Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography
Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, m...
Saved in:
| Published in | Diagnostics (Basel) Vol. 15; no. 8; p. 953 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
09.04.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics15080953 |
Cover
| Abstract | Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management. |
|---|---|
| AbstractList | Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant.
: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison.
: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy.
: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management. Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management. Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management.Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management. |
| Audience | Academic |
| Author | Giovagnoli, Eleonora Dimarco, Mariangela Lauciello, Nicolò Narbonese, Daniela Stefano, Alessandro Russo, Giorgio Pasini, Giovanni Marinozzi, Franco D’Angelo, Ildebrando Bini, Fabiano |
| AuthorAffiliation | 1 Institute of Bioimaging and Complex Biological Systems, National Research Council (IBSBC-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; alessandro.stefano@cnr.it (A.S.); nicolo.lauciello@unipa.it (N.L.); giovanni.pasini@uniroma1.it (G.P.); giorgio-russo@cnr.it (G.R.) 2 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; giovagnoli.1918945@studenti.uniroma1.it (E.G.); franco.marinozzi@uniroma1.it (F.M.) 3 Department of Radiology, Fondazione Istituto “G. Giglio”, 90015 Cefalù, Italy; maridimarco33@gmail.com (M.D.); daniela.narbonese@studenti.unipd.it (D.N.); ildebrando.dangelo@hsrgiglio.it (I.D.) 4 Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy |
| AuthorAffiliation_xml | – name: 2 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; giovagnoli.1918945@studenti.uniroma1.it (E.G.); franco.marinozzi@uniroma1.it (F.M.) – name: 4 Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy – name: 1 Institute of Bioimaging and Complex Biological Systems, National Research Council (IBSBC-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; alessandro.stefano@cnr.it (A.S.); nicolo.lauciello@unipa.it (N.L.); giovanni.pasini@uniroma1.it (G.P.); giorgio-russo@cnr.it (G.R.) – name: 3 Department of Radiology, Fondazione Istituto “G. Giglio”, 90015 Cefalù, Italy; maridimarco33@gmail.com (M.D.); daniela.narbonese@studenti.unipd.it (D.N.); ildebrando.dangelo@hsrgiglio.it (I.D.) |
| Author_xml | – sequence: 1 givenname: Alessandro orcidid: 0000-0002-7189-1731 surname: Stefano fullname: Stefano, Alessandro – sequence: 2 givenname: Fabiano orcidid: 0000-0002-5641-1189 surname: Bini fullname: Bini, Fabiano – sequence: 3 givenname: Eleonora surname: Giovagnoli fullname: Giovagnoli, Eleonora – sequence: 4 givenname: Mariangela surname: Dimarco fullname: Dimarco, Mariangela – sequence: 5 givenname: Nicolò surname: Lauciello fullname: Lauciello, Nicolò – sequence: 6 givenname: Daniela surname: Narbonese fullname: Narbonese, Daniela – sequence: 7 givenname: Giovanni orcidid: 0000-0002-8750-0731 surname: Pasini fullname: Pasini, Giovanni – sequence: 8 givenname: Franco surname: Marinozzi fullname: Marinozzi, Franco – sequence: 9 givenname: Giorgio orcidid: 0000-0003-1493-1087 surname: Russo fullname: Russo, Giorgio – sequence: 10 givenname: Ildebrando surname: D’Angelo fullname: D’Angelo, Ildebrando |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40310389$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhiNUREvpL0BCkbj0ssWf6-SE2qVApUVICM7RxJ5kvUrsYCeLVuLH42XL0kU9YB9sjd957Hk9z7MT5x1m2UtKrjgvyRtjoXU-jlZHKklBSsmfZGeMKDkTghYnD_an2UWMa5JGSXnB5LPsVBBOCS_Ks-znwvcDBBjtBvPbDXRT2nqX-yb_BHplHeZLhOCsa2c3ENHkX8BY36d7c3Amf4c4HBR540N-ExDimGJxx1l0EKNtrN5jrUvYvvdtgGG1fZE9baCLeHG_nmff3t9-XXycLT9_uFtcL2da0nKcMU21YcwokKKoiRGsVKWWRDNgqi5rWhYEFGpN5bxQUktURNVKEoVSSER-nt3tucbDuhqC7SFsKw-2-h3woa0gJCs7rGpDiS41mTPDBIem5ERw3czRIFFgWGKJPWtyA2x_QNcdgJRUu7-pHvmblPZ2nzZMdY9GoxsDdEdvOT5xdlW1flNRRticSJkIl_eE4L9PGMeqt1Fj14FDP8WKJxs4FcmaJH39j3Ttp-CSxTuVkLKgXPxVtZAKt67x6WK9g1bXBVeKSE53D796RJWmwdQEqSkbm-JHCa8eVnoo8U_PJQHfC3TwMQZs_svAX0Dy7gc |
| Cites_doi | 10.21037/tcr.2018.05.02 10.1145/3460268.3460270 10.1117/1.3115362 10.1007/s10278-024-01364-8 10.1148/rycan.2020204023 10.3390/jimaging10110290 10.37349/etat.2023.00153 10.1002/mp.13678 10.1186/bcr1368 10.1109/CVPR.2015.7298594 10.1186/s12880-024-01510-2 10.1002/asmb.2642 10.1109/TPAMI.2020.2979450 10.3390/diagnostics11050815 10.3390/sym15101834 10.2214/AJR.23.29655 10.1007/s00259-025-07085-6 10.3390/diagnostics14161835 10.1016/j.ejmp.2021.04.010 10.3390/diagnostics13243640 10.3390/biomedinformatics2030022 10.1016/j.patrec.2005.10.010 10.1016/S0140-6736(09)60316-0 10.1007/s11263-019-01228-7 10.20944/preprints202306.1124.v1 10.4132/jptm.2022.04.25 10.1016/j.compbiomed.2024.108827 10.3390/diagnostics13061167 10.1111/his.14091 10.1148/ryai.2020190006 10.2967/jnumed.118.222893 10.1007/s12553-023-00804-9 10.3390/cancers14040984 10.1016/j.critrevonc.2024.104479 10.3390/biomedinformatics4040125 10.6004/jnccn.2011.0016 10.35940/ijitee.B8259.0210421 10.1038/s41591-020-01174-9 10.3390/diagnostics13182925 10.1016/j.ejmp.2021.07.014 10.1049/iet-ipr.2020.0122 10.1016/j.cmpb.2023.107483 10.3390/math12091296 10.1002/ima.22154 10.1007/s11042-024-20388-4 10.1038/s41598-024-51630-6 10.3390/jimaging8080221 10.3390/diagnostics14080848 10.1002/mp.14942 10.1109/TPAMI.2022.3145392 10.3390/ijms23073883 10.1111/1759-7714.14666 10.7759/cureus.57903 10.1109/TMI.2019.2945514 10.1145/3399715.3399744 10.21103/Article13(1)_RA1 10.1148/rg.2021200101 10.1093/jnci/djab063 10.1186/s13058-022-01594-0 10.1158/0008-5472.CAN-17-0339 10.3389/fonc.2022.773840 10.1038/s41598-022-08412-9 10.3390/app122211455 10.1109/CVPR.2017.243 10.1007/s12194-024-00842-6 10.1007/978-3-030-91885-9_36 10.1109/WACV.2018.00097 10.1109/CVPR.2016.90 10.1259/bjr.20210340 10.1007/s00262-024-03724-3 10.1080/08839514.2024.2340386 10.5815/ijigsp.2020.02.04 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/diagnostics15080953 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library ProQuest Central Research Library (via ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_bd10c9c062d243af93043cf6ede07ad2 10.3390/diagnostics15080953 PMC12026055 A837705313 40310389 10_3390_diagnostics15080953 |
| Genre | Journal Article |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c519t-2c1cd22d7a548b0d42979c50c2a27b9b1980a7ecc156875c5e707b7507e545ee3 |
| IEDL.DBID | M48 |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:39:50 EDT 2025 Sun Oct 26 04:12:09 EDT 2025 Tue Sep 30 17:03:10 EDT 2025 Fri Sep 05 17:20:35 EDT 2025 Mon Jun 30 11:31:30 EDT 2025 Thu May 08 04:15:57 EDT 2025 Mon Oct 20 16:53:55 EDT 2025 Mon Jul 21 06:05:33 EDT 2025 Thu Oct 16 04:37:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | automated diagnostic systems deep learning radiomics mammography breast lesion classification |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c519t-2c1cd22d7a548b0d42979c50c2a27b9b1980a7ecc156875c5e707b7507e545ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These Authors share first authorship. |
| ORCID | 0000-0002-5641-1189 0000-0002-8750-0731 0000-0003-1493-1087 0000-0002-7189-1731 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics15080953 |
| PMID | 40310389 |
| PQID | 3194558134 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bd10c9c062d243af93043cf6ede07ad2 unpaywall_primary_10_3390_diagnostics15080953 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12026055 proquest_miscellaneous_3198314979 proquest_journals_3194558134 gale_infotracmisc_A837705313 gale_infotracacademiconefile_A837705313 pubmed_primary_40310389 crossref_primary_10_3390_diagnostics15080953 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-09 |
| PublicationDateYYYYMMDD | 2025-04-09 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Richman (ref_10) 2021; 113 Sternlicht (ref_7) 2005; 8 Avanzo (ref_28) 2021; 83 ref_14 ref_13 Kim (ref_5) 2022; 24 ref_12 Balma (ref_17) 2023; 19 ref_56 Carlson (ref_2) 2011; 9 Barone (ref_61) 2021; 37 ref_54 Elahi (ref_72) 2024; 17 ref_53 Wu (ref_25) 2020; 39 Fedorov (ref_57) 2017; 77 ref_51 ref_19 ref_18 ref_15 ref_59 Tan (ref_3) 2020; 77 Jha (ref_22) 2023; 4 Erwin (ref_52) 2020; 12 Muller (ref_4) 2022; 56 Niu (ref_32) 2021; 48 Stefano (ref_76) 2016; 26 ref_69 ref_23 ref_21 ref_64 ref_62 Salama (ref_78) 2020; 14 Esposito (ref_16) 2024; 14 Matharaarachchi (ref_60) 2021; 6 ref_29 ref_26 Zadeh (ref_71) 2021; 43 Selvaraju (ref_79) 2016; 128 Alghamdi (ref_39) 2023; 13 Benson (ref_1) 2009; 373 Avanzo (ref_27) 2020; 47 Wang (ref_11) 2022; 13 ref_36 ref_34 ref_33 ref_77 ref_75 ref_74 ref_73 Ferro (ref_30) 2024; 203 Rajpoot (ref_58) 2024; 38 Gao (ref_9) 2021; 41 (ref_68) 2013; 4 ref_38 ref_37 Smaida (ref_70) 2021; 10 Guyon (ref_63) 2003; 3 ref_83 ref_82 Egwom (ref_65) 2022; 2 Carrington (ref_66) 2023; 45 ref_80 Lotter (ref_31) 2021; 27 Caii (ref_81) 2024; 73 Marinov (ref_20) 2021; 89 ref_47 ref_46 Vernuccio (ref_49) 2021; 94 ref_45 ref_44 Stefano (ref_35) 2024; 4 ref_43 ref_42 ref_41 ref_40 Fawcett (ref_67) 2006; 27 ref_48 ref_8 Vial (ref_24) 2018; 7 ref_6 Mayerhoefer (ref_55) 2020; 61 |
| References_xml | – volume: 7 start-page: 803 year: 2018 ident: ref_24 article-title: The Role of Deep Learning and Radiomic Feature Extraction in Cancer-Specific Predictive Modelling: A Review publication-title: Transl. Cancer Res. doi: 10.21037/tcr.2018.05.02 – ident: ref_69 doi: 10.1145/3460268.3460270 – ident: ref_53 doi: 10.1117/1.3115362 – ident: ref_73 doi: 10.1007/s10278-024-01364-8 – ident: ref_13 doi: 10.1148/rycan.2020204023 – ident: ref_40 doi: 10.3390/jimaging10110290 – volume: 4 start-page: 569 year: 2023 ident: ref_22 article-title: Emerging Role of Quantitative Imaging (Radiomics) and Artificial Intelligence in Precision Oncology publication-title: Explor. Target. Antitumor Ther. doi: 10.37349/etat.2023.00153 – volume: 47 start-page: e185 year: 2020 ident: ref_27 article-title: Machine and Deep Learning Methods for Radiomics publication-title: Med. Phys. doi: 10.1002/mp.13678 – volume: 8 start-page: 201 year: 2005 ident: ref_7 article-title: Key Stages in Mammary Gland Development: The Cues That Regulate Ductal Branching Morphogenesis publication-title: Breast Cancer Res. doi: 10.1186/bcr1368 – ident: ref_51 – ident: ref_37 doi: 10.1109/CVPR.2015.7298594 – ident: ref_38 doi: 10.1186/s12880-024-01510-2 – volume: 37 start-page: 961 year: 2021 ident: ref_61 article-title: Hybrid Descriptive-Inferential Method for Key Feature Selection in Prostate Cancer Radiomics publication-title: Appl. Stoch. Models Bus. Ind. doi: 10.1002/asmb.2642 – volume: 43 start-page: 3126 year: 2021 ident: ref_71 article-title: Bias in Cross-Entropy-Based Training of Deep Survival Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2979450 – ident: ref_74 doi: 10.3390/diagnostics11050815 – ident: ref_23 doi: 10.3390/sym15101834 – ident: ref_12 doi: 10.2214/AJR.23.29655 – ident: ref_46 doi: 10.1007/s00259-025-07085-6 – ident: ref_54 doi: 10.3390/diagnostics14161835 – ident: ref_42 – volume: 3 start-page: 1157 year: 2003 ident: ref_63 article-title: An Introduction of Variable and Feature Selection publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 817 year: 2023 ident: ref_17 article-title: The Role of Theragnostics in Breast Cancer: A Systematic Review of the Last 12 Years publication-title: Curr. Med. Imaging – volume: 83 start-page: 221 year: 2021 ident: ref_28 article-title: Artificial Intelligence Applications in Medical Imaging: A Review of the Medical Physics Research in Italy publication-title: Phys. Medica doi: 10.1016/j.ejmp.2021.04.010 – ident: ref_47 doi: 10.3390/diagnostics13243640 – volume: 2 start-page: 345 year: 2022 ident: ref_65 article-title: An LDA–SVM Machine Learning Model for Breast Cancer Classification publication-title: BioMedInformatics doi: 10.3390/biomedinformatics2030022 – volume: 27 start-page: 861 year: 2006 ident: ref_67 article-title: An Introduction to ROC Analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 373 start-page: 1463 year: 2009 ident: ref_1 article-title: Early Breast Cancer publication-title: Lancet doi: 10.1016/S0140-6736(09)60316-0 – volume: 128 start-page: 336 year: 2016 ident: ref_79 article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – ident: ref_21 doi: 10.20944/preprints202306.1124.v1 – volume: 56 start-page: 170 year: 2022 ident: ref_4 article-title: What’s New in Breast Pathology 2022: WHO 5th Edition and Biomarker Updates publication-title: J. Pathol. Transl. Med. doi: 10.4132/jptm.2022.04.25 – ident: ref_43 doi: 10.1016/j.compbiomed.2024.108827 – ident: ref_48 doi: 10.3390/diagnostics13061167 – volume: 4 start-page: 627 year: 2013 ident: ref_68 article-title: Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation publication-title: Casp. J. Intern. Med. – volume: 77 start-page: 181 year: 2020 ident: ref_3 article-title: The 2019 World Health Organization Classification of Tumours of the Breast publication-title: Histopathology doi: 10.1111/his.14091 – ident: ref_26 doi: 10.1148/ryai.2020190006 – volume: 61 start-page: 488 year: 2020 ident: ref_55 article-title: Introduction to Radiomics publication-title: J. Nucl. Med. doi: 10.2967/jnumed.118.222893 – volume: 14 start-page: 81 year: 2024 ident: ref_16 article-title: A Pre-Processing Tool to Increase Performance of Deep Learning-Based CAD in Digital Breast Tomosynthesis publication-title: Health Technol. doi: 10.1007/s12553-023-00804-9 – ident: ref_18 doi: 10.3390/cancers14040984 – volume: 203 start-page: 104479 year: 2024 ident: ref_30 article-title: Clinical Applications of Radiomics and Deep Learning in Breast and Lung Cancer: A Narrative Literature Review on Current Evidence and Future Perspectives publication-title: Crit. Rev. Oncol./Hematol. doi: 10.1016/j.critrevonc.2024.104479 – ident: ref_62 – volume: 4 start-page: 2309 year: 2024 ident: ref_35 article-title: Implementation of Automatic Segmentation Framework as Preprocessing Step for Radiomics Analysis of Lung Anatomical Districts publication-title: BioMedInformatics doi: 10.3390/biomedinformatics4040125 – volume: 9 start-page: 136 year: 2011 ident: ref_2 article-title: Invasive Breast Cancer publication-title: J. Natl. Compr. Cancer Netw. doi: 10.6004/jnccn.2011.0016 – volume: 10 start-page: 211 year: 2021 ident: ref_70 article-title: Learning Rate Optimization in CNN for Accurate Ophthalmic Classification publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) doi: 10.35940/ijitee.B8259.0210421 – volume: 27 start-page: 244 year: 2021 ident: ref_31 article-title: Robust Breast Cancer Detection in Mammography and Digital Breast Tomosynthesis Using an Annotation-Efficient Deep Learning Approach publication-title: Nat. Med. doi: 10.1038/s41591-020-01174-9 – ident: ref_77 doi: 10.3390/diagnostics13182925 – volume: 89 start-page: 114 year: 2021 ident: ref_20 article-title: Radiomics Software for Breast Imaging Optimization and Simulation Studies publication-title: Phys. Medica doi: 10.1016/j.ejmp.2021.07.014 – volume: 14 start-page: 3254 year: 2020 ident: ref_78 article-title: Novel Breast Cancer Classification Framework Based on Deep Learning publication-title: IET Image Process. doi: 10.1049/iet-ipr.2020.0122 – ident: ref_75 doi: 10.1016/j.cmpb.2023.107483 – ident: ref_56 doi: 10.3390/math12091296 – volume: 26 start-page: 29 year: 2016 ident: ref_76 article-title: A Fully Automatic Method for Biological Target Volume Segmentation of Brain Metastases publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22154 – ident: ref_19 doi: 10.1007/s11042-024-20388-4 – ident: ref_83 doi: 10.1038/s41598-024-51630-6 – ident: ref_41 doi: 10.3390/jimaging8080221 – ident: ref_29 doi: 10.3390/diagnostics14080848 – volume: 48 start-page: 3878 year: 2021 ident: ref_32 article-title: Multi-Scale Attention-Based Convolutional Neural Network for Classification of Breast Masses in Mammograms publication-title: Med. Phys. doi: 10.1002/mp.14942 – volume: 45 start-page: 329 year: 2023 ident: ref_66 article-title: Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3145392 – ident: ref_8 doi: 10.3390/ijms23073883 – volume: 13 start-page: 3145 year: 2022 ident: ref_11 article-title: Comparison of Ultrasound and Mammography for Early Diagnosis of Breast Cancer among Chinese Women with Suspected Breast Lesions: A Prospective Trial publication-title: Thorac. Cancer doi: 10.1111/1759-7714.14666 – ident: ref_14 doi: 10.7759/cureus.57903 – volume: 39 start-page: 1184 year: 2020 ident: ref_25 article-title: Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2945514 – ident: ref_6 doi: 10.1145/3399715.3399744 – volume: 13 start-page: 9 year: 2023 ident: ref_39 article-title: The Application of Artificial Intelligence in Detecting Breast Lesions with Medical Imaging: A Literature Review publication-title: Int. J. Biomed. doi: 10.21103/Article13(1)_RA1 – ident: ref_44 – volume: 41 start-page: 321 year: 2021 ident: ref_9 article-title: Digital Breast Tomosynthesis: Update on Technology, Evidence, and Clinical Practice publication-title: RadioGraphics doi: 10.1148/rg.2021200101 – volume: 113 start-page: 1515 year: 2021 ident: ref_10 article-title: Comparative Effectiveness of Digital Breast Tomosynthesis for Breast Cancer Screening Among Women 40–64 Years Old publication-title: JNCI J. Natl. Cancer Inst. doi: 10.1093/jnci/djab063 – volume: 24 start-page: 96 year: 2022 ident: ref_5 article-title: Microcalcifications, Mammographic Breast Density, and Risk of Breast Cancer: A Cohort Study publication-title: Breast Cancer Res. doi: 10.1186/s13058-022-01594-0 – ident: ref_50 – volume: 77 start-page: e104 year: 2017 ident: ref_57 article-title: Computational Radiomics System to Decode the Radiographic Phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – ident: ref_33 – ident: ref_82 doi: 10.3389/fonc.2022.773840 – ident: ref_45 doi: 10.1038/s41598-022-08412-9 – ident: ref_64 doi: 10.3390/app122211455 – ident: ref_36 doi: 10.1109/CVPR.2017.243 – volume: 17 start-page: 795 year: 2024 ident: ref_72 article-title: An Updated Overview of Radiomics-Based Artificial Intelligence (AI) Methods in Breast Cancer Screening and Diagnosis publication-title: Radiol. Phys. Technol. doi: 10.1007/s12194-024-00842-6 – volume: 6 start-page: 100170 year: 2021 ident: ref_60 article-title: Assessing Feature Selection Method Performance with Class Imbalance Data publication-title: Mach. Learn. Appl. – ident: ref_59 doi: 10.1007/978-3-030-91885-9_36 – ident: ref_15 – ident: ref_80 doi: 10.1109/WACV.2018.00097 – ident: ref_34 doi: 10.1109/CVPR.2016.90 – volume: 94 start-page: 20210340 year: 2021 ident: ref_49 article-title: Diagnostic Performance of Qualitative and Radiomics Approach to Parotid Gland Tumors: Which Is the Added Benefit of Texture Analysis? publication-title: Br. J. Radiol. doi: 10.1259/bjr.20210340 – volume: 73 start-page: 153 year: 2024 ident: ref_81 article-title: Integration of Deep Learning and Habitat Radiomics for Predicting the Response to Immunotherapy in NSCLC Patients publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-024-03724-3 – volume: 38 start-page: 2340386 year: 2024 ident: ref_58 article-title: Feature Selection-Based Machine Learning Comparative Analysis for Predicting Breast Cancer publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2024.2340386 – volume: 12 start-page: 30 year: 2020 ident: ref_52 article-title: Improving Retinal Image Quality Using the Contrast Stretching, Histogram Equalization, and CLAHE Methods with Median Filters publication-title: Int. J. Image Graph. Signal Process. doi: 10.5815/ijigsp.2020.02.04 |
| SSID | ssj0000913825 |
| Score | 2.3043678 |
| Snippet | Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the... Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 953 |
| SubjectTerms | Accuracy Algorithms Asymptomatic automated diagnostic systems Breast cancer breast lesion classification Calcification Cancer Cancer therapies Classification Datasets Deep learning Diagnosis Health aspects Italy Learning strategies Machine learning Magnetic resonance imaging Mammography Medical imaging equipment Medical prognosis Mortality Neural networks Oncology, Experimental Patients Radiomics Risk assessment Tomography |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHgoX1PKZUpCRkLgQNXHsOD52S6sKaTkgKvVmObYDK1XZFd0VqtQfz4ydhg0gwYFr7HzYM555L5k8A7zR1iJsrW0unW9z4RqX6waJq9elbTXnXkYFvvnH-vxCfLiUl1tbfVFNWJIHThN31PqycNoVNfdcVLbTyL8r19XBh0JZH6Nv0egtMhVjsCZtPZlkhirk9Uc-Va6R9jFJoJPM2iQVRcX-3-PyVmL6tWjy_qZf2Zvv9upqKyOd7cHDAUqy4zSEfbgX-kewOx8-lj-G25Ofyt7sdFT1ZsuOzWMJZWCDuuqXfIbJzLNP1i_oL-VrZnvP3oewGnswBLdsRhXsazxGr9hY3E-TKo3SZRc9Xha9OklgP4GLs9PPJ-f5sNlC7hDErXPuSufRNsoih2kLj3lKaScLxy1XrW5LNKFVaHAkfMhxnAyqUC3iDRUQhIVQPYWdftmH58Aq-tYWLGKF1gqhCit93XRedKoqSye7DN7dzbtZJU0Ng1yEzGT-YKYMZmSbsSsJYscD6CZmcBPzNzfJ4C1Z1tCyRfM5O_x9gE9MAljmGIm6ooCEtzuc9MTl5qbNd75hhuV-bTCOCSmbshIZvB6b6UwqYevDchP7NBXyUaUzeJZcaRySIIFWhI4ZNBMnm4x52tIvvkYx8JKTKpyUGeSjP_7LrB78j1l9AQ847YdMlUz6EHbW3zbhJYK0dfsqrscfluM8-w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FLa9jH3PWzs0GOxlprYsWdZDGU2bUgYJo6zQNyNLchcodtYmjMH--N75q_U2xl4t2Yl0p7v7SaffAbzXxmDYmppQWleEwmY21BkCV6djU2jOnWwY-OaL9ORMfD6X51uw6O_CUFplbxMbQ-1qS3vke6gqQsosTsSn1feQqkbR6WpfQsN0pRXcfkMxdg-2OTFjTWB7Olt8OR12XYgFEzFRSz-UIN7fc21GG3EiEzU60a-NXFTD5P-nvb7jsH5PpnywqVbm5w9zeXnHUx0_hkddiMkOWp14Alu-egr3590h-jP4dXjL-M1mA9s3q0s2b1IrPetYVy_CKTo5x06NW9Lt5WtmKseOvF8NPRgGvWxKme1rfEZbb6yps0kZSO1nlxV-FqevpcZ-DmfHs6-HJ2FXhCG0GNytQ25j61BmyiC2KSKH_ktpKyPLDVeFLmIUrVGoCAgEEftY6VWkCoxDlMfgzPvkBUyquvKvgCV0BucNxhCFEUJFRro0K50oVRLHVpYBfOznPV-1XBs5YhQSU_4XMQUwJdkMXYkou3lQX13k3brLCxdHVtso5Y6LxJQ6iURiy9Q7HynjeAAfSLI5LWcUnzXdrQT8x0SMlR8ggFdkqPDndkY9cRnacXOvG3lnBq7zW6UN4N3QTG9Salvl603TJ0sQpyodwMtWlYYhCSJuxZAygGykZKMxj1uq5beGJDzmxBYnZQDhoI__M6uv_z2ON_CQUwVkyl3SOzBZX238LoZl6-Jtt9ZuAGhlOko priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7pfAQEZC4oUsiS9x_ITasWlC6oQQlcZT5NjOqJjSam1BIH485yRuWAYPwGvsXJx8Puc7yZfPhLzQxgBtzU0sratiYQsb6wIKV6czU2nGnGwd-KbH-dFMvD2RJ-GF2yrIKqEUn7dBmkE-iyFfF0kmkyLRkidLV7_-Et4kAZkWqJPQ_CrZySVw8RHZmR2_G3_EFeW2-3ZWQxxq-8R16jX0P0YbdLRaG6Sj1rX_99h8ITldFk5e3zRL8-2rOTu7kJUOb5FyO55OjPJ5b7Ou9uz3S1aP_z_g2-RmIKx03CHsDrnim7vk2jR8kr9Hfuz_8g-nB713OF3UdNoKNT0NHq6n8QRSpqPvjZvjv9ArahpH33i_7HtQoNB0gjr5NWzDq6Htqp2oZ-oOO2_gsDB3OqPt-2R2ePBh_ygOSzrEFqjiOmY2sw4QoAxUSlXqIBsqbWVqmWGq0lUGQDEKYAVlJVRSVnqVqgpYjfJA9bznD8ioWTT-EaEcv-h5A4ykMkKo1EiXF7UTteJZZmUdkVfbJ1suO-eOEioeBEL5ByBEZIJPv--KttvthsX5aRlmcVm5LLXapjlzTHBTa54KbuvcO58q41hEXiJ2SgwOABBrwj8OcMVos1WOC64Uhj043e6gJ0xqO2zeoq8MQWVVQrQUUhYZFxF53jfjniiUa_xi0_YpOFS9SkfkYQfWfkgCbWCBoEakGMB4MOZhSzP_1FqOZwy956SMSNwj_m_u6uN_7P-E3GC4wDJKo_QuGa3PN_4psL519SxM7Z9KIlTk priority: 102 providerName: Unpaywall |
| Title | Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40310389 https://www.proquest.com/docview/3194558134 https://www.proquest.com/docview/3198314979 https://pubmed.ncbi.nlm.nih.gov/PMC12026055 https://www.mdpi.com/2075-4418/15/8/953/pdf?version=1744199793 https://doaj.org/article/bd10c9c062d243af93043cf6ede07ad2 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Journals Free customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6Frq-jH3PXRc0GOxl3mzZsqyHMZIupQwSSlmgezKyJHeB4GRpQlfYH787fy3ZWtirJMu27k53P_n8O4A3SmsMWxPtC2NzPzap8VWKwNWqUOeKcysqBr7RODmdxF8uxMUOtFVRmwW8uhXaUT2pyXL2_uePm09o8B8JcSJk_2DrpDSiNSZ2c2JQuwd76KoU1XIYNfF-tTUrotyjtEaOrtLHUCCtmYjumucA9mMiz4yoDPyG46r4_f_dxTfc2N8plvfX5ULfXOvZbMN_nTyEB03gyfq1pjyCHVc-hv1R82n9Cfw6_sMDzoYdBzibF2xUJVw61nCxXvoDdH2WnWs7pX-ar5guLfvs3KIbwTAUZgPKd19hGx3Isar6JuUl1dNOS5wWbaAmzH4Kk5Ph1-NTvynN4BsM-VY-N6GxKEmpEfHkgUWvJpURgeGay1zlIQpcS1QPhIeIiIxwMpA5RifSYcjmXPQMdst56V4Ai-jLnNMorlzHsQy0sEla2LiQURgaUXjwrl33bFEzcGSIXEhi2S0S82BAsumGEn121TBfXmaNNWa5DQOjTJBwy-NIFyoK4sgUibMukNpyD96SZDNSOxSf0c2_CvjERJeV9RHWS9q-8HZHWyPROM12d6sbWavbGe56sRBpGMUevO666UpKeCvdfF2NSSNEr1J58LxWpe6VWo30IN1Ssq133u4pp98r6vCQE4ecEB74nT7-z6oe3vkQL-GAU0lkSmZSR7C7Wq7dK4zTVnkP9gbD8dl5rzrn6FWWiG2T8Vn_22-PGD8_ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJxAvREn_E8cOE1q1Tx9YKTZu0t-DYzqg0pWVtNU3ib-Nv4y5JswUQ4mWvsevGufPd7-zz7wh5p40B2JqYUFqXh8KmNtQpBK5OxybXjDlZMfANR8ngRHw-lacr5OfyLgymVS5tYmWo3cTiHvkmqIqQMo25-DT9HmLVKDxdXZbQME1pBbdVUYw1FzsO_NUlhHCzrf1dkPd7xvb6xzuDsKkyEFpAL_OQ2dg6eCllALznkQMDrbSVkWWGqVznEJVHRsFMIdIBcG-lV5HKwdEqD-jDew7j3iFrggsNwd9arz_6ctTu8iDrJsRgNd0R5zradHUGHXIwIxU70r11XGJVOeBP_3DDQf6evLm-KKfm6tKcn9_wjHsPyP0G0tLtWgcfkhVfPiJ3h82h_WPyY-eaYZz2W3ZxOinosErl9LRheT0Le-BUHT0yboy3pWfUlI7uej9te1AA2bSHmfRzeIZbfbSq64kZT_Ww4xKGBXHVVNxPyMmtiOMpWS0npX9OKMczP28As-RGCBUZ6ZK0cKJQPI6tLALycfnds2nN7ZFBTIRiyv4ipoD0UDZtVyTmrh5MLs6yZp1nuYsjq22UMMcEN4XmkeC2SLzzkTKOBeQDSjZD8wHis6a5BQFvjERc2XbKlULDCH-30ekJy952m5e6kTVmZ5ZdL5KAvG2b8ZeYSlf6yaLqk3KIi5UOyLNaldopCSSKBQgbkLSjZJ05d1vK8beKlDxmyE4nZUDCVh__56u--Pc83pD1wfHwMDvcHx28JPcYVl_GvCm9QVbnFwv_CiDhPH_drDtKvt72Uv8FGsx2Vg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJg1eEL8JDDASiBeiJnZcxw8TWtdWG6PVNDFpb5ljO6PSlJa11TSJv5C_irvEzRZAiJe9xq4b585339nn7wh5p7QG2NrVoTA2DxOTmlClELhaFetcMWZFxcA3Gnf3jpPPJ-Jkjfxc3YXBtMqVTawMtZ0a3CPvgKokQqQxTzqFT4s47A8_zb6HWEEKT1pX5TS0L7Ngtyu6MX_J48BdXUI4N9_e74Ps3zM2HHzd3Qt9xYHQAJJZhMzExsILSg1APo8sGGupjIgM00zmKocIPdISZg1RDwB9I5yMZA5OVzpAIs5xGPcO2cDDLzASG73B-PCo2fFBBk6Ix2rqI85V1LF1Nh3yMSMtO1K_tdxjVUXgT19xw1n-nsh5d1nO9NWlPj-_4SWHD8h9D2_pTq2PD8maKx-RzZE_wH9Mfuxes43TQcM0TqcFHVVpnY56xtezsAcO1tIjbSd4c3pOdWlp37lZ04MC4KY9zKpfwDPc9qNVjU_MfqqHnZQwLIirpuV-Qo5vRRxPyXo5Ld1zQjme_zkN-CXXSSIjLWw3LWxSSB7HRhQB-bj67tms5vnIID5CMWV_EVNAeiibpiuSdFcPphdnmV_zWW7jyCgTdZllCdeF4lHCTdF11kVSWxaQDyjZDE0JiM9ofyMC3hhJubKdlEuJRhL-bqvVE0yAaTevdCPzJmieXS-YgLxtmvGXmFZXuumy6pNyiJGlCsizWpWaKSVIGgtwNiBpS8lac263lJNvFUF5zJCpToiAhI0-_s9XffHvebwhm7Dksy_744OX5B7DQsyYQqW2yPriYuleATpc5K_9sqPk9LZX-i9qDHqF |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7pfAQEZC4oUsiS9x_ITasWlC6oQQlcZT5NjOqJjSam1BIH485yRuWAYPwGvsXJx8Puc7yZfPhLzQxgBtzU0sratiYQsb6wIKV6czU2nGnGwd-KbH-dFMvD2RJ-GF2yrIKqEUn7dBmkE-iyFfF0kmkyLRkidLV7_-Et4kAZkWqJPQ_CrZySVw8RHZmR2_G3_EFeW2-3ZWQxxq-8R16jX0P0YbdLRaG6Sj1rX_99h8ITldFk5e3zRL8-2rOTu7kJUOb5FyO55OjPJ5b7Ou9uz3S1aP_z_g2-RmIKx03CHsDrnim7vk2jR8kr9Hfuz_8g-nB713OF3UdNoKNT0NHq6n8QRSpqPvjZvjv9ArahpH33i_7HtQoNB0gjr5NWzDq6Htqp2oZ-oOO2_gsDB3OqPt-2R2ePBh_ygOSzrEFqjiOmY2sw4QoAxUSlXqIBsqbWVqmWGq0lUGQDEKYAVlJVRSVnqVqgpYjfJA9bznD8ioWTT-EaEcv-h5A4ykMkKo1EiXF7UTteJZZmUdkVfbJ1suO-eOEioeBEL5ByBEZIJPv--KttvthsX5aRlmcVm5LLXapjlzTHBTa54KbuvcO58q41hEXiJ2SgwOABBrwj8OcMVos1WOC64Uhj043e6gJ0xqO2zeoq8MQWVVQrQUUhYZFxF53jfjniiUa_xi0_YpOFS9SkfkYQfWfkgCbWCBoEakGMB4MOZhSzP_1FqOZwy956SMSNwj_m_u6uN_7P-E3GC4wDJKo_QuGa3PN_4psL519SxM7Z9KIlTk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Evaluation+of+Machine+Learning-Based+Radiomics+and+Deep+Learning+for+Breast+Lesion+Classification+in+Mammography&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Stefano%2C+Alessandro&rft.au=Bini%2C+Fabiano&rft.au=Giovagnoli%2C+Eleonora&rft.au=Dimarco%2C+Mariangela&rft.date=2025-04-09&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=8&rft_id=info:doi/10.3390%2Fdiagnostics15080953&rft_id=info%3Apmid%2F40310389&rft.externalDocID=40310389 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |