A Narrative Review of Artificial Intelligence in MRI-Guided Prostate Cancer Diagnosis: Addressing Key Challenges

Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and rad...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 15; no. 11; p. 1342
Main Authors Alis, Deniz, Onay, Aslihan, Colak, Evrim, Karaarslan, Ercan, Bakir, Baris
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.05.2025
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics15111342

Cover

Abstract Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI’s generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI’s widespread clinical adoption.
AbstractList Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI's generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI's widespread clinical adoption.Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI's generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI's widespread clinical adoption.
Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods: This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results: AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI’s generalizability, limiting its broader clinical application. Conclusions: While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI’s widespread clinical adoption.
Background/Objectives : Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. Methods : This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. Results : AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI’s generalizability, limiting its broader clinical application. Conclusions : While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI’s widespread clinical adoption.
: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However, variability in MRI-targeted diagnostic pathways arises due to factors such as patient characteristics, imaging protocols, and radiologist expertise. Artificial intelligence (AI) offers potential solutions to these challenges by enhancing diagnostic accuracy and efficiency. : This narrative review explores AI techniques, particularly machine learning and deep learning, in the context of prostate cancer diagnosis. It examines their application in improving MRI scan quality, detecting artifacts, and assisting radiologists in lesion detection and interpretation. It also considers how AI helps to reduce reading time and inter-reader variability. : AI has demonstrated sensitivity that is generally comparable to experienced radiologists, although specificity tends to be lower, potentially increasing false-positive rates. The clinical impact of these results requires validation in larger, prospective multicenter studies. AI is effective in identifying artifacts, assessing MRI quality, and assisting in diagnostic efficiency by providing second opinions and automating lesion detection. However, variability in study methodologies, datasets, and imaging protocols can impact AI's generalizability, limiting its broader clinical application. : While AI shows significant promise in enhancing diagnostic accuracy and efficiency for csPCa detection, challenges remain, particularly with the generalizability of AI models. To improve AI robustness and integration into clinical practice, multicenter datasets and transparent reporting are essential. Further development, validation, and standardization are required for AI's widespread clinical adoption.
Audience Academic
Author Onay, Aslihan
Karaarslan, Ercan
Alis, Deniz
Colak, Evrim
Bakir, Baris
AuthorAffiliation 1 Department of Radiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34750 Istanbul, Atasehir, Turkey; deniz.alis@acibadem.edu.tr (D.A.); ercan.karaarslan@acibadem.edu.tr (E.K.)
3 Electrical and Electronics Engineering Department, Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey
5 Department of Radiology, Istanbul Faculty of Medicine, Istanbul University Capa, 34093 Istanbul, Fatih, Turkey; drbarisbakir@yahoo.com
2 Department of Radiology, Faculty of Medicine, TOBB University of Economics and Technology, Beştepe Mah Yasam Cad No. 5, 06510 Ankara, Yenimahalle, Turkey; aslionay@gmail.com
4 Turkish Accelerator and Radiation Laboratory (TARLA), Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey
AuthorAffiliation_xml – name: 4 Turkish Accelerator and Radiation Laboratory (TARLA), Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey
– name: 5 Department of Radiology, Istanbul Faculty of Medicine, Istanbul University Capa, 34093 Istanbul, Fatih, Turkey; drbarisbakir@yahoo.com
– name: 2 Department of Radiology, Faculty of Medicine, TOBB University of Economics and Technology, Beştepe Mah Yasam Cad No. 5, 06510 Ankara, Yenimahalle, Turkey; aslionay@gmail.com
– name: 3 Electrical and Electronics Engineering Department, Ankara University, 50. Yil Yerleskesi Bahcelievler Mah, 06830 Ankara, Golbasi, Turkey
– name: 1 Department of Radiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34750 Istanbul, Atasehir, Turkey; deniz.alis@acibadem.edu.tr (D.A.); ercan.karaarslan@acibadem.edu.tr (E.K.)
Author_xml – sequence: 1
  givenname: Deniz
  surname: Alis
  fullname: Alis, Deniz
– sequence: 2
  givenname: Aslihan
  surname: Onay
  fullname: Onay, Aslihan
– sequence: 3
  givenname: Evrim
  orcidid: 0000-0002-4961-5060
  surname: Colak
  fullname: Colak, Evrim
– sequence: 4
  givenname: Ercan
  surname: Karaarslan
  fullname: Karaarslan, Ercan
– sequence: 5
  givenname: Baris
  orcidid: 0000-0002-6587-9787
  surname: Bakir
  fullname: Bakir, Baris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40506914$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFCEUhompse3aX2BiSLzxZisMMDN4YzZrrRvrRxq9JgwcpmxmYYXZNf33sm6tXVO4gBweXs57OKfoKMQACL2g5JwxSd5Yr_sQ8-hNpoJSynj1BJ1UpBFTzml79GB_jM5yXpIyJGVtJZ6hY04EqSXlJ2g9w190Snr0W8DXsPXwC0eHZ2n0zhuvB7wIIwyD7yEYwD7gz9eL6eXGW7D4WyoZ6BHwXJfDhN_vk_L5LZ5ZmyBnH3r8CW7x_EYPA4Qe8nP01Okhw9ndOkE_Plx8n3-cXn29XMxnV1MjqBynonaS0pozThsiqKPaQQOi6YhrbEdqx0BUtm6Eg45QRzpTrBHgAKSUglRsghZ7XRv1Uq2TX-l0q6L26k8gpl7pYtIMoDrWkc5xIrWV3AohnStanWwbVwtgpmi922utN90KrIEwJj0ciB6eBH-j-rhVtKKC81L2CXp9p5Dizw3kUa18NqWuOkDcZMUq2vKGkZYU9NV_6DJuUii12lFNU3Eu5D-q18WBDy6Wh81OVM1aLiipiNxR549QZVpYeVM6yvkSP7jw8qHTe4t_G6YAbA-Y8vc5gbtHKFG7zlSPdCb7DQIs1rI
Cites_doi 10.1002/jmri.29108
10.3390/diagnostics12040799
10.1007/s00330-021-08021-6
10.1002/mp.14855
10.3390/diagnostics11060959
10.1007/s00330-019-06085-z
10.1007/s00330-011-2377-y
10.1259/bjr.20211378
10.1259/bjr.20201434
10.1016/j.media.2013.05.008
10.1007/s00330-021-08399-3
10.1016/j.acra.2024.10.009
10.1186/s40644-023-00527-0
10.1148/radiol.240238
10.1007/s00261-024-04396-4
10.3389/fonc.2022.958065
10.1016/j.euo.2020.02.005
10.3322/caac.21660
10.1002/jmri.27879
10.1038/nature14539
10.1007/s00261-019-01961-0
10.1148/radiol.204097
10.1111/bju.15285
10.1186/s13244-021-01058-7
10.1016/S0140-6736(16)32401-1
10.1002/jmri.27599
10.1016/j.ejrad.2023.110953
10.3390/cancers13133318
10.1001/jama.2016.17216
10.1117/1.JMI.5.4.044501
10.1016/j.ejrad.2023.111017
10.1016/j.ejrad.2023.111091
10.1016/j.euo.2020.06.007
10.1016/j.media.2024.103404
10.1148/ryai.2020200029
10.1016/j.acra.2024.12.012
10.1016/j.media.2021.102155
10.1186/s13244-023-01439-0
10.1088/2632-2153/ada8f3
10.1007/s10462-024-11005-9
10.1001/jamanetworkopen.2024.34622
10.1148/ryai.230521
10.1056/NEJMoa1801993
10.1148/radiol.2020190646
10.1002/ijc.29538
10.1002/jmri.27992
10.1016/j.eururo.2020.09.042
10.1016/j.crad.2018.12.003
10.1016/j.ejrad.2024.111716
10.5489/cuaj.7347
10.1016/j.ejrad.2024.111790
10.1186/s13244-021-00996-6
10.1002/jmri.28891
10.1111/bju.16452
10.1007/s00330-020-07527-9
10.1007/s00330-023-09882-9
10.1016/j.ejrad.2023.110923
10.1016/j.ejrad.2021.109600
10.1007/s00330-021-08320-y
10.1016/j.cmpb.2023.107624
10.1097/RLI.0000000000000780
10.1136/bmjopen-2023-074009
10.1002/jmri.28608
10.1002/jmri.25645
10.1016/j.cmpb.2021.106609
10.1007/s00261-021-02964-6
10.3389/fnins.2022.933660
10.1007/s00330-020-07027-w
10.1148/radiol.223128
10.3390/diagnostics14222576
10.3174/ajnr.A5543
10.3390/diagnostics12020289
10.1038/s41416-022-02137-2
10.1016/j.eururo.2019.02.033
10.1007/s00330-024-10795-4
10.1002/jmri.29031
10.1186/s41747-022-00287-9
10.1007/s00259-022-06036-9
10.1002/path.6373
10.1002/jmri.29025
10.1007/s00330-021-08169-1
10.1016/j.ejrad.2021.110012
10.1109/TMI.2016.2538465
10.1007/s10334-020-00871-3
10.1109/TMI.2016.2528162
10.1016/j.compbiomed.2022.106168
10.1007/s00261-024-04468-5
10.1016/j.euo.2024.11.001
10.1177/0846537120943886
10.1016/S1470-2045(24)00220-1
10.3390/math10152733
10.1148/radiol.232635
10.1016/j.eururo.2022.04.002
10.2214/AJR.21.26917
10.1177/17562872221109020
10.1002/mp.17546
10.1016/j.eururo.2007.09.002
10.21037/qims-23-1600
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics15111342
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_b3b0bf409ad94d559ff820b987f65e3c
PMC12154491
A845102099
40506914
10_3390_diagnostics15111342
Genre Journal Article
Review
GeographicLocations Turkey
GeographicLocations_xml – name: Turkey
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
M48
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c519t-56f911643417051f1afe7e57b0f7db06f3e52d675feb01f0bc3820e4ee0342023
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 00:24:26 EDT 2025
Thu Aug 21 18:24:42 EDT 2025
Fri Sep 05 15:53:22 EDT 2025
Sat Aug 23 12:55:07 EDT 2025
Wed Jun 25 16:51:38 EDT 2025
Tue Jul 01 05:43:33 EDT 2025
Mon Jul 21 05:36:11 EDT 2025
Sun Jul 06 05:08:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords machine learning (ML)
prostate cancer (PCa)
artificial intelligence (AI)
magnetic resonance imaging (MRI) of prostate
deep learning (DL)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-56f911643417051f1afe7e57b0f7db06f3e52d675feb01f0bc3820e4ee0342023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-4961-5060
0000-0002-6587-9787
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics15111342
PMID 40506914
PQID 3217724459
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_b3b0bf409ad94d559ff820b987f65e3c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12154491
proquest_miscellaneous_3218473080
proquest_journals_3217724459
gale_infotracmisc_A845102099
gale_infotracacademiconefile_A845102099
pubmed_primary_40506914
crossref_primary_10_3390_diagnostics15111342
PublicationCentury 2000
PublicationDate 2025-05-26
PublicationDateYYYYMMDD 2025-05-26
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tiessen (ref_92) 2021; 12
Netzer (ref_85) 2023; 33
Giganti (ref_91) 2021; 12
ref_11
Bayerl (ref_81) 2024; 181
ref_98
Mottet (ref_10) 2021; 79
Jendoubi (ref_38) 2019; 29
ref_95
Bell (ref_2) 2015; 137
Turkbey (ref_14) 2021; 72
Cai (ref_96) 2024; 312
Park (ref_40) 2022; 55
Li (ref_88) 2025; 52
Kim (ref_41) 2021; 145
Jung (ref_37) 2022; 95
Wang (ref_93) 2021; 46
ref_29
Ponsiglione (ref_47) 2024; 181
Thomas (ref_104) 2023; 13
Lin (ref_51) 2024; 49
Lee (ref_36) 2023; 166
Basar (ref_45) 2023; 165
Cipollari (ref_49) 2022; 55
Padhani (ref_13) 2021; 31
Shin (ref_26) 2016; 35
ref_76
Sunoqrot (ref_94) 2021; 34
Turkbey (ref_17) 2019; 76
Sun (ref_97) 2023; 58
Westphalen (ref_53) 2020; 296
Li (ref_60) 2025; 100
Pereira (ref_27) 2016; 35
Karagoz (ref_87) 2023; 14
Caglic (ref_16) 2019; 74
Giganti (ref_18) 2020; 3
Drost (ref_8) 2017; 5
Ahmed (ref_9) 2017; 389
LeCun (ref_28) 2015; 521
ref_83
ref_82
Mongan (ref_103) 2020; 2
Winkel (ref_80) 2021; 56
Sung (ref_1) 2021; 71
Urase (ref_52) 2021; 95
Fleming (ref_46) 2023; 168
ref_89
Flannery (ref_72) 2025; 265
Belue (ref_23) 2022; 6
Zheng (ref_74) 2025; 32
Saha (ref_102) 2021; 73
Greer (ref_55) 2017; 46
Barentsz (ref_20) 2012; 22
Chen (ref_73) 2025; 32
Yu (ref_77) 2023; 128
ref_57
Li (ref_59) 2024; 6
Netzer (ref_100) 2024; 59
Turkbey (ref_21) 2023; 307
Zhao (ref_86) 2023; 50
Barentsz (ref_42) 2022; 32
Heidenreich (ref_3) 2008; 53
Kordbacheh (ref_34) 2019; 44
Armato (ref_84) 2018; 5
Javed (ref_62) 2025; 58
Coelho (ref_48) 2024; 49
ref_68
Gulshan (ref_25) 2016; 316
ref_67
ref_66
ref_64
Wei (ref_12) 2023; 210
ref_63
Penzkofer (ref_105) 2021; 31
Gassenmaier (ref_33) 2021; 137
Turkbey (ref_65) 2022; 219
Lin (ref_50) 2024; 59
Hosseinzadeh (ref_78) 2022; 32
Zhao (ref_61) 2025; 6
Kasivisvanathan (ref_7) 2018; 378
Nsugbe (ref_58) 2024; 2
Ursprung (ref_39) 2023; 165
Taya (ref_54) 2024; 134
Tan (ref_6) 2024; 7
Hu (ref_99) 2023; 23
Woernle (ref_43) 2024; 59
Barrett (ref_56) 2021; 127
Jia (ref_24) 2024; 14
ref_30
Saad (ref_5) 2021; 15
Ferro (ref_69) 2022; 14
Allen (ref_19) 2024; 34
Ueda (ref_35) 2022; 303
Gillessen (ref_4) 2022; 82
Seetharaman (ref_90) 2021; 48
Khosravi (ref_79) 2021; 54
Mir (ref_31) 2024; 60
Giganti (ref_44) 2022; 32
Zaharchuk (ref_70) 2018; 39
Stabile (ref_15) 2020; 3
ref_101
Huang (ref_32) 2025; 314
Cuocolo (ref_75) 2020; 30
Saha (ref_22) 2024; 25
Eklund (ref_71) 2013; 17
References_xml – volume: 60
  start-page: 813
  year: 2024
  ident: ref_31
  article-title: Recent Developments in Speeding up Prostate MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.29108
– ident: ref_68
  doi: 10.3390/diagnostics12040799
– volume: 31
  start-page: 9567
  year: 2021
  ident: ref_105
  article-title: ESUR/ESUI position paper: Developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08021-6
– volume: 48
  start-page: 2960
  year: 2021
  ident: ref_90
  article-title: Automated detection of aggressive and indolent prostate cancer on magnetic resonance imaging
  publication-title: Med. Phys.
  doi: 10.1002/mp.14855
– ident: ref_64
  doi: 10.3390/diagnostics11060959
– volume: 29
  start-page: 5197
  year: 2019
  ident: ref_38
  article-title: MRI for prostate cancer: Can computed high b-value DWI replace native acquisitions?
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06085-z
– volume: 22
  start-page: 746
  year: 2012
  ident: ref_20
  article-title: ESUR prostate MR guidelines 2012
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-011-2377-y
– volume: 95
  start-page: 20211378
  year: 2022
  ident: ref_37
  article-title: Convolutional neural network-based reconstruction for acceleration of prostate T2 weighted MR imaging: A retro- and prospective study
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20211378
– volume: 95
  start-page: 20201434
  year: 2021
  ident: ref_52
  article-title: Comparison of prostate imaging reporting and data system v2.1 and 2 in transition and peripheral zones: Evaluation of interreader agreement and diagnostic performance in detecting clinically significant prostate cancer
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20201434
– volume: 17
  start-page: 1073
  year: 2013
  ident: ref_71
  article-title: Medical image processing on the GPU—Past, present and future
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.05.008
– volume: 32
  start-page: 876
  year: 2022
  ident: ref_42
  article-title: PI-QUAL v.1: The first step towards good-quality prostate MRI
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08399-3
– volume: 32
  start-page: 864
  year: 2025
  ident: ref_73
  article-title: A Multimodal Deep Learning Nomogram for the Identification of Clinically Significant Prostate Cancer in Patients with Gray-Zone PSA Levels: Comparison with Clinical and Radiomics Models
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2024.10.009
– volume: 23
  start-page: 6
  year: 2023
  ident: ref_99
  article-title: Automated deep-learning system in the assessment of MRI-visible prostate cancer: Comparison of advanced zoomed diffusion-weighted imaging and conventional technique
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-023-00527-0
– volume: 314
  start-page: e240238
  year: 2025
  ident: ref_32
  article-title: Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer
  publication-title: Radiology
  doi: 10.1148/radiol.240238
– volume: 49
  start-page: 4556
  year: 2024
  ident: ref_48
  article-title: Strategies for improving image quality in prostate MRI
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-024-04396-4
– ident: ref_95
  doi: 10.3389/fonc.2022.958065
– volume: 3
  start-page: 145
  year: 2020
  ident: ref_15
  article-title: Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review
  publication-title: Eur. Urol. Oncol.
  doi: 10.1016/j.euo.2020.02.005
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_1
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 55
  start-page: 480
  year: 2022
  ident: ref_49
  article-title: Convolutional Neural Networks for Automated Classification of Prostate Multiparametric Magnetic Resonance Imaging Based on Image Quality
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27879
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2
  start-page: 263
  year: 2024
  ident: ref_58
  article-title: Towards Unsupervised Learning Driven Intelligence for Prediction of Prostate Cancer
  publication-title: Artifi. Intell. Appl.
– volume: 44
  start-page: 2244
  year: 2019
  ident: ref_34
  article-title: Image quality and diagnostic accuracy of complex-averaged high b value images in diffusion-weighted MRI of prostate cancer
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-019-01961-0
– volume: 303
  start-page: 373
  year: 2022
  ident: ref_35
  article-title: Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging
  publication-title: Radiology
  doi: 10.1148/radiol.204097
– ident: ref_83
– volume: 127
  start-page: 304
  year: 2021
  ident: ref_56
  article-title: Certification in reporting multiparametric magnetic resonance imaging of the prostate: Recommendations of a UK consensus meeting
  publication-title: BJU Int.
  doi: 10.1111/bju.15285
– volume: 12
  start-page: 112
  year: 2021
  ident: ref_92
  article-title: Improving workflow in prostate MRI: AI-based decision-making on biparametric or multiparametric MRI
  publication-title: Insights Imaging
  doi: 10.1186/s13244-021-01058-7
– volume: 389
  start-page: 815
  year: 2017
  ident: ref_9
  article-title: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)32401-1
– volume: 54
  start-page: 462
  year: 2021
  ident: ref_79
  article-title: A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology–Radiology Fusion
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27599
– volume: 165
  start-page: 110953
  year: 2023
  ident: ref_39
  article-title: Accelerated diffusion-weighted imaging of the prostate using deep learning image reconstruction: A retrospective comparison with standard diffusion-weighted imaging
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2023.110953
– ident: ref_57
  doi: 10.3390/cancers13133318
– volume: 316
  start-page: 2402
  year: 2016
  ident: ref_25
  article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 5
  start-page: 044501
  year: 2018
  ident: ref_84
  article-title: PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.4.044501
– volume: 166
  start-page: 111017
  year: 2023
  ident: ref_36
  article-title: Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2023.111017
– volume: 168
  start-page: 111091
  year: 2023
  ident: ref_46
  article-title: Inter-reader variability and reproducibility of the PI-QUAL score in a multicentre setting
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2023.111091
– ident: ref_11
– volume: 3
  start-page: 615
  year: 2020
  ident: ref_18
  article-title: Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial
  publication-title: Eur. Urol. Oncol.
  doi: 10.1016/j.euo.2020.06.007
– volume: 100
  start-page: 103404
  year: 2025
  ident: ref_60
  article-title: CLMS: Bridging domain gaps in medical imaging segmentation with source-free continual learning for robust knowledge transfer and adaptation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2024.103404
– volume: 2
  start-page: e200029
  year: 2020
  ident: ref_103
  article-title: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2020200029
– volume: 32
  start-page: 2709
  year: 2025
  ident: ref_74
  article-title: An Automatic Deep-Radiomics Framework for Prostate Cancer Diagnosis and Stratification in Patients with Serum Prostate-Specific Antigen of 4.0-10.0 ng/mL: A Multicenter Retrospective Study
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2024.12.012
– volume: 73
  start-page: 102155
  year: 2021
  ident: ref_102
  article-title: End-to-end prostate cancer detection in bpMRI via 3D CNNs: Effects of attention mechanisms, clinical priori and decoupled false positive reduction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102155
– volume: 14
  start-page: 110
  year: 2023
  ident: ref_87
  article-title: Anatomically guided self-adapting deep neural network for clinically significant prostate cancer detection on bi-parametric MRI: A multi-center study
  publication-title: Insights Imaging
  doi: 10.1186/s13244-023-01439-0
– volume: 6
  start-page: 015015
  year: 2025
  ident: ref_61
  article-title: Deep unsupervised clustering for prostate auto-segmentation with and without hydrogel spacer
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/ada8f3
– volume: 58
  start-page: 12
  year: 2025
  ident: ref_62
  article-title: Robustness in deep learning models for medical diagnostics: Security and adversarial challenges towards robust AI applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-11005-9
– volume: 7
  start-page: e2434622
  year: 2024
  ident: ref_6
  article-title: Incidence, Prevalence, and Survival of Prostate Cancer in the UK
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2024.34622
– volume: 6
  start-page: e230521
  year: 2024
  ident: ref_59
  article-title: Deep Learning–based Unsupervised Domain Adaptation via a Unified Model for Prostate Lesion Detection Using Multisite Biparametric MRI Datasets
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.230521
– volume: 378
  start-page: 1767
  year: 2018
  ident: ref_7
  article-title: MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1801993
– volume: 296
  start-page: 76
  year: 2020
  ident: ref_53
  article-title: Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel
  publication-title: Radiology
  doi: 10.1148/radiol.2020190646
– volume: 137
  start-page: 1749
  year: 2015
  ident: ref_2
  article-title: Prevalence of incidental prostate cancer: A systematic review of autopsy studies
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29538
– volume: 55
  start-page: 1735
  year: 2022
  ident: ref_40
  article-title: Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27992
– volume: 79
  start-page: 243
  year: 2021
  ident: ref_10
  article-title: EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer;2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2020.09.042
– volume: 74
  start-page: 831
  year: 2019
  ident: ref_16
  article-title: Optimising prostate mpMRI: Prepare for success
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2018.12.003
– volume: 181
  start-page: 111716
  year: 2024
  ident: ref_47
  article-title: PI-QUAL version 2: A Multi-Reader reproducibility study on multiparametric MRI from a tertiary referral center
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2024.111716
– volume: 15
  start-page: 353
  year: 2021
  ident: ref_5
  article-title: Results from a Canadian consensus forum of key controversial areas in the management of advanced prostate cancer: Recommendations for Canadian healthcare providers
  publication-title: Can. Urol. Assoc. J.
  doi: 10.5489/cuaj.7347
– volume: 181
  start-page: 111790
  year: 2024
  ident: ref_81
  article-title: Assessment of a fully-automated diagnostic AI software in prostate MRI: Clinical evaluation and histopathological correlation
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2024.111790
– volume: 12
  start-page: 59
  year: 2021
  ident: ref_91
  article-title: Understanding PI-QUAL for prostate MRI quality: A practical primer for radiologists
  publication-title: Insights Imaging
  doi: 10.1186/s13244-021-00996-6
– volume: 59
  start-page: 1409
  year: 2024
  ident: ref_100
  article-title: Weakly Supervised MRI Slice-Level Deep Learning Classification of Prostate Cancer Approximates Full Voxel- and Slice-Level Annotation: Effect of Increasing Training Set Size
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.28891
– volume: 134
  start-page: 510
  year: 2024
  ident: ref_54
  article-title: Perspectives on technology: Prostate Imaging-Reporting and Data System (PI-RADS) interobserver variability
  publication-title: BJU Int.
  doi: 10.1111/bju.16452
– volume: 31
  start-page: 4386
  year: 2021
  ident: ref_13
  article-title: A multifaceted approach to quality in the MRI-directed biopsy pathway for prostate cancer diagnosis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07527-9
– volume: 33
  start-page: 7463
  year: 2023
  ident: ref_85
  article-title: Application of a validated prostate MRI deep learning system to independent same-vendor multi-institutional data: Demonstration of transferability
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-023-09882-9
– volume: 165
  start-page: 110923
  year: 2023
  ident: ref_45
  article-title: Inter-reader agreement of the prostate imaging quality (PI-QUAL) score for basic readers in prostate MRI: A multi-center study
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2023.110923
– volume: 137
  start-page: 109600
  year: 2021
  ident: ref_33
  article-title: Deep learning-accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.109600
– volume: 32
  start-page: 2224
  year: 2022
  ident: ref_78
  article-title: Deep learning–assisted prostate cancer detection on bi-parametric MRI: Minimum training data size requirements and effect of prior knowledge
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08320-y
– ident: ref_101
  doi: 10.1016/j.cmpb.2023.107624
– volume: 56
  start-page: 605
  year: 2021
  ident: ref_80
  article-title: A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0000000000000780
– volume: 13
  start-page: e074009
  year: 2023
  ident: ref_104
  article-title: Use of artificial intelligence in the detection of primary prostate cancer in multiparametric MRI with its clinical outcomes: A protocol for a systematic review and meta-analysis
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2023-074009
– volume: 58
  start-page: 1067
  year: 2023
  ident: ref_97
  article-title: Deep-Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi-Parametric MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.28608
– volume: 46
  start-page: 11
  year: 2017
  ident: ref_55
  article-title: PI-RADSv2: How we do it
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25645
– ident: ref_67
  doi: 10.1016/j.cmpb.2021.106609
– volume: 46
  start-page: 3378
  year: 2021
  ident: ref_93
  article-title: Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-021-02964-6
– volume: 210
  start-page: 45
  year: 2023
  ident: ref_12
  article-title: Early detection of prostate cancer: AUA/SUO guideline part I: Prostate cancer screening
  publication-title: J. Urol.
– ident: ref_29
  doi: 10.3389/fnins.2022.933660
– volume: 30
  start-page: 6877
  year: 2020
  ident: ref_75
  article-title: Machine learning for the identification of clinically significant prostate cancer on MRI: A meta-analysis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07027-w
– volume: 307
  start-page: e223128
  year: 2023
  ident: ref_21
  article-title: PI-RADS: Where Next?
  publication-title: Radiology
  doi: 10.1148/radiol.223128
– ident: ref_76
  doi: 10.3390/diagnostics14222576
– volume: 39
  start-page: 1776
  year: 2018
  ident: ref_70
  article-title: Deep Learning in Neuroradiology
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5543
– ident: ref_66
– volume: 5
  start-page: CD012663
  year: 2017
  ident: ref_8
  article-title: MRI pathway and TRUS-guided biopsy for detecting clinically significant prostate cancer
  publication-title: Cochrane Database Syst. Rev.
– ident: ref_63
  doi: 10.3390/diagnostics12020289
– volume: 128
  start-page: 1019
  year: 2023
  ident: ref_77
  article-title: PI-RADSAI: Introducing a new human-in-the-loop AI model for prostate cancer diagnosis based on MRI
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-022-02137-2
– volume: 76
  start-page: 340
  year: 2019
  ident: ref_17
  article-title: Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2019.02.033
– volume: 34
  start-page: 7068
  year: 2024
  ident: ref_19
  article-title: PI-QUAL version 2: An update of a standardised scoring system for the assessment of image quality of prostate MRI
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-024-10795-4
– ident: ref_82
– volume: 59
  start-page: 2215
  year: 2024
  ident: ref_50
  article-title: Deep Learning-Based T2-Weighted MR Image Quality Assessment and Its Impact on Prostate Cancer Detection Rates
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.29031
– volume: 6
  start-page: 33
  year: 2022
  ident: ref_23
  article-title: Tasks for artificial intelligence in prostate MRI
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-022-00287-9
– volume: 50
  start-page: 727
  year: 2023
  ident: ref_86
  article-title: Predicting clinically significant prostate cancer with a deep learning approach: A multicentre retrospective study
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-022-06036-9
– volume: 265
  start-page: 146
  year: 2025
  ident: ref_72
  article-title: Stress testing deep learning models for prostate cancer detection on biopsies and surgical specimens
  publication-title: J. Pathol.
  doi: 10.1002/path.6373
– volume: 59
  start-page: 1930
  year: 2024
  ident: ref_43
  article-title: Picture Perfect: The Status of Image Quality in Prostate MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.29025
– volume: 32
  start-page: 879
  year: 2022
  ident: ref_44
  article-title: Inter-reader agreement of the PI-QUAL score for prostate MRI quality in the NeuroSAFE PROOF trial
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08169-1
– volume: 145
  start-page: 110012
  year: 2021
  ident: ref_41
  article-title: Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.110012
– volume: 35
  start-page: 1240
  year: 2016
  ident: ref_27
  article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 34
  start-page: 309
  year: 2021
  ident: ref_94
  article-title: Automated reference tissue normalization of T2-weighted MR images of the prostate using object recognition
  publication-title: Magn. Reson. Mater. Phys. Biol. Med.
  doi: 10.1007/s10334-020-00871-3
– volume: 35
  start-page: 1285
  year: 2016
  ident: ref_26
  article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: ref_98
  doi: 10.1016/j.compbiomed.2022.106168
– volume: 49
  start-page: 2891
  year: 2024
  ident: ref_51
  article-title: Deep learning-based image quality assessment: Impact on detection accuracy of prostate cancer extraprostatic extension on MRI
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-024-04468-5
– ident: ref_89
  doi: 10.1016/j.euo.2024.11.001
– volume: 72
  start-page: 337
  year: 2021
  ident: ref_14
  article-title: Factors Impacting Performance and Reproducibility of PI-RADS
  publication-title: Can. Assoc. Radiol. J.
  doi: 10.1177/0846537120943886
– volume: 25
  start-page: 879
  year: 2024
  ident: ref_22
  article-title: Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(24)00220-1
– ident: ref_30
  doi: 10.3390/math10152733
– volume: 312
  start-page: e232635
  year: 2024
  ident: ref_96
  article-title: Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI
  publication-title: Radiology
  doi: 10.1148/radiol.232635
– volume: 82
  start-page: 115
  year: 2022
  ident: ref_4
  article-title: Management of Patients with Advanced Prostate Cancer: Report from the Advanced Prostate Cancer Consensus Conference 2021
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2022.04.002
– volume: 219
  start-page: 188
  year: 2022
  ident: ref_65
  article-title: Artificial Intelligence for Automated Cancer Detection on Prostate MRI: Opportunities and Ongoing Challenges, From the AJR Special Series on AI Applications
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.21.26917
– volume: 14
  start-page: 17562872221109020
  year: 2022
  ident: ref_69
  article-title: Radiomics in prostate cancer: An up-to-date review
  publication-title: Ther. Adv. Urol.
  doi: 10.1177/17562872221109020
– volume: 52
  start-page: 993
  year: 2025
  ident: ref_88
  article-title: Cross-shaped windows transformer with self-supervised pretraining for clinically significant prostate cancer detection in bi-parametric MRI
  publication-title: Med. Phys.
  doi: 10.1002/mp.17546
– volume: 53
  start-page: 68
  year: 2008
  ident: ref_3
  article-title: EAU Guidelines on Prostate Cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2007.09.002
– volume: 14
  start-page: 3501
  year: 2024
  ident: ref_24
  article-title: Application of convolutional neural networks in medical images: A bibliometric analysis
  publication-title: Quant. Imaging. Med. Surg.
  doi: 10.21037/qims-23-1600
SSID ssj0000913825
Score 2.2958667
SecondaryResourceType review_article
Snippet Background/Objectives: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer...
: Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer (csPCa). However,...
Background/Objectives : Magnetic resonance imaging (MRI) is crucial in detecting suspicious lesions and diagnosing clinically significant prostate cancer...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1342
SubjectTerms Accuracy
Algorithms
Artificial intelligence
artificial intelligence (AI)
Biopsy
Cancer
Deep learning
deep learning (DL)
Diagnosis
Machine learning
machine learning (ML)
Magnetic resonance imaging
magnetic resonance imaging (MRI) of prostate
Medical imaging equipment
Mortality
Neural networks
Prostate cancer
prostate cancer (PCa)
Quality standards
Reproducibility
Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2hPSAuiG8CCzISEheitWsnafZWCssuqCuEWGlvVhyPoZd01Y8D_35n7LRKBBIXrvVEij3jmfea8TPA2wn61gTEvJ5KnxujZe4kEpAjiKRcTdkwfj1fXJbnV-bLdXE9uOqLe8KSPHBauBOnnXSBWEjja-MJ_4ZARcsRVQ5lgbrl7EtlbECmYg6uWVuvSDJDmnj9iU-da6x9TEVOKW0mo1IUFfv_zMuDwjRumhxUobMHcL-Hj2KWXvsh3MHuEdxd9B_IH8PNTFw266TmLdL__mIVon2SihAXAw1OsezE4vtF_nm39OjFNz4BQthTzDkU1uJjmsxycypm3seG2e6n-Iq_xXx_BcvmCVydffoxP8_7SxXylsDaNi_KQPmNcIhhIR0VVBOwwqJyMlTeyTJoLCaeaERAJ1WQrqWFlGgQWSyQKvxTOOpWHT4HQeS2bNE7LYnEVd67iuzU1DfaGxlcyOD9fn3tTdLOsMQ52B32L-7I4AP74GDKwtfxBwoH24eD_Vc4ZPCOPWh5e5Kb2qY_ZUBvzEJXdjY1lIX4vHAGxyNL2lbteHgfA7bf1huricBVBIgKGn5zGOYnuVWtw9Uu2lDF14TEM3iWQuYwJULHsqyVyWA6CqbRnMcj3fJXFP1mFRBjavXif6zSS7g34XuMJXc4HsPRdr3DVwSutu513Ee3gXojuw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrYS4IMoz0CIjIXEhqhM7LySEtktLC9pVVVGptyiOx2UvybKPA_-emTy2GxVxjR3Jzry-icffALwP0ZbaIfpZKq2vtZK-kUhAjiBSYDLyhs3p-XQWn1_r7zfRzR7M-rswXFbZ-8TGUdu65H_kx4qwc0KxKMq-LH773DWKT1f7FhpF11rBfm4oxh7AfshdlUewf3I6u7za_nVhFkzKiVr6IUX5_rFtK9qYE5mCXxAoHQ5CVMPkf99f7wSsYTHlTnQ6ewKPO1gpxq0eHMAeVk_h4bQ7OH8Gi7GYFcuW5Vu05wGids38lkJCXOxwc4p5JaZXF_63zdyiFZd8M4QwqZiwiizF13Yz89UnMba2KaStbsUP_CMmfWuW1XO4Pjv9OTn3u2YLfkkgbu1HsSO_R_hEM8FO4ILCYYJRYqRLrJGxUxiFltILh0YGTpqSPqREjcgkghT5X8Coqit8BYKS3rhEa5Sk5C6x1iQ0L0htoayWzjgPPvbfN1-0nBo55SIsjvwf4vDghGWwncqE2M2Denmbd_aVG2WkcZSsFjbTltIk52h5JksTF0eoSg8-sARzNlsSU1l0tw9oxUyAlY9TTd6J7xF7cDiYSeZWDod7Hcg7c1_ld8rpwbvtML_JJWwV1ptmDiEBRQjdg5etymy3RKhZxlmgPUgHyjTY83Ckmv9qyMCZHUTrLHj9_3W9gUchdy6WXNN4CKP1coNHBKfW5m1nI38Bc3shPQ
  priority: 102
  providerName: ProQuest
Title A Narrative Review of Artificial Intelligence in MRI-Guided Prostate Cancer Diagnosis: Addressing Key Challenges
URI https://www.ncbi.nlm.nih.gov/pubmed/40506914
https://www.proquest.com/docview/3217724459
https://www.proquest.com/docview/3218473080
https://pubmed.ncbi.nlm.nih.gov/PMC12154491
https://doaj.org/article/b3b0bf409ad94d559ff820b987f65e3c
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEA_HHYgv4rerZ4kg-OJqssl-CSK9eued0nIcFu5t2WwmZ0G257YF7793Jrtbung--NpMS5KZzPymmfyGsdcR2Eo7gDDPhA21ViI0AhDIIUSSJkdv6G_Pp7PkdK6_XsaXe6zvitpt4OrW1I76Sc2bn-9-_7r5hAf-I2WcmLK_t21RGtEaY_ySUmn0yQcYmiIy82mH971rzolyj8oaIwyVODWZtUxE__qdQbTypP5_u-6d2DWsq9wJVCf32b0OYfJxaxIP2B7UD9mdaXeH_ohdj_msbFrCb95eDfCl8_ItmwQ_26Hp5IuaTy_Owi-bhQXLz-mRCMJTPiFrafjndjGL1Qc-ttbX1NZX_Bvc8EnfpWX1mM1Pjr9PTsOu70JYIZ5bh3Hi0AUiVNHEtSOdLB2kEKdGuNQakTgFcWQx03BghHTCVLipAjQA8QkiCHjC9utlDc8Yx_w3qcAaJTDPS601KcrJzJbKauGMC9jbfn-L65Zeo8C0hNRR3KKOgB2RDraixI3tP1g2V0V31AqjjDAO89bS5tpixuQcTs_kWeqSGFQVsDekwYJsCtVUld1DBJwxcWEV40yjo6InxQE7HEjiyauGw70NFL3hFgpzvBQxU4zDr7bD9E2qZqthufEyCAoUgvWAPW1NZrskBNAiyaUOWDYwpsGahyP14ofnBSeiEK1z-fz_NvUFuxtRU2NB5Y6HbH_dbOAlIq21GbGDo-PZ-cXI_1Mx8mfpDy0rKjc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aNgl4QdwJDDASiBeiObGTNEgT6rqNlq3VNG3S3rI4tkdfktKLEH-O38Y5TlIagXjba-1Kts_tO_HxdwDehUYX0hrjpz2ufSkF9xU3COQQIgUqRW_obs_Hk3h4Kb9eRVdb8Kt9C0Nlla1PdI5aVwV9I98TiJ0TjEVR-nn23aeuUXS72rbQyJvWCnrfUYw1DztOzM8fmMIt9keHKO_3YXh8dDEY-k2XAb9A9LL0o9iiwWNglsQsE9ggtyYxUaK4TbTisRUmCjXiamsUDyxXhcCoaaQxxJ7niA8wBOwg7BBoVTsHR5Oz8_VXHmLdxByspjsSIuV7uq6gIw5mDLZBIGTYCYmuc8Df8WEjQHaLNzei4fEDuN_AWNav9e4hbJnyEdwZNxf1j2HWZ5N8XrOKs_r-gVXWza8pK9hogwuUTUs2Ph_5X1ZTbTQ7o5coiIHZgFRyzg7rzUwXn1hfa1e4W94wPHY2aFvBLJ7A5a0c-1PYLqvSPAeGSXZcGK0Ex2Qy0VolOC_o6Vxoya2yHnxszzeb1RweGeY-JI7sH-Lw4IBksJ5KBNzuh2p-kzX2nCmhuLKYHOc6lRrTMmtxeSrtJTaOjCg8-EASzMhNoJiKvHntgCsmwq2s35PoDendsge7nZlo3kV3uNWBrHEvi-yPMXjwdj1M_6SSudJUKzcHkYfAjMCDZ7XKrLeEKJ3HaSA96HWUqbPn7kg5_ebIx4mNRMo0ePH_db2Bu8OL8Wl2OpqcvIR7IXVN5lRPuQvby_nKvEIot1SvG3thcH3bJvobpNBdCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqVRxQZSnocAigbhgZe1d2zFShdKkoaEkiioq9eZ6vbslFzvNQ4i_yK9ixo8QC8St1-xE2t15e2e-AXjrG51Ja4wb97h2pRTcVdxgIIchkqditIbl6_lkGp5dyi9XwdUe_Gp6YaissrGJpaHWRUbfyLsCY-cIfVEQd21dFjEbjj4tbl2aIEUvrc04jbQes6CPS7ixusnj3Pz8genc6ng8RN6_8_3R6bfBmVtPHHAzjGTWbhBaVH500pJQZjzrpdZEJogUt5FWPLTCBL7GGNsaxT3LVSbQgxppDCHplSAI6A72I-oX7cD-yel0drH94kMInJiPVdBHQsS8q6tqOsJjRsfreUL6LfdYThH421fsOMt2IeeOZxw9gPt1SMv6lQwewp7JH8LBpH60fwSLPpumywphnFVvEaywJX0FX8HGO7igbJ6zycXY_byZa6PZjLpSMB5mAxLPJRtWh5mvPrK-1mURb37D8NrZoBkLs3oMl3dy7U-gkxe5eQYME-4wM1oJjollpLWKkM7r6VRoya2yDnxo7jdZVHgeCeZBxI7kH-xw4IR4sCUlMO7yh2J5k9S6nSihuLKYKKc6lhpTNGtxeyruRTYMjMgceE8cTMhkIJuytO58wB0T-FbS70m0jNTD7MBRixJVPWsvNzKQ1KZmlfxRDAfebJfpn1Q-l5tiU9JgFCIwO3DgaSUy2yNhxM7D2JMO9FrC1DpzeyWffy-ByAmZRMrYe_7_fb2GA1TV5Ot4ev4C7vk0QJlTaeURdNbLjXmJUd1avarVhcH1XWvob-vvYUI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Narrative+Review+of+Artificial+Intelligence+in+MRI-Guided+Prostate+Cancer+Diagnosis%3A+Addressing+Key+Challenges&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Alis%2C+Deniz&rft.au=Onay%2C+Aslihan&rft.au=Colak%2C+Evrim&rft.au=Karaarslan%2C+Ercan&rft.date=2025-05-26&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=11&rft.spage=1342&rft_id=info:doi/10.3390%2Fdiagnostics15111342&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics15111342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon