Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM)

The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 10; no. 4; pp. 939 - 945
Main Authors Bailing Zhang, Minyue Fu, Hong Yan, Jabri, M.A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 1999
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1045-9227
DOI10.1109/72.774267

Cover

Abstract The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set.
AbstractList The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set.
The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set.The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set.
The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set
Author Bailing Zhang
Jabri, M.A.
Hong Yan
Minyue Fu
Author_xml – sequence: 1
  surname: Bailing Zhang
  fullname: Bailing Zhang
  organization: Dept. of Electr. & Comput. Eng., Newcastle Univ., NSW, Australia
– sequence: 2
  surname: Minyue Fu
  fullname: Minyue Fu
– sequence: 3
  surname: Hong Yan
  fullname: Hong Yan
– sequence: 4
  givenname: M.A.
  surname: Jabri
  fullname: Jabri, M.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1876156$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18252591$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1rFDEYBvAcKvbDHnr1IHMQtYdp8zFJJsdS1Aq1PbQ9h3eSd5bIbGZMskr9651lt6UUUSEQSH7vQ8izT3biGJGQI0ZPGKPmVPMTrRuu9A7ZY7SRteFc75L9nL9RyhpJ1Uuyy1ouuTRsj1xdQPQ_UygFY-XDIpQqoRsXMZQwxqq7r8DDVMIPrPOqyxM4rDIOfT2mBcTwK8RFtYSp-nB2c3P99fgVedHDkPFwux-Qu08fb88v6svrz1_Ozy5rJ5kpteCqaSn61nshBfMSHZqu65nuhEANnlHFW6EMcJSsER5mTcV8ZrQDBuKAvN_kTmn8vsJc7DJkh8MAEcdVtoaZeTWC_1NqIbhkLV3Ld3-V84Martv_gMqo1nA1wzdbuOqW6O2UwhLSvX34_hm83QLIDoY-QXQhP3FaMbnOOd0wl8acE_bWhQLrgkqCMFhG7bp7q7nddD9PHD-beMz8g329sQERH9328jeUDLWF
CODEN ITNNEP
CitedBy_id crossref_primary_10_1007_s11063_009_9101_9
crossref_primary_10_1142_S2705078521500053
crossref_primary_10_26634_jpr_8_2_16945
crossref_primary_10_3923_itj_2006_476_484
crossref_primary_10_1109_5326_941845
crossref_primary_10_1109_JETCAS_2017_2777784
crossref_primary_10_1109_TNNLS_2013_2254127
crossref_primary_10_1109_JETCAS_2017_2771392
crossref_primary_10_1109_TSMCB_2004_834432
crossref_primary_10_3390_s21186273
crossref_primary_10_1142_S1469026809002655
crossref_primary_10_1109_TNN_2009_2025888
crossref_primary_10_1016_S0167_8655_01_00088_5
crossref_primary_10_1007_s00500_007_0151_5
crossref_primary_10_1080_17445760701207660
crossref_primary_10_1016_j_neucom_2009_01_008
crossref_primary_10_1016_j_neunet_2009_01_012
crossref_primary_10_1016_j_neunet_2003_04_001
crossref_primary_10_36548_jiip_2024_4_008
crossref_primary_10_4028_www_scientific_net_AMR_317_319_901
crossref_primary_10_1109_TNN_2007_911741
crossref_primary_10_1016_j_neucom_2008_07_003
crossref_primary_10_3724_SP_J_1004_2008_01298
Cites_doi 10.1007/978-3-642-88163-3
10.1162/neco.1997.9.7.1493
10.1109/34.506410
10.1007/BF00275687
10.1002/aic.690370209
10.1016/S0893-6080(05)80107-8
10.1016/0893-6080(94)90060-4
10.1109/5.156477
10.1162/neco.1997.9.6.1321
10.1007/BF00332918
10.1080/01621459.1989.10478797
10.1109/72.554192
10.1007/BF00162527
10.1049/ip-vis:19971153
10.1109/5.537105
10.1016/0893-6080(94)00098-7
10.1142/S0129065789000475
10.1007/s004220050295
10.1109/IJCNN.1993.713953
10.1016/0893-6080(89)90044-0
ContentType Journal Article
Copyright 1999 INIST-CNRS
Copyright_xml – notice: 1999 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
DOI 10.1109/72.774267
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EndPage 945
ExternalDocumentID 18252591
1876156
10_1109_72_774267
774267
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
ID FETCH-LOGICAL-c519t-326480ed8dd3531d5ece9bbf17b33e7ad10628369a2e5143da80e0362897ca1a3
IEDL.DBID RIE
ISSN 1045-9227
IngestDate Fri Sep 05 05:33:07 EDT 2025
Thu Sep 04 19:34:53 EDT 2025
Fri Sep 05 09:33:15 EDT 2025
Fri Sep 05 14:33:30 EDT 2025
Thu Apr 03 06:58:34 EDT 2025
Mon Jul 21 09:17:28 EDT 2025
Wed Oct 01 03:24:42 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
Tue Aug 26 21:00:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 4
Keywords Hand writing
Self organization
Adaptive system
Printed circuit board
Digital circuit
Experimental study
Recognition
Principal component analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-326480ed8dd3531d5ece9bbf17b33e7ad10628369a2e5143da80e0362897ca1a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18252591
PQID 26968926
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_919919432
proquest_miscellaneous_28342782
proquest_miscellaneous_26968926
crossref_citationtrail_10_1109_72_774267
proquest_miscellaneous_733251802
pubmed_primary_18252591
pascalfrancis_primary_1876156
crossref_primary_10_1109_72_774267
ieee_primary_774267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-00-00
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 1999-00-00
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 1999
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
oja (ref3) 1983
ref14
kohonen (ref15) 1989
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref6
ref5
simard (ref20) 1993
References_xml – year: 1989
  ident: ref15
  publication-title: Self-Organization and Associative Memory
  doi: 10.1007/978-3-642-88163-3
– ident: ref9
  doi: 10.1162/neco.1997.9.7.1493
– start-page: 50
  year: 1993
  ident: ref20
  article-title: efficient pattern recognition using a new transformation distance
  publication-title: Advances in Neural Inform Processing Syst 5
– ident: ref21
  doi: 10.1109/34.506410
– year: 1983
  ident: ref3
  publication-title: Subspace Methods of Pattern Recognition
– ident: ref1
  doi: 10.1007/BF00275687
– ident: ref7
  doi: 10.1002/aic.690370209
– ident: ref16
  doi: 10.1016/S0893-6080(05)80107-8
– ident: ref17
  doi: 10.1016/0893-6080(94)90060-4
– ident: ref19
  doi: 10.1109/5.156477
– ident: ref12
  doi: 10.1162/neco.1997.9.6.1321
– ident: ref22
  doi: 10.1007/BF00332918
– ident: ref5
  doi: 10.1080/01621459.1989.10478797
– ident: ref10
  doi: 10.1109/72.554192
– ident: ref6
  doi: 10.1007/BF00162527
– ident: ref8
  doi: 10.1049/ip-vis:19971153
– ident: ref13
  doi: 10.1109/5.537105
– ident: ref18
  doi: 10.1016/0893-6080(94)00098-7
– ident: ref2
  doi: 10.1142/S0129065789000475
– ident: ref11
  doi: 10.1007/s004220050295
– ident: ref14
  doi: 10.1109/IJCNN.1993.713953
– ident: ref4
  doi: 10.1016/0893-6080(89)90044-0
SSID ssj0014506
Score 1.3606119
Snippet The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 939
SubjectTerms Applied sciences
Artificial intelligence
Classification
Computer science; control theory; systems
Connectionism. Neural networks
Construction
Data structures
Digits
Exact sciences and technology
Handwriting recognition
Learning systems
Mathematical models
Modules
Neural networks
Nonhomogeneous media
Numerical stability
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Principal component analysis
Recognition
System testing
Vectors
Title Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM)
URI https://ieeexplore.ieee.org/document/774267
https://www.ncbi.nlm.nih.gov/pubmed/18252591
https://www.proquest.com/docview/26968926
https://www.proquest.com/docview/28342782
https://www.proquest.com/docview/733251802
https://www.proquest.com/docview/919919432
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  dateEnd: 20111231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014506
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4NnraHwcp-dIzNmqaJPaQkdhPHjwiBqknwNCTeIju-TtUgrUiqCf763dlpBxOgvUXROYrts--78_k7gC_OFygz5Jwqq5NxXevElcYmhoy91qxUIeB2elZMzsffL_KLnmc73IVBxJB8hiN-DGf5fl4vOVR2QFBFFnoDNnRZxKta6wODcR7KaJJzkSdGSt2TCGWpOdByFBveMz2hlgpnQtqWBmMaq1g8DjODuTnZive428BSyFkmv0bLzo3q2384HP-zJ9vwsoed4jDqySt4hs0Adg4bcrmvbsRXERJBQ4R9AFurSg-iX_gDeHGHtnAHzia28b-vZx3hbeFnP2edWOchzRvhboT1dsH7aNLSvkReOYoWL6dJLCF1Sx8RV3Yh9plT8vTbazg_Of5xNEn6ugxJTXivSxRnxaXoS-8VLWGfY43GuWmmnVKorc_4YqYqjJXIeMxbkmZLWRpd28yqN7DZzBt8B6KwznhX2pRhqM2cYe2gWUNdaNoQ7BD2V1NW1T1pOdfOuKyC85KaSssqDuYQPq9FF5Gp4yGhAU_GWmD1du-eGvxtT7aCHNwhfFqpRUWrj49UbIPzZVtJ5hYy8imJUnE1EzkE8YiEVopAZpk-IWI4Qc2MFYm8jVp55xdlTi5s9v7Bnu3C88gzwTGjD7DZXS9xj1BU5z6G9fMHfsgZLg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5t7GHbw9jKfnSDYU3TxB5SEjuJ40eEQN1G-wQSb5Edu6gapBVJNcFfvzs7LTAB2lsUnaPYPvu-O5-_A_hqbO544iinSssorSoZmULpSKGxl5KUygfcRuN8eJL-PM1OO55tfxfGOeeTz9yAHv1Zvp1VCwqV7SJU4bl8Cs-yNE2zcFlrdWSQZr6QJroXWaQ4lx2NUBKrXckHoekd4-OrqVAupG5wOCahjsXDQNMbnMP1cJO78TyFlGfye7BozaC6_ofF8T_78hpedcCT7QVNeQNPXN2Djb0ane6LK_aN-VRQH2Pvwfqy1gPrln4PXt4iLtyA8VDX9s_ltEXEzez0bNqyVSbSrGbmimmr57STRg3uTOiXO9a480kUikhd40fYhZ6zHWKVHH1_CyeHB8f7w6irzBBViPjaSFBeXOxsYa3ARWwzVzllzCSRRggntU3oaqbIleaOEJnVKE22slCy0okW72CtntXuA7BcG2VNoWMCojoxivQDZ83JXOKWoPuws5yysupoy6l6xnnp3ZdYlZKXYTD78GUlOg9cHfcJ9WgyVgLLt1t31OCmPVoLdHH7sL1UixLXHx2q6NrNFk3JiV1I8cckCkH1THgf2AMSUgiEmUX8iIiiFDWVChR5H7Ty1i_yDJ3Y5OO9PduG58Pj0VF59GP86xO8CKwTFEHahLX2cuG2EFO15rNfS38BTlAcew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handwritten+digit+recognition+by+adaptive-subspace+self-organizing+map+%28ASSOM%29&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=BAILING+ZHANG&rft.au=MINYUE+FU&rft.au=HONG+YAN&rft.au=JABRI%2C+M.+A&rft.date=1999&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9227&rft.volume=10&rft.issue=4&rft.spage=939&rft.epage=945&rft_id=info:doi/10.1109%2F72.774267&rft.externalDBID=n%2Fa&rft.externalDocID=1876156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon