UWB Indoor Localization Based on Artificial Rabbit Optimization Algorithm and BP Neural Network

In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, t...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 10; no. 6; p. 367
Main Authors Jia, Chaochuan, Tao, Can, Yang, Ting, Fu, Maosheng, Zhou, Xiancun, Huang, Zhendong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN2313-7673
2313-7673
DOI10.3390/biomimetics10060367

Cover

Abstract In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments.
AbstractList In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments.
In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments.In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments.
Audience Academic
Author Jia, Chaochuan
Yang, Ting
Huang, Zhendong
Fu, Maosheng
Tao, Can
Zhou, Xiancun
AuthorAffiliation 1 College of Electronics and Information Engineering, West Anhui University, Lu’an 237000, China; 03000076@wxc.edu.cn (C.J.); fums@wxc.edu.cn (M.F.); zhouxc@wxc.edu.cn (X.Z.)
2 Anhui Province Intelligent Hydraulic Machinery Joint Construction Subject Key Laboratory, Lu’an 237000, China; hzd3276032@163.com
3 College of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an 237000, China; 04000075@wxc.edu.cn
AuthorAffiliation_xml – name: 3 College of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an 237000, China; 04000075@wxc.edu.cn
– name: 2 Anhui Province Intelligent Hydraulic Machinery Joint Construction Subject Key Laboratory, Lu’an 237000, China; hzd3276032@163.com
– name: 1 College of Electronics and Information Engineering, West Anhui University, Lu’an 237000, China; 03000076@wxc.edu.cn (C.J.); fums@wxc.edu.cn (M.F.); zhouxc@wxc.edu.cn (X.Z.)
Author_xml – sequence: 1
  givenname: Chaochuan
  surname: Jia
  fullname: Jia, Chaochuan
– sequence: 2
  givenname: Can
  surname: Tao
  fullname: Tao, Can
– sequence: 3
  givenname: Ting
  orcidid: 0009-0001-5632-187X
  surname: Yang
  fullname: Yang, Ting
– sequence: 4
  givenname: Maosheng
  surname: Fu
  fullname: Fu, Maosheng
– sequence: 5
  givenname: Xiancun
  surname: Zhou
  fullname: Zhou, Xiancun
– sequence: 6
  givenname: Zhendong
  surname: Huang
  fullname: Huang, Zhendong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40558336$$D View this record in MEDLINE/PubMed
BookMark eNqNkltr2zAYhs3oWA_rLxgMw252k04nS_LVSMoOgdCOsbJL8VmSU2W2lEr2SvvrpyZt14xeDF9YyM_3WO-LDos9H7wtijcYnVBaow-NC73r7eB0wghxRLl4URwQiulEcEH3nqz3i-OUVgghXPOKMfSq2GeoqiSl_KBQFz9n5dybEGK5CBo6dwuDC76cQbKmzItpHFzrtIOu_A5N44byfD24_oGbdssQ3XDZl-BNOftWntkxZvbMDtch_npdvGyhS_b4_n1UXHz-9OP062Rx_mV-Ol1MdIXrYSKgpoQjy1vOCGH5bJiQhmpkmNCUQY1b02KDgCNuCa0bISuGDeFacmMB06NivvWaACu1jq6HeKMCOLXZCHGpIAfRnVUNNQ0BrFGLs5kg2YLWEjQTxBAhZXaxrWv0a7i5hq57FGKk7upXz9Sfxz5ux9Zj01ujrR9yETtn2f3i3aVaht8KE1xjSlE2vL83xHA12jSo3iVtuw68DWNSlOTotMKszui7f9BVGKPPFW8oKWrB6V9qCTm4823IP9Z3UjWVrOJEyo3r5BkqP8b2Tud717q8vzPw9mnSx4gP1yoDdAvoGFKKtv2vAv8ACqziYA
Cites_doi 10.1016/j.inffus.2022.08.013
10.3390/s22186764
10.1016/j.eswa.2023.119547
10.3390/s22197375
10.1016/j.cma.2024.116915
10.5194/isprs-archives-XLIII-B1-2020-557-2020
10.3390/electronics12020457
10.1155/2022/7355233
10.3390/s22239380
10.3390/rs14236052
10.3390/s22155840
10.1016/j.measurement.2023.112487
10.1088/1742-6596/2294/1/012001
10.1504/IJES.2020.109963
10.1504/IJSNET.2022.127843
10.1016/j.optcom.2022.129091
10.3390/app12147151
10.1088/1742-6596/2401/1/012087
10.3390/su151612601
10.1016/j.inffus.2022.10.011
10.1007/s11082-022-04482-1
10.3390/s22239531
10.3390/electronics11132047
10.3390/s18113987
10.3390/ijgi9110627
10.1007/s00202-023-02231-5
10.1063/1.5117341
10.1109/TIM.2021.3126366
10.1109/JSEN.2021.3120882
10.2139/ssrn.4022979
10.1109/TIM.2023.3282289
10.3390/s23031311
10.1051/matecconf/201817303018
10.3390/s23063303
10.1177/1550147719873815
10.1016/j.procs.2021.12.271
10.1016/j.comcom.2021.10.031
10.1016/j.ijleo.2022.170159
10.1016/j.engappai.2022.105082
10.3390/s20092641
10.3390/rs14246338
10.3390/app10030956
10.3390/s23031514
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/biomimetics10060367
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_b3db2a1c0f134a208facc8ac472d2788
10.3390/biomimetics10060367
PMC12191330
A845628849
40558336
10_3390_biomimetics10060367
Genre Journal Article
GrantInformation_xml – fundername: Anhui Dabieshan Academy of Traditional Chinese Medicine
  grantid: TCMADM-2024-07
– fundername: University Innovation Team Project of Department of Education Anhui Province
  grantid: 2023AH010078
– fundername: Natural Science Key Project of West Anhui University
  grantid: WXZR202307,WXZR202312
– fundername: High-level Talent Start-up Project of West Anhui University
  grantid: WGKQ2023003
– fundername: University Key Research Project of Department of Education Anhui Province
  grantid: 2022AH051683, 2024AH051994
– fundername: the University Innovation Team Project of the Department of Education, Anhui Province
  grantid: 2023AH010078
– fundername: Natural Science Key Project of West Anhui University
  grantid: WXZR202307; WXZR202312
– fundername: the University Key Research Project of the Department of Education, Anhui Province
  grantid: 2022AH051683; 2024AH051994
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c519t-7a93260e6f64224833122b3c0d47c34a91fdf1d0a606e239b78541d26c86dea13
IEDL.DBID BENPR
ISSN 2313-7673
IngestDate Fri Oct 03 12:53:40 EDT 2025
Sun Oct 26 03:53:13 EDT 2025
Tue Sep 30 17:01:20 EDT 2025
Fri Sep 05 15:49:02 EDT 2025
Fri Jul 25 09:17:54 EDT 2025
Mon Oct 20 22:41:54 EDT 2025
Mon Oct 20 16:56:25 EDT 2025
Sat Jun 28 01:34:09 EDT 2025
Thu Oct 16 04:31:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords non-line-of-sight
UWB
BP neural network
artificial rabbit optimization algorithm
line-of-sight
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-7a93260e6f64224833122b3c0d47c34a91fdf1d0a606e239b78541d26c86dea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-5632-187X
OpenAccessLink https://www.proquest.com/docview/3223879763?pq-origsite=%requestingapplication%&accountid=15518
PMID 40558336
PQID 3223879763
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_b3db2a1c0f134a208facc8ac472d2788
unpaywall_primary_10_3390_biomimetics10060367
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12191330
proquest_miscellaneous_3223935149
proquest_journals_3223879763
gale_infotracmisc_A845628849
gale_infotracacademiconefile_A845628849
pubmed_primary_40558336
crossref_primary_10_3390_biomimetics10060367
PublicationCentury 2000
PublicationDate 2025-06-04
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-04
  day: 04
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bennet (ref_47) 2024; 106
ref_14
ref_13
Zhang (ref_38) 2022; 2294
Wang (ref_44) 2022; 22
ref_12
ref_34
ref_11
ref_30
Ibnatta (ref_32) 2023; Volume 14
(ref_20) 2023; 91
Li (ref_15) 2023; 217
Zhang (ref_37) 2022; 2303
Sen (ref_7) 2023; 529
ref_18
ref_39
ref_16
Zhang (ref_28) 2022; 198
Du (ref_41) 2022; 2022
Abudalfa (ref_19) 2023; 10
Zhen (ref_21) 2020; 13
Yang (ref_36) 2021; 70
ref_24
ref_45
Jang (ref_10) 2023; 89
Zou (ref_23) 2019; 15
Ahmed (ref_25) 2023; 55
Yang (ref_29) 2018; 173
Suns (ref_17) 2022; 271
ref_1
Li (ref_35) 2019; 9
ref_3
Sandra (ref_33) 2022; 181
Zhong (ref_43) 2022; 2401
Wang (ref_46) 2022; 114
Zhao (ref_2) 2023; 209
Li (ref_40) 2022; 2400
ref_26
Margiani (ref_31) 2023; 72
Huang (ref_48) 2024; 425
ref_9
Zhang (ref_42) 2022; 236
ref_8
ref_5
ref_4
Qiu (ref_22) 2020; 13
ref_6
Xue (ref_27) 2022; 40
References_xml – volume: 89
  start-page: 166
  year: 2023
  ident: ref_10
  article-title: Survey of Landmark-based Indoor Positioning Technologies
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.08.013
– ident: ref_9
  doi: 10.3390/s22186764
– volume: 217
  start-page: 119547
  year: 2023
  ident: ref_15
  article-title: Kernel-based online prediction algorithms for indoor localization in Internet of Things
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119547
– ident: ref_26
  doi: 10.3390/s22197375
– volume: 425
  start-page: 116915
  year: 2024
  ident: ref_48
  article-title: Multi-strategy improved artificial rabbit optimization algorithm based on fusion centroid and elite guidance mechanisms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.116915
– volume: 2400
  start-page: 012043
  year: 2022
  ident: ref_40
  article-title: Study on the UWB location algorithm in the NLOS environment
  publication-title: J. Phys.
– volume: 13
  start-page: 557
  year: 2020
  ident: ref_22
  article-title: Geomagnetic Field-Based Indoor Positioning Using Back-Propagation Neural Networks
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLIII-B1-2020-557-2020
– ident: ref_4
  doi: 10.3390/electronics12020457
– volume: 2022
  start-page: 7355233
  year: 2022
  ident: ref_41
  article-title: Cell Recognition Using BP Neural Network Edge Computing
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1155/2022/7355233
– ident: ref_6
  doi: 10.3390/s22239380
– ident: ref_8
  doi: 10.3390/rs14236052
– ident: ref_11
  doi: 10.3390/s22155840
– volume: 209
  start-page: 112487
  year: 2023
  ident: ref_2
  article-title: Robust Depth-Aided RGBD-Inertial Odometry for Indoor Localization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112487
– volume: 2294
  start-page: 012001
  year: 2022
  ident: ref_38
  article-title: A Group Learning based Optimization Algorithm Applied to UWB Positioning
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2294/1/012001
– volume: 13
  start-page: 292
  year: 2020
  ident: ref_21
  article-title: An improved method for indoor positioning based on ZigBee technique
  publication-title: Int. J. Embed. Syst.
  doi: 10.1504/IJES.2020.109963
– volume: 40
  start-page: 238
  year: 2022
  ident: ref_27
  article-title: A novel indoor positioning algorithm based on UWB
  publication-title: Int. J. Sens. Netw.
  doi: 10.1504/IJSNET.2022.127843
– volume: 529
  start-page: 129091
  year: 2023
  ident: ref_7
  article-title: 3D indoor positioning with spatial modulation for visible light communications
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2022.129091
– ident: ref_12
  doi: 10.3390/app12147151
– volume: 2401
  start-page: 012087
  year: 2022
  ident: ref_43
  article-title: Short-term Power Load Forecasting Based on Improved BP Neural Network from Genetic Algorithm and Simulated Annealing Algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2401/1/012087
– ident: ref_45
  doi: 10.3390/su151612601
– volume: 91
  start-page: 173
  year: 2023
  ident: ref_20
  article-title: A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.10.011
– volume: 55
  start-page: 209
  year: 2023
  ident: ref_25
  article-title: Improved indoor visible light positioning system using machine learning
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-022-04482-1
– ident: ref_5
  doi: 10.3390/s22239531
– volume: 2303
  start-page: 012017
  year: 2022
  ident: ref_37
  article-title: Research on UWB fusion location algorithm
  publication-title: J. Phys.
– ident: ref_1
  doi: 10.3390/electronics11132047
– volume: 236
  start-page: 539
  year: 2022
  ident: ref_42
  article-title: Study on the application of BP neural network optimized based on various optimization algorithms in storm surge prediction
  publication-title: Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ.
– ident: ref_13
  doi: 10.3390/s18113987
– ident: ref_14
  doi: 10.3390/ijgi9110627
– volume: 106
  start-page: 4543
  year: 2024
  ident: ref_47
  article-title: Solar PV system with modified artificial rabbit optimizati on algorithm for MPPT
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-023-02231-5
– volume: 9
  start-page: 085210
  year: 2019
  ident: ref_35
  article-title: An indoor location algorithm based on Kalman filter fusion of ultra-wide band and inertial measurement unit
  publication-title: AIP Adv.
  doi: 10.1063/1.5117341
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_36
  article-title: Resilient Indoor Localization System Based on UWB and Visual–Inertial Sensors for Complex Environments
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3126366
– volume: 22
  start-page: 3736
  year: 2022
  ident: ref_44
  article-title: Research on Indoor Positioning Algorithm Based on SAGA-BP Neural Network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3120882
– ident: ref_30
  doi: 10.2139/ssrn.4022979
– volume: 72
  start-page: 1
  year: 2023
  ident: ref_31
  article-title: Angle of Arrival and Centimeter Distance Estimation on a Smart UWB Sensor Node
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3282289
– ident: ref_16
  doi: 10.3390/s23031311
– volume: 10
  start-page: 1
  year: 2023
  ident: ref_19
  article-title: Two-stage RFID approach for localizing objects in smart homes based on gradient boosted decision trees with under- and over-sampling
  publication-title: J. Reliab. Intell. Environ.
– volume: Volume 14
  start-page: 152
  year: 2023
  ident: ref_32
  article-title: The Indoor Localization System Based on Federated Learning and RSS Using UWB-OFDM
  publication-title: International Conference on Advanced Intelligent Systems for Sustainable Development
– volume: 173
  start-page: 03018
  year: 2018
  ident: ref_29
  article-title: Implementation of UWB indoor location and distance measurement based on TOF algorithm
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201817303018
– ident: ref_34
  doi: 10.3390/s23063303
– volume: 15
  start-page: 155014771987381
  year: 2019
  ident: ref_23
  article-title: A smart city used low-latency seamless positioning system based on inverse global navigation satellite system technology
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147719873815
– volume: 198
  start-page: 466
  year: 2022
  ident: ref_28
  article-title: UWB Positioning Analysis and Algorithm Research
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.12.271
– volume: 181
  start-page: 365
  year: 2022
  ident: ref_33
  article-title: Djordjevic. Multi-algorithm UWB-based localization method for mixed LOS/NLOS environments
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.10.031
– volume: 271
  start-page: 170159
  year: 2022
  ident: ref_17
  article-title: Wireless communication indoor positioning method in 5G sub-station using deep neural network and location fingerprint algorithm
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.170159
– volume: 114
  start-page: 105082
  year: 2022
  ident: ref_46
  article-title: Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105082
– ident: ref_24
  doi: 10.3390/s20092641
– ident: ref_39
  doi: 10.3390/rs14246338
– ident: ref_18
  doi: 10.3390/app10030956
– ident: ref_3
  doi: 10.3390/s23031514
SSID ssj0001965440
Score 2.2959614
Snippet In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 367
SubjectTerms Accuracy
Algorithms
artificial rabbit optimization algorithm
Autonomous vehicles
BP neural network
Calibration
Computer vision
Global positioning systems
GPS
Indoor environments
line-of-sight
Localization
Location based services
Mathematical optimization
Neural networks
non-line-of-sight
Optimization
Performance evaluation
R&D
Radio frequency identification
Research & development
Signal processing
UWB
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXuCCKOVhKGiREFywuq_Y62OCqAqCghARva32ZRqU2FXqqOq_Z8brhASQ4MDN8o4t78zsznzWzLeEPI_Ku1IWKq9r5nMlQsxdtKM8ag9owlsXe0qhD6fFyVS9OxudbR31hTVhiR44Ke7IyeCE5Z7VXCormK6t99p6VYogAL_h7st0tQWmvifSl5FSLNEMScD1R9jNPltgY-AlRxIS2Z8s_zMU9Yz9v-_LW4Hp16LJm6vmwl5f2fl8KyId3yG3h1SSjtMU9smN2NwlB-MGYPTimr6gfXFn_9f8gJjp1wl924S2XdL3GL6G9ks6gSgWKFzgaxKbBP1snZt19CPsJou13Hj-rV3OuvMFtU2gk08UWT1A9jSVkd8j0-M3X16f5MPZCrmHnK3LS4uJG4tFDQBEKC0lF8JJz4IqPSi64nWoeWAWAE4UsnKlHikeROF1EaLl8j7Za9omPiSUBysLFgIkIpWKmlXSBxUAndaVqpkrMvJqrWZzkSg0DEAPtIr5g1UyMkFTbESR_7q_AV5hBq8wf_OKjLxEQxpcpWAtb4dmA_hi5LsyY43IT2tVZeRwRxJWl98dXruCGVb3pYFNUOoSEjmZkWebYXwSK9aa2K6STIVtEvCKB8lzNlOCJBmb3UAzesendua8O9LMznvubw4RhkvJMpJv3O9ftProf2j1Mbkl8Phj_AmlDslet1zFJ5CTde5pv_x-AK3PNrM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQ7gEuvJZHYEFGQnAh2_hRxzmhFrFaEJQVomI5WX5lt6JNqjYFLb-eceKW7cIBuEXxxLLj8cw31sxnhJ56bk3OBE_LMrMpp86nxut-6qWFaMJq41tKofcjcTTmb0_6J_HAbRnTKiEUn7RGGrAHS3ORM9jbPdFjIu_NXfnyWzxJAjBdgI4yDiZ4V_QBi--g3fHoePClvVEufttRDTGI7Xuhon0yC8WBSxKISFh7u_wvd9Sy9v9umy84p8uJk1dX1Vyff9fT6QWvdHgDqfV8umSUrwerxhzYH5eoHv9_wjfR9QhY8aDTsFvoiq9uo71BBcH67Bw_w20KaXs2v4fU-PMQv6lcXS_wu-AkY5EnHoKvdBgeQjcdZwX-qI2ZNPgD2KzZWm4wPa0Xk-ZshnXl8PAYB-4QkB11yep30Pjw9adXR2m8wSG1gAybNNcBHmZelBDmUC4ZI5QaZjPHc8u4LkjpSuIyDWGUp6wwuexz4qiwUjivCbuLdqq68vcRJk4zkTkHcKfgXmYFs447iIHLgpeZEQl6sV5INe-IOhQEOGHd1R_WPUHDsNgb0cCy3b6oF6cqblplmDNUE5uVBAZLM1lqa6W2PKeO5lIm6HlQFRVsAeiD1bGkAUYcWLXUQIb4UkpeJGh_SxL2sN1uXiubijZkqcDUMpkDXGQJerJpDl-GvLjK16tOpgjFGNDFvU43N1MCKB5K6uDPyC2t3Zrzdks1OWsZxgn4McJYlqB0o-B_81cf_KP8Q3SNhvuUw6kW30c7zWLlHwHIa8zjuJN_AmejTl0
  priority: 102
  providerName: Unpaywall
Title UWB Indoor Localization Based on Artificial Rabbit Optimization Algorithm and BP Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/40558336
https://www.proquest.com/docview/3223879763
https://www.proquest.com/docview/3223935149
https://pubmed.ncbi.nlm.nih.gov/PMC12191330
https://www.mdpi.com/2313-7673/10/6/367/pdf?version=1749030342
https://doaj.org/article/b3db2a1c0f134a208facc8ac472d2788
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: ABDBF
  dateStart: 20220601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG-wAvCBiwwKiMhOCFaIntJs4DQgmsGghKNVExniJ_ZavUJmVrhfbfc5ePdgWEeGvqSxT77nwf8f2OkBdOGB3zSPhFERhfMOt87dTQd9JANGGUdjWk0OdxdDIVH8-GZ3tk3NXC4LHKbk-sN2pbGcyRH4HgcRmD8eRvlz987BqFX1e7Fhqqba1g39QQY7dInyEyVo_0s-Px5HSbdUmioRBBAz_EId4_wir32QILBq9CBCfhdcf5rYmqkfz_3K9vGKzfD1PeXpdLdf1Tzec3LNXoHrnbupg0bWTiPtlz5QOyn5YQXi-u6UtaH_qss-n7JJ9-y-iH0lbVJf2EZq0ty6QZWDdL4Qc-pkGZoKdK69mKfoFdZtHRpfNzWKXVxYKq0tJsQhHtA2jHzfHyh2Q6Ov767sRvey74Bny5lR8rdOgCFxUQmDAhOQ8Z09wEVsSGC5WEhS1CGygIfBzjiY7lUISWRUZG1qmQPyK9sirdAaGhVTwKrAUHJRFOBgk3VliIWotEFIGOPPK6W-Z82UBr5BCSIFfyv3DFIxmyYkOKuNj1H9Xled6qWa651UyFJihCeFkWyAIkQyojYmYZRPseeYWMzFF7gVtGtUUI8MaIg5WnEiNCKUXikcMdStA6szvciULeav1VvpVRjzzfDOOdeJKtdNW6oUmwfAIe8biRnM2UwHnGIjhYGbkjUztz3h0pZxc1JjhIexJyHnjE34jf_6zqk3_P4ym5w7DhMaadxCHprS7X7hl4YSs9IP00e5-NBq2KDepsBlxNx5P0-y-CMTgr
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jBeEDAugQFG4vJCNMd2E-dhQi1sallXpmkTewuO7WyV2qT0oql_jt_GOUnaroAQL3uL4lMr9rm7Pt8h5I2TJo1EKP0sY8aX3Do_dbrhO2UgmzA6dSWk0HEvbJ_LLxeNiw3yc1ELg9cqFzaxNNS2MHhGvgeCJ1QEzlN8HP3wsWsU_ru6aKGh69YKdr-EGKsLO47c_BpSuMl-5zPw-y3nhwdnn9p-3WXANxC9TP1IYwjDXJhBKM6lEiLgPBWGWRkZIXUcZDYLLNMQ6jsu4jRSDRlYHhoVWqcDAfPeIVtSyBiSv63WQe_kdHXKE4cNKVkFdyREzPawqr4_xALFSYBgKKLscL9yiWXngD_9ww0H-fvlze1ZPtLzaz0Y3PCMh_fJvTqkpc1KBh-QDZc_JDvNHNL54Zy-o-Ul0_L0fock599atJPbohjTLrrRugyUtsCbWgoPOE2FakFPdZr2p_QrWLXhgq45uASuTK-GVOeWtk4ooosAba-6zv6InN_K7j8mm3mRu6eEBlaLkFkLAVEsnWKxMFZayJKzWGYsDT3yYbHNyaiC8kggBUKuJH_hikdayIolKeJwly-K8WVSq3WSCptyHRiWBfCxnKkMJFFpIyNueaSUR94jIxO0FsAto-uiB_hixN1KmgozUKVk7JHdNUrQcrM-vBCFpLYyk2SlEx55vRzGX-LNudwVs4omxnINmOJJJTnLJUGwjkV3sDNqTabW1rw-kvevSgzyADxdIATziL8Uv__Z1Wf_Xscrst0-O-4m3U7v6Dm5y7HZMh55yV2yOR3P3AuIAKfpy1rNKPl-25r9CzOBbzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvCBiXwAAjcXkhamK7ifMwoZatWtko1US1vQXHdrZKbVJ60dS_yK_inFzaFRDiZW9V7Vixz9055zuEvLFCJyEPhJumnnYFM9ZNrGq6VmqIJrRKbAEp9KUXHA3E5_Pm-Rb5WdfCYFplrRMLRW1yjXfkDWA8LkMwnryRVmkR_YPOx8kPFztI4ZfWup2GqtosmP0Cbqwq8ji2yysI52b73QOg_VvGOoffPh25VccBV4MnM3dDhe6MZ4MU3HImJOc-YwnXnhGh5kJFfmpS33gK3H7LeJSEsil8wwItA2OVz2HdW2QHP36BkthpH_b6p-sbnyhoCuGV0EecR14DK-yHYyxWnPkIjMKLbvdr81h0EfjTVlwzlr8nct5ZZBO1vFKj0TUr2blP7lXuLW2V_PiAbNnsIdltZRDaj5f0HS0SToub_F0SD87atJuZPJ_SEzSpVUkobYNlNRR-4DIlwgU9VUkynNOvoOHG9bzW6AKoMr8cU5UZ2u5TRBqBub0ytf0RGdzI6T8m21me2aeE-kbxwDMGnKNIWOlFXBthIGJOI5F6SeCQD_Uxx5MS1iOGcAipEv-FKg5pIylWUxGTu_gjn17ElYjHCTcJU772Uh9elnkyBU6USouQGRZK6ZD3SMgYNQdQS6uqAALeGDG44pbEaFRKETlkb2MmSLzeHK5ZIa40zixey4dDXq-G8UnMostsvijnRFi6AUs8KTlntSVw3LEAD05GbvDUxp43R7LhZYFH7oPV8zn3HOKu2O9_TvXZv_fxitwGCY9Pur3j5-Quw77LePsl9sj2fLqwL8AZnCcvKymj5PtNC_YvR9hzaQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQ7gEuvJZHYEFGQnAh2_hRxzmhFrFaEJQVomI5WX5lt6JNqjYFLb-eceKW7cIBuEXxxLLj8cw31sxnhJ56bk3OBE_LMrMpp86nxut-6qWFaMJq41tKofcjcTTmb0_6J_HAbRnTKiEUn7RGGrAHS3ORM9jbPdFjIu_NXfnyWzxJAjBdgI4yDiZ4V_QBi--g3fHoePClvVEufttRDTGI7Xuhon0yC8WBSxKISFh7u_wvd9Sy9v9umy84p8uJk1dX1Vyff9fT6QWvdHgDqfV8umSUrwerxhzYH5eoHv9_wjfR9QhY8aDTsFvoiq9uo71BBcH67Bw_w20KaXs2v4fU-PMQv6lcXS_wu-AkY5EnHoKvdBgeQjcdZwX-qI2ZNPgD2KzZWm4wPa0Xk-ZshnXl8PAYB-4QkB11yep30Pjw9adXR2m8wSG1gAybNNcBHmZelBDmUC4ZI5QaZjPHc8u4LkjpSuIyDWGUp6wwuexz4qiwUjivCbuLdqq68vcRJk4zkTkHcKfgXmYFs447iIHLgpeZEQl6sV5INe-IOhQEOGHd1R_WPUHDsNgb0cCy3b6oF6cqblplmDNUE5uVBAZLM1lqa6W2PKeO5lIm6HlQFRVsAeiD1bGkAUYcWLXUQIb4UkpeJGh_SxL2sN1uXiubijZkqcDUMpkDXGQJerJpDl-GvLjK16tOpgjFGNDFvU43N1MCKB5K6uDPyC2t3Zrzdks1OWsZxgn4McJYlqB0o-B_81cf_KP8Q3SNhvuUw6kW30c7zWLlHwHIa8zjuJN_AmejTl0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UWB+Indoor+Localization+Based+on+Artificial+Rabbit+Optimization+Algorithm+and+BP+Neural+Network&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Jia%2C+Chaochuan&rft.au=Tao%2C+Can&rft.au=Yang%2C+Ting&rft.au=Fu%2C+Maosheng&rft.date=2025-06-04&rft.pub=MDPI+AG&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=10&rft.issue=6&rft_id=info:doi/10.3390%2Fbiomimetics10060367&rft.externalDocID=A845628849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon