Creatine uptake in mouse hearts with genetically altered creatine levels

Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT i...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular and cellular cardiology Vol. 45; no. 3; pp. 453 - 459
Main Authors Hove, Michiel ten, Makinen, Kimmo, Sebag-Montefiore, Liam, Hunyor, Imre, Fischer, Alexandra, Wallis, Julie, Isbrandt, Dirk, Lygate, Craig, Neubauer, Stefan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2008
Academic Press
Subjects
Online AccessGet full text
ISSN0022-2828
1095-8584
1095-8584
DOI10.1016/j.yjmcc.2008.05.023

Cover

Abstract Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT−/−) mice and from mice overexpressing the myocardial CrT (CrT-OE) using 14C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT−/− mice showed a 7-fold increase in Vmax of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r=0.67; p<0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r=0.01; p=0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.
AbstractList Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT(-/-)) mice and from mice overexpressing the myocardial CrT (CrT-OE) using (14)C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT(-/-) mice showed a 7-fold increase in V(max) of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r=0.67; p<0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r=0.01; p=0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT(-/-)) mice and from mice overexpressing the myocardial CrT (CrT-OE) using (14)C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT(-/-) mice showed a 7-fold increase in V(max) of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r=0.67; p<0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r=0.01; p=0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.
Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT−/−) mice and from mice overexpressing the myocardial CrT (CrT-OE) using 14C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT−/− mice showed a 7-fold increase in Vmax of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r=0.67; p<0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r=0.01; p=0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.
Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate- N -methyl transferase knock out (GAMT −/− ) mice and from mice overexpressing the myocardial CrT (CrT-OE) using 14 C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT −/− mice showed a 7-fold increase in V max of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content ( r  = 0.67; p  < 0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content ( r  = 0.01; p  = 0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.
Abstract Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate- N -methyl transferase knock out (GAMT−/− ) mice and from mice overexpressing the myocardial CrT (CrT-OE) using14 C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT−/− mice showed a 7-fold increase in Vmax of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content ( r = 0.67; p < 0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content ( r = 0.01; p = 0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.
Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT(-/-)) mice and from mice overexpressing the myocardial CrT (CrT-OE) using (14)C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT(-/-) mice showed a 7-fold increase in V(max) of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r=0.67; p<0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r=0.01; p=0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression.
Author Hunyor, Imre
Lygate, Craig
Hove, Michiel ten
Isbrandt, Dirk
Wallis, Julie
Neubauer, Stefan
Sebag-Montefiore, Liam
Fischer, Alexandra
Makinen, Kimmo
AuthorAffiliation b Center for Molecular Neurobiology, University of Hamburg, Hamburg, Germany
a Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
AuthorAffiliation_xml – name: a Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– name: b Center for Molecular Neurobiology, University of Hamburg, Hamburg, Germany
Author_xml – sequence: 1
  givenname: Michiel ten
  surname: Hove
  fullname: Hove, Michiel ten
  email: michiel.tenhove@gmail.com, michiel.tenhove@well.ox.ac.uk
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– sequence: 2
  givenname: Kimmo
  surname: Makinen
  fullname: Makinen, Kimmo
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– sequence: 3
  givenname: Liam
  surname: Sebag-Montefiore
  fullname: Sebag-Montefiore, Liam
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– sequence: 4
  givenname: Imre
  surname: Hunyor
  fullname: Hunyor, Imre
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– sequence: 5
  givenname: Alexandra
  surname: Fischer
  fullname: Fischer, Alexandra
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– sequence: 6
  givenname: Julie
  surname: Wallis
  fullname: Wallis, Julie
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– sequence: 7
  givenname: Dirk
  surname: Isbrandt
  fullname: Isbrandt, Dirk
  organization: Center for Molecular Neurobiology, University of Hamburg, Hamburg, Germany
– sequence: 8
  givenname: Craig
  surname: Lygate
  fullname: Lygate, Craig
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
– sequence: 9
  givenname: Stefan
  surname: Neubauer
  fullname: Neubauer, Stefan
  organization: Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18602925$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9vEzEQxS1URNPCJ0BCe-K2qf-sN14hKlUR0EqVOAASt5EzO9s4dbzBdoLy7dklbQWVoCcfZn7vye_NCTsKfSDGXgs-FVzUZ6vpfrVGnErOzZTrKZfqGZsI3ujSaFMdsQnnUpbSSHPMTlJacc6bSqkX7FiYmstG6gm7nEey2QUqtptsb6lwoVj320TFkmzMqfjp8rK4oUDZofV-X1ifKVJb4D3oaUc-vWTPO-sTvbp7T9m3jx--zi_L68-fruYX1yVq0eRSK9nhTFhciEXVERlrsLZigTONUivRVbWSom3HMZGqVI2ICpXqFp3mtlGn7Pygu9ku1tQihRyth010axv30FsHf0-CW8JNvwOpa2NkPQi8vROI_Y8tpQxrl5C8t4GGj0PdaCmaalx886fTg8V9eMNCc1jA2KcUqQN0ecikH42dB8FhLApW8LsoGIsCrmEoamDVI_ZB_r_U-wM1BE47RxESOgpIrYuEGdrePcGfP-LRuzAWe0t7Sqt-G8NQHghIEjh8GQ9ovB9uOK9ms--DwLt_Czxp_wsmNNkf
CitedBy_id crossref_primary_10_1371_journal_pone_0109021
crossref_primary_10_3389_fphys_2021_623969
crossref_primary_10_1016_j_celrep_2021_109298
crossref_primary_10_1093_cvr_cvs272
crossref_primary_10_1002_bmc_4495
crossref_primary_10_3389_fnut_2021_660021
crossref_primary_10_3389_fphys_2019_01535
crossref_primary_10_1093_eurjhf_hfq174
crossref_primary_10_1016_j_yjmcc_2008_09_125
crossref_primary_10_1016_j_yjmcc_2009_10_029
crossref_primary_10_1016_j_yjmcc_2009_12_001
crossref_primary_10_1007_s10741_021_10173_y
crossref_primary_10_1186_1471_213X_10_70
crossref_primary_10_1007_s00726_016_2236_x
crossref_primary_10_1016_j_ghir_2012_09_002
crossref_primary_10_1007_s12013_011_9165_9
crossref_primary_10_1042_CS20230616
crossref_primary_10_3389_fnut_2022_969702
crossref_primary_10_1152_ajpendo_00637_2012
crossref_primary_10_1007_s00726_016_2206_3
crossref_primary_10_1113_jphysiol_2012_241760
Cites_doi 10.1093/nar/gng154
10.1161/01.CIR.0000165147.99592.01
10.1161/CIRCULATIONAHA.105.572990
10.1152/physrev.2000.80.3.1107
10.1016/0005-2728(96)00018-7
10.1006/jmcc.1996.0143
10.1161/01.RES.0000137170.41939.d9
10.1016/j.yjmcc.2004.11.016
10.1073/pnas.85.3.807
10.1006/geno.1996.0373
10.1093/hmg/ddh112
10.1074/jbc.274.50.35794
10.1056/NEJMra063052
10.1016/j.bbrc.2005.06.164
10.1172/JCI117756
10.1016/S0021-9258(19)49616-6
10.1016/j.yjmcc.2007.03.899
10.1023/B:MCBI.0000009886.98508.e7
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Elsevier Inc.
2008 Elsevier Ltd. 2008 Elsevier Inc.
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: Elsevier Inc.
– notice: 2008 Elsevier Ltd. 2008 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.yjmcc.2008.05.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-8584
EndPage 459
ExternalDocumentID PMC2568826
18602925
10_1016_j_yjmcc_2008_05_023
S002228280800477X
1_s2_0_S002228280800477X
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HLW
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LX2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OL0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
WUQ
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
AACTN
AEHWI
AFCTW
AFKWA
AJOXV
AMFUW
RIG
SSU
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c519t-532fc71acb1b4fee8a8c6a1bc75c2531f46321ddb1b4ee3436ccc3c33fbf50a93
IEDL.DBID .~1
ISSN 0022-2828
1095-8584
IngestDate Thu Aug 21 18:30:29 EDT 2025
Sat Sep 27 22:53:20 EDT 2025
Mon Jul 21 05:58:50 EDT 2025
Tue Jul 01 04:05:10 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Fri Feb 23 02:33:05 EST 2024
Sun Feb 23 10:19:54 EST 2025
Tue Aug 26 16:32:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Creatine transport
GAMT
Energy metabolism
Creatine
Transgenic mouse model
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Open Access under CC BY-NC-ND 3.0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-532fc71acb1b4fee8a8c6a1bc75c2531f46321ddb1b4ee3436ccc3c33fbf50a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first two authors have contributed equally to this work.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S002228280800477X
PMID 18602925
PQID 69521946
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2568826
proquest_miscellaneous_69521946
pubmed_primary_18602925
crossref_citationtrail_10_1016_j_yjmcc_2008_05_023
crossref_primary_10_1016_j_yjmcc_2008_05_023
elsevier_sciencedirect_doi_10_1016_j_yjmcc_2008_05_023
elsevier_clinicalkeyesjournals_1_s2_0_S002228280800477X
elsevier_clinicalkey_doi_10_1016_j_yjmcc_2008_05_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of molecular and cellular cardiology
PublicationTitleAlternate J Mol Cell Cardiol
PublicationYear 2008
Publisher Elsevier Ltd
Academic Press
Publisher_xml – name: Elsevier Ltd
– name: Academic Press
References Boehm, Chan, Monfared, Wallimann, Clarke, Neubauer (bib2) 2003 Feb; 284
Schmidt, Marescau, Boehm, Renema, Peco, Das (bib8) 2004 May 1; 13
Daniels, Amara (bib19) 1999 Dec 10; 274
Neubauer (bib3) 2007 Mar 15; 356
Shojaiefard, Christie, Lang (bib7) 2005 Sep 2; 334
Ingwall, Weiss (bib4) 2004 Jul 23; 95
Lygate, Fischer, Sebag-Montefiore, Wallis, Ten Hove, Neubauer (bib6) 2007 Mar 27; 42
Nash, Giros, Kingsmore, Rochelle, Suter, Gregor (bib18) 1994; 2
Ten Hove, Chan, Lygate, Monfared, Boehm, Hulbert (bib5) 2005 Feb; 38
Loike, Zalutsky, Kaback, Miranda, Silverstein (bib15) 1988; 85
Boehm, Radda, Tomlin, Clark (bib10) 1996; 1274
Neubauer, Horn, Naumann, Tian, Hu, Laser (bib13) 1995; 95
Wang, Seed (bib12) 2003 Dec 15; 31
Wyss, Kaddurah-Daouk (bib1) 2000 Jul; 80
Sandoval, Bauer, Brenner, Coy, Drescher, Kioschis (bib17) 1996 Jul 15; 35
Laser, Ingwall, Tian, Reis, Hu, Gaudron (bib21) 1996 Jul; 28
Speer, Neukomm, Murphy, Zanolla, Schlattner, Henry (bib16) 2004 Jan-Feb; 256–257
Ten Hove, Lygate, Fischer, Schneider, Sang, Hulbert (bib9) 2005 May 17; 111
Wallis, Lygate, Fischer, Ten Hove, Schneider, Sebag-Montefiore (bib11) 2005 15/11/2005; 112
Lee, Ross, Rockman, Harris, O'Brien, van Bilsen (bib20) 1992 Aug 5; 267
Lygate (10.1016/j.yjmcc.2008.05.023_bib6) 2007; 42
Boehm (10.1016/j.yjmcc.2008.05.023_bib10) 1996; 1274
Wyss (10.1016/j.yjmcc.2008.05.023_bib1) 2000; 80
Sandoval (10.1016/j.yjmcc.2008.05.023_bib17) 1996; 35
Wallis (10.1016/j.yjmcc.2008.05.023_bib11) 2005; 112
Ingwall (10.1016/j.yjmcc.2008.05.023_bib4) 2004; 95
Shojaiefard (10.1016/j.yjmcc.2008.05.023_bib7) 2005; 334
Lee (10.1016/j.yjmcc.2008.05.023_bib20) 1992; 267
Speer (10.1016/j.yjmcc.2008.05.023_bib16) 2004; 256–257
Ten Hove (10.1016/j.yjmcc.2008.05.023_bib9) 2005; 111
Laser (10.1016/j.yjmcc.2008.05.023_bib21) 1996; 28
Wang (10.1016/j.yjmcc.2008.05.023_bib12) 2003; 31
Boehm (10.1016/j.yjmcc.2008.05.023_bib2) 2003; 284
Ten Hove (10.1016/j.yjmcc.2008.05.023_bib5) 2005; 38
Neubauer (10.1016/j.yjmcc.2008.05.023_bib13) 1995; 95
Schmidt (10.1016/j.yjmcc.2008.05.023_bib8) 2004; 13
Loike (10.1016/j.yjmcc.2008.05.023_bib15) 1988; 85
Nash (10.1016/j.yjmcc.2008.05.023_bib18) 1994; 2
Neubauer (10.1016/j.yjmcc.2008.05.023_bib3) 2007; 356
Daniels (10.1016/j.yjmcc.2008.05.023_bib19) 1999; 274
10585462 - J Biol Chem. 1999 Dec 10;274(50):35794-801
17481652 - J Mol Cell Cardiol. 2007 Jun;42(6):1129-36
17360992 - N Engl J Med. 2007 Mar 15;356(11):1140-51
1379240 - J Biol Chem. 1992 Aug 5;267(22):15875-85
7883957 - J Clin Invest. 1995 Mar;95(3):1092-100
10893433 - Physiol Rev. 2000 Jul;80(3):1107-213
14977199 - Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):407-24
3422462 - Proc Natl Acad Sci U S A. 1988 Feb;85(3):807-11
8841940 - J Mol Cell Cardiol. 1996 Jul;28(7):1531-8
8661155 - Genomics. 1996 Jul 15;35(2):383-5
8664304 - Biochim Biophys Acta. 1996 Jun 13;1274(3):119-28
15883212 - Circulation. 2005 May 17;111(19):2477-85
16286605 - Circulation. 2005 Nov 15;112(20):3131-9
7953292 - Receptors Channels. 1994;2(2):165-74
12531746 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E399-406
14654707 - Nucleic Acids Res. 2003 Dec 15;31(24):e154
15271865 - Circ Res. 2004 Jul 23;95(2):135-45
15698837 - J Mol Cell Cardiol. 2005 Feb;38(2):309-13
16036218 - Biochem Biophys Res Commun. 2005 Sep 2;334(3):742-6
15028668 - Hum Mol Genet. 2004 May 1;13(9):905-21
References_xml – volume: 28
  start-page: 1531
  year: 1996 Jul
  end-page: 1538
  ident: bib21
  article-title: Regional biochemical remodeling in non-infarcted tissue of rat heart post-myocardial infarction
  publication-title: J. Mol. Cell. Cardiol.
– volume: 356
  start-page: 1140
  year: 2007 Mar 15
  end-page: 1151
  ident: bib3
  article-title: The failing heart — an engine out of fuel
  publication-title: N. Engl. J. Med.
– volume: 1274
  start-page: 119
  year: 1996
  end-page: 128
  ident: bib10
  article-title: The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase
  publication-title: Biochim. Biophys. Acta
– volume: 256–257
  start-page: 407
  year: 2004 Jan-Feb
  end-page: 424
  ident: bib16
  article-title: Creatine transporters: a reappraisal
  publication-title: Mol. Cell. Biochem.
– volume: 267
  start-page: 15875
  year: 1992 Aug 5
  end-page: 15885
  ident: bib20
  article-title: Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene
  publication-title: J. Biol. Chem.
– volume: 85
  start-page: 807
  year: 1988
  end-page: 811
  ident: bib15
  article-title: Extracellular creatine regulates creatine transport in rat and human-muscle cells
  publication-title: Proc. Nat. Acad. Sci. U. S. A.
– volume: 80
  start-page: 1107
  year: 2000 Jul
  end-page: 1213
  ident: bib1
  article-title: Creatine and creatinine metabolism
  publication-title: Physiol. Rev.
– volume: 38
  start-page: 309
  year: 2005 Feb
  end-page: 313
  ident: bib5
  article-title: Mechanisms of creatine depletion in chronically failing rat heart
  publication-title: J. Mol. Cell. Cardiol.
– volume: 42
  start-page: 1129
  year: 2007 Mar 27
  end-page: 1136
  ident: bib6
  article-title: The creatine kinase energy transport system in the failing mouse heart
  publication-title: J. Mol. Cell. Cardiol.
– volume: 95
  start-page: 135
  year: 2004 Jul 23
  end-page: 145
  ident: bib4
  article-title: Is the failing heart energy starved? On using chemical energy to support cardiac function
  publication-title: Circ. Res.
– volume: 31
  start-page: e154
  year: 2003 Dec 15
  ident: bib12
  article-title: A PCR primer bank for quantitative gene expression analysis
  publication-title: Nucleic. Acids. Res.
– volume: 13
  start-page: 905
  year: 2004 May 1
  end-page: 921
  ident: bib8
  article-title: Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency
  publication-title: Hum. Mol. Genet.
– volume: 35
  start-page: 383
  year: 1996 Jul 15
  end-page: 385
  ident: bib17
  article-title: The genomic organization of a human creatine transporter (CRTR) gene located in Xq28
  publication-title: Genomics
– volume: 2
  start-page: 165
  year: 1994
  end-page: 174
  ident: bib18
  article-title: Cloning, pharmacological characterization, and genomic localization of the human creatine transporter
  publication-title: Receptors Channels
– volume: 95
  start-page: 1092
  year: 1995
  end-page: 1100
  ident: bib13
  article-title: Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction
  publication-title: J. Clin. Invest.
– volume: 284
  start-page: E399
  year: 2003 Feb
  end-page: E406
  ident: bib2
  article-title: Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine
  publication-title: Am. J. Physiol.
– volume: 274
  start-page: 35794
  year: 1999 Dec 10
  end-page: 35801
  ident: bib19
  article-title: Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters
  publication-title: J. Biol. Chem.
– volume: 334
  start-page: 742
  year: 2005 Sep 2
  end-page: 746
  ident: bib7
  article-title: Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 112
  start-page: 3131
  year: 2005 15/11/2005
  end-page: 3139
  ident: bib11
  article-title: Supra-normal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure — insights from creatine transporter over-expression transgenic mice
  publication-title: Circulation
– volume: 111
  start-page: 2477
  year: 2005 May 17
  end-page: 2485
  ident: bib9
  article-title: Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice
  publication-title: Circulation
– volume: 31
  start-page: e154
  issue: 24
  year: 2003
  ident: 10.1016/j.yjmcc.2008.05.023_bib12
  article-title: A PCR primer bank for quantitative gene expression analysis
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gng154
– volume: 111
  start-page: 2477
  issue: 19
  year: 2005
  ident: 10.1016/j.yjmcc.2008.05.023_bib9
  article-title: Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000165147.99592.01
– volume: 112
  start-page: 3131
  issue: 20
  year: 2005
  ident: 10.1016/j.yjmcc.2008.05.023_bib11
  article-title: Supra-normal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure — insights from creatine transporter over-expression transgenic mice
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.572990
– volume: 80
  start-page: 1107
  issue: 3
  year: 2000
  ident: 10.1016/j.yjmcc.2008.05.023_bib1
  article-title: Creatine and creatinine metabolism
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.2000.80.3.1107
– volume: 1274
  start-page: 119
  issue: 3
  year: 1996
  ident: 10.1016/j.yjmcc.2008.05.023_bib10
  article-title: The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2728(96)00018-7
– volume: 284
  start-page: E399
  issue: 2
  year: 2003
  ident: 10.1016/j.yjmcc.2008.05.023_bib2
  article-title: Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine
  publication-title: Am. J. Physiol.
– volume: 28
  start-page: 1531
  issue: 7
  year: 1996
  ident: 10.1016/j.yjmcc.2008.05.023_bib21
  article-title: Regional biochemical remodeling in non-infarcted tissue of rat heart post-myocardial infarction
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1006/jmcc.1996.0143
– volume: 95
  start-page: 135
  issue: 2
  year: 2004
  ident: 10.1016/j.yjmcc.2008.05.023_bib4
  article-title: Is the failing heart energy starved? On using chemical energy to support cardiac function
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000137170.41939.d9
– volume: 38
  start-page: 309
  issue: 2
  year: 2005
  ident: 10.1016/j.yjmcc.2008.05.023_bib5
  article-title: Mechanisms of creatine depletion in chronically failing rat heart
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2004.11.016
– volume: 85
  start-page: 807
  issue: 3
  year: 1988
  ident: 10.1016/j.yjmcc.2008.05.023_bib15
  article-title: Extracellular creatine regulates creatine transport in rat and human-muscle cells
  publication-title: Proc. Nat. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.85.3.807
– volume: 35
  start-page: 383
  issue: 2
  year: 1996
  ident: 10.1016/j.yjmcc.2008.05.023_bib17
  article-title: The genomic organization of a human creatine transporter (CRTR) gene located in Xq28
  publication-title: Genomics
  doi: 10.1006/geno.1996.0373
– volume: 13
  start-page: 905
  issue: 9
  year: 2004
  ident: 10.1016/j.yjmcc.2008.05.023_bib8
  article-title: Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddh112
– volume: 274
  start-page: 35794
  issue: 50
  year: 1999
  ident: 10.1016/j.yjmcc.2008.05.023_bib19
  article-title: Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.50.35794
– volume: 356
  start-page: 1140
  issue: 11
  year: 2007
  ident: 10.1016/j.yjmcc.2008.05.023_bib3
  article-title: The failing heart — an engine out of fuel
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra063052
– volume: 2
  start-page: 165
  year: 1994
  ident: 10.1016/j.yjmcc.2008.05.023_bib18
  article-title: Cloning, pharmacological characterization, and genomic localization of the human creatine transporter
  publication-title: Receptors Channels
– volume: 334
  start-page: 742
  issue: 3
  year: 2005
  ident: 10.1016/j.yjmcc.2008.05.023_bib7
  article-title: Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.06.164
– volume: 95
  start-page: 1092
  issue: 3
  year: 1995
  ident: 10.1016/j.yjmcc.2008.05.023_bib13
  article-title: Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI117756
– volume: 267
  start-page: 15875
  issue: 22
  year: 1992
  ident: 10.1016/j.yjmcc.2008.05.023_bib20
  article-title: Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)49616-6
– volume: 42
  start-page: 1129
  issue: 6
  year: 2007
  ident: 10.1016/j.yjmcc.2008.05.023_bib6
  article-title: The creatine kinase energy transport system in the failing mouse heart
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2007.03.899
– volume: 256–257
  start-page: 407
  issue: 1–2
  year: 2004
  ident: 10.1016/j.yjmcc.2008.05.023_bib16
  article-title: Creatine transporters: a reappraisal
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/B:MCBI.0000009886.98508.e7
– reference: 15883212 - Circulation. 2005 May 17;111(19):2477-85
– reference: 15028668 - Hum Mol Genet. 2004 May 1;13(9):905-21
– reference: 17360992 - N Engl J Med. 2007 Mar 15;356(11):1140-51
– reference: 16286605 - Circulation. 2005 Nov 15;112(20):3131-9
– reference: 15271865 - Circ Res. 2004 Jul 23;95(2):135-45
– reference: 16036218 - Biochem Biophys Res Commun. 2005 Sep 2;334(3):742-6
– reference: 10585462 - J Biol Chem. 1999 Dec 10;274(50):35794-801
– reference: 1379240 - J Biol Chem. 1992 Aug 5;267(22):15875-85
– reference: 8841940 - J Mol Cell Cardiol. 1996 Jul;28(7):1531-8
– reference: 15698837 - J Mol Cell Cardiol. 2005 Feb;38(2):309-13
– reference: 7953292 - Receptors Channels. 1994;2(2):165-74
– reference: 8661155 - Genomics. 1996 Jul 15;35(2):383-5
– reference: 14977199 - Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):407-24
– reference: 12531746 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E399-406
– reference: 14654707 - Nucleic Acids Res. 2003 Dec 15;31(24):e154
– reference: 3422462 - Proc Natl Acad Sci U S A. 1988 Feb;85(3):807-11
– reference: 7883957 - J Clin Invest. 1995 Mar;95(3):1092-100
– reference: 8664304 - Biochim Biophys Acta. 1996 Jun 13;1274(3):119-28
– reference: 10893433 - Physiol Rev. 2000 Jul;80(3):1107-213
– reference: 17481652 - J Mol Cell Cardiol. 2007 Jun;42(6):1129-36
SSID ssj0009433
Score 2.0154953
Snippet Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity...
Abstract Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 453
SubjectTerms Animals
Biological Transport - physiology
Cardiovascular
Creatine
Creatine - genetics
Creatine - metabolism
Creatine transport
Energy metabolism
Female
GAMT
Guanidinoacetate N-Methyltransferase - deficiency
Guanidinoacetate N-Methyltransferase - genetics
Humans
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Myocardium - metabolism
Original
Rabbits
Transgenic mouse model
Title Creatine uptake in mouse hearts with genetically altered creatine levels
URI https://www.clinicalkey.com/#!/content/1-s2.0-S002228280800477X
https://www.clinicalkey.es/playcontent/1-s2.0-S002228280800477X
https://dx.doi.org/10.1016/j.yjmcc.2008.05.023
https://www.ncbi.nlm.nih.gov/pubmed/18602925
https://www.proquest.com/docview/69521946
https://pubmed.ncbi.nlm.nih.gov/PMC2568826
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8584
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009433
  issn: 0022-2828
  databaseCode: AKRWK
  dateStart: 19700301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuqECBbUvxgSNpk9hxkmO1olpYtQdExd4sP8WWJaxIeuilv70zib3ttqVInCLFHsWxZ8ZjzzczhHwAvWuUUTbR2oqE69QmleI6EZhanXswmXuP7smpmJzxL7NitkHGMRYGYZVB9w86vdfW4c1hmM3D5XyOMb54e5FjYsSUl-UMI9i5QFjfwdUNzKPmQzl5RK1j75h5qMd4XZ7_MiYAKouDNGd_253uW593QZS3dqXjLfI8mJP0aBjxC7Lhmpfk6UlwmL8ik3FvFDaOXiw79dPReUPxsO8oVrLuWor3sBSYaIhlXFzS3n3uLDWRcIGwonabnB1_-jaeJKF4QmLAKOuSguXelJkyOtPcO1epygiVaVMWJgfB81ywPLMWm51jnAljDDOMee2LVNXsNdlsfjfuLaFwJrOY4tF6w7itlErh0ORd7SuVWlFmI5LHSZMmZBbHAhcLGSFk57Kf6VDzspAw0yPycUW0HBJrPN6dx9WQMWYUtJwExf84WfkQmWuDpLYyk20uU3mPm0ZErCjXGPLfn3wfmUWCqKL_RTUOVlaKGmylmosReTOwzs2PYyWwOi9guGtMteqAScDXW5r5jz4ZOJiscEgSO_873F3yLEJg0myPbHZ_Ltw7sLM6vd8L0j55cvR5OjnF5_Tr9-k1ressHA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuiDfLqz5wJDSJHSc5ViuqlHb31Ep7s_wU2y5hRdJD_z3jxN6yFIrENfYkjj0znrFnvgH4gHpXSy1NopThCVOpSSrJVMI9tDpzaDIPN7qzOW_O2ZdFsdiBacyF8WGVQfePOn3Q1uHJQZjNg_Vy6XN8_elF7oERU1aWi3uwh6_PkNn3Do9PmvkN9i4bK8r7wHVPEMGHhjCv64tvWoeYyuJTmtO_bVC3DdDf4yh_2ZiOHsOjYFGSw3HQT2DHtk_h_izcmT-DZjrYha0lV-teXlqybIn39y3xxaz7jvijWIJ8NKYzrq7JcINuDdGRcOUji7rncH70-WzaJKF-QqLRLuuTguZOl5nUKlPMWVvJSnOZKV0WOkfZc4zTPDPGN1tLGeVaa6opdcoVqazpC9htv7f2FRB0y4xHeTROU2YqKVP0m5ytXSVTw8tsAnmcNKEDuLivcbESMYrsQgwzHcpeFgJnegIfN0TrEVvj7u4sroaIaaOo6ATq_rvJyj-R2S4Iaycy0eUiFbcYagJ8Q7nFk__-5H5kFoHS6q9gZGtxZQWv0VyqGZ_Ay5F1bn7cFwOr8wKHu8VUmw4eB3y7pV1-HfDA0WpFP4m__t_h7sOD5mx2Kk6P5ydv4GGMiEmzt7Db_7iy79Ds6tX7IFY_AV0BLSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creatine+uptake+in+mouse+hearts+with+genetically+altered+creatine+levels&rft.jtitle=Journal+of+molecular+and+cellular+cardiology&rft.au=Hove%2C+Michiel+ten&rft.au=Makinen%2C+Kimmo&rft.au=Sebag-Montefiore%2C+Liam&rft.au=Hunyor%2C+Imre&rft.date=2008-09-01&rft.pub=Academic+Press&rft.issn=0022-2828&rft.eissn=1095-8584&rft.volume=45&rft.issue=3&rft.spage=453&rft.epage=459&rft_id=info:doi/10.1016%2Fj.yjmcc.2008.05.023&rft_id=info%3Apmid%2F18602925&rft.externalDocID=PMC2568826
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00222828%2FS0022282808X00100%2Fcov150h.gif