A Narrative Review of Artificial Intelligence in MRI-Guided Prostate Cancer Diagnosis: Addressing Key Challenges
Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and rad...
Saved in:
Published in | Diagnostics (Basel) Vol. 15; no. 11; p. 1342 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.05.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2075-4418 2075-4418 |
DOI | 10.3390/diagnostics15111342 |
Cover
Abstract | Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI’s generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI’s widespread clinical adoption. |
---|---|
AbstractList | Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI's generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI's widespread clinical adoption.Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI's generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI's widespread clinical adoption. Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI’s generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI’s widespread clinical adoption. Background/Objectives : Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods : This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results : AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI’s generalizability, limiting its broader clinical application. Conclusions : While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI’s widespread clinical adoption. : Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. : This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. : AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI's generalizability, limiting its broader clinical application. : While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI's widespread clinical adoption. |
Audience | Academic |
Author | Onay, Aslihan Karaarslan, Ercan Alis, Deniz Colak, Evrim Bakir, Baris |
AuthorAffiliation | 1 Department of Radiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34750 Istanbul, Atasehir, Turkey; deniz.alis@acibadem.edu.tr (D.A.); ercan.karaarslan@acibadem.edu.tr (E.K.) 3 Electrical and Electronics Engineering Department, Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey 5 Department of Radiology, Istanbul Faculty of Medicine, Istanbul University Capa, 34093 Istanbul, Fatih, Turkey; drbarisbakir@yahoo.com 2 Department of Radiology, Faculty of Medicine, TOBB University of Economics and Technology, Beştepe Mah Yasam Cad No. 5, 06510 Ankara, Yenimahalle, Turkey; aslionay@gmail.com 4 Turkish Accelerator and Radiation Laboratory (TARLA), Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey |
AuthorAffiliation_xml | – name: 4 Turkish Accelerator and Radiation Laboratory (TARLA), Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey – name: 5 Department of Radiology, Istanbul Faculty of Medicine, Istanbul University Capa, 34093 Istanbul, Fatih, Turkey; drbarisbakir@yahoo.com – name: 2 Department of Radiology, Faculty of Medicine, TOBB University of Economics and Technology, Beştepe Mah Yasam Cad No. 5, 06510 Ankara, Yenimahalle, Turkey; aslionay@gmail.com – name: 3 Electrical and Electronics Engineering Department, Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey – name: 1 Department of Radiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34750 Istanbul, Atasehir, Turkey; deniz.alis@acibadem.edu.tr (D.A.); ercan.karaarslan@acibadem.edu.tr (E.K.) |
Author_xml | – sequence: 1 givenname: Deniz surname: Alis fullname: Alis, Deniz – sequence: 2 givenname: Aslihan surname: Onay fullname: Onay, Aslihan – sequence: 3 givenname: Evrim orcidid: 0000-0002-4961-5060 surname: Colak fullname: Colak, Evrim – sequence: 4 givenname: Ercan surname: Karaarslan fullname: Karaarslan, Ercan – sequence: 5 givenname: Baris orcidid: 0000-0002-6587-9787 surname: Bakir fullname: Bakir, Baris |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40506914$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1vFCEUhompse3aX2BiSLzxZisMMDN4YzZrrRvrRxq9JgwcpmxmYYXZNf33sm6tXVO4gBweXs57OKfoKMQACL2g5JwxSd5Yr_sQ8-hNpoJSynj1BJ1UpBFTzml79GB_jM5yXpIyJGVtJZ6hY04EqSXlJ2g9w190Snr0W8DXsPXwC0eHZ2n0zhuvB7wIIwyD7yEYwD7gz9eL6eXGW7D4WyoZ6BHwXJfDhN_vk_L5LZ5ZmyBnH3r8CW7x_EYPA4Qe8nP01Okhw9ndOkE_Plx8n3-cXn29XMxnV1MjqBynonaS0pozThsiqKPaQQOi6YhrbEdqx0BUtm6Eg45QRzpTrBHgAKSUglRsghZ7XRv1Uq2TX-l0q6L26k8gpl7pYtIMoDrWkc5xIrWV3AohnStanWwbVwtgpmi922utN90KrIEwJj0ciB6eBH-j-rhVtKKC81L2CXp9p5Dizw3kUa18NqWuOkDcZMUq2vKGkZYU9NV_6DJuUii12lFNU3Eu5D-q18WBDy6Wh81OVM1aLiipiNxR549QZVpYeVM6yvkSP7jw8qHTe4t_G6YAbA-Y8vc5gbtHKFG7zlSPdCb7DQIs1rI |
Cites_doi | 10.1002/jmri.29108 10.3390/diagnostics12040799 10.1007/s00330-021-08021-6 10.1002/mp.14855 10.3390/diagnostics11060959 10.1007/s00330-019-06085-z 10.1007/s00330-011-2377-y 10.1259/bjr.20211378 10.1259/bjr.20201434 10.1016/j.media.2013.05.008 10.1007/s00330-021-08399-3 10.1016/j.acra.2024.10.009 10.1186/s40644-023-00527-0 10.1148/radiol.240238 10.1007/s00261-024-04396-4 10.3389/fonc.2022.958065 10.1016/j.euo.2020.02.005 10.3322/caac.21660 10.1002/jmri.27879 10.1038/nature14539 10.1007/s00261-019-01961-0 10.1148/radiol.204097 10.1111/bju.15285 10.1186/s13244-021-01058-7 10.1016/S0140-6736(16)32401-1 10.1002/jmri.27599 10.1016/j.ejrad.2023.110953 10.3390/cancers13133318 10.1001/jama.2016.17216 10.1117/1.JMI.5.4.044501 10.1016/j.ejrad.2023.111017 10.1016/j.ejrad.2023.111091 10.1016/j.euo.2020.06.007 10.1016/j.media.2024.103404 10.1148/ryai.2020200029 10.1016/j.acra.2024.12.012 10.1016/j.media.2021.102155 10.1186/s13244-023-01439-0 10.1088/2632-2153/ada8f3 10.1007/s10462-024-11005-9 10.1001/jamanetworkopen.2024.34622 10.1148/ryai.230521 10.1056/NEJMoa1801993 10.1148/radiol.2020190646 10.1002/ijc.29538 10.1002/jmri.27992 10.1016/j.eururo.2020.09.042 10.1016/j.crad.2018.12.003 10.1016/j.ejrad.2024.111716 10.5489/cuaj.7347 10.1016/j.ejrad.2024.111790 10.1186/s13244-021-00996-6 10.1002/jmri.28891 10.1111/bju.16452 10.1007/s00330-020-07527-9 10.1007/s00330-023-09882-9 10.1016/j.ejrad.2023.110923 10.1016/j.ejrad.2021.109600 10.1007/s00330-021-08320-y 10.1016/j.cmpb.2023.107624 10.1097/RLI.0000000000000780 10.1136/bmjopen-2023-074009 10.1002/jmri.28608 10.1002/jmri.25645 10.1016/j.cmpb.2021.106609 10.1007/s00261-021-02964-6 10.3389/fnins.2022.933660 10.1007/s00330-020-07027-w 10.1148/radiol.223128 10.3390/diagnostics14222576 10.3174/ajnr.A5543 10.3390/diagnostics12020289 10.1038/s41416-022-02137-2 10.1016/j.eururo.2019.02.033 10.1007/s00330-024-10795-4 10.1002/jmri.29031 10.1186/s41747-022-00287-9 10.1007/s00259-022-06036-9 10.1002/path.6373 10.1002/jmri.29025 10.1007/s00330-021-08169-1 10.1016/j.ejrad.2021.110012 10.1109/TMI.2016.2538465 10.1007/s10334-020-00871-3 10.1109/TMI.2016.2528162 10.1016/j.compbiomed.2022.106168 10.1007/s00261-024-04468-5 10.1016/j.euo.2024.11.001 10.1177/0846537120943886 10.1016/S1470-2045(24)00220-1 10.3390/math10152733 10.1148/radiol.232635 10.1016/j.eururo.2022.04.002 10.2214/AJR.21.26917 10.1177/17562872221109020 10.1002/mp.17546 10.1016/j.eururo.2007.09.002 10.21037/qims-23-1600 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics15111342 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_b3b0bf409ad94d559ff820b987f65e3c PMC12154491 A845102099 40506914 10_3390_diagnostics15111342 |
Genre | Journal Article Review |
GeographicLocations | Turkey |
GeographicLocations_xml | – name: Turkey |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM M48 NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c519t-56f911643417051f1afe7e57b0f7db06f3e52d675feb01f0bc3820e4ee0342023 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 00:24:26 EDT 2025 Thu Aug 21 18:24:42 EDT 2025 Fri Sep 05 15:53:22 EDT 2025 Sat Aug 23 12:55:07 EDT 2025 Wed Jun 25 16:51:38 EDT 2025 Tue Jul 01 05:43:33 EDT 2025 Mon Jul 21 05:36:11 EDT 2025 Sun Jul 06 05:08:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | machine learning (ML) prostate cancer (PCa) artificial intelligence (AI) magnetic resonance imaging (MRI) of prostate deep learning (DL) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-56f911643417051f1afe7e57b0f7db06f3e52d675feb01f0bc3820e4ee0342023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-4961-5060 0000-0002-6587-9787 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics15111342 |
PMID | 40506914 |
PQID | 3217724459 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3b0bf409ad94d559ff820b987f65e3c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12154491 proquest_miscellaneous_3218473080 proquest_journals_3217724459 gale_infotracmisc_A845102099 gale_infotracacademiconefile_A845102099 pubmed_primary_40506914 crossref_primary_10_3390_diagnostics15111342 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-26 |
PublicationDateYYYYMMDD | 2025-05-26 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tiessen (ref_92) 2021; 12 Netzer (ref_85) 2023; 33 Giganti (ref_91) 2021; 12 ref_11 Bayerl (ref_81) 2024; 181 ref_98 Mottet (ref_10) 2021; 79 Jendoubi (ref_38) 2019; 29 ref_95 Bell (ref_2) 2015; 137 Turkbey (ref_14) 2021; 72 Cai (ref_96) 2024; 312 Park (ref_40) 2022; 55 Li (ref_88) 2025; 52 Kim (ref_41) 2021; 145 Jung (ref_37) 2022; 95 Wang (ref_93) 2021; 46 ref_29 Ponsiglione (ref_47) 2024; 181 Thomas (ref_104) 2023; 13 Lin (ref_51) 2024; 49 Lee (ref_36) 2023; 166 Basar (ref_45) 2023; 165 Cipollari (ref_49) 2022; 55 Padhani (ref_13) 2021; 31 Shin (ref_26) 2016; 35 ref_76 Sunoqrot (ref_94) 2021; 34 Turkbey (ref_17) 2019; 76 Sun (ref_97) 2023; 58 Westphalen (ref_53) 2020; 296 Li (ref_60) 2025; 100 Pereira (ref_27) 2016; 35 Karagoz (ref_87) 2023; 14 Caglic (ref_16) 2019; 74 Giganti (ref_18) 2020; 3 Drost (ref_8) 2017; 5 Ahmed (ref_9) 2017; 389 LeCun (ref_28) 2015; 521 ref_83 ref_82 Mongan (ref_103) 2020; 2 Winkel (ref_80) 2021; 56 Sung (ref_1) 2021; 71 Urase (ref_52) 2021; 95 Fleming (ref_46) 2023; 168 ref_89 Flannery (ref_72) 2025; 265 Belue (ref_23) 2022; 6 Zheng (ref_74) 2025; 32 Saha (ref_102) 2021; 73 Greer (ref_55) 2017; 46 Barentsz (ref_20) 2012; 22 Chen (ref_73) 2025; 32 Yu (ref_77) 2023; 128 ref_57 Li (ref_59) 2024; 6 Netzer (ref_100) 2024; 59 Turkbey (ref_21) 2023; 307 Zhao (ref_86) 2023; 50 Barentsz (ref_42) 2022; 32 Heidenreich (ref_3) 2008; 53 Kordbacheh (ref_34) 2019; 44 Armato (ref_84) 2018; 5 Javed (ref_62) 2025; 58 Coelho (ref_48) 2024; 49 ref_68 Gulshan (ref_25) 2016; 316 ref_67 ref_66 ref_64 Wei (ref_12) 2023; 210 ref_63 Penzkofer (ref_105) 2021; 31 Gassenmaier (ref_33) 2021; 137 Turkbey (ref_65) 2022; 219 Lin (ref_50) 2024; 59 Hosseinzadeh (ref_78) 2022; 32 Zhao (ref_61) 2025; 6 Kasivisvanathan (ref_7) 2018; 378 Nsugbe (ref_58) 2024; 2 Ursprung (ref_39) 2023; 165 Taya (ref_54) 2024; 134 Tan (ref_6) 2024; 7 Hu (ref_99) 2023; 23 Woernle (ref_43) 2024; 59 Barrett (ref_56) 2021; 127 Jia (ref_24) 2024; 14 ref_30 Saad (ref_5) 2021; 15 Ferro (ref_69) 2022; 14 Allen (ref_19) 2024; 34 Ueda (ref_35) 2022; 303 Gillessen (ref_4) 2022; 82 Seetharaman (ref_90) 2021; 48 Khosravi (ref_79) 2021; 54 Mir (ref_31) 2024; 60 Giganti (ref_44) 2022; 32 Zaharchuk (ref_70) 2018; 39 Stabile (ref_15) 2020; 3 ref_101 Huang (ref_32) 2025; 314 Cuocolo (ref_75) 2020; 30 Saha (ref_22) 2024; 25 Eklund (ref_71) 2013; 17 |
References_xml | – volume: 60 start-page: 813 year: 2024 ident: ref_31 article-title: Recent Developments in Speeding up Prostate MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.29108 – ident: ref_68 doi: 10.3390/diagnostics12040799 – volume: 31 start-page: 9567 year: 2021 ident: ref_105 article-title: ESUR/ESUI position paper: Developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08021-6 – volume: 48 start-page: 2960 year: 2021 ident: ref_90 article-title: Automated detection of aggressive and indolent prostate cancer on magnetic resonance imaging publication-title: Med. Phys. doi: 10.1002/mp.14855 – ident: ref_64 doi: 10.3390/diagnostics11060959 – volume: 29 start-page: 5197 year: 2019 ident: ref_38 article-title: MRI for prostate cancer: Can computed high b-value DWI replace native acquisitions? publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06085-z – volume: 22 start-page: 746 year: 2012 ident: ref_20 article-title: ESUR prostate MR guidelines 2012 publication-title: Eur. Radiol. doi: 10.1007/s00330-011-2377-y – volume: 95 start-page: 20211378 year: 2022 ident: ref_37 article-title: Convolutional neural network-based reconstruction for acceleration of prostate T2 weighted MR imaging: A retro- and prospective study publication-title: Br. J. Radiol. doi: 10.1259/bjr.20211378 – volume: 95 start-page: 20201434 year: 2021 ident: ref_52 article-title: Comparison of prostate imaging reporting and data system v2.1 and 2 in transition and peripheral zones: Evaluation of interreader agreement and diagnostic performance in detecting clinically significant prostate cancer publication-title: Br. J. Radiol. doi: 10.1259/bjr.20201434 – volume: 17 start-page: 1073 year: 2013 ident: ref_71 article-title: Medical image processing on the GPU—Past, present and future publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.05.008 – volume: 32 start-page: 876 year: 2022 ident: ref_42 article-title: PI-QUAL v.1: The first step towards good-quality prostate MRI publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08399-3 – volume: 32 start-page: 864 year: 2025 ident: ref_73 article-title: A Multimodal Deep Learning Nomogram for the Identification of Clinically Significant Prostate Cancer in Patients with Gray-Zone PSA Levels: Comparison with Clinical and Radiomics Models publication-title: Acad. Radiol. doi: 10.1016/j.acra.2024.10.009 – volume: 23 start-page: 6 year: 2023 ident: ref_99 article-title: Automated deep-learning system in the assessment of MRI-visible prostate cancer: Comparison of advanced zoomed diffusion-weighted imaging and conventional technique publication-title: Cancer Imaging doi: 10.1186/s40644-023-00527-0 – volume: 314 start-page: e240238 year: 2025 ident: ref_32 article-title: Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer publication-title: Radiology doi: 10.1148/radiol.240238 – volume: 49 start-page: 4556 year: 2024 ident: ref_48 article-title: Strategies for improving image quality in prostate MRI publication-title: Abdom. Radiol. doi: 10.1007/s00261-024-04396-4 – ident: ref_95 doi: 10.3389/fonc.2022.958065 – volume: 3 start-page: 145 year: 2020 ident: ref_15 article-title: Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review publication-title: Eur. Urol. Oncol. doi: 10.1016/j.euo.2020.02.005 – volume: 71 start-page: 209 year: 2021 ident: ref_1 article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 55 start-page: 480 year: 2022 ident: ref_49 article-title: Convolutional Neural Networks for Automated Classification of Prostate Multiparametric Magnetic Resonance Imaging Based on Image Quality publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27879 – volume: 521 start-page: 436 year: 2015 ident: ref_28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 2 start-page: 263 year: 2024 ident: ref_58 article-title: Towards Unsupervised Learning Driven Intelligence for Prediction of Prostate Cancer publication-title: Artifi. Intell. Appl. – volume: 44 start-page: 2244 year: 2019 ident: ref_34 article-title: Image quality and diagnostic accuracy of complex-averaged high b value images in diffusion-weighted MRI of prostate cancer publication-title: Abdom. Radiol. doi: 10.1007/s00261-019-01961-0 – volume: 303 start-page: 373 year: 2022 ident: ref_35 article-title: Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging publication-title: Radiology doi: 10.1148/radiol.204097 – ident: ref_83 – volume: 127 start-page: 304 year: 2021 ident: ref_56 article-title: Certification in reporting multiparametric magnetic resonance imaging of the prostate: Recommendations of a UK consensus meeting publication-title: BJU Int. doi: 10.1111/bju.15285 – volume: 12 start-page: 112 year: 2021 ident: ref_92 article-title: Improving workflow in prostate MRI: AI-based decision-making on biparametric or multiparametric MRI publication-title: Insights Imaging doi: 10.1186/s13244-021-01058-7 – volume: 389 start-page: 815 year: 2017 ident: ref_9 article-title: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study publication-title: Lancet doi: 10.1016/S0140-6736(16)32401-1 – volume: 54 start-page: 462 year: 2021 ident: ref_79 article-title: A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology–Radiology Fusion publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27599 – volume: 165 start-page: 110953 year: 2023 ident: ref_39 article-title: Accelerated diffusion-weighted imaging of the prostate using deep learning image reconstruction: A retrospective comparison with standard diffusion-weighted imaging publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2023.110953 – ident: ref_57 doi: 10.3390/cancers13133318 – volume: 316 start-page: 2402 year: 2016 ident: ref_25 article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 5 start-page: 044501 year: 2018 ident: ref_84 article-title: PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images publication-title: J. Med. Imaging doi: 10.1117/1.JMI.5.4.044501 – volume: 166 start-page: 111017 year: 2023 ident: ref_36 article-title: Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2023.111017 – volume: 168 start-page: 111091 year: 2023 ident: ref_46 article-title: Inter-reader variability and reproducibility of the PI-QUAL score in a multicentre setting publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2023.111091 – ident: ref_11 – volume: 3 start-page: 615 year: 2020 ident: ref_18 article-title: Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial publication-title: Eur. Urol. Oncol. doi: 10.1016/j.euo.2020.06.007 – volume: 100 start-page: 103404 year: 2025 ident: ref_60 article-title: CLMS: Bridging domain gaps in medical imaging segmentation with source-free continual learning for robust knowledge transfer and adaptation publication-title: Med. Image Anal. doi: 10.1016/j.media.2024.103404 – volume: 2 start-page: e200029 year: 2020 ident: ref_103 article-title: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2020200029 – volume: 32 start-page: 2709 year: 2025 ident: ref_74 article-title: An Automatic Deep-Radiomics Framework for Prostate Cancer Diagnosis and Stratification in Patients with Serum Prostate-Specific Antigen of 4.0-10.0 ng/mL: A Multicenter Retrospective Study publication-title: Acad. Radiol. doi: 10.1016/j.acra.2024.12.012 – volume: 73 start-page: 102155 year: 2021 ident: ref_102 article-title: End-to-end prostate cancer detection in bpMRI via 3D CNNs: Effects of attention mechanisms, clinical priori and decoupled false positive reduction publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102155 – volume: 14 start-page: 110 year: 2023 ident: ref_87 article-title: Anatomically guided self-adapting deep neural network for clinically significant prostate cancer detection on bi-parametric MRI: A multi-center study publication-title: Insights Imaging doi: 10.1186/s13244-023-01439-0 – volume: 6 start-page: 015015 year: 2025 ident: ref_61 article-title: Deep unsupervised clustering for prostate auto-segmentation with and without hydrogel spacer publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/ada8f3 – volume: 58 start-page: 12 year: 2025 ident: ref_62 article-title: Robustness in deep learning models for medical diagnostics: Security and adversarial challenges towards robust AI applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-11005-9 – volume: 7 start-page: e2434622 year: 2024 ident: ref_6 article-title: Incidence, Prevalence, and Survival of Prostate Cancer in the UK publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2024.34622 – volume: 6 start-page: e230521 year: 2024 ident: ref_59 article-title: Deep Learning–based Unsupervised Domain Adaptation via a Unified Model for Prostate Lesion Detection Using Multisite Biparametric MRI Datasets publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.230521 – volume: 378 start-page: 1767 year: 2018 ident: ref_7 article-title: MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1801993 – volume: 296 start-page: 76 year: 2020 ident: ref_53 article-title: Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel publication-title: Radiology doi: 10.1148/radiol.2020190646 – volume: 137 start-page: 1749 year: 2015 ident: ref_2 article-title: Prevalence of incidental prostate cancer: A systematic review of autopsy studies publication-title: Int. J. Cancer doi: 10.1002/ijc.29538 – volume: 55 start-page: 1735 year: 2022 ident: ref_40 article-title: Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27992 – volume: 79 start-page: 243 year: 2021 ident: ref_10 article-title: EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer;2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent publication-title: Eur. Urol. doi: 10.1016/j.eururo.2020.09.042 – volume: 74 start-page: 831 year: 2019 ident: ref_16 article-title: Optimising prostate mpMRI: Prepare for success publication-title: Clin. Radiol. doi: 10.1016/j.crad.2018.12.003 – volume: 181 start-page: 111716 year: 2024 ident: ref_47 article-title: PI-QUAL version 2: A Multi-Reader reproducibility study on multiparametric MRI from a tertiary referral center publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2024.111716 – volume: 15 start-page: 353 year: 2021 ident: ref_5 article-title: Results from a Canadian consensus forum of key controversial areas in the management of advanced prostate cancer: Recommendations for Canadian healthcare providers publication-title: Can. Urol. Assoc. J. doi: 10.5489/cuaj.7347 – volume: 181 start-page: 111790 year: 2024 ident: ref_81 article-title: Assessment of a fully-automated diagnostic AI software in prostate MRI: Clinical evaluation and histopathological correlation publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2024.111790 – volume: 12 start-page: 59 year: 2021 ident: ref_91 article-title: Understanding PI-QUAL for prostate MRI quality: A practical primer for radiologists publication-title: Insights Imaging doi: 10.1186/s13244-021-00996-6 – volume: 59 start-page: 1409 year: 2024 ident: ref_100 article-title: Weakly Supervised MRI Slice-Level Deep Learning Classification of Prostate Cancer Approximates Full Voxel- and Slice-Level Annotation: Effect of Increasing Training Set Size publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.28891 – volume: 134 start-page: 510 year: 2024 ident: ref_54 article-title: Perspectives on technology: Prostate Imaging-Reporting and Data System (PI-RADS) interobserver variability publication-title: BJU Int. doi: 10.1111/bju.16452 – volume: 31 start-page: 4386 year: 2021 ident: ref_13 article-title: A multifaceted approach to quality in the MRI-directed biopsy pathway for prostate cancer diagnosis publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07527-9 – volume: 33 start-page: 7463 year: 2023 ident: ref_85 article-title: Application of a validated prostate MRI deep learning system to independent same-vendor multi-institutional data: Demonstration of transferability publication-title: Eur. Radiol. doi: 10.1007/s00330-023-09882-9 – volume: 165 start-page: 110923 year: 2023 ident: ref_45 article-title: Inter-reader agreement of the prostate imaging quality (PI-QUAL) score for basic readers in prostate MRI: A multi-center study publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2023.110923 – volume: 137 start-page: 109600 year: 2021 ident: ref_33 article-title: Deep learning-accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2021.109600 – volume: 32 start-page: 2224 year: 2022 ident: ref_78 article-title: Deep learning–assisted prostate cancer detection on bi-parametric MRI: Minimum training data size requirements and effect of prior knowledge publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08320-y – ident: ref_101 doi: 10.1016/j.cmpb.2023.107624 – volume: 56 start-page: 605 year: 2021 ident: ref_80 article-title: A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study publication-title: Invest. Radiol. doi: 10.1097/RLI.0000000000000780 – volume: 13 start-page: e074009 year: 2023 ident: ref_104 article-title: Use of artificial intelligence in the detection of primary prostate cancer in multiparametric MRI with its clinical outcomes: A protocol for a systematic review and meta-analysis publication-title: BMJ Open doi: 10.1136/bmjopen-2023-074009 – volume: 58 start-page: 1067 year: 2023 ident: ref_97 article-title: Deep-Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi-Parametric MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.28608 – volume: 46 start-page: 11 year: 2017 ident: ref_55 article-title: PI-RADSv2: How we do it publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25645 – ident: ref_67 doi: 10.1016/j.cmpb.2021.106609 – volume: 46 start-page: 3378 year: 2021 ident: ref_93 article-title: Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging publication-title: Abdom. Radiol. doi: 10.1007/s00261-021-02964-6 – volume: 210 start-page: 45 year: 2023 ident: ref_12 article-title: Early detection of prostate cancer: AUA/SUO guideline part I: Prostate cancer screening publication-title: J. Urol. – ident: ref_29 doi: 10.3389/fnins.2022.933660 – volume: 30 start-page: 6877 year: 2020 ident: ref_75 article-title: Machine learning for the identification of clinically significant prostate cancer on MRI: A meta-analysis publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07027-w – volume: 307 start-page: e223128 year: 2023 ident: ref_21 article-title: PI-RADS: Where Next? publication-title: Radiology doi: 10.1148/radiol.223128 – ident: ref_76 doi: 10.3390/diagnostics14222576 – volume: 39 start-page: 1776 year: 2018 ident: ref_70 article-title: Deep Learning in Neuroradiology publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5543 – ident: ref_66 – volume: 5 start-page: CD012663 year: 2017 ident: ref_8 article-title: MRI pathway and TRUS-guided biopsy for detecting clinically significant prostate cancer publication-title: Cochrane Database Syst. Rev. – ident: ref_63 doi: 10.3390/diagnostics12020289 – volume: 128 start-page: 1019 year: 2023 ident: ref_77 article-title: PI-RADSAI: Introducing a new human-in-the-loop AI model for prostate cancer diagnosis based on MRI publication-title: Br. J. Cancer doi: 10.1038/s41416-022-02137-2 – volume: 76 start-page: 340 year: 2019 ident: ref_17 article-title: Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2 publication-title: Eur. Urol. doi: 10.1016/j.eururo.2019.02.033 – volume: 34 start-page: 7068 year: 2024 ident: ref_19 article-title: PI-QUAL version 2: An update of a standardised scoring system for the assessment of image quality of prostate MRI publication-title: Eur. Radiol. doi: 10.1007/s00330-024-10795-4 – ident: ref_82 – volume: 59 start-page: 2215 year: 2024 ident: ref_50 article-title: Deep Learning-Based T2-Weighted MR Image Quality Assessment and Its Impact on Prostate Cancer Detection Rates publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.29031 – volume: 6 start-page: 33 year: 2022 ident: ref_23 article-title: Tasks for artificial intelligence in prostate MRI publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-022-00287-9 – volume: 50 start-page: 727 year: 2023 ident: ref_86 article-title: Predicting clinically significant prostate cancer with a deep learning approach: A multicentre retrospective study publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-022-06036-9 – volume: 265 start-page: 146 year: 2025 ident: ref_72 article-title: Stress testing deep learning models for prostate cancer detection on biopsies and surgical specimens publication-title: J. Pathol. doi: 10.1002/path.6373 – volume: 59 start-page: 1930 year: 2024 ident: ref_43 article-title: Picture Perfect: The Status of Image Quality in Prostate MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.29025 – volume: 32 start-page: 879 year: 2022 ident: ref_44 article-title: Inter-reader agreement of the PI-QUAL score for prostate MRI quality in the NeuroSAFE PROOF trial publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08169-1 – volume: 145 start-page: 110012 year: 2021 ident: ref_41 article-title: Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2021.110012 – volume: 35 start-page: 1240 year: 2016 ident: ref_27 article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – volume: 34 start-page: 309 year: 2021 ident: ref_94 article-title: Automated reference tissue normalization of T2-weighted MR images of the prostate using object recognition publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-020-00871-3 – volume: 35 start-page: 1285 year: 2016 ident: ref_26 article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: ref_98 doi: 10.1016/j.compbiomed.2022.106168 – volume: 49 start-page: 2891 year: 2024 ident: ref_51 article-title: Deep learning-based image quality assessment: Impact on detection accuracy of prostate cancer extraprostatic extension on MRI publication-title: Abdom. Radiol. doi: 10.1007/s00261-024-04468-5 – ident: ref_89 doi: 10.1016/j.euo.2024.11.001 – volume: 72 start-page: 337 year: 2021 ident: ref_14 article-title: Factors Impacting Performance and Reproducibility of PI-RADS publication-title: Can. Assoc. Radiol. J. doi: 10.1177/0846537120943886 – volume: 25 start-page: 879 year: 2024 ident: ref_22 article-title: Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(24)00220-1 – ident: ref_30 doi: 10.3390/math10152733 – volume: 312 start-page: e232635 year: 2024 ident: ref_96 article-title: Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI publication-title: Radiology doi: 10.1148/radiol.232635 – volume: 82 start-page: 115 year: 2022 ident: ref_4 article-title: Management of Patients with Advanced Prostate Cancer: Report from the Advanced Prostate Cancer Consensus Conference 2021 publication-title: Eur. Urol. doi: 10.1016/j.eururo.2022.04.002 – volume: 219 start-page: 188 year: 2022 ident: ref_65 article-title: Artificial Intelligence for Automated Cancer Detection on Prostate MRI: Opportunities and Ongoing Challenges, From the AJR Special Series on AI Applications publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.21.26917 – volume: 14 start-page: 17562872221109020 year: 2022 ident: ref_69 article-title: Radiomics in prostate cancer: An up-to-date review publication-title: Ther. Adv. Urol. doi: 10.1177/17562872221109020 – volume: 52 start-page: 993 year: 2025 ident: ref_88 article-title: Cross-shaped windows transformer with self-supervised pretraining for clinically significant prostate cancer detection in bi-parametric MRI publication-title: Med. Phys. doi: 10.1002/mp.17546 – volume: 53 start-page: 68 year: 2008 ident: ref_3 article-title: EAU Guidelines on Prostate Cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2007.09.002 – volume: 14 start-page: 3501 year: 2024 ident: ref_24 article-title: Application of convolutional neural networks in medical images: A bibliometric analysis publication-title: Quant. Imaging. Med. Surg. doi: 10.21037/qims-23-1600 |
SSID | ssj0000913825 |
Score | 2.2958667 |
SecondaryResourceType | review_article |
Snippet | Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer... : Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However,... Background/Objectives : Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1342 |
SubjectTerms | Accuracy Algorithms Artificial intelligence artificial intelligence (AI) Biopsy Cancer Deep learning deep learning (DL) Diagnosis Machine learning machine learning (ML) Magnetic resonance imaging magnetic resonance imaging (MRI) of prostate Medical imaging equipment Mortality Neural networks Prostate cancer prostate cancer (PCa) Quality standards Reproducibility Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2hPSAuiG8CCzISEheitWsnafZWCssuqCuEWGlvVhyPoZd01Y8D_35n7LRKBBIXrvVEij3jmfea8TPA2wn61gTEvJ5KnxujZe4kEpAjiKRcTdkwfj1fXJbnV-bLdXE9uOqLe8KSPHBauBOnnXSBWEjja-MJ_4ZARcsRVQ5lgbrl7EtlbECmYg6uWVuvSDJDmnj9iU-da6x9TEVOKW0mo1IUFfv_zMuDwjRumhxUobMHcL-Hj2KWXvsh3MHuEdxd9B_IH8PNTFw266TmLdL__mIVon2SihAXAw1OsezE4vtF_nm39OjFNz4BQthTzDkU1uJjmsxycypm3seG2e6n-Iq_xXx_BcvmCVydffoxP8_7SxXylsDaNi_KQPmNcIhhIR0VVBOwwqJyMlTeyTJoLCaeaERAJ1WQrqWFlGgQWSyQKvxTOOpWHT4HQeS2bNE7LYnEVd67iuzU1DfaGxlcyOD9fn3tTdLOsMQ52B32L-7I4AP74GDKwtfxBwoH24eD_Vc4ZPCOPWh5e5Kb2qY_ZUBvzEJXdjY1lIX4vHAGxyNL2lbteHgfA7bf1huricBVBIgKGn5zGOYnuVWtw9Uu2lDF14TEM3iWQuYwJULHsqyVyWA6CqbRnMcj3fJXFP1mFRBjavXif6zSS7g34XuMJXc4HsPRdr3DVwSutu513Ee3gXojuw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrYS4IMoz0CIjIXEhqhM7LySEtktLC9pVVVGptyiOx2UvybKPA_-emTy2GxVxjR3Jzry-icffALwP0ZbaIfpZKq2vtZK-kUhAjiBSYDLyhs3p-XQWn1_r7zfRzR7M-rswXFbZ-8TGUdu65H_kx4qwc0KxKMq-LH773DWKT1f7FhpF11rBfm4oxh7AfshdlUewf3I6u7za_nVhFkzKiVr6IUX5_rFtK9qYE5mCXxAoHQ5CVMPkf99f7wSsYTHlTnQ6ewKPO1gpxq0eHMAeVk_h4bQ7OH8Gi7GYFcuW5Vu05wGids38lkJCXOxwc4p5JaZXF_63zdyiFZd8M4QwqZiwiizF13Yz89UnMba2KaStbsUP_CMmfWuW1XO4Pjv9OTn3u2YLfkkgbu1HsSO_R_hEM8FO4ILCYYJRYqRLrJGxUxiFltILh0YGTpqSPqREjcgkghT5X8Coqit8BYKS3rhEa5Sk5C6x1iQ0L0htoayWzjgPPvbfN1-0nBo55SIsjvwf4vDghGWwncqE2M2Denmbd_aVG2WkcZSsFjbTltIk52h5JksTF0eoSg8-sARzNlsSU1l0tw9oxUyAlY9TTd6J7xF7cDiYSeZWDod7Hcg7c1_ld8rpwbvtML_JJWwV1ptmDiEBRQjdg5etymy3RKhZxlmgPUgHyjTY83Ckmv9qyMCZHUTrLHj9_3W9gUchdy6WXNN4CKP1coNHBKfW5m1nI38Bc3shPQ priority: 102 providerName: ProQuest |
Title | A Narrative Review of Artificial Intelligence in MRI-Guided Prostate Cancer Diagnosis: Addressing Key Challenges |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40506914 https://www.proquest.com/docview/3217724459 https://www.proquest.com/docview/3218473080 https://pubmed.ncbi.nlm.nih.gov/PMC12154491 https://doaj.org/article/b3b0bf409ad94d559ff820b987f65e3c |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEA_HHYgv4rerZ4kg-OJqssl-CSK9eued0nIcFu5t2WwmZ0G257YF7793Jrtbung--NpMS5KZzPymmfyGsdcR2Eo7gDDPhA21ViI0AhDIIUSSJkdv6G_Pp7PkdK6_XsaXe6zvitpt4OrW1I76Sc2bn-9-_7r5hAf-I2WcmLK_t21RGtEaY_ySUmn0yQcYmiIy82mH971rzolyj8oaIwyVODWZtUxE__qdQbTypP5_u-6d2DWsq9wJVCf32b0OYfJxaxIP2B7UD9mdaXeH_ohdj_msbFrCb95eDfCl8_ItmwQ_26Hp5IuaTy_Owi-bhQXLz-mRCMJTPiFrafjndjGL1Qc-ttbX1NZX_Bvc8EnfpWX1mM1Pjr9PTsOu70JYIZ5bh3Hi0AUiVNHEtSOdLB2kEKdGuNQakTgFcWQx03BghHTCVLipAjQA8QkiCHjC9utlDc8Yx_w3qcAaJTDPS601KcrJzJbKauGMC9jbfn-L65Zeo8C0hNRR3KKOgB2RDraixI3tP1g2V0V31AqjjDAO89bS5tpixuQcTs_kWeqSGFQVsDekwYJsCtVUld1DBJwxcWEV40yjo6InxQE7HEjiyauGw70NFL3hFgpzvBQxU4zDr7bD9E2qZqthufEyCAoUgvWAPW1NZrskBNAiyaUOWDYwpsGahyP14ofnBSeiEK1z-fz_NvUFuxtRU2NB5Y6HbH_dbOAlIq21GbGDo-PZ-cXI_1Mx8mfpDy0rKjc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aNgl4QdwJDDASiBeiObGTNEgT6rqNlq3VNG3S3rI4tkdfktKLEH-O38Y5TlIagXjba-1Kts_tO_HxdwDehUYX0hrjpz2ufSkF9xU3COQQIgUqRW_obs_Hk3h4Kb9eRVdb8Kt9C0Nlla1PdI5aVwV9I98TiJ0TjEVR-nn23aeuUXS72rbQyJvWCnrfUYw1DztOzM8fmMIt9keHKO_3YXh8dDEY-k2XAb9A9LL0o9iiwWNglsQsE9ggtyYxUaK4TbTisRUmCjXiamsUDyxXhcCoaaQxxJ7niA8wBOwg7BBoVTsHR5Oz8_VXHmLdxByspjsSIuV7uq6gIw5mDLZBIGTYCYmuc8Df8WEjQHaLNzei4fEDuN_AWNav9e4hbJnyEdwZNxf1j2HWZ5N8XrOKs_r-gVXWza8pK9hogwuUTUs2Ph_5X1ZTbTQ7o5coiIHZgFRyzg7rzUwXn1hfa1e4W94wPHY2aFvBLJ7A5a0c-1PYLqvSPAeGSXZcGK0Ex2Qy0VolOC_o6Vxoya2yHnxszzeb1RweGeY-JI7sH-Lw4IBksJ5KBNzuh2p-kzX2nCmhuLKYHOc6lRrTMmtxeSrtJTaOjCg8-EASzMhNoJiKvHntgCsmwq2s35PoDendsge7nZlo3kV3uNWBrHEvi-yPMXjwdj1M_6SSudJUKzcHkYfAjMCDZ7XKrLeEKJ3HaSA96HWUqbPn7kg5_ebIx4mNRMo0ePH_db2Bu8OL8Wl2OpqcvIR7IXVN5lRPuQvby_nKvEIot1SvG3thcH3bJvobpNBdCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqVRxQZSnocAigbhgZe1d2zFShdKkoaEkiioq9eZ6vbslFzvNQ4i_yK9ixo8QC8St1-xE2t15e2e-AXjrG51Ja4wb97h2pRTcVdxgIIchkqditIbl6_lkGp5dyi9XwdUe_Gp6YaissrGJpaHWRUbfyLsCY-cIfVEQd21dFjEbjj4tbl2aIEUvrc04jbQes6CPS7ixusnj3Pz8genc6ng8RN6_8_3R6bfBmVtPHHAzjGTWbhBaVH500pJQZjzrpdZEJogUt5FWPLTCBL7GGNsaxT3LVSbQgxppDCHplSAI6A72I-oX7cD-yel0drH94kMInJiPVdBHQsS8q6tqOsJjRsfreUL6LfdYThH421fsOMt2IeeOZxw9gPt1SMv6lQwewp7JH8LBpH60fwSLPpumywphnFVvEaywJX0FX8HGO7igbJ6zycXY_byZa6PZjLpSMB5mAxLPJRtWh5mvPrK-1mURb37D8NrZoBkLs3oMl3dy7U-gkxe5eQYME-4wM1oJjollpLWKkM7r6VRoya2yDnxo7jdZVHgeCeZBxI7kH-xw4IR4sCUlMO7yh2J5k9S6nSihuLKYKKc6lhpTNGtxeyruRTYMjMgceE8cTMhkIJuytO58wB0T-FbS70m0jNTD7MBRixJVPWsvNzKQ1KZmlfxRDAfebJfpn1Q-l5tiU9JgFCIwO3DgaSUy2yNhxM7D2JMO9FrC1DpzeyWffy-ByAmZRMrYe_7_fb2GA1TV5Ot4ev4C7vk0QJlTaeURdNbLjXmJUd1avarVhcH1XWvob-vvYUI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Narrative+Review+of+Artificial+Intelligence+in+MRI-Guided+Prostate+Cancer+Diagnosis%3A+Addressing+Key+Challenges&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Alis%2C+Deniz&rft.au=Onay%2C+Aslihan&rft.au=Colak%2C+Evrim&rft.au=Karaarslan%2C+Ercan&rft.date=2025-05-26&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=11&rft.spage=1342&rft_id=info:doi/10.3390%2Fdiagnostics15111342&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics15111342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |