Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography

Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, m...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 15; no. 8; p. 953
Main Authors Stefano, Alessandro, Bini, Fabiano, Giovagnoli, Eleonora, Dimarco, Mariangela, Lauciello, Nicolò, Narbonese, Daniela, Pasini, Giovanni, Marinozzi, Franco, Russo, Giorgio, D’Angelo, Ildebrando
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.04.2025
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics15080953

Cover

Abstract Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management.
AbstractList Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. : matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. : The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. : This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management.
Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management.
Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management.Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of radiological features, such as masses and microcalcifications in mammograms, is crucial for reducing mortality rates. However, manual interpretation by radiologists is complex and subject to variability, emphasizing the need for automated diagnostic tools to enhance accuracy and efficiency. This study compares a radiomics workflow based on machine learning (ML) with a deep learning (DL) approach for classifying breast lesions as benign or malignant. Methods: matRadiomics was used to extract radiomics features from mammographic images of 1219 patients from the CBIS-DDSM public database, including 581 cases of microcalcifications and 638 of masses. Among the ML models, a linear discriminant analysis (LDA) demonstrated the best performance for both lesion types. External validation was conducted on a private dataset of 222 images to evaluate generalizability to an independent cohort. Additionally, a deep learning approach based on the EfficientNetB6 model was employed for comparison. Results: The LDA model achieved a mean validation AUC of 68.28% for microcalcifications and 61.53% for masses. In the external validation, AUC values of 66.9% and 61.5% were obtained, respectively. In contrast, the EfficientNetB6 model demonstrated superior performance, achieving an AUC of 81.52% for microcalcifications and 76.24% for masses, highlighting the potential of DL for improved diagnostic accuracy. Conclusions: This study underscores the limitations of ML-based radiomics in breast cancer diagnosis. Deep learning proves to be a more effective approach, offering enhanced accuracy and supporting clinicians in improving patient management.
Audience Academic
Author Giovagnoli, Eleonora
Dimarco, Mariangela
Lauciello, Nicolò
Narbonese, Daniela
Stefano, Alessandro
Russo, Giorgio
Pasini, Giovanni
Marinozzi, Franco
D’Angelo, Ildebrando
Bini, Fabiano
AuthorAffiliation 1 Institute of Bioimaging and Complex Biological Systems, National Research Council (IBSBC-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; alessandro.stefano@cnr.it (A.S.); nicolo.lauciello@unipa.it (N.L.); giovanni.pasini@uniroma1.it (G.P.); giorgio-russo@cnr.it (G.R.)
2 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; giovagnoli.1918945@studenti.uniroma1.it (E.G.); franco.marinozzi@uniroma1.it (F.M.)
3 Department of Radiology, Fondazione Istituto “G. Giglio”, 90015 Cefalù, Italy; maridimarco33@gmail.com (M.D.); daniela.narbonese@studenti.unipd.it (D.N.); ildebrando.dangelo@hsrgiglio.it (I.D.)
4 Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
AuthorAffiliation_xml – name: 2 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; giovagnoli.1918945@studenti.uniroma1.it (E.G.); franco.marinozzi@uniroma1.it (F.M.)
– name: 4 Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
– name: 1 Institute of Bioimaging and Complex Biological Systems, National Research Council (IBSBC-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; alessandro.stefano@cnr.it (A.S.); nicolo.lauciello@unipa.it (N.L.); giovanni.pasini@uniroma1.it (G.P.); giorgio-russo@cnr.it (G.R.)
– name: 3 Department of Radiology, Fondazione Istituto “G. Giglio”, 90015 Cefalù, Italy; maridimarco33@gmail.com (M.D.); daniela.narbonese@studenti.unipd.it (D.N.); ildebrando.dangelo@hsrgiglio.it (I.D.)
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0002-7189-1731
  surname: Stefano
  fullname: Stefano, Alessandro
– sequence: 2
  givenname: Fabiano
  orcidid: 0000-0002-5641-1189
  surname: Bini
  fullname: Bini, Fabiano
– sequence: 3
  givenname: Eleonora
  surname: Giovagnoli
  fullname: Giovagnoli, Eleonora
– sequence: 4
  givenname: Mariangela
  surname: Dimarco
  fullname: Dimarco, Mariangela
– sequence: 5
  givenname: Nicolò
  surname: Lauciello
  fullname: Lauciello, Nicolò
– sequence: 6
  givenname: Daniela
  surname: Narbonese
  fullname: Narbonese, Daniela
– sequence: 7
  givenname: Giovanni
  orcidid: 0000-0002-8750-0731
  surname: Pasini
  fullname: Pasini, Giovanni
– sequence: 8
  givenname: Franco
  surname: Marinozzi
  fullname: Marinozzi, Franco
– sequence: 9
  givenname: Giorgio
  orcidid: 0000-0003-1493-1087
  surname: Russo
  fullname: Russo, Giorgio
– sequence: 10
  givenname: Ildebrando
  surname: D’Angelo
  fullname: D’Angelo, Ildebrando
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40310389$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNUREvpL0BCkbj0ssWf6-SE2qVApUVICM7RxJ5kvUrsYCeLVuLH42XL0kU9YB9sjd957Hk9z7MT5x1m2UtKrjgvyRtjoXU-jlZHKklBSsmfZGeMKDkTghYnD_an2UWMa5JGSXnB5LPsVBBOCS_Ks-znwvcDBBjtBvPbDXRT2nqX-yb_BHplHeZLhOCsa2c3ENHkX8BY36d7c3Amf4c4HBR540N-ExDimGJxx1l0EKNtrN5jrUvYvvdtgGG1fZE9baCLeHG_nmff3t9-XXycLT9_uFtcL2da0nKcMU21YcwokKKoiRGsVKWWRDNgqi5rWhYEFGpN5bxQUktURNVKEoVSSER-nt3tucbDuhqC7SFsKw-2-h3woa0gJCs7rGpDiS41mTPDBIem5ERw3czRIFFgWGKJPWtyA2x_QNcdgJRUu7-pHvmblPZ2nzZMdY9GoxsDdEdvOT5xdlW1flNRRticSJkIl_eE4L9PGMeqt1Fj14FDP8WKJxs4FcmaJH39j3Ttp-CSxTuVkLKgXPxVtZAKt67x6WK9g1bXBVeKSE53D796RJWmwdQEqSkbm-JHCa8eVnoo8U_PJQHfC3TwMQZs_svAX0Dy7gc
Cites_doi 10.21037/tcr.2018.05.02
10.1145/3460268.3460270
10.1117/1.3115362
10.1007/s10278-024-01364-8
10.1148/rycan.2020204023
10.3390/jimaging10110290
10.37349/etat.2023.00153
10.1002/mp.13678
10.1186/bcr1368
10.1109/CVPR.2015.7298594
10.1186/s12880-024-01510-2
10.1002/asmb.2642
10.1109/TPAMI.2020.2979450
10.3390/diagnostics11050815
10.3390/sym15101834
10.2214/AJR.23.29655
10.1007/s00259-025-07085-6
10.3390/diagnostics14161835
10.1016/j.ejmp.2021.04.010
10.3390/diagnostics13243640
10.3390/biomedinformatics2030022
10.1016/j.patrec.2005.10.010
10.1016/S0140-6736(09)60316-0
10.1007/s11263-019-01228-7
10.20944/preprints202306.1124.v1
10.4132/jptm.2022.04.25
10.1016/j.compbiomed.2024.108827
10.3390/diagnostics13061167
10.1111/his.14091
10.1148/ryai.2020190006
10.2967/jnumed.118.222893
10.1007/s12553-023-00804-9
10.3390/cancers14040984
10.1016/j.critrevonc.2024.104479
10.3390/biomedinformatics4040125
10.6004/jnccn.2011.0016
10.35940/ijitee.B8259.0210421
10.1038/s41591-020-01174-9
10.3390/diagnostics13182925
10.1016/j.ejmp.2021.07.014
10.1049/iet-ipr.2020.0122
10.1016/j.cmpb.2023.107483
10.3390/math12091296
10.1002/ima.22154
10.1007/s11042-024-20388-4
10.1038/s41598-024-51630-6
10.3390/jimaging8080221
10.3390/diagnostics14080848
10.1002/mp.14942
10.1109/TPAMI.2022.3145392
10.3390/ijms23073883
10.1111/1759-7714.14666
10.7759/cureus.57903
10.1109/TMI.2019.2945514
10.1145/3399715.3399744
10.21103/Article13(1)_RA1
10.1148/rg.2021200101
10.1093/jnci/djab063
10.1186/s13058-022-01594-0
10.1158/0008-5472.CAN-17-0339
10.3389/fonc.2022.773840
10.1038/s41598-022-08412-9
10.3390/app122211455
10.1109/CVPR.2017.243
10.1007/s12194-024-00842-6
10.1007/978-3-030-91885-9_36
10.1109/WACV.2018.00097
10.1109/CVPR.2016.90
10.1259/bjr.20210340
10.1007/s00262-024-03724-3
10.1080/08839514.2024.2340386
10.5815/ijigsp.2020.02.04
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics15080953
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
ProQuest Central Research Library (via ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_bd10c9c062d243af93043cf6ede07ad2
10.3390/diagnostics15080953
PMC12026055
A837705313
40310389
10_3390_diagnostics15080953
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c519t-2c1cd22d7a548b0d42979c50c2a27b9b1980a7ecc156875c5e707b7507e545ee3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Fri Oct 03 12:39:50 EDT 2025
Sun Oct 26 04:12:09 EDT 2025
Tue Sep 30 17:03:10 EDT 2025
Fri Sep 05 17:20:35 EDT 2025
Mon Jun 30 11:31:30 EDT 2025
Thu May 08 04:15:57 EDT 2025
Mon Oct 20 16:53:55 EDT 2025
Mon Jul 21 06:05:33 EDT 2025
Thu Oct 16 04:37:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords automated diagnostic systems
deep learning
radiomics
mammography
breast lesion classification
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-2c1cd22d7a548b0d42979c50c2a27b9b1980a7ecc156875c5e707b7507e545ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These Authors share first authorship.
ORCID 0000-0002-5641-1189
0000-0002-8750-0731
0000-0003-1493-1087
0000-0002-7189-1731
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics15080953
PMID 40310389
PQID 3194558134
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_bd10c9c062d243af93043cf6ede07ad2
unpaywall_primary_10_3390_diagnostics15080953
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12026055
proquest_miscellaneous_3198314979
proquest_journals_3194558134
gale_infotracmisc_A837705313
gale_infotracacademiconefile_A837705313
pubmed_primary_40310389
crossref_primary_10_3390_diagnostics15080953
PublicationCentury 2000
PublicationDate 2025-04-09
PublicationDateYYYYMMDD 2025-04-09
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Richman (ref_10) 2021; 113
Sternlicht (ref_7) 2005; 8
Avanzo (ref_28) 2021; 83
ref_14
ref_13
Kim (ref_5) 2022; 24
ref_12
Balma (ref_17) 2023; 19
ref_56
Carlson (ref_2) 2011; 9
Barone (ref_61) 2021; 37
ref_54
Elahi (ref_72) 2024; 17
ref_53
Wu (ref_25) 2020; 39
Fedorov (ref_57) 2017; 77
ref_51
ref_19
ref_18
ref_15
ref_59
Tan (ref_3) 2020; 77
Jha (ref_22) 2023; 4
Erwin (ref_52) 2020; 12
Muller (ref_4) 2022; 56
Niu (ref_32) 2021; 48
Stefano (ref_76) 2016; 26
ref_69
ref_23
ref_21
ref_64
ref_62
Salama (ref_78) 2020; 14
Esposito (ref_16) 2024; 14
Matharaarachchi (ref_60) 2021; 6
ref_29
ref_26
Zadeh (ref_71) 2021; 43
Selvaraju (ref_79) 2016; 128
Alghamdi (ref_39) 2023; 13
Benson (ref_1) 2009; 373
Avanzo (ref_27) 2020; 47
Wang (ref_11) 2022; 13
ref_36
ref_34
ref_33
ref_77
ref_75
ref_74
ref_73
Ferro (ref_30) 2024; 203
Rajpoot (ref_58) 2024; 38
Gao (ref_9) 2021; 41
(ref_68) 2013; 4
ref_38
ref_37
Smaida (ref_70) 2021; 10
Guyon (ref_63) 2003; 3
ref_83
ref_82
Egwom (ref_65) 2022; 2
Carrington (ref_66) 2023; 45
ref_80
Lotter (ref_31) 2021; 27
Caii (ref_81) 2024; 73
Marinov (ref_20) 2021; 89
ref_47
ref_46
Vernuccio (ref_49) 2021; 94
ref_45
ref_44
Stefano (ref_35) 2024; 4
ref_43
ref_42
ref_41
ref_40
Fawcett (ref_67) 2006; 27
ref_48
ref_8
Vial (ref_24) 2018; 7
ref_6
Mayerhoefer (ref_55) 2020; 61
References_xml – volume: 7
  start-page: 803
  year: 2018
  ident: ref_24
  article-title: The Role of Deep Learning and Radiomic Feature Extraction in Cancer-Specific Predictive Modelling: A Review
  publication-title: Transl. Cancer Res.
  doi: 10.21037/tcr.2018.05.02
– ident: ref_69
  doi: 10.1145/3460268.3460270
– ident: ref_53
  doi: 10.1117/1.3115362
– ident: ref_73
  doi: 10.1007/s10278-024-01364-8
– ident: ref_13
  doi: 10.1148/rycan.2020204023
– ident: ref_40
  doi: 10.3390/jimaging10110290
– volume: 4
  start-page: 569
  year: 2023
  ident: ref_22
  article-title: Emerging Role of Quantitative Imaging (Radiomics) and Artificial Intelligence in Precision Oncology
  publication-title: Explor. Target. Antitumor Ther.
  doi: 10.37349/etat.2023.00153
– volume: 47
  start-page: e185
  year: 2020
  ident: ref_27
  article-title: Machine and Deep Learning Methods for Radiomics
  publication-title: Med. Phys.
  doi: 10.1002/mp.13678
– volume: 8
  start-page: 201
  year: 2005
  ident: ref_7
  article-title: Key Stages in Mammary Gland Development: The Cues That Regulate Ductal Branching Morphogenesis
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr1368
– ident: ref_51
– ident: ref_37
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_38
  doi: 10.1186/s12880-024-01510-2
– volume: 37
  start-page: 961
  year: 2021
  ident: ref_61
  article-title: Hybrid Descriptive-Inferential Method for Key Feature Selection in Prostate Cancer Radiomics
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.2642
– volume: 43
  start-page: 3126
  year: 2021
  ident: ref_71
  article-title: Bias in Cross-Entropy-Based Training of Deep Survival Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2979450
– ident: ref_74
  doi: 10.3390/diagnostics11050815
– ident: ref_23
  doi: 10.3390/sym15101834
– ident: ref_12
  doi: 10.2214/AJR.23.29655
– ident: ref_46
  doi: 10.1007/s00259-025-07085-6
– ident: ref_54
  doi: 10.3390/diagnostics14161835
– ident: ref_42
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_63
  article-title: An Introduction of Variable and Feature Selection
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 817
  year: 2023
  ident: ref_17
  article-title: The Role of Theragnostics in Breast Cancer: A Systematic Review of the Last 12 Years
  publication-title: Curr. Med. Imaging
– volume: 83
  start-page: 221
  year: 2021
  ident: ref_28
  article-title: Artificial Intelligence Applications in Medical Imaging: A Review of the Medical Physics Research in Italy
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2021.04.010
– ident: ref_47
  doi: 10.3390/diagnostics13243640
– volume: 2
  start-page: 345
  year: 2022
  ident: ref_65
  article-title: An LDA–SVM Machine Learning Model for Breast Cancer Classification
  publication-title: BioMedInformatics
  doi: 10.3390/biomedinformatics2030022
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_67
  article-title: An Introduction to ROC Analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 373
  start-page: 1463
  year: 2009
  ident: ref_1
  article-title: Early Breast Cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)60316-0
– volume: 128
  start-page: 336
  year: 2016
  ident: ref_79
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– ident: ref_21
  doi: 10.20944/preprints202306.1124.v1
– volume: 56
  start-page: 170
  year: 2022
  ident: ref_4
  article-title: What’s New in Breast Pathology 2022: WHO 5th Edition and Biomarker Updates
  publication-title: J. Pathol. Transl. Med.
  doi: 10.4132/jptm.2022.04.25
– ident: ref_43
  doi: 10.1016/j.compbiomed.2024.108827
– ident: ref_48
  doi: 10.3390/diagnostics13061167
– volume: 4
  start-page: 627
  year: 2013
  ident: ref_68
  article-title: Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation
  publication-title: Casp. J. Intern. Med.
– volume: 77
  start-page: 181
  year: 2020
  ident: ref_3
  article-title: The 2019 World Health Organization Classification of Tumours of the Breast
  publication-title: Histopathology
  doi: 10.1111/his.14091
– ident: ref_26
  doi: 10.1148/ryai.2020190006
– volume: 61
  start-page: 488
  year: 2020
  ident: ref_55
  article-title: Introduction to Radiomics
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.118.222893
– volume: 14
  start-page: 81
  year: 2024
  ident: ref_16
  article-title: A Pre-Processing Tool to Increase Performance of Deep Learning-Based CAD in Digital Breast Tomosynthesis
  publication-title: Health Technol.
  doi: 10.1007/s12553-023-00804-9
– ident: ref_18
  doi: 10.3390/cancers14040984
– volume: 203
  start-page: 104479
  year: 2024
  ident: ref_30
  article-title: Clinical Applications of Radiomics and Deep Learning in Breast and Lung Cancer: A Narrative Literature Review on Current Evidence and Future Perspectives
  publication-title: Crit. Rev. Oncol./Hematol.
  doi: 10.1016/j.critrevonc.2024.104479
– ident: ref_62
– volume: 4
  start-page: 2309
  year: 2024
  ident: ref_35
  article-title: Implementation of Automatic Segmentation Framework as Preprocessing Step for Radiomics Analysis of Lung Anatomical Districts
  publication-title: BioMedInformatics
  doi: 10.3390/biomedinformatics4040125
– volume: 9
  start-page: 136
  year: 2011
  ident: ref_2
  article-title: Invasive Breast Cancer
  publication-title: J. Natl. Compr. Cancer Netw.
  doi: 10.6004/jnccn.2011.0016
– volume: 10
  start-page: 211
  year: 2021
  ident: ref_70
  article-title: Learning Rate Optimization in CNN for Accurate Ophthalmic Classification
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
  doi: 10.35940/ijitee.B8259.0210421
– volume: 27
  start-page: 244
  year: 2021
  ident: ref_31
  article-title: Robust Breast Cancer Detection in Mammography and Digital Breast Tomosynthesis Using an Annotation-Efficient Deep Learning Approach
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01174-9
– ident: ref_77
  doi: 10.3390/diagnostics13182925
– volume: 89
  start-page: 114
  year: 2021
  ident: ref_20
  article-title: Radiomics Software for Breast Imaging Optimization and Simulation Studies
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2021.07.014
– volume: 14
  start-page: 3254
  year: 2020
  ident: ref_78
  article-title: Novel Breast Cancer Classification Framework Based on Deep Learning
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2020.0122
– ident: ref_75
  doi: 10.1016/j.cmpb.2023.107483
– ident: ref_56
  doi: 10.3390/math12091296
– volume: 26
  start-page: 29
  year: 2016
  ident: ref_76
  article-title: A Fully Automatic Method for Biological Target Volume Segmentation of Brain Metastases
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22154
– ident: ref_19
  doi: 10.1007/s11042-024-20388-4
– ident: ref_83
  doi: 10.1038/s41598-024-51630-6
– ident: ref_41
  doi: 10.3390/jimaging8080221
– ident: ref_29
  doi: 10.3390/diagnostics14080848
– volume: 48
  start-page: 3878
  year: 2021
  ident: ref_32
  article-title: Multi-Scale Attention-Based Convolutional Neural Network for Classification of Breast Masses in Mammograms
  publication-title: Med. Phys.
  doi: 10.1002/mp.14942
– volume: 45
  start-page: 329
  year: 2023
  ident: ref_66
  article-title: Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3145392
– ident: ref_8
  doi: 10.3390/ijms23073883
– volume: 13
  start-page: 3145
  year: 2022
  ident: ref_11
  article-title: Comparison of Ultrasound and Mammography for Early Diagnosis of Breast Cancer among Chinese Women with Suspected Breast Lesions: A Prospective Trial
  publication-title: Thorac. Cancer
  doi: 10.1111/1759-7714.14666
– ident: ref_14
  doi: 10.7759/cureus.57903
– volume: 39
  start-page: 1184
  year: 2020
  ident: ref_25
  article-title: Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2945514
– ident: ref_6
  doi: 10.1145/3399715.3399744
– volume: 13
  start-page: 9
  year: 2023
  ident: ref_39
  article-title: The Application of Artificial Intelligence in Detecting Breast Lesions with Medical Imaging: A Literature Review
  publication-title: Int. J. Biomed.
  doi: 10.21103/Article13(1)_RA1
– ident: ref_44
– volume: 41
  start-page: 321
  year: 2021
  ident: ref_9
  article-title: Digital Breast Tomosynthesis: Update on Technology, Evidence, and Clinical Practice
  publication-title: RadioGraphics
  doi: 10.1148/rg.2021200101
– volume: 113
  start-page: 1515
  year: 2021
  ident: ref_10
  article-title: Comparative Effectiveness of Digital Breast Tomosynthesis for Breast Cancer Screening Among Women 40–64 Years Old
  publication-title: JNCI J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djab063
– volume: 24
  start-page: 96
  year: 2022
  ident: ref_5
  article-title: Microcalcifications, Mammographic Breast Density, and Risk of Breast Cancer: A Cohort Study
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-022-01594-0
– ident: ref_50
– volume: 77
  start-page: e104
  year: 2017
  ident: ref_57
  article-title: Computational Radiomics System to Decode the Radiographic Phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: ref_33
– ident: ref_82
  doi: 10.3389/fonc.2022.773840
– ident: ref_45
  doi: 10.1038/s41598-022-08412-9
– ident: ref_64
  doi: 10.3390/app122211455
– ident: ref_36
  doi: 10.1109/CVPR.2017.243
– volume: 17
  start-page: 795
  year: 2024
  ident: ref_72
  article-title: An Updated Overview of Radiomics-Based Artificial Intelligence (AI) Methods in Breast Cancer Screening and Diagnosis
  publication-title: Radiol. Phys. Technol.
  doi: 10.1007/s12194-024-00842-6
– volume: 6
  start-page: 100170
  year: 2021
  ident: ref_60
  article-title: Assessing Feature Selection Method Performance with Class Imbalance Data
  publication-title: Mach. Learn. Appl.
– ident: ref_59
  doi: 10.1007/978-3-030-91885-9_36
– ident: ref_15
– ident: ref_80
  doi: 10.1109/WACV.2018.00097
– ident: ref_34
  doi: 10.1109/CVPR.2016.90
– volume: 94
  start-page: 20210340
  year: 2021
  ident: ref_49
  article-title: Diagnostic Performance of Qualitative and Radiomics Approach to Parotid Gland Tumors: Which Is the Added Benefit of Texture Analysis?
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20210340
– volume: 73
  start-page: 153
  year: 2024
  ident: ref_81
  article-title: Integration of Deep Learning and Habitat Radiomics for Predicting the Response to Immunotherapy in NSCLC Patients
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-024-03724-3
– volume: 38
  start-page: 2340386
  year: 2024
  ident: ref_58
  article-title: Feature Selection-Based Machine Learning Comparative Analysis for Predicting Breast Cancer
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2024.2340386
– volume: 12
  start-page: 30
  year: 2020
  ident: ref_52
  article-title: Improving Retinal Image Quality Using the Contrast Stretching, Histogram Equalization, and CLAHE Methods with Median Filters
  publication-title: Int. J. Image Graph. Signal Process.
  doi: 10.5815/ijigsp.2020.02.04
SSID ssj0000913825
Score 2.3043678
Snippet Background: Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the...
Breast cancer is the second leading cause of cancer-related mortality among women, accounting for 12% of cases. Early diagnosis, based on the identification of...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 953
SubjectTerms Accuracy
Algorithms
Asymptomatic
automated diagnostic systems
Breast cancer
breast lesion classification
Calcification
Cancer
Cancer therapies
Classification
Datasets
Deep learning
Diagnosis
Health aspects
Italy
Learning strategies
Machine learning
Magnetic resonance imaging
Mammography
Medical imaging equipment
Medical prognosis
Mortality
Neural networks
Oncology, Experimental
Patients
Radiomics
Risk assessment
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHgoX1PKZUpCRkLgQNXHsOD52S6sKaTkgKvVmObYDK1XZFd0VqtQfz4ydhg0gwYFr7HzYM555L5k8A7zR1iJsrW0unW9z4RqX6waJq9elbTXnXkYFvvnH-vxCfLiUl1tbfVFNWJIHThN31PqycNoVNfdcVLbTyL8r19XBh0JZH6Nv0egtMhVjsCZtPZlkhirk9Uc-Va6R9jFJoJPM2iQVRcX-3-PyVmL6tWjy_qZf2Zvv9upqKyOd7cHDAUqy4zSEfbgX-kewOx8-lj-G25Ofyt7sdFT1ZsuOzWMJZWCDuuqXfIbJzLNP1i_oL-VrZnvP3oewGnswBLdsRhXsazxGr9hY3E-TKo3SZRc9Xha9OklgP4GLs9PPJ-f5sNlC7hDErXPuSufRNsoih2kLj3lKaScLxy1XrW5LNKFVaHAkfMhxnAyqUC3iDRUQhIVQPYWdftmH58Aq-tYWLGKF1gqhCit93XRedKoqSye7DN7dzbtZJU0Ng1yEzGT-YKYMZmSbsSsJYscD6CZmcBPzNzfJ4C1Z1tCyRfM5O_x9gE9MAljmGIm6ooCEtzuc9MTl5qbNd75hhuV-bTCOCSmbshIZvB6b6UwqYevDchP7NBXyUaUzeJZcaRySIIFWhI4ZNBMnm4x52tIvvkYx8JKTKpyUGeSjP_7LrB78j1l9AQ847YdMlUz6EHbW3zbhJYK0dfsqrscfluM8-w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FLa9jH3PWzs0GOxlprYsWdZDGU2bUgYJo6zQNyNLchcodtYmjMH--N75q_U2xl4t2Yl0p7v7SaffAbzXxmDYmppQWleEwmY21BkCV6djU2jOnWwY-OaL9ORMfD6X51uw6O_CUFplbxMbQ-1qS3vke6gqQsosTsSn1feQqkbR6WpfQsN0pRXcfkMxdg-2OTFjTWB7Olt8OR12XYgFEzFRSz-UIN7fc21GG3EiEzU60a-NXFTD5P-nvb7jsH5PpnywqVbm5w9zeXnHUx0_hkddiMkOWp14Alu-egr3590h-jP4dXjL-M1mA9s3q0s2b1IrPetYVy_CKTo5x06NW9Lt5WtmKseOvF8NPRgGvWxKme1rfEZbb6yps0kZSO1nlxV-FqevpcZ-DmfHs6-HJ2FXhCG0GNytQ25j61BmyiC2KSKH_ktpKyPLDVeFLmIUrVGoCAgEEftY6VWkCoxDlMfgzPvkBUyquvKvgCV0BucNxhCFEUJFRro0K50oVRLHVpYBfOznPV-1XBs5YhQSU_4XMQUwJdkMXYkou3lQX13k3brLCxdHVtso5Y6LxJQ6iURiy9Q7HynjeAAfSLI5LWcUnzXdrQT8x0SMlR8ggFdkqPDndkY9cRnacXOvG3lnBq7zW6UN4N3QTG9Salvl603TJ0sQpyodwMtWlYYhCSJuxZAygGykZKMxj1uq5beGJDzmxBYnZQDhoI__M6uv_z2ON_CQUwVkyl3SOzBZX238LoZl6-Jtt9ZuAGhlOko
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7pfAQEZC4oUsiS9x_ITasWlC6oQQlcZT5NjOqJjSam1BIH485yRuWAYPwGvsXJx8Puc7yZfPhLzQxgBtzU0sratiYQsb6wIKV6czU2nGnGwd-KbH-dFMvD2RJ-GF2yrIKqEUn7dBmkE-iyFfF0kmkyLRkidLV7_-Et4kAZkWqJPQ_CrZySVw8RHZmR2_G3_EFeW2-3ZWQxxq-8R16jX0P0YbdLRaG6Sj1rX_99h8ITldFk5e3zRL8-2rOTu7kJUOb5FyO55OjPJ5b7Ou9uz3S1aP_z_g2-RmIKx03CHsDrnim7vk2jR8kr9Hfuz_8g-nB713OF3UdNoKNT0NHq6n8QRSpqPvjZvjv9ArahpH33i_7HtQoNB0gjr5NWzDq6Htqp2oZ-oOO2_gsDB3OqPt-2R2ePBh_ygOSzrEFqjiOmY2sw4QoAxUSlXqIBsqbWVqmWGq0lUGQDEKYAVlJVRSVnqVqgpYjfJA9bznD8ioWTT-EaEcv-h5A4ykMkKo1EiXF7UTteJZZmUdkVfbJ1suO-eOEioeBEL5ByBEZIJPv--KttvthsX5aRlmcVm5LLXapjlzTHBTa54KbuvcO58q41hEXiJ2SgwOABBrwj8OcMVos1WOC64Uhj043e6gJ0xqO2zeoq8MQWVVQrQUUhYZFxF53jfjniiUa_xi0_YpOFS9SkfkYQfWfkgCbWCBoEakGMB4MOZhSzP_1FqOZwy956SMSNwj_m_u6uN_7P-E3GC4wDJKo_QuGa3PN_4psL519SxM7Z9KIlTk
  priority: 102
  providerName: Unpaywall
Title Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography
URI https://www.ncbi.nlm.nih.gov/pubmed/40310389
https://www.proquest.com/docview/3194558134
https://www.proquest.com/docview/3198314979
https://pubmed.ncbi.nlm.nih.gov/PMC12026055
https://www.mdpi.com/2075-4418/15/8/953/pdf?version=1744199793
https://doaj.org/article/bd10c9c062d243af93043cf6ede07ad2
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Journals Free
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6Frq-jH3PXRc0GOxl3mzZsqyHMZIupQwSSlmgezKyJHeB4GRpQlfYH787fy3ZWtirJMu27k53P_n8O4A3SmsMWxPtC2NzPzap8VWKwNWqUOeKcysqBr7RODmdxF8uxMUOtFVRmwW8uhXaUT2pyXL2_uePm09o8B8JcSJk_2DrpDSiNSZ2c2JQuwd76KoU1XIYNfF-tTUrotyjtEaOrtLHUCCtmYjumucA9mMiz4yoDPyG46r4_f_dxTfc2N8plvfX5ULfXOvZbMN_nTyEB03gyfq1pjyCHVc-hv1R82n9Cfw6_sMDzoYdBzibF2xUJVw61nCxXvoDdH2WnWs7pX-ar5guLfvs3KIbwTAUZgPKd19hGx3Isar6JuUl1dNOS5wWbaAmzH4Kk5Ph1-NTvynN4BsM-VY-N6GxKEmpEfHkgUWvJpURgeGay1zlIQpcS1QPhIeIiIxwMpA5RifSYcjmXPQMdst56V4Ai-jLnNMorlzHsQy0sEla2LiQURgaUXjwrl33bFEzcGSIXEhi2S0S82BAsumGEn121TBfXmaNNWa5DQOjTJBwy-NIFyoK4sgUibMukNpyD96SZDNSOxSf0c2_CvjERJeV9RHWS9q-8HZHWyPROM12d6sbWavbGe56sRBpGMUevO666UpKeCvdfF2NSSNEr1J58LxWpe6VWo30IN1Ssq133u4pp98r6vCQE4ecEB74nT7-z6oe3vkQL-GAU0lkSmZSR7C7Wq7dK4zTVnkP9gbD8dl5rzrn6FWWiG2T8Vn_22-PGD8_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJxAvREn_E8cOE1q1Tx9YKTZu0t-DYzqg0pWVtNU3ib-Nv4y5JswUQ4mWvsevGufPd7-zz7wh5p40B2JqYUFqXh8KmNtQpBK5OxybXjDlZMfANR8ngRHw-lacr5OfyLgymVS5tYmWo3cTiHvkmqIqQMo25-DT9HmLVKDxdXZbQME1pBbdVUYw1FzsO_NUlhHCzrf1dkPd7xvb6xzuDsKkyEFpAL_OQ2dg6eCllALznkQMDrbSVkWWGqVznEJVHRsFMIdIBcG-lV5HKwdEqD-jDew7j3iFrggsNwd9arz_6ctTu8iDrJsRgNd0R5zradHUGHXIwIxU70r11XGJVOeBP_3DDQf6evLm-KKfm6tKcn9_wjHsPyP0G0tLtWgcfkhVfPiJ3h82h_WPyY-eaYZz2W3ZxOinosErl9LRheT0Le-BUHT0yboy3pWfUlI7uej9te1AA2bSHmfRzeIZbfbSq64kZT_Ww4xKGBXHVVNxPyMmtiOMpWS0npX9OKMczP28As-RGCBUZ6ZK0cKJQPI6tLALycfnds2nN7ZFBTIRiyv4ipoD0UDZtVyTmrh5MLs6yZp1nuYsjq22UMMcEN4XmkeC2SLzzkTKOBeQDSjZD8wHis6a5BQFvjERc2XbKlULDCH-30ekJy952m5e6kTVmZ5ZdL5KAvG2b8ZeYSlf6yaLqk3KIi5UOyLNaldopCSSKBQgbkLSjZJ05d1vK8beKlDxmyE4nZUDCVh__56u--Pc83pD1wfHwMDvcHx28JPcYVl_GvCm9QVbnFwv_CiDhPH_drDtKvt72Uv8FGsx2Vg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJg1eEL8JDDASiBeiJnZcxw8TWtdWG6PVNDFpb5ljO6PSlJa11TSJv5C_irvEzRZAiJe9xq4b585339nn7wh5p7QG2NrVoTA2DxOTmlClELhaFetcMWZFxcA3Gnf3jpPPJ-Jkjfxc3YXBtMqVTawMtZ0a3CPvgKokQqQxTzqFT4s47A8_zb6HWEEKT1pX5TS0L7Ngtyu6MX_J48BdXUI4N9_e74Ps3zM2HHzd3Qt9xYHQAJJZhMzExsILSg1APo8sGGupjIgM00zmKocIPdISZg1RDwB9I5yMZA5OVzpAIs5xGPcO2cDDLzASG73B-PCo2fFBBk6Ix2rqI85V1LF1Nh3yMSMtO1K_tdxjVUXgT19xw1n-nsh5d1nO9NWlPj-_4SWHD8h9D2_pTq2PD8maKx-RzZE_wH9Mfuxes43TQcM0TqcFHVVpnY56xtezsAcO1tIjbSd4c3pOdWlp37lZ04MC4KY9zKpfwDPc9qNVjU_MfqqHnZQwLIirpuV-Qo5vRRxPyXo5Ld1zQjme_zkN-CXXSSIjLWw3LWxSSB7HRhQB-bj67tms5vnIID5CMWV_EVNAeiibpiuSdFcPphdnmV_zWW7jyCgTdZllCdeF4lHCTdF11kVSWxaQDyjZDE0JiM9ofyMC3hhJubKdlEuJRhL-bqvVE0yAaTevdCPzJmieXS-YgLxtmvGXmFZXuumy6pNyiJGlCsizWpWaKSVIGgtwNiBpS8lac263lJNvFUF5zJCpToiAhI0-_s9XffHvebwhm7Dksy_744OX5B7DQsyYQqW2yPriYuleATpc5K_9sqPk9LZX-i9qDHqF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7pfAQEZC4oUsiS9x_ITasWlC6oQQlcZT5NjOqJjSam1BIH485yRuWAYPwGvsXJx8Puc7yZfPhLzQxgBtzU0sratiYQsb6wIKV6czU2nGnGwd-KbH-dFMvD2RJ-GF2yrIKqEUn7dBmkE-iyFfF0kmkyLRkidLV7_-Et4kAZkWqJPQ_CrZySVw8RHZmR2_G3_EFeW2-3ZWQxxq-8R16jX0P0YbdLRaG6Sj1rX_99h8ITldFk5e3zRL8-2rOTu7kJUOb5FyO55OjPJ5b7Ou9uz3S1aP_z_g2-RmIKx03CHsDrnim7vk2jR8kr9Hfuz_8g-nB713OF3UdNoKNT0NHq6n8QRSpqPvjZvjv9ArahpH33i_7HtQoNB0gjr5NWzDq6Htqp2oZ-oOO2_gsDB3OqPt-2R2ePBh_ygOSzrEFqjiOmY2sw4QoAxUSlXqIBsqbWVqmWGq0lUGQDEKYAVlJVRSVnqVqgpYjfJA9bznD8ioWTT-EaEcv-h5A4ykMkKo1EiXF7UTteJZZmUdkVfbJ1suO-eOEioeBEL5ByBEZIJPv--KttvthsX5aRlmcVm5LLXapjlzTHBTa54KbuvcO58q41hEXiJ2SgwOABBrwj8OcMVos1WOC64Uhj043e6gJ0xqO2zeoq8MQWVVQrQUUhYZFxF53jfjniiUa_xi0_YpOFS9SkfkYQfWfkgCbWCBoEakGMB4MOZhSzP_1FqOZwy956SMSNwj_m_u6uN_7P-E3GC4wDJKo_QuGa3PN_4psL519SxM7Z9KIlTk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Evaluation+of+Machine+Learning-Based+Radiomics+and+Deep+Learning+for+Breast+Lesion+Classification+in+Mammography&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Stefano%2C+Alessandro&rft.au=Bini%2C+Fabiano&rft.au=Giovagnoli%2C+Eleonora&rft.au=Dimarco%2C+Mariangela&rft.date=2025-04-09&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=8&rft_id=info:doi/10.3390%2Fdiagnostics15080953&rft_id=info%3Apmid%2F40310389&rft.externalDocID=40310389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon