Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis
► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than linear. ► Direct N2O emission factor remains constant or changes nonlinearly with N input. ► We propose a relationship describing N2O respons...
Saved in:
Published in | Agriculture, ecosystems & environment Vol. 168; pp. 53 - 65 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier B.V
15.03.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0167-8809 1873-2305 |
DOI | 10.1016/j.agee.2012.02.021 |
Cover
Abstract | ► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than linear. ► Direct N2O emission factor remains constant or changes nonlinearly with N input. ► We propose a relationship describing N2O response to increasing N input rates.
Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N2O emission in managed ecosystems and, therefore, direct N2O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N2O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N2O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N2O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N2O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N2O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N2O production, and also indirectly promote N2O production by inhibiting biochemical N2O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N2O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review. |
---|---|
AbstractList | Rising atmospheric concentrations of nitrous oxide (N sub(2)O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N sub(2)O emission in managed ecosystems and, therefore, direct N sub(2)O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N sub(2)O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N sub(2)O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N sub(2)O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N sub(2)O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N sub(2)O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N sub(2)O production, and also indirectly promote N sub(2)O production by inhibiting biochemical N sub(2)O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N sub(2)O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steadystate (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review. Rising atmospheric concentrations of nitrous oxide (N₂O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N₂O emission in managed ecosystems and, therefore, direct N₂O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N₂O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N₂O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N₂O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N₂O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N₂O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N₂O production, and also indirectly promote N₂O production by inhibiting biochemical N₂O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N₂O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review. ► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than linear. ► Direct N2O emission factor remains constant or changes nonlinearly with N input. ► We propose a relationship describing N2O response to increasing N input rates. Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N2O emission in managed ecosystems and, therefore, direct N2O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N2O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N2O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N2O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N2O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N2O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N2O production, and also indirectly promote N2O production by inhibiting biochemical N2O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N2O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review. Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N2O emission in managed ecosystems and, therefore, direct N2O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N2O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N2O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N2O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N2O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N2O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N2O production, and also indirectly promote N2O production by inhibiting biochemical N2O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N2O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review. |
Author | Kim, Dong-Gill Giltrap, Donna Hernandez-Ramirez, Guillermo |
Author_xml | – sequence: 1 givenname: Dong-Gill surname: Kim fullname: Kim, Dong-Gill email: KimD@landcareresearch.co.nz, donggillkim@gmail.com organization: Landcare Research, Palmerston North 4442, New Zealand – sequence: 2 givenname: Guillermo surname: Hernandez-Ramirez fullname: Hernandez-Ramirez, Guillermo organization: Plant and Food Research, Lincoln 7608, New Zealand – sequence: 3 givenname: Donna surname: Giltrap fullname: Giltrap, Donna organization: Landcare Research, Palmerston North 4442, New Zealand |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27238542$$DView record in Pascal Francis |
BookMark | eNqNkcFq3DAQhkVJoZu0L9BLdSnk4o0k27JccgmhTQILPTQ9i4k8Dlq80lbShm6fvmOcXnoIEQNi0PePZuY_ZSchBmTsoxRrKaS-2K7hEXGthFRrMYd8w1bSdHWlatGesBVBXWWM6N-x05y3go6qzYrFjQ8IiUMYONWclmzAPYYBgzvyOPLBJ3SFB19SPGQef_sBOe58zj4GygMfMRU_-T-YFuoRA_dhfyhf-BXfYYEKAkzH7PN79naEKeOH5_uM3X_7en99W22-39xdX20q18q-VOqh0Vq7hxag00pgL5zqa-2EFqYzPTTgdKd6pZ1TrhWoRz04pbsaQRNWn7Hzpew-xV8HzMVSuw6nCQLSDFY2rWlVb2T7CrSW1IIQHaGfn1HIDqYxQXA-233yO0hHqzpaadso4szCuRRzTjha5wsU2lZJ4CcrhZ1ds1s7u2Zn16yYQ5JU_Sf9V_1F0adFNEKk10Q9_fxBQCNIQFPWRFwuBNLOnzwmm50nf3Hx1g7Rv_TBX9obvAo |
CODEN | AEENDO |
CitedBy_id | crossref_primary_10_3390_atmos11090925 crossref_primary_10_1016_j_scienta_2022_111590 crossref_primary_10_1002_jeq2_20353 crossref_primary_10_1007_s13762_017_1598_2 crossref_primary_10_1007_s12155_014_9456_2 crossref_primary_10_3390_agriculture14010070 crossref_primary_10_1038_srep44235 crossref_primary_10_1007_s10705_017_9824_3 crossref_primary_10_1016_j_agwat_2023_108482 crossref_primary_10_1016_j_agwat_2023_108488 crossref_primary_10_1016_S1002_0160_21_60057_7 crossref_primary_10_1016_j_eja_2016_01_003 crossref_primary_10_1016_j_agee_2013_05_011 crossref_primary_10_1016_j_proenv_2015_10_056 crossref_primary_10_1016_j_fcr_2024_109490 crossref_primary_10_1007_s10705_021_10155_4 crossref_primary_10_1038_s41558_019_0613_7 crossref_primary_10_1016_j_agee_2021_107620 crossref_primary_10_1016_j_jenvman_2020_111211 crossref_primary_10_1029_2021GB007289 crossref_primary_10_1021_es4003026 crossref_primary_10_1016_j_agee_2015_01_025 crossref_primary_10_1016_j_atmosenv_2019_05_056 crossref_primary_10_1016_j_scitotenv_2020_136672 crossref_primary_10_3389_fsufs_2019_00008 crossref_primary_10_1016_j_agee_2016_11_021 crossref_primary_10_1002_agj2_20095 crossref_primary_10_1016_j_catena_2016_08_010 crossref_primary_10_1016_j_igd_2024_100180 crossref_primary_10_1002_jeq2_20138 crossref_primary_10_1016_j_geoderma_2023_116732 crossref_primary_10_1016_j_agee_2014_07_014 crossref_primary_10_1016_j_scitotenv_2020_141014 crossref_primary_10_1029_2020GB006561 crossref_primary_10_1002_agj2_20658 crossref_primary_10_2136_sssaj2017_06_0199 crossref_primary_10_1021_acs_est_8b03931 crossref_primary_10_1016_j_scitotenv_2023_166472 crossref_primary_10_3390_agronomy13061447 crossref_primary_10_3390_ijerph192416506 crossref_primary_10_1007_s12237_018_0441_4 crossref_primary_10_1016_j_agee_2017_10_021 crossref_primary_10_1016_j_agee_2017_10_022 crossref_primary_10_1002_ece3_3211 crossref_primary_10_1016_j_catena_2022_106890 crossref_primary_10_3389_fpls_2023_1176293 crossref_primary_10_1007_s10705_017_9836_z crossref_primary_10_1016_j_oneear_2024_10_007 crossref_primary_10_1016_j_envsoft_2016_06_016 crossref_primary_10_1016_j_agee_2019_106808 crossref_primary_10_1007_s10705_017_9897_z crossref_primary_10_1134_S1064229321080032 crossref_primary_10_1016_j_agee_2016_10_006 crossref_primary_10_1016_j_scitotenv_2022_154628 crossref_primary_10_2134_agronj14_0411 crossref_primary_10_1007_s10705_014_9630_0 crossref_primary_10_1111_ejss_13131 crossref_primary_10_1002_2014GB005046 crossref_primary_10_1016_j_ecolmodel_2017_06_007 crossref_primary_10_1016_j_atmosenv_2015_04_036 crossref_primary_10_1007_s10705_023_10290_0 crossref_primary_10_1016_j_spc_2024_09_022 crossref_primary_10_1080_00103624_2020_1845364 crossref_primary_10_3390_su11030748 crossref_primary_10_1016_j_jclepro_2021_129964 crossref_primary_10_2136_sssaj2016_09_0281 crossref_primary_10_1016_j_agee_2016_06_038 crossref_primary_10_1007_s10584_015_1426_y crossref_primary_10_1016_j_agsy_2020_102960 crossref_primary_10_1016_j_jclepro_2014_09_093 crossref_primary_10_1029_2018JG004488 crossref_primary_10_1016_j_agee_2015_04_026 crossref_primary_10_1016_j_agee_2016_06_033 crossref_primary_10_1016_j_envpol_2018_08_102 crossref_primary_10_1016_j_atmosenv_2019_02_036 crossref_primary_10_1371_journal_pone_0189831 crossref_primary_10_1016_j_agsy_2020_103018 crossref_primary_10_1016_j_jenvman_2019_109278 crossref_primary_10_1016_j_fcr_2022_108475 crossref_primary_10_1007_s11356_024_34772_y crossref_primary_10_1111_gcb_12413 crossref_primary_10_1016_S1002_0160_15_60063_7 crossref_primary_10_1016_j_scitotenv_2024_171930 crossref_primary_10_1016_j_agee_2018_10_023 crossref_primary_10_1071_SR16091 crossref_primary_10_1186_s40645_018_0215_4 crossref_primary_10_4081_ija_2020_1613 crossref_primary_10_5194_bg_13_4789_2016 crossref_primary_10_1007_s10705_021_10177_y crossref_primary_10_1016_j_agee_2015_07_003 crossref_primary_10_1016_j_agee_2017_07_003 crossref_primary_10_1016_j_agrformet_2019_05_009 crossref_primary_10_1111_sum_12170 crossref_primary_10_1016_S1002_0160_19_60812_X crossref_primary_10_1016_j_agsy_2019_102654 crossref_primary_10_3390_su9071201 crossref_primary_10_1371_journal_pone_0305385 crossref_primary_10_1007_s11104_020_04724_9 crossref_primary_10_1017_S1742170520000320 crossref_primary_10_2136_sssaj2013_02_0074 crossref_primary_10_1016_j_scitotenv_2017_04_062 crossref_primary_10_1016_j_scitotenv_2019_134147 crossref_primary_10_1038_s41467_022_32001_z crossref_primary_10_2134_jeq2017_06_0226 crossref_primary_10_3390_agronomy14102202 crossref_primary_10_1088_1748_9326_abfde7 crossref_primary_10_1029_2024GB008098 crossref_primary_10_1016_j_agee_2014_02_020 crossref_primary_10_1016_j_scitotenv_2021_147283 crossref_primary_10_1016_j_agrformet_2019_01_002 crossref_primary_10_17221_774_2018_PSE crossref_primary_10_1016_j_jenvman_2024_122830 crossref_primary_10_1111_gcb_13644 crossref_primary_10_5897_JSSEM15_0485 crossref_primary_10_1016_j_geoderma_2015_06_001 crossref_primary_10_1080_00380768_2024_2361068 crossref_primary_10_1016_j_agee_2021_107640 crossref_primary_10_5194_soil_1_687_2015 crossref_primary_10_1071_SR14328 crossref_primary_10_1007_s10705_021_10180_3 crossref_primary_10_1016_j_agwat_2025_109442 crossref_primary_10_1016_j_agee_2017_07_039 crossref_primary_10_1016_j_rser_2019_109354 crossref_primary_10_1016_j_agee_2021_107456 crossref_primary_10_1016_j_scitotenv_2024_177385 crossref_primary_10_1007_s11356_020_11846_1 crossref_primary_10_1016_j_heliyon_2023_e22578 crossref_primary_10_2134_agronj2013_0081 crossref_primary_10_1016_j_agee_2017_03_023 crossref_primary_10_1016_j_scitotenv_2019_01_082 crossref_primary_10_1016_j_fcr_2024_109408 crossref_primary_10_1017_S0021859615000945 crossref_primary_10_1016_j_spc_2024_08_013 crossref_primary_10_36783_18069657rbcs20240083 crossref_primary_10_1007_s10705_017_9893_3 crossref_primary_10_1016_j_jes_2024_03_028 crossref_primary_10_1007_s11104_013_1862_2 crossref_primary_10_1371_journal_pone_0148527 crossref_primary_10_1016_j_scitotenv_2023_162712 crossref_primary_10_1007_s11368_021_02903_4 crossref_primary_10_1002_ehs2_1259 crossref_primary_10_1080_00288233_2019_1614073 crossref_primary_10_1007_s11356_018_2646_2 crossref_primary_10_3389_fenvs_2021_798383 crossref_primary_10_1016_j_agee_2019_106646 crossref_primary_10_1016_j_agee_2015_07_010 crossref_primary_10_1016_j_agee_2023_108565 crossref_primary_10_1016_j_scitotenv_2019_03_142 crossref_primary_10_1016_j_eja_2016_06_013 crossref_primary_10_2134_jeq2014_02_0096 crossref_primary_10_3390_agronomy14010222 crossref_primary_10_1016_j_agee_2016_04_003 crossref_primary_10_1038_s43247_023_01095_8 crossref_primary_10_1071_SR14355 crossref_primary_10_1139_cjss_2021_0064 crossref_primary_10_1016_j_agee_2022_108031 crossref_primary_10_1111_gcb_13966 crossref_primary_10_1016_j_gecco_2020_e01115 crossref_primary_10_1016_j_scitotenv_2018_05_101 crossref_primary_10_1016_j_agee_2016_09_038 crossref_primary_10_3389_fenvs_2022_914851 crossref_primary_10_1016_j_agee_2020_107268 crossref_primary_10_1021_acsagscitech_4c00114 crossref_primary_10_1371_journal_pone_0125406 crossref_primary_10_1016_j_agsy_2021_103062 crossref_primary_10_1016_j_agee_2020_106968 crossref_primary_10_1016_j_fcr_2022_108548 crossref_primary_10_1071_SR23070 crossref_primary_10_1016_j_agee_2022_107854 crossref_primary_10_1016_j_rsci_2020_03_005 crossref_primary_10_1002_jeq2_20637 crossref_primary_10_1007_s11368_022_03212_0 crossref_primary_10_1016_j_fcr_2017_01_004 crossref_primary_10_1071_SR15336 crossref_primary_10_1016_j_geodrs_2019_e00244 crossref_primary_10_1007_s12571_021_01149_9 crossref_primary_10_1016_j_isci_2024_109042 crossref_primary_10_1016_j_agee_2022_108062 crossref_primary_10_1007_s10705_019_10032_1 crossref_primary_10_3390_atmos12080976 crossref_primary_10_1007_s11104_013_1762_5 crossref_primary_10_1016_j_agee_2021_107376 crossref_primary_10_1016_j_agee_2015_12_022 crossref_primary_10_1016_j_scitotenv_2022_161314 crossref_primary_10_1007_s10705_015_9713_6 crossref_primary_10_1016_j_still_2024_106165 crossref_primary_10_1071_SR21158 crossref_primary_10_1088_1748_9326_aba5b2 crossref_primary_10_3390_su15097530 crossref_primary_10_1016_j_ejsobi_2020_103152 crossref_primary_10_1016_j_ejsobi_2022_103393 crossref_primary_10_1029_2018GB006091 crossref_primary_10_1080_03650340_2019_1708332 crossref_primary_10_3390_su12114403 crossref_primary_10_1021_es4055324 crossref_primary_10_1038_s43247_024_01647_6 crossref_primary_10_1002_agj2_21408 crossref_primary_10_1016_j_envpol_2018_03_090 crossref_primary_10_1021_acs_est_9b03089 crossref_primary_10_1016_j_envpol_2017_08_108 crossref_primary_10_1007_s10021_020_00516_5 crossref_primary_10_1016_j_agee_2021_107382 crossref_primary_10_1071_SR15286 crossref_primary_10_1002_2015JG003239 crossref_primary_10_1007_s42729_021_00695_7 crossref_primary_10_1016_j_scitotenv_2017_10_229 crossref_primary_10_1016_j_jenvman_2024_120234 crossref_primary_10_1007_s10705_023_10323_8 crossref_primary_10_1016_j_scitotenv_2021_148758 crossref_primary_10_1016_j_agee_2021_107813 crossref_primary_10_1016_j_geoderma_2019_01_014 crossref_primary_10_1017_S0021859615000519 crossref_primary_10_1111_gcb_13341 crossref_primary_10_1016_j_agee_2017_04_014 crossref_primary_10_1007_s10705_019_10045_w crossref_primary_10_1073_pnas_1322434111 crossref_primary_10_3390_ani11051214 crossref_primary_10_1007_s11356_014_3811_x crossref_primary_10_1002_ldr_3636 crossref_primary_10_1016_j_jclepro_2015_10_086 crossref_primary_10_1007_s11356_016_8270_0 crossref_primary_10_1016_j_agee_2021_107353 crossref_primary_10_3390_su11061513 crossref_primary_10_1016_j_scitotenv_2019_07_315 crossref_primary_10_1021_acs_est_4c04574 crossref_primary_10_1029_2020EF001504 crossref_primary_10_1016_j_fcr_2022_108732 crossref_primary_10_1093_nsr_nwz087 crossref_primary_10_1007_s11104_014_2174_x crossref_primary_10_1111_gcb_17177 crossref_primary_10_1016_j_agee_2018_12_009 crossref_primary_10_1002_saj2_70039 crossref_primary_10_1080_1943815X_2020_1825227 crossref_primary_10_5194_bg_11_3031_2014 crossref_primary_10_3390_su12093527 crossref_primary_10_1002_jgrg_20081 crossref_primary_10_1016_j_fcr_2022_108737 crossref_primary_10_1007_s11356_021_16132_2 crossref_primary_10_4141_cjss2013_118 crossref_primary_10_1016_j_agee_2015_12_013 crossref_primary_10_1002_saj2_20370 |
Cites_doi | 10.1016/j.agee.2009.12.014 10.1023/A:1004252012290 10.1016/S0269-7491(98)80031-6 10.1111/j.1365-2389.2009.01222.x 10.1111/j.1365-2486.2005.01040.x 10.1007/BF00334578 10.4141/S98-009 10.2136/sssaj2005.0104 10.2136/sssaj2000.6441396x 10.1126/science.194.4266.685 10.1146/annurev.micro.55.1.485 10.2136/sssaj1993.03615995005700010013x 10.2136/sssaj1979.03615995004300060016x 10.1111/j.1365-2486.2009.01932.x 10.1016/j.agee.2010.12.017 10.1071/EA07238 10.1029/2003GB002167 10.1007/s10705-006-9026-x 10.2134/jeq2006.0173 10.1029/2001GB001811 10.1002/qj.49709640815 10.2134/jeq1982.00472425001100010019x 10.1016/j.agee.2006.07.010 10.1016/S0038-0717(01)00096-7 10.1111/j.1365-2486.2010.02349.x 10.1016/S0038-0717(00)00084-5 10.1016/j.agee.2009.05.008 10.2134/jeq2007.0268 10.1007/BF00210224 10.1016/j.atmosenv.2011.01.003 10.1111/j.1365-2389.1985.tb00348.x 10.1016/j.soilbio.2008.06.024 10.1016/j.agee.2009.12.006 10.1016/j.atmosenv.2008.08.006 10.1016/j.atmosenv.2007.09.036 10.1007/BF01734107 10.4141/cjss94-032 10.5194/bg-9-839-2012 10.2136/sssaj1998.03615995006200030019x 10.1007/s10705-010-9365-5 10.4141/CJSS06006 10.1096/fasebj.11.11.9285481 10.1029/1999JD900378 10.1128/MMBR.46.1.43-70.1982 10.1071/SR07093 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 7SN 7ST 7TV 7U6 C1K SOI |
DOI | 10.1016/j.agee.2012.02.021 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Ecology Abstracts Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Ecology Abstracts Pollution Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Environmental Sciences |
EISSN | 1873-2305 |
EndPage | 65 |
ExternalDocumentID | 27238542 10_1016_j_agee_2012_02_021 US201400162983 S0167880912000837 |
GroupedDBID | --K --M .~1 0R~ 186 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABFRF ABFYP ABKYH ABLST ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLECG BLXMC BNPGV CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LCYCR LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 QYZTP RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SNL SPCBC SSA SSH SSJ SSZ T5K Y6R ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI ABGRD ABJNI ABWVN ACRPL ADMUD ADNMO AEGFY AEIPS AFJKZ AGHFR AI. AKRWK ANKPU ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- SEW VH1 WUQ AAYWO AAYXX ACIEU ACMHX ACVFH ADCNI ADSLC ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKYEP APXCP CITATION IQODW 7S9 ACLOT EFKBS L.6 ~HD 7SN 7ST 7TV 7U6 C1K SOI |
ID | FETCH-LOGICAL-c519t-2b4666cb5aa7620e90c2936c0608789a4ac672926cc2c50e6f6dc2673ea636c3 |
IEDL.DBID | AIKHN |
ISSN | 0167-8809 |
IngestDate | Sat Sep 27 22:05:28 EDT 2025 Sat Sep 27 23:30:39 EDT 2025 Wed Apr 02 07:23:37 EDT 2025 Tue Jul 01 02:37:14 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Thu Apr 03 09:44:36 EDT 2025 Fri Feb 23 02:27:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | IPCC methodology Emission factor Open-access database Nitrous oxide Nitrogen input Meta-analysis Gas emission Ecology Nitrogen Metaanalysis Dynamical climatology Climate change Intergovernmental Panel on Climate Change Database Nonlinearity Nitrogen protoxide Nitrogen fertilizer Open access |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c519t-2b4666cb5aa7620e90c2936c0608789a4ac672926cc2c50e6f6dc2673ea636c3 |
Notes | http://dx.doi.org/10.1016/j.agee.2012.02.021 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1431620007 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1458529815 proquest_miscellaneous_1431620007 pascalfrancis_primary_27238542 crossref_citationtrail_10_1016_j_agee_2012_02_021 crossref_primary_10_1016_j_agee_2012_02_021 fao_agris_US201400162983 elsevier_sciencedirect_doi_10_1016_j_agee_2012_02_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-15 |
PublicationDateYYYYMMDD | 2013-03-15 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Agriculture, ecosystems & environment |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Cardenas, Thorman, Ashlee, Butler, Chadwick, Chambers, Cuttle, Donovan, Kingston, Lane, Dhanoa, Scholefield (bib0030) 2010; 136 Hyde, Hawkins, Fanning, Noonan, Ryan, O’Toole, Carton (bib0105) 2006; 75 Rochette, van Bochove, Prévost, Angers, Côté, Bertrand (bib0220) 2000; 64 Rochette, Tremblay, Fallon, Angers, Chantigny, MacDonald, Bertrand, Parent (bib0215) 2010; 61 Zheng, Han, Huang, Wang, Wang (bib0290) 2004; 18 Velthof, Mosquera (bib0250) 2011 Weiss (bib0270) 1997; 11 Kuzyakov, Friedel, Stahr (bib0155) 2000; 32 Bouwman, Boumans, Batjes (bib0015) 2002; 16 Chantigny, Prevost, Angers, Simard, Chalifour (bib0040) 1998; 78 Lin, Iqbal, Hu, Wu, Zhao, Ruan, Malghani (bib0165) 2011 Thorburn, Biggs, Collins, Probert (bib0235) 2010; 136 Miller, Zebarth, Dandie, Burton, Goyer, Trevors (bib0195) 2008; 40 Kowalchuk, Stephen (bib0150) 2001; 55 Wrage, Velthof, van Beusichem, Oenema (bib0275) 2001; 33 Hong, Scharf, Davis, Kitchen, Sudduth (bib0095) 2007; 36 Chang, Janzen, Cho (bib0035) 1998; 62 Mosier, Hutchinson, Sabey, Baxter (bib0205) 1982; 11 Kammann, Grunhage, Muller, Jacobi, Jager (bib0130) 1998; 102 Michaelis, Menten (bib0190) 1913; 49 Jarecki, Parkin, Chan, Kaspar, Moorman, Singer, Kerr, Hatfield, Jones (bib0120) 2009; 134 Zebarth, Rochette, Burton (bib0280) 2008; 88 IPCC – Intergovernmental Panel on Climate Change, 1996. Revised 1996 Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at Liang, Mackenzie (bib0160) 1994; 74 Dobbie, McTaggart, Smith (bib0055) 1999; 104 Liu, Wang, Zheng (bib0170) 2012; 9 Breitenbeck, Bremner (bib0020) 1986; 2 Ma, Wu, Tremblay, Deen, Morrison, Mclaughlin, Gregorich, Stewart (bib0180) 2010; 16 Koops, Beusichem, Oenema (bib0145) 1997; 188 Kim, Mishurov, Kiely (bib0135) 2010; 88 Saggar, Giltrap, Li, Tate (bib0225) 2007; 119 Bouwman (bib0010) 1996; 46 SYSTAT Software (bib0230) 2010 Knowles (bib0140) 1982; 46 Hoogendoorn, de Klein, Rutherford, Letica, Devantier (bib0100) 2008; 48 Tiedje (bib0240) 1988 Grant, Pattey, Goddard, Kryzanowski, Puurveen (bib0070) 2006; 70 Webster, Hopkins (bib0260) 1996; 22 Wang, Lacis, Mo, Hansen (bib0255) 1976; 194 (verified 27 May 2011). Jenkinson, Fox, Rayner (bib0125) 1985; 36 McSwiney, Robertson (bib0185) 2005; 11 IPCC – Intergovernmental Panel on Climate Change, 2006. Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at Hellebrand, Scholz, Kern (bib0080) 2008; 42 Halvorson, Del Grosso, Reule (bib0075) 2008; 37 Forster, Ramaswamy, Artaxo, Berntsen, Betts, Fahey, Haywood, Lean, Lowe, Myhre, Nganga, Prinn, Raga, Schulz, Van Dorland (bib0065) 2007 Weier, Doran, Power, Walters (bib0265) 1993; 57 Di, Cameron (bib0050) 2008; 46 Crutzen (bib0045) 1970; 96 Hill, Waightm, Bardsley (bib0085) 1977; 15 Firestone, Smith, Firestone, Tiedje (bib0060) 1979; 43 [verified 27 May 2011]. Hoben, Gehl, Millar, Grace, Robertson (bib0090) 2011; 17 Zhang, Han (bib0285) 2008; 42 Koops (10.1016/j.agee.2012.02.021_bib0145) 1997; 188 Wang (10.1016/j.agee.2012.02.021_bib0255) 1976; 194 Kuzyakov (10.1016/j.agee.2012.02.021_bib0155) 2000; 32 Bouwman (10.1016/j.agee.2012.02.021_bib0015) 2002; 16 Grant (10.1016/j.agee.2012.02.021_bib0070) 2006; 70 Saggar (10.1016/j.agee.2012.02.021_bib0225) 2007; 119 Cardenas (10.1016/j.agee.2012.02.021_bib0030) 2010; 136 Knowles (10.1016/j.agee.2012.02.021_bib0140) 1982; 46 Hoogendoorn (10.1016/j.agee.2012.02.021_bib0100) 2008; 48 Hill (10.1016/j.agee.2012.02.021_bib0085) 1977; 15 Hellebrand (10.1016/j.agee.2012.02.021_bib0080) 2008; 42 Crutzen (10.1016/j.agee.2012.02.021_bib0045) 1970; 96 Dobbie (10.1016/j.agee.2012.02.021_bib0055) 1999; 104 Zebarth (10.1016/j.agee.2012.02.021_bib0280) 2008; 88 Forster (10.1016/j.agee.2012.02.021_bib0065) 2007 Hyde (10.1016/j.agee.2012.02.021_bib0105) 2006; 75 Di (10.1016/j.agee.2012.02.021_bib0050) 2008; 46 10.1016/j.agee.2012.02.021_bib0110 Miller (10.1016/j.agee.2012.02.021_bib0195) 2008; 40 10.1016/j.agee.2012.02.021_bib0115 Kim (10.1016/j.agee.2012.02.021_bib0135) 2010; 88 Zheng (10.1016/j.agee.2012.02.021_bib0290) 2004; 18 Liu (10.1016/j.agee.2012.02.021_bib0170) 2012; 9 SYSTAT Software (10.1016/j.agee.2012.02.021_bib0230) 2010 Jenkinson (10.1016/j.agee.2012.02.021_bib0125) 1985; 36 Rochette (10.1016/j.agee.2012.02.021_bib0220) 2000; 64 Firestone (10.1016/j.agee.2012.02.021_bib0060) 1979; 43 Halvorson (10.1016/j.agee.2012.02.021_bib0075) 2008; 37 Velthof (10.1016/j.agee.2012.02.021_bib0250) 2011 Rochette (10.1016/j.agee.2012.02.021_bib0215) 2010; 61 Hoben (10.1016/j.agee.2012.02.021_bib0090) 2011; 17 Webster (10.1016/j.agee.2012.02.021_bib0260) 1996; 22 Bouwman (10.1016/j.agee.2012.02.021_bib0010) 1996; 46 Tiedje (10.1016/j.agee.2012.02.021_bib0240) 1988 Lin (10.1016/j.agee.2012.02.021_bib0165) 2011 Zhang (10.1016/j.agee.2012.02.021_bib0285) 2008; 42 Liang (10.1016/j.agee.2012.02.021_bib0160) 1994; 74 McSwiney (10.1016/j.agee.2012.02.021_bib0185) 2005; 11 Mosier (10.1016/j.agee.2012.02.021_bib0205) 1982; 11 Weier (10.1016/j.agee.2012.02.021_bib0265) 1993; 57 Michaelis (10.1016/j.agee.2012.02.021_bib0190) 1913; 49 Wrage (10.1016/j.agee.2012.02.021_bib0275) 2001; 33 Kowalchuk (10.1016/j.agee.2012.02.021_bib0150) 2001; 55 Hong (10.1016/j.agee.2012.02.021_bib0095) 2007; 36 Breitenbeck (10.1016/j.agee.2012.02.021_bib0020) 1986; 2 Chantigny (10.1016/j.agee.2012.02.021_bib0040) 1998; 78 Ma (10.1016/j.agee.2012.02.021_bib0180) 2010; 16 Weiss (10.1016/j.agee.2012.02.021_bib0270) 1997; 11 Kammann (10.1016/j.agee.2012.02.021_bib0130) 1998; 102 Thorburn (10.1016/j.agee.2012.02.021_bib0235) 2010; 136 Chang (10.1016/j.agee.2012.02.021_bib0035) 1998; 62 Jarecki (10.1016/j.agee.2012.02.021_bib0120) 2009; 134 |
References_xml | – volume: 33 start-page: 1723 year: 2001 end-page: 1732 ident: bib0275 article-title: Role of nitrifier denitrification in the production of nitrous oxide publication-title: Soil Biol. Biochem. – volume: 36 start-page: 354 year: 2007 end-page: 362 ident: bib0095 article-title: Economically optimal nitrogen rate reduces soil residual nitrate publication-title: J. Environ. Qual. – year: 2011 ident: bib0250 article-title: The impact of slurry application technique on nitrous oxide emission from agricultural soils publication-title: Agric. Ecosyst. Environ. – reference: IPCC – Intergovernmental Panel on Climate Change, 2006. Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at – volume: 61 start-page: 186 year: 2010 end-page: 196 ident: bib0215 article-title: N publication-title: Eur. J. Soil Sci. – volume: 11 start-page: 835 year: 1997 end-page: 841 ident: bib0270 article-title: The Hill equation revisited: uses and misuses publication-title: FASEB J. – volume: 16 start-page: 1058 year: 2002 ident: bib0015 article-title: Emissions of N publication-title: Glob. Biogeochem. Cycles – volume: 78 start-page: 589 year: 1998 end-page: 596 ident: bib0040 article-title: Nitrous oxide production in soils cropped to corn with varying N fertilization publication-title: Can. J. Soil Sci. – volume: 75 start-page: 187 year: 2006 end-page: 200 ident: bib0105 article-title: Nitrous oxide emissions from a fertilized and grazed grassland in the South East of Ireland publication-title: Nutr. Cycl. Agroecosyst. – volume: 70 start-page: 235 year: 2006 end-page: 248 ident: bib0070 article-title: Modeling the effects of fertilizer application rate on nitrous oxide emissions publication-title: Soil Sci. Soc. Am. J. – volume: 16 start-page: 156 year: 2010 end-page: 170 ident: bib0180 article-title: Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer publication-title: Glob. Change Biol. – volume: 42 start-page: 291 year: 2008 end-page: 302 ident: bib0285 article-title: N publication-title: Atmos. Environ. – volume: 9 start-page: 839 year: 2012 end-page: 850 ident: bib0170 article-title: Responses of N publication-title: Biogeosciences – volume: 11 start-page: 1712 year: 2005 end-page: 1719 ident: bib0185 article-title: Nonlinear response of N publication-title: Glob. Change Biol. – volume: 22 start-page: 331 year: 1996 end-page: 335 ident: bib0260 article-title: Contributions from different microbial processes to N publication-title: Biol. Fertil. Soils – volume: 74 start-page: 235 year: 1994 end-page: 240 ident: bib0160 article-title: Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization publication-title: Can. J. Soil Sci. – year: 2011 ident: bib0165 article-title: Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: a case study in Central China publication-title: Atmos. Environ. – volume: 48 start-page: 147 year: 2008 end-page: 151 ident: bib0100 article-title: The effect of increasing rates of nitrogen fertiliser and a nitrification inhibitor on nitrous oxide emissions from urine patches on sheep grazed hill country pasture publication-title: Aust. J. Exp. Agric. – volume: 36 start-page: 425 year: 1985 end-page: 444 ident: bib0125 article-title: Interactions between fertilizer nitrogen and soil nitrogen-the so-called ‘priming’ effect publication-title: Eur. J. Soil Sci. – volume: 102 start-page: 179 year: 1998 end-page: 186 ident: bib0130 article-title: Seasonal variability and mitigation options for N publication-title: Environ. Pollut. – year: 2007 ident: bib0065 article-title: Changes in atmospheric constituents and in radiative forcing publication-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 136 start-page: 218 year: 2010 end-page: 226 ident: bib0030 article-title: Quantifying annual N publication-title: Agric. Ecosyst. Environ. – volume: 46 start-page: 53 year: 1996 end-page: 70 ident: bib0010 article-title: Direct emission of nitrous oxide from agricultural soils publication-title: Nutr. Cycl. Agroecosyst. – reference: IPCC – Intergovernmental Panel on Climate Change, 1996. Revised 1996 Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: bib0155 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. – volume: 88 start-page: 197 year: 2008 end-page: 205 ident: bib0280 article-title: N publication-title: Can. J. Soil Sci. – volume: 64 start-page: 1396 year: 2000 end-page: 1403 ident: bib0220 article-title: Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: II. Nitrous oxide fluxes and mineral nitrogen publication-title: Soil Sci. Soc. Am. J. – start-page: 179 year: 1988 end-page: 244 ident: bib0240 article-title: Ecology of denitrification and dissimilatory nitrate reduction to ammonium publication-title: Biology of Anaerobic Microorganisms – volume: 42 start-page: 8403 year: 2008 end-page: 8411 ident: bib0080 article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils publication-title: Atmos. Environ. – volume: 2 start-page: 201 year: 1986 end-page: 204 ident: bib0020 article-title: Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia publication-title: Biol. Fert. Soils – volume: 119 start-page: 205 year: 2007 end-page: 216 ident: bib0225 article-title: Modelling nitrous oxide emissions from grazed grasslands in New Zealand publication-title: Agric. Ecosyst. Environ. – volume: 57 start-page: 66 year: 1993 end-page: 72 ident: bib0265 article-title: Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil–water, available carbon, and nitrate publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 1140 year: 1979 end-page: 1144 ident: bib0060 article-title: The influence of nitrate, nitrite, and oxygen on the composition of the gaseous products of denitrification in soil publication-title: Soil Sci. Soc. Am. J. – volume: 46 start-page: 76 year: 2008 end-page: 82 ident: bib0050 article-title: Sources of nitrous oxide from publication-title: Aust. J. Soil Res. – volume: 18 start-page: GB2018 year: 2004 ident: bib0290 article-title: Re-quantifying the emission factors based on field measurements and estimating the direct N publication-title: Glob. Biogeochem. Cycles – volume: 37 start-page: 1337 year: 2008 end-page: 1344 ident: bib0075 article-title: Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems publication-title: J. Environ. Qual. – reference: (verified 27 May 2011). – volume: 15 start-page: 173 year: 1977 end-page: 178 ident: bib0085 article-title: Does any enzyme follow the Michaelis–Menten equation? publication-title: Mol. Cell. Biochem. – volume: 46 start-page: 43 year: 1982 end-page: 70 ident: bib0140 article-title: Denitrification publication-title: Microbiol. Rev. – volume: 62 start-page: 677 year: 1998 end-page: 682 ident: bib0035 article-title: Nitrous oxide emission from long-term manured soils publication-title: Soil Sci. Soc. Am. J. – reference: [verified 27 May 2011]. – volume: 11 start-page: 78 year: 1982 end-page: 81 ident: bib0205 article-title: Nitrous oxide emissions from barley plots treated with ammonium nitrate or sewage sludge publication-title: J. Environ. Qual. – volume: 40 start-page: 2553 year: 2008 end-page: 2562 ident: bib0195 article-title: Crop residue influence on denitrification, N publication-title: Soil Biol. Biochem. – volume: 104 start-page: 26,891 year: 1999 end-page: 26,899 ident: bib0055 article-title: Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors publication-title: J. Geophys. Res. – volume: 88 start-page: 397 year: 2010 end-page: 410 ident: bib0135 article-title: Effect of increased N use and drought on N publication-title: Nutr. Cycl. Agroecosyst. – volume: 55 start-page: 485 year: 2001 end-page: 529 ident: bib0150 article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology publication-title: Annu. Rev. Microbiol. – year: 2010 ident: bib0230 article-title: SigmaPlot 11 – volume: 49 start-page: 334 year: 1913 end-page: 336 ident: bib0190 article-title: Die kinetik der invertin wirkung publication-title: Biochemisches Zeitschrift – volume: 96 start-page: 320 year: 1970 end-page: 325 ident: bib0045 article-title: The influence of nitrogen oxides on the atmospheric ozone content publication-title: Quart. J. R. Meteor. Soc. – volume: 134 start-page: 29 year: 2009 end-page: 35 ident: bib0120 article-title: Cover crop effects on nitrous oxide emission from a manure-treated Mollisol publication-title: Agric. Ecosyst. Environ. – volume: 194 start-page: 685 year: 1976 end-page: 690 ident: bib0255 article-title: Greenhouse effect due to man made perturbation of trace gases publication-title: Science – volume: 17 start-page: 1140 year: 2011 end-page: 1152 ident: bib0090 article-title: Non-linear nitrous oxide (N publication-title: Glob. Change Biol. – volume: 188 start-page: 119 year: 1997 end-page: 130 ident: bib0145 article-title: Nitrogen loss from grassland on peat soils through nitrous oxide production publication-title: Plant Soil – volume: 136 start-page: 343 year: 2010 end-page: 350 ident: bib0235 article-title: Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems publication-title: Agric. Ecosyst. Environ. – volume: 136 start-page: 343 year: 2010 ident: 10.1016/j.agee.2012.02.021_bib0235 article-title: Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.12.014 – volume: 188 start-page: 119 year: 1997 ident: 10.1016/j.agee.2012.02.021_bib0145 article-title: Nitrogen loss from grassland on peat soils through nitrous oxide production publication-title: Plant Soil doi: 10.1023/A:1004252012290 – volume: 102 start-page: 179 year: 1998 ident: 10.1016/j.agee.2012.02.021_bib0130 article-title: Seasonal variability and mitigation options for N2O emissions from differently managed grasslands publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(98)80031-6 – volume: 61 start-page: 186 year: 2010 ident: 10.1016/j.agee.2012.02.021_bib0215 article-title: N2O emissions from an irrigated and non-irrigated organic soil in eastern Canada as influenced by N fertilizer addition publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01222.x – volume: 11 start-page: 1712 year: 2005 ident: 10.1016/j.agee.2012.02.021_bib0185 article-title: Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2005.01040.x – volume: 22 start-page: 331 year: 1996 ident: 10.1016/j.agee.2012.02.021_bib0260 article-title: Contributions from different microbial processes to N2O emission from soil under different moisture regimes publication-title: Biol. Fertil. Soils doi: 10.1007/BF00334578 – volume: 78 start-page: 589 year: 1998 ident: 10.1016/j.agee.2012.02.021_bib0040 article-title: Nitrous oxide production in soils cropped to corn with varying N fertilization publication-title: Can. J. Soil Sci. doi: 10.4141/S98-009 – volume: 70 start-page: 235 year: 2006 ident: 10.1016/j.agee.2012.02.021_bib0070 article-title: Modeling the effects of fertilizer application rate on nitrous oxide emissions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0104 – volume: 64 start-page: 1396 year: 2000 ident: 10.1016/j.agee.2012.02.021_bib0220 article-title: Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: II. Nitrous oxide fluxes and mineral nitrogen publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6441396x – volume: 194 start-page: 685 year: 1976 ident: 10.1016/j.agee.2012.02.021_bib0255 article-title: Greenhouse effect due to man made perturbation of trace gases publication-title: Science doi: 10.1126/science.194.4266.685 – volume: 55 start-page: 485 year: 2001 ident: 10.1016/j.agee.2012.02.021_bib0150 article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.55.1.485 – volume: 57 start-page: 66 year: 1993 ident: 10.1016/j.agee.2012.02.021_bib0265 article-title: Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil–water, available carbon, and nitrate publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700010013x – volume: 43 start-page: 1140 year: 1979 ident: 10.1016/j.agee.2012.02.021_bib0060 article-title: The influence of nitrate, nitrite, and oxygen on the composition of the gaseous products of denitrification in soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1979.03615995004300060016x – year: 2010 ident: 10.1016/j.agee.2012.02.021_bib0230 – volume: 16 start-page: 156 year: 2010 ident: 10.1016/j.agee.2012.02.021_bib0180 article-title: Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2009.01932.x – year: 2011 ident: 10.1016/j.agee.2012.02.021_bib0250 article-title: The impact of slurry application technique on nitrous oxide emission from agricultural soils publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.017 – volume: 48 start-page: 147 year: 2008 ident: 10.1016/j.agee.2012.02.021_bib0100 article-title: The effect of increasing rates of nitrogen fertiliser and a nitrification inhibitor on nitrous oxide emissions from urine patches on sheep grazed hill country pasture publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA07238 – volume: 18 start-page: GB2018 year: 2004 ident: 10.1016/j.agee.2012.02.021_bib0290 article-title: Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2003GB002167 – volume: 75 start-page: 187 year: 2006 ident: 10.1016/j.agee.2012.02.021_bib0105 article-title: Nitrous oxide emissions from a fertilized and grazed grassland in the South East of Ireland publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-006-9026-x – volume: 36 start-page: 354 year: 2007 ident: 10.1016/j.agee.2012.02.021_bib0095 article-title: Economically optimal nitrogen rate reduces soil residual nitrate publication-title: J. Environ. Qual. doi: 10.2134/jeq2006.0173 – volume: 16 start-page: 1058 year: 2002 ident: 10.1016/j.agee.2012.02.021_bib0015 article-title: Emissions of N2O and NO from fertilized fields: summary of available measurement data publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2001GB001811 – volume: 96 start-page: 320 year: 1970 ident: 10.1016/j.agee.2012.02.021_bib0045 article-title: The influence of nitrogen oxides on the atmospheric ozone content publication-title: Quart. J. R. Meteor. Soc. doi: 10.1002/qj.49709640815 – volume: 11 start-page: 78 year: 1982 ident: 10.1016/j.agee.2012.02.021_bib0205 article-title: Nitrous oxide emissions from barley plots treated with ammonium nitrate or sewage sludge publication-title: J. Environ. Qual. doi: 10.2134/jeq1982.00472425001100010019x – volume: 119 start-page: 205 year: 2007 ident: 10.1016/j.agee.2012.02.021_bib0225 article-title: Modelling nitrous oxide emissions from grazed grasslands in New Zealand publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.07.010 – volume: 33 start-page: 1723 year: 2001 ident: 10.1016/j.agee.2012.02.021_bib0275 article-title: Role of nitrifier denitrification in the production of nitrous oxide publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00096-7 – volume: 17 start-page: 1140 year: 2011 ident: 10.1016/j.agee.2012.02.021_bib0090 article-title: Non-linear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the U.S. Midwest publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2010.02349.x – volume: 32 start-page: 1485 year: 2000 ident: 10.1016/j.agee.2012.02.021_bib0155 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00084-5 – volume: 134 start-page: 29 year: 2009 ident: 10.1016/j.agee.2012.02.021_bib0120 article-title: Cover crop effects on nitrous oxide emission from a manure-treated Mollisol publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.05.008 – volume: 37 start-page: 1337 year: 2008 ident: 10.1016/j.agee.2012.02.021_bib0075 article-title: Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems publication-title: J. Environ. Qual. doi: 10.2134/jeq2007.0268 – volume: 46 start-page: 53 year: 1996 ident: 10.1016/j.agee.2012.02.021_bib0010 article-title: Direct emission of nitrous oxide from agricultural soils publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/BF00210224 – year: 2007 ident: 10.1016/j.agee.2012.02.021_bib0065 article-title: Changes in atmospheric constituents and in radiative forcing – year: 2011 ident: 10.1016/j.agee.2012.02.021_bib0165 article-title: Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: a case study in Central China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.01.003 – volume: 36 start-page: 425 year: 1985 ident: 10.1016/j.agee.2012.02.021_bib0125 article-title: Interactions between fertilizer nitrogen and soil nitrogen-the so-called ‘priming’ effect publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1985.tb00348.x – volume: 49 start-page: 334 year: 1913 ident: 10.1016/j.agee.2012.02.021_bib0190 article-title: Die kinetik der invertin wirkung publication-title: Biochemisches Zeitschrift – ident: 10.1016/j.agee.2012.02.021_bib0110 – volume: 40 start-page: 2553 year: 2008 ident: 10.1016/j.agee.2012.02.021_bib0195 article-title: Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.06.024 – volume: 136 start-page: 218 year: 2010 ident: 10.1016/j.agee.2012.02.021_bib0030 article-title: Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.12.006 – volume: 42 start-page: 8403 year: 2008 ident: 10.1016/j.agee.2012.02.021_bib0080 article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.08.006 – volume: 42 start-page: 291 year: 2008 ident: 10.1016/j.agee.2012.02.021_bib0285 article-title: N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.09.036 – volume: 15 start-page: 173 year: 1977 ident: 10.1016/j.agee.2012.02.021_bib0085 article-title: Does any enzyme follow the Michaelis–Menten equation? publication-title: Mol. Cell. Biochem. doi: 10.1007/BF01734107 – volume: 74 start-page: 235 year: 1994 ident: 10.1016/j.agee.2012.02.021_bib0160 article-title: Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization publication-title: Can. J. Soil Sci. doi: 10.4141/cjss94-032 – volume: 9 start-page: 839 year: 2012 ident: 10.1016/j.agee.2012.02.021_bib0170 article-title: Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China publication-title: Biogeosciences doi: 10.5194/bg-9-839-2012 – volume: 62 start-page: 677 year: 1998 ident: 10.1016/j.agee.2012.02.021_bib0035 article-title: Nitrous oxide emission from long-term manured soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1998.03615995006200030019x – volume: 88 start-page: 397 year: 2010 ident: 10.1016/j.agee.2012.02.021_bib0135 article-title: Effect of increased N use and drought on N2O emission in a fertilized grassland publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-010-9365-5 – volume: 88 start-page: 197 year: 2008 ident: 10.1016/j.agee.2012.02.021_bib0280 article-title: N2O emissions from spring barley production as influenced by fertilizer nitrogen rate publication-title: Can. J. Soil Sci. doi: 10.4141/CJSS06006 – volume: 11 start-page: 835 year: 1997 ident: 10.1016/j.agee.2012.02.021_bib0270 article-title: The Hill equation revisited: uses and misuses publication-title: FASEB J. doi: 10.1096/fasebj.11.11.9285481 – start-page: 179 year: 1988 ident: 10.1016/j.agee.2012.02.021_bib0240 article-title: Ecology of denitrification and dissimilatory nitrate reduction to ammonium – volume: 104 start-page: 26,891 year: 1999 ident: 10.1016/j.agee.2012.02.021_bib0055 article-title: Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors publication-title: J. Geophys. Res. doi: 10.1029/1999JD900378 – volume: 46 start-page: 43 year: 1982 ident: 10.1016/j.agee.2012.02.021_bib0140 article-title: Denitrification publication-title: Microbiol. Rev. doi: 10.1128/MMBR.46.1.43-70.1982 – ident: 10.1016/j.agee.2012.02.021_bib0115 – volume: 2 start-page: 201 year: 1986 ident: 10.1016/j.agee.2012.02.021_bib0020 article-title: Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia publication-title: Biol. Fert. Soils – volume: 46 start-page: 76 year: 2008 ident: 10.1016/j.agee.2012.02.021_bib0050 article-title: Sources of nitrous oxide from 15N-labelled animal urine and urea fertiliser with and without a nitrification inhibitor, dicyandiamide (DCD) publication-title: Aust. J. Soil Res. doi: 10.1071/SR07093 |
SSID | ssj0000238 |
Score | 2.5241308 |
Snippet | ► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than... Rising atmospheric concentrations of nitrous oxide (N₂O) contribute to global warming and associated climate change. It is often assumed that there is a linear... Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear... Rising atmospheric concentrations of nitrous oxide (N sub(2)O) contribute to global warming and associated climate change. It is often assumed that there is a... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 53 |
SubjectTerms | Agronomy. Soil science and plant productions Biological and medical sciences carbon carbon footprint data collection ecosystems Emission factor Fundamental and applied biological sciences. Psychology General agroecology General agroecology. Agricultural and farming systems. Agricultural development. Rural area planning. Landscaping General agronomy. Plant production Generalities. Agricultural and farming systems. Agricultural development global warming greenhouse gas emissions IPCC methodology Meta-analysis nitrogen nitrogen fertilizers Nitrogen input Nitrogen, phosphorus, potassium fertilizations Nitrous oxide Open-access database soil quality Soil-plant relationships. Soil fertility. Fertilization. Amendments |
Title | Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis |
URI | https://dx.doi.org/10.1016/j.agee.2012.02.021 https://www.proquest.com/docview/1431620007 https://www.proquest.com/docview/1458529815 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-a9GV7GGu30qxd0GBvQ4skf_ctlJZsYX1YW9Y3o8jS8OjskDjQ7WF_--5suaWU5WFgMBYnW9ad7n5nn-4A3ifChcLZhNvQCR4uhOZZIkNuEZ4aUxSBa1NsfLmIZ9fh55voZgdO-70wFFbpdX-n01tt7VsmfjYny7KcXFIAPUpfJlULJJIB7Cq09ukQdqef5rOLB4Ws2oLWbYpv6uD3znRhXrhqKVsmfRKkQ_7LPg2crilwUq9x7lxX9OKJ_m6N0vlLeOHRJJt2A96DHVvtw_Pp95XPqGH34eDsYSsbkvq1vH4FNbqhKOZMVwWruoQZeNUXxTW_WO1YNzkMl_2q3qxZfVcWllGFOPrGhtcVcxSXfVv-tquOCuWRldVy05ywKftpG821T3vyGq7Oz65OZ9yXX-AGYV3D1SJE38YsIq1RYwqbCYPYIDYiFmmSZjrUJkZorijy2kTCxi4ujIqTwOoYyYIDGOLo7SGwNHKa6mLJ1EoCEIgZnULrbIWyCFfECGQ_57nxqcmpQsZt3seg_ciJTznxKRd0yBF8uO-z7BJzbKWOelbmj8QrR8uxtd8h8h2bUePm15eK_FGkVFkajGD8SBjuR6Gojhu-7gje9dKRI2PoR4yuLHIL3a0A70HwbBsNOnL4HBm9-c-xH8Ez1dbuCLiMjmHYrDb2LSKoZjGGwcc_cuzXCZ3nX7_N_wLIvxpf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5Bedj2MG1siDLGPGlvk1XH-c1bhUBlQF8oEm-W69hTJpZUbSoN_nruEgeEpvVhUl4SnRPHdz5_l5zvA_iWChcJZ1NuIyd4NBea52kQcYvw1JiiCF1bYuNqmkxuoh-38e0WnPR7YSit0vv-zqe33tpfGfnRHC3KcnRNCfRofXkgWyCRbsNORKTWA9gZn19Mps8OWbaE1m2Jb2rg9850aV44a6laJn0SpCP41_q07XRNiZN6hWPnOtKLv_x3uyidvYO3Hk2ycdfh97Blq114M_659BU17C7snT5vZUNRP5dXH6DGMBTNnOmqYFVXMAPPelJcc89qx7rBYTjtl_V6xeo_ZWEZMcTRNzY8r5ijvOy78sEuOym0R1ZWi3VzzMbst200177syUeYnZ3OTibc0y9wg7Cu4XIeYWxj5rHW6DGFzYVBbJAYkYgszXIdaZMgNJeUeW1iYROXFEYmaWh1gmLhHgyw93YfWBY7TbxYQWYDAhCIGZ3E1dkKaRGuiCEE_Zgr40uTE0PGnepz0H4p0pMiPSlBRzCE709tFl1hjo3Sca9K9cK8FK4cG9vto97xMnpcdXMtKR5FSZln4RCOXhjDUy8k8bjh6w7ha28dChVDP2J0ZVFbGG6FeA-CZ5tkMJDD5wTxwX_2_Qu8msyuLtXl-fTiE7yWLY9HyIP4EAbNcm0_I5pq5kd-tjwCl3Eaog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+and+nonlinear+dependency+of+direct+nitrous+oxide+emissions+on+fertilizer+nitrogen+input%3A+A+meta-analysis&rft.jtitle=Agriculture%2C+ecosystems+%26+environment&rft.au=Kim%2C+Dong-Gill&rft.au=Hernandez-Ramirez%2C+Guillermo&rft.au=Giltrap%2C+Donna&rft.date=2013-03-15&rft.pub=Elsevier+B.V&rft.issn=0167-8809&rft.volume=168&rft.spage=53&rft.epage=65&rft_id=info:doi/10.1016%2Fj.agee.2012.02.021&rft.externalDocID=US201400162983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8809&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8809&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8809&client=summon |