWxv547J62awQOIp0qx48bN-e67-rvPhDx3ochkxRh1QhvKrciozpSmjjnnZCi0Nrije3gkDsb83Wl5ulHFj7RKSMUn0UkXEM8oxGs5zMthzoaATsRw5sKr791_SRD7AJLnAEKuki1RAhofkK3x0fHoE54pt7q7FRtikN0PXctfQwVkCHUMB-wFpKjb_7t33ghPl6mT15fNTP_8oc_ONuLS_i2iVzNq6Shfd5cLs2svLok9_s-Ub5ObHWhNR62V3SFXfHOXXDvstuXvkYsok5y27JqJTT9iHfUUDzuGi34R2V5NipUs6Ye9k_TtN3Bi52lkK6SxAjhgrRZ-QyeRkurGtS30vYakID1u-TdzGCYe44kEp2hT98l4_83J3gHtDnWgFsDigioti4CqcIUy1mvjjLVcS53lJis1D4p7l-eeyVIoYZ0Qypki14FrnQdvPdsmg2ba-Ick5dKbrHAC3IrnxsJIzNlKhZg3-TIk5OXqzdazVrujhpwHDaH-gyEk5DW-_XVXFN6OF6bzz3W3jmvtKp9LHUTmNa-kkFJxVzDnRQhMhSohL9B2anQPYCBWd1UO8MQotFWPAA1wzrhQCdnp9YRlbfvNK-urO7dyXoP3VQBwAdIl5Nm6Ge9Eqlzjp8u2DyS18JGQB62xrqfEsbQYMGxCZM-Me3PutzSTL1F0HHdgZVnBoHRt8X_zqz76x_6PyY0Cj1jOBC3KHTJYzJf-CeC-hXnaLe1fbc1X2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Diabetic+Retinopathy+Detection+from+OCT+Images+Using+Multifractal+Analysis+and+Multi-Layer+Perceptron+Classification&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Aziz%2C+Ahlem&rft.au=Tezel%2C+Necmi+Serkan&rft.au=Ka%C3%A7maz%2C+Seydi&rft.au=Attallah%2C+Youcef&rft.date=2025-06-25&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=13&rft_id=info:doi/10.3390%2Fdiagnostics15131616&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon