UWB Indoor Localization Based on Artificial Rabbit Optimization Algorithm and BP Neural Network
In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, t...
Saved in:
| Published in | Biomimetics (Basel, Switzerland) Vol. 10; no. 6; p. 367 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
04.06.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2313-7673 2313-7673 |
| DOI | 10.3390/biomimetics10060367 |
Cover
| Abstract | In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments. |
|---|---|
| AbstractList | In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments. In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments.In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments. |
| Audience | Academic |
| Author | Jia, Chaochuan Yang, Ting Huang, Zhendong Fu, Maosheng Tao, Can Zhou, Xiancun |
| AuthorAffiliation | 1 College of Electronics and Information Engineering, West Anhui University, Lu’an 237000, China; 03000076@wxc.edu.cn (C.J.); fums@wxc.edu.cn (M.F.); zhouxc@wxc.edu.cn (X.Z.) 2 Anhui Province Intelligent Hydraulic Machinery Joint Construction Subject Key Laboratory, Lu’an 237000, China; hzd3276032@163.com 3 College of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an 237000, China; 04000075@wxc.edu.cn |
| AuthorAffiliation_xml | – name: 3 College of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an 237000, China; 04000075@wxc.edu.cn – name: 2 Anhui Province Intelligent Hydraulic Machinery Joint Construction Subject Key Laboratory, Lu’an 237000, China; hzd3276032@163.com – name: 1 College of Electronics and Information Engineering, West Anhui University, Lu’an 237000, China; 03000076@wxc.edu.cn (C.J.); fums@wxc.edu.cn (M.F.); zhouxc@wxc.edu.cn (X.Z.) |
| Author_xml | – sequence: 1 givenname: Chaochuan surname: Jia fullname: Jia, Chaochuan – sequence: 2 givenname: Can surname: Tao fullname: Tao, Can – sequence: 3 givenname: Ting orcidid: 0009-0001-5632-187X surname: Yang fullname: Yang, Ting – sequence: 4 givenname: Maosheng surname: Fu fullname: Fu, Maosheng – sequence: 5 givenname: Xiancun surname: Zhou fullname: Zhou, Xiancun – sequence: 6 givenname: Zhendong surname: Huang fullname: Huang, Zhendong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40558336$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltr2zAYhs3oWA_rLxgMw252k04nS_LVSMoOgdCOsbJL8VmSU2W2lEr2SvvrpyZt14xeDF9YyM_3WO-LDos9H7wtijcYnVBaow-NC73r7eB0wghxRLl4URwQiulEcEH3nqz3i-OUVgghXPOKMfSq2GeoqiSl_KBQFz9n5dybEGK5CBo6dwuDC76cQbKmzItpHFzrtIOu_A5N44byfD24_oGbdssQ3XDZl-BNOftWntkxZvbMDtch_npdvGyhS_b4_n1UXHz-9OP062Rx_mV-Ol1MdIXrYSKgpoQjy1vOCGH5bJiQhmpkmNCUQY1b02KDgCNuCa0bISuGDeFacmMB06NivvWaACu1jq6HeKMCOLXZCHGpIAfRnVUNNQ0BrFGLs5kg2YLWEjQTxBAhZXaxrWv0a7i5hq57FGKk7upXz9Sfxz5ux9Zj01ujrR9yETtn2f3i3aVaht8KE1xjSlE2vL83xHA12jSo3iVtuw68DWNSlOTotMKszui7f9BVGKPPFW8oKWrB6V9qCTm4823IP9Z3UjWVrOJEyo3r5BkqP8b2Tud717q8vzPw9mnSx4gP1yoDdAvoGFKKtv2vAv8ACqziYA |
| Cites_doi | 10.1016/j.inffus.2022.08.013 10.3390/s22186764 10.1016/j.eswa.2023.119547 10.3390/s22197375 10.1016/j.cma.2024.116915 10.5194/isprs-archives-XLIII-B1-2020-557-2020 10.3390/electronics12020457 10.1155/2022/7355233 10.3390/s22239380 10.3390/rs14236052 10.3390/s22155840 10.1016/j.measurement.2023.112487 10.1088/1742-6596/2294/1/012001 10.1504/IJES.2020.109963 10.1504/IJSNET.2022.127843 10.1016/j.optcom.2022.129091 10.3390/app12147151 10.1088/1742-6596/2401/1/012087 10.3390/su151612601 10.1016/j.inffus.2022.10.011 10.1007/s11082-022-04482-1 10.3390/s22239531 10.3390/electronics11132047 10.3390/s18113987 10.3390/ijgi9110627 10.1007/s00202-023-02231-5 10.1063/1.5117341 10.1109/TIM.2021.3126366 10.1109/JSEN.2021.3120882 10.2139/ssrn.4022979 10.1109/TIM.2023.3282289 10.3390/s23031311 10.1051/matecconf/201817303018 10.3390/s23063303 10.1177/1550147719873815 10.1016/j.procs.2021.12.271 10.1016/j.comcom.2021.10.031 10.1016/j.ijleo.2022.170159 10.1016/j.engappai.2022.105082 10.3390/s20092641 10.3390/rs14246338 10.3390/app10030956 10.3390/s23031514 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/biomimetics10060367 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_b3db2a1c0f134a208facc8ac472d2788 10.3390/biomimetics10060367 PMC12191330 A845628849 40558336 10_3390_biomimetics10060367 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Anhui Dabieshan Academy of Traditional Chinese Medicine grantid: TCMADM-2024-07 – fundername: University Innovation Team Project of Department of Education Anhui Province grantid: 2023AH010078 – fundername: Natural Science Key Project of West Anhui University grantid: WXZR202307,WXZR202312 – fundername: High-level Talent Start-up Project of West Anhui University grantid: WGKQ2023003 – fundername: University Key Research Project of Department of Education Anhui Province grantid: 2022AH051683, 2024AH051994 – fundername: the University Innovation Team Project of the Department of Education, Anhui Province grantid: 2023AH010078 – fundername: Natural Science Key Project of West Anhui University grantid: WXZR202307; WXZR202312 – fundername: the University Key Research Project of the Department of Education, Anhui Province grantid: 2022AH051683; 2024AH051994 |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c519t-7a93260e6f64224833122b3c0d47c34a91fdf1d0a606e239b78541d26c86dea13 |
| IEDL.DBID | BENPR |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:53:40 EDT 2025 Sun Oct 26 03:53:13 EDT 2025 Tue Sep 30 17:01:20 EDT 2025 Fri Sep 05 15:49:02 EDT 2025 Fri Jul 25 09:17:54 EDT 2025 Mon Oct 20 22:41:54 EDT 2025 Mon Oct 20 16:56:25 EDT 2025 Sat Jun 28 01:34:09 EDT 2025 Thu Oct 16 04:31:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | non-line-of-sight UWB BP neural network artificial rabbit optimization algorithm line-of-sight |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c519t-7a93260e6f64224833122b3c0d47c34a91fdf1d0a606e239b78541d26c86dea13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0001-5632-187X |
| OpenAccessLink | https://www.proquest.com/docview/3223879763?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 40558336 |
| PQID | 3223879763 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b3db2a1c0f134a208facc8ac472d2788 unpaywall_primary_10_3390_biomimetics10060367 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12191330 proquest_miscellaneous_3223935149 proquest_journals_3223879763 gale_infotracmisc_A845628849 gale_infotracacademiconefile_A845628849 pubmed_primary_40558336 crossref_primary_10_3390_biomimetics10060367 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-04 |
| PublicationDateYYYYMMDD | 2025-06-04 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Bennet (ref_47) 2024; 106 ref_14 ref_13 Zhang (ref_38) 2022; 2294 Wang (ref_44) 2022; 22 ref_12 ref_34 ref_11 ref_30 Ibnatta (ref_32) 2023; Volume 14 (ref_20) 2023; 91 Li (ref_15) 2023; 217 Zhang (ref_37) 2022; 2303 Sen (ref_7) 2023; 529 ref_18 ref_39 ref_16 Zhang (ref_28) 2022; 198 Du (ref_41) 2022; 2022 Abudalfa (ref_19) 2023; 10 Zhen (ref_21) 2020; 13 Yang (ref_36) 2021; 70 ref_24 ref_45 Jang (ref_10) 2023; 89 Zou (ref_23) 2019; 15 Ahmed (ref_25) 2023; 55 Yang (ref_29) 2018; 173 Suns (ref_17) 2022; 271 ref_1 Li (ref_35) 2019; 9 ref_3 Sandra (ref_33) 2022; 181 Zhong (ref_43) 2022; 2401 Wang (ref_46) 2022; 114 Zhao (ref_2) 2023; 209 Li (ref_40) 2022; 2400 ref_26 Margiani (ref_31) 2023; 72 Huang (ref_48) 2024; 425 ref_9 Zhang (ref_42) 2022; 236 ref_8 ref_5 ref_4 Qiu (ref_22) 2020; 13 ref_6 Xue (ref_27) 2022; 40 |
| References_xml | – volume: 89 start-page: 166 year: 2023 ident: ref_10 article-title: Survey of Landmark-based Indoor Positioning Technologies publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.08.013 – ident: ref_9 doi: 10.3390/s22186764 – volume: 217 start-page: 119547 year: 2023 ident: ref_15 article-title: Kernel-based online prediction algorithms for indoor localization in Internet of Things publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119547 – ident: ref_26 doi: 10.3390/s22197375 – volume: 425 start-page: 116915 year: 2024 ident: ref_48 article-title: Multi-strategy improved artificial rabbit optimization algorithm based on fusion centroid and elite guidance mechanisms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.116915 – volume: 2400 start-page: 012043 year: 2022 ident: ref_40 article-title: Study on the UWB location algorithm in the NLOS environment publication-title: J. Phys. – volume: 13 start-page: 557 year: 2020 ident: ref_22 article-title: Geomagnetic Field-Based Indoor Positioning Using Back-Propagation Neural Networks publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLIII-B1-2020-557-2020 – ident: ref_4 doi: 10.3390/electronics12020457 – volume: 2022 start-page: 7355233 year: 2022 ident: ref_41 article-title: Cell Recognition Using BP Neural Network Edge Computing publication-title: Contrast Media Mol. Imaging doi: 10.1155/2022/7355233 – ident: ref_6 doi: 10.3390/s22239380 – ident: ref_8 doi: 10.3390/rs14236052 – ident: ref_11 doi: 10.3390/s22155840 – volume: 209 start-page: 112487 year: 2023 ident: ref_2 article-title: Robust Depth-Aided RGBD-Inertial Odometry for Indoor Localization publication-title: Measurement doi: 10.1016/j.measurement.2023.112487 – volume: 2294 start-page: 012001 year: 2022 ident: ref_38 article-title: A Group Learning based Optimization Algorithm Applied to UWB Positioning publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2294/1/012001 – volume: 13 start-page: 292 year: 2020 ident: ref_21 article-title: An improved method for indoor positioning based on ZigBee technique publication-title: Int. J. Embed. Syst. doi: 10.1504/IJES.2020.109963 – volume: 40 start-page: 238 year: 2022 ident: ref_27 article-title: A novel indoor positioning algorithm based on UWB publication-title: Int. J. Sens. Netw. doi: 10.1504/IJSNET.2022.127843 – volume: 529 start-page: 129091 year: 2023 ident: ref_7 article-title: 3D indoor positioning with spatial modulation for visible light communications publication-title: Opt. Commun. doi: 10.1016/j.optcom.2022.129091 – ident: ref_12 doi: 10.3390/app12147151 – volume: 2401 start-page: 012087 year: 2022 ident: ref_43 article-title: Short-term Power Load Forecasting Based on Improved BP Neural Network from Genetic Algorithm and Simulated Annealing Algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2401/1/012087 – ident: ref_45 doi: 10.3390/su151612601 – volume: 91 start-page: 173 year: 2023 ident: ref_20 article-title: A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.10.011 – volume: 55 start-page: 209 year: 2023 ident: ref_25 article-title: Improved indoor visible light positioning system using machine learning publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-022-04482-1 – ident: ref_5 doi: 10.3390/s22239531 – volume: 2303 start-page: 012017 year: 2022 ident: ref_37 article-title: Research on UWB fusion location algorithm publication-title: J. Phys. – ident: ref_1 doi: 10.3390/electronics11132047 – volume: 236 start-page: 539 year: 2022 ident: ref_42 article-title: Study on the application of BP neural network optimized based on various optimization algorithms in storm surge prediction publication-title: Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. – ident: ref_13 doi: 10.3390/s18113987 – ident: ref_14 doi: 10.3390/ijgi9110627 – volume: 106 start-page: 4543 year: 2024 ident: ref_47 article-title: Solar PV system with modified artificial rabbit optimizati on algorithm for MPPT publication-title: Electr. Eng. doi: 10.1007/s00202-023-02231-5 – volume: 9 start-page: 085210 year: 2019 ident: ref_35 article-title: An indoor location algorithm based on Kalman filter fusion of ultra-wide band and inertial measurement unit publication-title: AIP Adv. doi: 10.1063/1.5117341 – volume: 70 start-page: 1 year: 2021 ident: ref_36 article-title: Resilient Indoor Localization System Based on UWB and Visual–Inertial Sensors for Complex Environments publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3126366 – volume: 22 start-page: 3736 year: 2022 ident: ref_44 article-title: Research on Indoor Positioning Algorithm Based on SAGA-BP Neural Network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3120882 – ident: ref_30 doi: 10.2139/ssrn.4022979 – volume: 72 start-page: 1 year: 2023 ident: ref_31 article-title: Angle of Arrival and Centimeter Distance Estimation on a Smart UWB Sensor Node publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3282289 – ident: ref_16 doi: 10.3390/s23031311 – volume: 10 start-page: 1 year: 2023 ident: ref_19 article-title: Two-stage RFID approach for localizing objects in smart homes based on gradient boosted decision trees with under- and over-sampling publication-title: J. Reliab. Intell. Environ. – volume: Volume 14 start-page: 152 year: 2023 ident: ref_32 article-title: The Indoor Localization System Based on Federated Learning and RSS Using UWB-OFDM publication-title: International Conference on Advanced Intelligent Systems for Sustainable Development – volume: 173 start-page: 03018 year: 2018 ident: ref_29 article-title: Implementation of UWB indoor location and distance measurement based on TOF algorithm publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201817303018 – ident: ref_34 doi: 10.3390/s23063303 – volume: 15 start-page: 155014771987381 year: 2019 ident: ref_23 article-title: A smart city used low-latency seamless positioning system based on inverse global navigation satellite system technology publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147719873815 – volume: 198 start-page: 466 year: 2022 ident: ref_28 article-title: UWB Positioning Analysis and Algorithm Research publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.12.271 – volume: 181 start-page: 365 year: 2022 ident: ref_33 article-title: Djordjevic. Multi-algorithm UWB-based localization method for mixed LOS/NLOS environments publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.10.031 – volume: 271 start-page: 170159 year: 2022 ident: ref_17 article-title: Wireless communication indoor positioning method in 5G sub-station using deep neural network and location fingerprint algorithm publication-title: Optik doi: 10.1016/j.ijleo.2022.170159 – volume: 114 start-page: 105082 year: 2022 ident: ref_46 article-title: Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105082 – ident: ref_24 doi: 10.3390/s20092641 – ident: ref_39 doi: 10.3390/rs14246338 – ident: ref_18 doi: 10.3390/app10030956 – ident: ref_3 doi: 10.3390/s23031514 |
| SSID | ssj0001965440 |
| Score | 2.2959614 |
| Snippet | In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 367 |
| SubjectTerms | Accuracy Algorithms artificial rabbit optimization algorithm Autonomous vehicles BP neural network Calibration Computer vision Global positioning systems GPS Indoor environments line-of-sight Localization Location based services Mathematical optimization Neural networks non-line-of-sight Optimization Performance evaluation R&D Radio frequency identification Research & development Signal processing UWB |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXuCCKOVhKGiREFywuq_Y62OCqAqCghARva32ZRqU2FXqqOq_Z8brhASQ4MDN8o4t78zsznzWzLeEPI_Ku1IWKq9r5nMlQsxdtKM8ag9owlsXe0qhD6fFyVS9OxudbR31hTVhiR44Ke7IyeCE5Z7VXCormK6t99p6VYogAL_h7st0tQWmvifSl5FSLNEMScD1R9jNPltgY-AlRxIS2Z8s_zMU9Yz9v-_LW4Hp16LJm6vmwl5f2fl8KyId3yG3h1SSjtMU9smN2NwlB-MGYPTimr6gfXFn_9f8gJjp1wl924S2XdL3GL6G9ks6gSgWKFzgaxKbBP1snZt19CPsJou13Hj-rV3OuvMFtU2gk08UWT1A9jSVkd8j0-M3X16f5MPZCrmHnK3LS4uJG4tFDQBEKC0lF8JJz4IqPSi64nWoeWAWAE4UsnKlHikeROF1EaLl8j7Za9omPiSUBysLFgIkIpWKmlXSBxUAndaVqpkrMvJqrWZzkSg0DEAPtIr5g1UyMkFTbESR_7q_AV5hBq8wf_OKjLxEQxpcpWAtb4dmA_hi5LsyY43IT2tVZeRwRxJWl98dXruCGVb3pYFNUOoSEjmZkWebYXwSK9aa2K6STIVtEvCKB8lzNlOCJBmb3UAzesendua8O9LMznvubw4RhkvJMpJv3O9ftProf2j1Mbkl8Phj_AmlDslet1zFJ5CTde5pv_x-AK3PNrM priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQ7gEuvJZHYEFGQnAh2_hRxzmhFrFaEJQVomI5WX5lt6JNqjYFLb-eceKW7cIBuEXxxLLj8cw31sxnhJ56bk3OBE_LMrMpp86nxut-6qWFaMJq41tKofcjcTTmb0_6J_HAbRnTKiEUn7RGGrAHS3ORM9jbPdFjIu_NXfnyWzxJAjBdgI4yDiZ4V_QBi--g3fHoePClvVEufttRDTGI7Xuhon0yC8WBSxKISFh7u_wvd9Sy9v9umy84p8uJk1dX1Vyff9fT6QWvdHgDqfV8umSUrwerxhzYH5eoHv9_wjfR9QhY8aDTsFvoiq9uo71BBcH67Bw_w20KaXs2v4fU-PMQv6lcXS_wu-AkY5EnHoKvdBgeQjcdZwX-qI2ZNPgD2KzZWm4wPa0Xk-ZshnXl8PAYB-4QkB11yep30Pjw9adXR2m8wSG1gAybNNcBHmZelBDmUC4ZI5QaZjPHc8u4LkjpSuIyDWGUp6wwuexz4qiwUjivCbuLdqq68vcRJk4zkTkHcKfgXmYFs447iIHLgpeZEQl6sV5INe-IOhQEOGHd1R_WPUHDsNgb0cCy3b6oF6cqblplmDNUE5uVBAZLM1lqa6W2PKeO5lIm6HlQFRVsAeiD1bGkAUYcWLXUQIb4UkpeJGh_SxL2sN1uXiubijZkqcDUMpkDXGQJerJpDl-GvLjK16tOpgjFGNDFvU43N1MCKB5K6uDPyC2t3Zrzdks1OWsZxgn4McJYlqB0o-B_81cf_KP8Q3SNhvuUw6kW30c7zWLlHwHIa8zjuJN_AmejTl0 priority: 102 providerName: Unpaywall |
| Title | UWB Indoor Localization Based on Artificial Rabbit Optimization Algorithm and BP Neural Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40558336 https://www.proquest.com/docview/3223879763 https://www.proquest.com/docview/3223935149 https://pubmed.ncbi.nlm.nih.gov/PMC12191330 https://www.mdpi.com/2313-7673/10/6/367/pdf?version=1749030342 https://doaj.org/article/b3db2a1c0f134a208facc8ac472d2788 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: ABDBF dateStart: 20220601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG-wAvCBiwwKiMhOCFaIntJs4DQgmsGghKNVExniJ_ZavUJmVrhfbfc5ePdgWEeGvqSxT77nwf8f2OkBdOGB3zSPhFERhfMOt87dTQd9JANGGUdjWk0OdxdDIVH8-GZ3tk3NXC4LHKbk-sN2pbGcyRH4HgcRmD8eRvlz987BqFX1e7Fhqqba1g39QQY7dInyEyVo_0s-Px5HSbdUmioRBBAz_EId4_wir32QILBq9CBCfhdcf5rYmqkfz_3K9vGKzfD1PeXpdLdf1Tzec3LNXoHrnbupg0bWTiPtlz5QOyn5YQXi-u6UtaH_qss-n7JJ9-y-iH0lbVJf2EZq0ty6QZWDdL4Qc-pkGZoKdK69mKfoFdZtHRpfNzWKXVxYKq0tJsQhHtA2jHzfHyh2Q6Ov767sRvey74Bny5lR8rdOgCFxUQmDAhOQ8Z09wEVsSGC5WEhS1CGygIfBzjiY7lUISWRUZG1qmQPyK9sirdAaGhVTwKrAUHJRFOBgk3VliIWotEFIGOPPK6W-Z82UBr5BCSIFfyv3DFIxmyYkOKuNj1H9Xled6qWa651UyFJihCeFkWyAIkQyojYmYZRPseeYWMzFF7gVtGtUUI8MaIg5WnEiNCKUXikcMdStA6szvciULeav1VvpVRjzzfDOOdeJKtdNW6oUmwfAIe8biRnM2UwHnGIjhYGbkjUztz3h0pZxc1JjhIexJyHnjE34jf_6zqk3_P4ym5w7DhMaadxCHprS7X7hl4YSs9IP00e5-NBq2KDepsBlxNx5P0-y-CMTgr |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jBeEDAugQFG4vJCNMd2E-dhQi1sallXpmkTewuO7WyV2qT0oql_jt_GOUnaroAQL3uL4lMr9rm7Pt8h5I2TJo1EKP0sY8aX3Do_dbrhO2UgmzA6dSWk0HEvbJ_LLxeNiw3yc1ELg9cqFzaxNNS2MHhGvgeCJ1QEzlN8HP3wsWsU_ru6aKGh69YKdr-EGKsLO47c_BpSuMl-5zPw-y3nhwdnn9p-3WXANxC9TP1IYwjDXJhBKM6lEiLgPBWGWRkZIXUcZDYLLNMQ6jsu4jRSDRlYHhoVWqcDAfPeIVtSyBiSv63WQe_kdHXKE4cNKVkFdyREzPawqr4_xALFSYBgKKLscL9yiWXngD_9ww0H-fvlze1ZPtLzaz0Y3PCMh_fJvTqkpc1KBh-QDZc_JDvNHNL54Zy-o-Ul0_L0fock599atJPbohjTLrrRugyUtsCbWgoPOE2FakFPdZr2p_QrWLXhgq45uASuTK-GVOeWtk4ooosAba-6zv6InN_K7j8mm3mRu6eEBlaLkFkLAVEsnWKxMFZayJKzWGYsDT3yYbHNyaiC8kggBUKuJH_hikdayIolKeJwly-K8WVSq3WSCptyHRiWBfCxnKkMJFFpIyNueaSUR94jIxO0FsAto-uiB_hixN1KmgozUKVk7JHdNUrQcrM-vBCFpLYyk2SlEx55vRzGX-LNudwVs4omxnINmOJJJTnLJUGwjkV3sDNqTabW1rw-kvevSgzyADxdIATziL8Uv__Z1Wf_Xscrst0-O-4m3U7v6Dm5y7HZMh55yV2yOR3P3AuIAKfpy1rNKPl-25r9CzOBbzo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvCBiXwAAjcXkhamK7ifMwoZatWtko1US1vQXHdrZKbVJ60dS_yK_inFzaFRDiZW9V7Vixz9055zuEvLFCJyEPhJumnnYFM9ZNrGq6VmqIJrRKbAEp9KUXHA3E5_Pm-Rb5WdfCYFplrRMLRW1yjXfkDWA8LkMwnryRVmkR_YPOx8kPFztI4ZfWup2GqtosmP0Cbqwq8ji2yysI52b73QOg_VvGOoffPh25VccBV4MnM3dDhe6MZ4MU3HImJOc-YwnXnhGh5kJFfmpS33gK3H7LeJSEsil8wwItA2OVz2HdW2QHP36BkthpH_b6p-sbnyhoCuGV0EecR14DK-yHYyxWnPkIjMKLbvdr81h0EfjTVlwzlr8nct5ZZBO1vFKj0TUr2blP7lXuLW2V_PiAbNnsIdltZRDaj5f0HS0SToub_F0SD87atJuZPJ_SEzSpVUkobYNlNRR-4DIlwgU9VUkynNOvoOHG9bzW6AKoMr8cU5UZ2u5TRBqBub0ytf0RGdzI6T8m21me2aeE-kbxwDMGnKNIWOlFXBthIGJOI5F6SeCQD_Uxx5MS1iOGcAipEv-FKg5pIylWUxGTu_gjn17ElYjHCTcJU772Uh9elnkyBU6USouQGRZK6ZD3SMgYNQdQS6uqAALeGDG44pbEaFRKETlkb2MmSLzeHK5ZIa40zixey4dDXq-G8UnMostsvijnRFi6AUs8KTlntSVw3LEAD05GbvDUxp43R7LhZYFH7oPV8zn3HOKu2O9_TvXZv_fxitwGCY9Pur3j5-Quw77LePsl9sj2fLqwL8AZnCcvKymj5PtNC_YvR9hzaQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQ7gEuvJZHYEFGQnAh2_hRxzmhFrFaEJQVomI5WX5lt6JNqjYFLb-eceKW7cIBuEXxxLLj8cw31sxnhJ56bk3OBE_LMrMpp86nxut-6qWFaMJq41tKofcjcTTmb0_6J_HAbRnTKiEUn7RGGrAHS3ORM9jbPdFjIu_NXfnyWzxJAjBdgI4yDiZ4V_QBi--g3fHoePClvVEufttRDTGI7Xuhon0yC8WBSxKISFh7u_wvd9Sy9v9umy84p8uJk1dX1Vyff9fT6QWvdHgDqfV8umSUrwerxhzYH5eoHv9_wjfR9QhY8aDTsFvoiq9uo71BBcH67Bw_w20KaXs2v4fU-PMQv6lcXS_wu-AkY5EnHoKvdBgeQjcdZwX-qI2ZNPgD2KzZWm4wPa0Xk-ZshnXl8PAYB-4QkB11yep30Pjw9adXR2m8wSG1gAybNNcBHmZelBDmUC4ZI5QaZjPHc8u4LkjpSuIyDWGUp6wwuexz4qiwUjivCbuLdqq68vcRJk4zkTkHcKfgXmYFs447iIHLgpeZEQl6sV5INe-IOhQEOGHd1R_WPUHDsNgb0cCy3b6oF6cqblplmDNUE5uVBAZLM1lqa6W2PKeO5lIm6HlQFRVsAeiD1bGkAUYcWLXUQIb4UkpeJGh_SxL2sN1uXiubijZkqcDUMpkDXGQJerJpDl-GvLjK16tOpgjFGNDFvU43N1MCKB5K6uDPyC2t3Zrzdks1OWsZxgn4McJYlqB0o-B_81cf_KP8Q3SNhvuUw6kW30c7zWLlHwHIa8zjuJN_AmejTl0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UWB+Indoor+Localization+Based+on+Artificial+Rabbit+Optimization+Algorithm+and+BP+Neural+Network&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Jia%2C+Chaochuan&rft.au=Tao%2C+Can&rft.au=Yang%2C+Ting&rft.au=Fu%2C+Maosheng&rft.date=2025-06-04&rft.pub=MDPI+AG&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=10&rft.issue=6&rft_id=info:doi/10.3390%2Fbiomimetics10060367&rft.externalDocID=A845628849 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |