Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM)
The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical s...
Saved in:
| Published in | IEEE transactions on neural networks Vol. 10; no. 4; pp. 939 - 945 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
1999
Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1045-9227 |
| DOI | 10.1109/72.774267 |
Cover
| Abstract | The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set. |
|---|---|
| AbstractList | The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set. The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set.The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set. The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set |
| Author | Bailing Zhang Jabri, M.A. Hong Yan Minyue Fu |
| Author_xml | – sequence: 1 surname: Bailing Zhang fullname: Bailing Zhang organization: Dept. of Electr. & Comput. Eng., Newcastle Univ., NSW, Australia – sequence: 2 surname: Minyue Fu fullname: Minyue Fu – sequence: 3 surname: Hong Yan fullname: Hong Yan – sequence: 4 givenname: M.A. surname: Jabri fullname: Jabri, M.A. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1876156$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18252591$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0c1rFDEYBvAcKvbDHnr1IHMQtYdp8zFJJsdS1Aq1PbQ9h3eSd5bIbGZMskr9651lt6UUUSEQSH7vQ8izT3biGJGQI0ZPGKPmVPMTrRuu9A7ZY7SRteFc75L9nL9RyhpJ1Uuyy1ouuTRsj1xdQPQ_UygFY-XDIpQqoRsXMZQwxqq7r8DDVMIPrPOqyxM4rDIOfT2mBcTwK8RFtYSp-nB2c3P99fgVedHDkPFwux-Qu08fb88v6svrz1_Ozy5rJ5kpteCqaSn61nshBfMSHZqu65nuhEANnlHFW6EMcJSsER5mTcV8ZrQDBuKAvN_kTmn8vsJc7DJkh8MAEcdVtoaZeTWC_1NqIbhkLV3Ld3-V84Martv_gMqo1nA1wzdbuOqW6O2UwhLSvX34_hm83QLIDoY-QXQhP3FaMbnOOd0wl8acE_bWhQLrgkqCMFhG7bp7q7nddD9PHD-beMz8g329sQERH9328jeUDLWF |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1007_s11063_009_9101_9 crossref_primary_10_1142_S2705078521500053 crossref_primary_10_26634_jpr_8_2_16945 crossref_primary_10_3923_itj_2006_476_484 crossref_primary_10_1109_5326_941845 crossref_primary_10_1109_JETCAS_2017_2777784 crossref_primary_10_1109_TNNLS_2013_2254127 crossref_primary_10_1109_JETCAS_2017_2771392 crossref_primary_10_1109_TSMCB_2004_834432 crossref_primary_10_3390_s21186273 crossref_primary_10_1142_S1469026809002655 crossref_primary_10_1109_TNN_2009_2025888 crossref_primary_10_1016_S0167_8655_01_00088_5 crossref_primary_10_1007_s00500_007_0151_5 crossref_primary_10_1080_17445760701207660 crossref_primary_10_1016_j_neucom_2009_01_008 crossref_primary_10_1016_j_neunet_2009_01_012 crossref_primary_10_1016_j_neunet_2003_04_001 crossref_primary_10_36548_jiip_2024_4_008 crossref_primary_10_4028_www_scientific_net_AMR_317_319_901 crossref_primary_10_1109_TNN_2007_911741 crossref_primary_10_1016_j_neucom_2008_07_003 crossref_primary_10_3724_SP_J_1004_2008_01298 |
| Cites_doi | 10.1007/978-3-642-88163-3 10.1162/neco.1997.9.7.1493 10.1109/34.506410 10.1007/BF00275687 10.1002/aic.690370209 10.1016/S0893-6080(05)80107-8 10.1016/0893-6080(94)90060-4 10.1109/5.156477 10.1162/neco.1997.9.6.1321 10.1007/BF00332918 10.1080/01621459.1989.10478797 10.1109/72.554192 10.1007/BF00162527 10.1049/ip-vis:19971153 10.1109/5.537105 10.1016/0893-6080(94)00098-7 10.1142/S0129065789000475 10.1007/s004220050295 10.1109/IJCNN.1993.713953 10.1016/0893-6080(89)90044-0 |
| ContentType | Journal Article |
| Copyright | 1999 INIST-CNRS |
| Copyright_xml | – notice: 1999 INIST-CNRS |
| DBID | RIA RIE AAYXX CITATION IQODW NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
| DOI | 10.1109/72.774267 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
| EndPage | 945 |
| ExternalDocumentID | 18252591 1876156 10_1109_72_774267 774267 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
| ID | FETCH-LOGICAL-c519t-326480ed8dd3531d5ece9bbf17b33e7ad10628369a2e5143da80e0362897ca1a3 |
| IEDL.DBID | RIE |
| ISSN | 1045-9227 |
| IngestDate | Fri Sep 05 05:33:07 EDT 2025 Thu Sep 04 19:34:53 EDT 2025 Fri Sep 05 09:33:15 EDT 2025 Fri Sep 05 14:33:30 EDT 2025 Thu Apr 03 06:58:34 EDT 2025 Mon Jul 21 09:17:28 EDT 2025 Wed Oct 01 03:24:42 EDT 2025 Thu Apr 24 23:02:50 EDT 2025 Tue Aug 26 21:00:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 4 |
| Keywords | Hand writing Self organization Adaptive system Printed circuit board Digital circuit Experimental study Recognition Principal component analysis |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c519t-326480ed8dd3531d5ece9bbf17b33e7ad10628369a2e5143da80e0362897ca1a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 18252591 |
| PQID | 26968926 |
| PQPubID | 23500 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_919919432 proquest_miscellaneous_28342782 proquest_miscellaneous_26968926 crossref_citationtrail_10_1109_72_774267 proquest_miscellaneous_733251802 pubmed_primary_18252591 pascalfrancis_primary_1876156 crossref_primary_10_1109_72_774267 ieee_primary_774267 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1999-00-00 |
| PublicationDateYYYYMMDD | 1999-01-01 |
| PublicationDate_xml | – year: 1999 text: 1999-00-00 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 1999 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 oja (ref3) 1983 ref14 kohonen (ref15) 1989 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref6 ref5 simard (ref20) 1993 |
| References_xml | – year: 1989 ident: ref15 publication-title: Self-Organization and Associative Memory doi: 10.1007/978-3-642-88163-3 – ident: ref9 doi: 10.1162/neco.1997.9.7.1493 – start-page: 50 year: 1993 ident: ref20 article-title: efficient pattern recognition using a new transformation distance publication-title: Advances in Neural Inform Processing Syst 5 – ident: ref21 doi: 10.1109/34.506410 – year: 1983 ident: ref3 publication-title: Subspace Methods of Pattern Recognition – ident: ref1 doi: 10.1007/BF00275687 – ident: ref7 doi: 10.1002/aic.690370209 – ident: ref16 doi: 10.1016/S0893-6080(05)80107-8 – ident: ref17 doi: 10.1016/0893-6080(94)90060-4 – ident: ref19 doi: 10.1109/5.156477 – ident: ref12 doi: 10.1162/neco.1997.9.6.1321 – ident: ref22 doi: 10.1007/BF00332918 – ident: ref5 doi: 10.1080/01621459.1989.10478797 – ident: ref10 doi: 10.1109/72.554192 – ident: ref6 doi: 10.1007/BF00162527 – ident: ref8 doi: 10.1049/ip-vis:19971153 – ident: ref13 doi: 10.1109/5.537105 – ident: ref18 doi: 10.1016/0893-6080(94)00098-7 – ident: ref2 doi: 10.1142/S0129065789000475 – ident: ref11 doi: 10.1007/s004220050295 – ident: ref14 doi: 10.1109/IJCNN.1993.713953 – ident: ref4 doi: 10.1016/0893-6080(89)90044-0 |
| SSID | ssj0014506 |
| Score | 1.3606119 |
| Snippet | The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 939 |
| SubjectTerms | Applied sciences Artificial intelligence Classification Computer science; control theory; systems Connectionism. Neural networks Construction Data structures Digits Exact sciences and technology Handwriting recognition Learning systems Mathematical models Modules Neural networks Nonhomogeneous media Numerical stability Pattern recognition Pattern recognition. Digital image processing. Computational geometry Principal component analysis Recognition System testing Vectors |
| Title | Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM) |
| URI | https://ieeexplore.ieee.org/document/774267 https://www.ncbi.nlm.nih.gov/pubmed/18252591 https://www.proquest.com/docview/26968926 https://www.proquest.com/docview/28342782 https://www.proquest.com/docview/733251802 https://www.proquest.com/docview/919919432 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1045-9227 databaseCode: RIE dateStart: 19900101 customDbUrl: isFulltext: true dateEnd: 20111231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014506 providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4NnraHwcp-dIzNmqaJPaQkdhPHjwiBqknwNCTeIju-TtUgrUiqCf763dlpBxOgvUXROYrts--78_k7gC_OFygz5Jwqq5NxXevElcYmhoy91qxUIeB2elZMzsffL_KLnmc73IVBxJB8hiN-DGf5fl4vOVR2QFBFFnoDNnRZxKta6wODcR7KaJJzkSdGSt2TCGWpOdByFBveMz2hlgpnQtqWBmMaq1g8DjODuTnZive428BSyFkmv0bLzo3q2384HP-zJ9vwsoed4jDqySt4hs0Adg4bcrmvbsRXERJBQ4R9AFurSg-iX_gDeHGHtnAHzia28b-vZx3hbeFnP2edWOchzRvhboT1dsH7aNLSvkReOYoWL6dJLCF1Sx8RV3Yh9plT8vTbazg_Of5xNEn6ugxJTXivSxRnxaXoS-8VLWGfY43GuWmmnVKorc_4YqYqjJXIeMxbkmZLWRpd28yqN7DZzBt8B6KwznhX2pRhqM2cYe2gWUNdaNoQ7BD2V1NW1T1pOdfOuKyC85KaSssqDuYQPq9FF5Gp4yGhAU_GWmD1du-eGvxtT7aCHNwhfFqpRUWrj49UbIPzZVtJ5hYy8imJUnE1EzkE8YiEVopAZpk-IWI4Qc2MFYm8jVp55xdlTi5s9v7Bnu3C88gzwTGjD7DZXS9xj1BU5z6G9fMHfsgZLg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5t7GHbw9jKfnSDYU3TxB5SEjuJ40eEQN1G-wQSb5Edu6gapBVJNcFfvzs7LTAB2lsUnaPYPvu-O5-_A_hqbO544iinSssorSoZmULpSKGxl5KUygfcRuN8eJL-PM1OO55tfxfGOeeTz9yAHv1Zvp1VCwqV7SJU4bl8Cs-yNE2zcFlrdWSQZr6QJroXWaQ4lx2NUBKrXckHoekd4-OrqVAupG5wOCahjsXDQNMbnMP1cJO78TyFlGfye7BozaC6_ofF8T_78hpedcCT7QVNeQNPXN2Djb0ane6LK_aN-VRQH2Pvwfqy1gPrln4PXt4iLtyA8VDX9s_ltEXEzez0bNqyVSbSrGbmimmr57STRg3uTOiXO9a480kUikhd40fYhZ6zHWKVHH1_CyeHB8f7w6irzBBViPjaSFBeXOxsYa3ARWwzVzllzCSRRggntU3oaqbIleaOEJnVKE22slCy0okW72CtntXuA7BcG2VNoWMCojoxivQDZ83JXOKWoPuws5yysupoy6l6xnnp3ZdYlZKXYTD78GUlOg9cHfcJ9WgyVgLLt1t31OCmPVoLdHH7sL1UixLXHx2q6NrNFk3JiV1I8cckCkH1THgf2AMSUgiEmUX8iIiiFDWVChR5H7Ty1i_yDJ3Y5OO9PduG58Pj0VF59GP86xO8CKwTFEHahLX2cuG2EFO15rNfS38BTlAcew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handwritten+digit+recognition+by+adaptive-subspace+self-organizing+map+%28ASSOM%29&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=BAILING+ZHANG&rft.au=MINYUE+FU&rft.au=HONG+YAN&rft.au=JABRI%2C+M.+A&rft.date=1999&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9227&rft.volume=10&rft.issue=4&rft.spage=939&rft.epage=945&rft_id=info:doi/10.1109%2F72.774267&rft.externalDBID=n%2Fa&rft.externalDocID=1876156 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |