Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis

► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than linear. ► Direct N2O emission factor remains constant or changes nonlinearly with N input. ► We propose a relationship describing N2O respons...

Full description

Saved in:
Bibliographic Details
Published inAgriculture, ecosystems & environment Vol. 168; pp. 53 - 65
Main Authors Kim, Dong-Gill, Hernandez-Ramirez, Guillermo, Giltrap, Donna
Format Journal Article
LanguageEnglish
Published Oxford Elsevier B.V 15.03.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0167-8809
1873-2305
DOI10.1016/j.agee.2012.02.021

Cover

Abstract ► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than linear. ► Direct N2O emission factor remains constant or changes nonlinearly with N input. ► We propose a relationship describing N2O response to increasing N input rates. Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N2O emission in managed ecosystems and, therefore, direct N2O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N2O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N2O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N2O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N2O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N2O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N2O production, and also indirectly promote N2O production by inhibiting biochemical N2O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N2O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review.
AbstractList Rising atmospheric concentrations of nitrous oxide (N sub(2)O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N sub(2)O emission in managed ecosystems and, therefore, direct N sub(2)O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N sub(2)O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N sub(2)O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N sub(2)O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N sub(2)O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N sub(2)O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N sub(2)O production, and also indirectly promote N sub(2)O production by inhibiting biochemical N sub(2)O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N sub(2)O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steadystate (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review.
Rising atmospheric concentrations of nitrous oxide (N₂O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N₂O emission in managed ecosystems and, therefore, direct N₂O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N₂O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N₂O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N₂O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N₂O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N₂O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N₂O production, and also indirectly promote N₂O production by inhibiting biochemical N₂O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N₂O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review.
► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than linear. ► Direct N2O emission factor remains constant or changes nonlinearly with N input. ► We propose a relationship describing N2O response to increasing N input rates. Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N2O emission in managed ecosystems and, therefore, direct N2O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N2O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N2O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N2O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N2O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N2O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N2O production, and also indirectly promote N2O production by inhibiting biochemical N2O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N2O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review.
Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N2O emission in managed ecosystems and, therefore, direct N2O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N2O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N2O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N2O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N2O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N2O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N2O production, and also indirectly promote N2O production by inhibiting biochemical N2O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N2O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review.
Author Kim, Dong-Gill
Giltrap, Donna
Hernandez-Ramirez, Guillermo
Author_xml – sequence: 1
  givenname: Dong-Gill
  surname: Kim
  fullname: Kim, Dong-Gill
  email: KimD@landcareresearch.co.nz, donggillkim@gmail.com
  organization: Landcare Research, Palmerston North 4442, New Zealand
– sequence: 2
  givenname: Guillermo
  surname: Hernandez-Ramirez
  fullname: Hernandez-Ramirez, Guillermo
  organization: Plant and Food Research, Lincoln 7608, New Zealand
– sequence: 3
  givenname: Donna
  surname: Giltrap
  fullname: Giltrap, Donna
  organization: Landcare Research, Palmerston North 4442, New Zealand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27238542$$DView record in Pascal Francis
BookMark eNqNkcFq3DAQhkVJoZu0L9BLdSnk4o0k27JccgmhTQILPTQ9i4k8Dlq80lbShm6fvmOcXnoIEQNi0PePZuY_ZSchBmTsoxRrKaS-2K7hEXGthFRrMYd8w1bSdHWlatGesBVBXWWM6N-x05y3go6qzYrFjQ8IiUMYONWclmzAPYYBgzvyOPLBJ3SFB19SPGQef_sBOe58zj4GygMfMRU_-T-YFuoRA_dhfyhf-BXfYYEKAkzH7PN79naEKeOH5_uM3X_7en99W22-39xdX20q18q-VOqh0Vq7hxag00pgL5zqa-2EFqYzPTTgdKd6pZ1TrhWoRz04pbsaQRNWn7Hzpew-xV8HzMVSuw6nCQLSDFY2rWlVb2T7CrSW1IIQHaGfn1HIDqYxQXA-233yO0hHqzpaadso4szCuRRzTjha5wsU2lZJ4CcrhZ1ds1s7u2Zn16yYQ5JU_Sf9V_1F0adFNEKk10Q9_fxBQCNIQFPWRFwuBNLOnzwmm50nf3Hx1g7Rv_TBX9obvAo
CODEN AEENDO
CitedBy_id crossref_primary_10_3390_atmos11090925
crossref_primary_10_1016_j_scienta_2022_111590
crossref_primary_10_1002_jeq2_20353
crossref_primary_10_1007_s13762_017_1598_2
crossref_primary_10_1007_s12155_014_9456_2
crossref_primary_10_3390_agriculture14010070
crossref_primary_10_1038_srep44235
crossref_primary_10_1007_s10705_017_9824_3
crossref_primary_10_1016_j_agwat_2023_108482
crossref_primary_10_1016_j_agwat_2023_108488
crossref_primary_10_1016_S1002_0160_21_60057_7
crossref_primary_10_1016_j_eja_2016_01_003
crossref_primary_10_1016_j_agee_2013_05_011
crossref_primary_10_1016_j_proenv_2015_10_056
crossref_primary_10_1016_j_fcr_2024_109490
crossref_primary_10_1007_s10705_021_10155_4
crossref_primary_10_1038_s41558_019_0613_7
crossref_primary_10_1016_j_agee_2021_107620
crossref_primary_10_1016_j_jenvman_2020_111211
crossref_primary_10_1029_2021GB007289
crossref_primary_10_1021_es4003026
crossref_primary_10_1016_j_agee_2015_01_025
crossref_primary_10_1016_j_atmosenv_2019_05_056
crossref_primary_10_1016_j_scitotenv_2020_136672
crossref_primary_10_3389_fsufs_2019_00008
crossref_primary_10_1016_j_agee_2016_11_021
crossref_primary_10_1002_agj2_20095
crossref_primary_10_1016_j_catena_2016_08_010
crossref_primary_10_1016_j_igd_2024_100180
crossref_primary_10_1002_jeq2_20138
crossref_primary_10_1016_j_geoderma_2023_116732
crossref_primary_10_1016_j_agee_2014_07_014
crossref_primary_10_1016_j_scitotenv_2020_141014
crossref_primary_10_1029_2020GB006561
crossref_primary_10_1002_agj2_20658
crossref_primary_10_2136_sssaj2017_06_0199
crossref_primary_10_1021_acs_est_8b03931
crossref_primary_10_1016_j_scitotenv_2023_166472
crossref_primary_10_3390_agronomy13061447
crossref_primary_10_3390_ijerph192416506
crossref_primary_10_1007_s12237_018_0441_4
crossref_primary_10_1016_j_agee_2017_10_021
crossref_primary_10_1016_j_agee_2017_10_022
crossref_primary_10_1002_ece3_3211
crossref_primary_10_1016_j_catena_2022_106890
crossref_primary_10_3389_fpls_2023_1176293
crossref_primary_10_1007_s10705_017_9836_z
crossref_primary_10_1016_j_oneear_2024_10_007
crossref_primary_10_1016_j_envsoft_2016_06_016
crossref_primary_10_1016_j_agee_2019_106808
crossref_primary_10_1007_s10705_017_9897_z
crossref_primary_10_1134_S1064229321080032
crossref_primary_10_1016_j_agee_2016_10_006
crossref_primary_10_1016_j_scitotenv_2022_154628
crossref_primary_10_2134_agronj14_0411
crossref_primary_10_1007_s10705_014_9630_0
crossref_primary_10_1111_ejss_13131
crossref_primary_10_1002_2014GB005046
crossref_primary_10_1016_j_ecolmodel_2017_06_007
crossref_primary_10_1016_j_atmosenv_2015_04_036
crossref_primary_10_1007_s10705_023_10290_0
crossref_primary_10_1016_j_spc_2024_09_022
crossref_primary_10_1080_00103624_2020_1845364
crossref_primary_10_3390_su11030748
crossref_primary_10_1016_j_jclepro_2021_129964
crossref_primary_10_2136_sssaj2016_09_0281
crossref_primary_10_1016_j_agee_2016_06_038
crossref_primary_10_1007_s10584_015_1426_y
crossref_primary_10_1016_j_agsy_2020_102960
crossref_primary_10_1016_j_jclepro_2014_09_093
crossref_primary_10_1029_2018JG004488
crossref_primary_10_1016_j_agee_2015_04_026
crossref_primary_10_1016_j_agee_2016_06_033
crossref_primary_10_1016_j_envpol_2018_08_102
crossref_primary_10_1016_j_atmosenv_2019_02_036
crossref_primary_10_1371_journal_pone_0189831
crossref_primary_10_1016_j_agsy_2020_103018
crossref_primary_10_1016_j_jenvman_2019_109278
crossref_primary_10_1016_j_fcr_2022_108475
crossref_primary_10_1007_s11356_024_34772_y
crossref_primary_10_1111_gcb_12413
crossref_primary_10_1016_S1002_0160_15_60063_7
crossref_primary_10_1016_j_scitotenv_2024_171930
crossref_primary_10_1016_j_agee_2018_10_023
crossref_primary_10_1071_SR16091
crossref_primary_10_1186_s40645_018_0215_4
crossref_primary_10_4081_ija_2020_1613
crossref_primary_10_5194_bg_13_4789_2016
crossref_primary_10_1007_s10705_021_10177_y
crossref_primary_10_1016_j_agee_2015_07_003
crossref_primary_10_1016_j_agee_2017_07_003
crossref_primary_10_1016_j_agrformet_2019_05_009
crossref_primary_10_1111_sum_12170
crossref_primary_10_1016_S1002_0160_19_60812_X
crossref_primary_10_1016_j_agsy_2019_102654
crossref_primary_10_3390_su9071201
crossref_primary_10_1371_journal_pone_0305385
crossref_primary_10_1007_s11104_020_04724_9
crossref_primary_10_1017_S1742170520000320
crossref_primary_10_2136_sssaj2013_02_0074
crossref_primary_10_1016_j_scitotenv_2017_04_062
crossref_primary_10_1016_j_scitotenv_2019_134147
crossref_primary_10_1038_s41467_022_32001_z
crossref_primary_10_2134_jeq2017_06_0226
crossref_primary_10_3390_agronomy14102202
crossref_primary_10_1088_1748_9326_abfde7
crossref_primary_10_1029_2024GB008098
crossref_primary_10_1016_j_agee_2014_02_020
crossref_primary_10_1016_j_scitotenv_2021_147283
crossref_primary_10_1016_j_agrformet_2019_01_002
crossref_primary_10_17221_774_2018_PSE
crossref_primary_10_1016_j_jenvman_2024_122830
crossref_primary_10_1111_gcb_13644
crossref_primary_10_5897_JSSEM15_0485
crossref_primary_10_1016_j_geoderma_2015_06_001
crossref_primary_10_1080_00380768_2024_2361068
crossref_primary_10_1016_j_agee_2021_107640
crossref_primary_10_5194_soil_1_687_2015
crossref_primary_10_1071_SR14328
crossref_primary_10_1007_s10705_021_10180_3
crossref_primary_10_1016_j_agwat_2025_109442
crossref_primary_10_1016_j_agee_2017_07_039
crossref_primary_10_1016_j_rser_2019_109354
crossref_primary_10_1016_j_agee_2021_107456
crossref_primary_10_1016_j_scitotenv_2024_177385
crossref_primary_10_1007_s11356_020_11846_1
crossref_primary_10_1016_j_heliyon_2023_e22578
crossref_primary_10_2134_agronj2013_0081
crossref_primary_10_1016_j_agee_2017_03_023
crossref_primary_10_1016_j_scitotenv_2019_01_082
crossref_primary_10_1016_j_fcr_2024_109408
crossref_primary_10_1017_S0021859615000945
crossref_primary_10_1016_j_spc_2024_08_013
crossref_primary_10_36783_18069657rbcs20240083
crossref_primary_10_1007_s10705_017_9893_3
crossref_primary_10_1016_j_jes_2024_03_028
crossref_primary_10_1007_s11104_013_1862_2
crossref_primary_10_1371_journal_pone_0148527
crossref_primary_10_1016_j_scitotenv_2023_162712
crossref_primary_10_1007_s11368_021_02903_4
crossref_primary_10_1002_ehs2_1259
crossref_primary_10_1080_00288233_2019_1614073
crossref_primary_10_1007_s11356_018_2646_2
crossref_primary_10_3389_fenvs_2021_798383
crossref_primary_10_1016_j_agee_2019_106646
crossref_primary_10_1016_j_agee_2015_07_010
crossref_primary_10_1016_j_agee_2023_108565
crossref_primary_10_1016_j_scitotenv_2019_03_142
crossref_primary_10_1016_j_eja_2016_06_013
crossref_primary_10_2134_jeq2014_02_0096
crossref_primary_10_3390_agronomy14010222
crossref_primary_10_1016_j_agee_2016_04_003
crossref_primary_10_1038_s43247_023_01095_8
crossref_primary_10_1071_SR14355
crossref_primary_10_1139_cjss_2021_0064
crossref_primary_10_1016_j_agee_2022_108031
crossref_primary_10_1111_gcb_13966
crossref_primary_10_1016_j_gecco_2020_e01115
crossref_primary_10_1016_j_scitotenv_2018_05_101
crossref_primary_10_1016_j_agee_2016_09_038
crossref_primary_10_3389_fenvs_2022_914851
crossref_primary_10_1016_j_agee_2020_107268
crossref_primary_10_1021_acsagscitech_4c00114
crossref_primary_10_1371_journal_pone_0125406
crossref_primary_10_1016_j_agsy_2021_103062
crossref_primary_10_1016_j_agee_2020_106968
crossref_primary_10_1016_j_fcr_2022_108548
crossref_primary_10_1071_SR23070
crossref_primary_10_1016_j_agee_2022_107854
crossref_primary_10_1016_j_rsci_2020_03_005
crossref_primary_10_1002_jeq2_20637
crossref_primary_10_1007_s11368_022_03212_0
crossref_primary_10_1016_j_fcr_2017_01_004
crossref_primary_10_1071_SR15336
crossref_primary_10_1016_j_geodrs_2019_e00244
crossref_primary_10_1007_s12571_021_01149_9
crossref_primary_10_1016_j_isci_2024_109042
crossref_primary_10_1016_j_agee_2022_108062
crossref_primary_10_1007_s10705_019_10032_1
crossref_primary_10_3390_atmos12080976
crossref_primary_10_1007_s11104_013_1762_5
crossref_primary_10_1016_j_agee_2021_107376
crossref_primary_10_1016_j_agee_2015_12_022
crossref_primary_10_1016_j_scitotenv_2022_161314
crossref_primary_10_1007_s10705_015_9713_6
crossref_primary_10_1016_j_still_2024_106165
crossref_primary_10_1071_SR21158
crossref_primary_10_1088_1748_9326_aba5b2
crossref_primary_10_3390_su15097530
crossref_primary_10_1016_j_ejsobi_2020_103152
crossref_primary_10_1016_j_ejsobi_2022_103393
crossref_primary_10_1029_2018GB006091
crossref_primary_10_1080_03650340_2019_1708332
crossref_primary_10_3390_su12114403
crossref_primary_10_1021_es4055324
crossref_primary_10_1038_s43247_024_01647_6
crossref_primary_10_1002_agj2_21408
crossref_primary_10_1016_j_envpol_2018_03_090
crossref_primary_10_1021_acs_est_9b03089
crossref_primary_10_1016_j_envpol_2017_08_108
crossref_primary_10_1007_s10021_020_00516_5
crossref_primary_10_1016_j_agee_2021_107382
crossref_primary_10_1071_SR15286
crossref_primary_10_1002_2015JG003239
crossref_primary_10_1007_s42729_021_00695_7
crossref_primary_10_1016_j_scitotenv_2017_10_229
crossref_primary_10_1016_j_jenvman_2024_120234
crossref_primary_10_1007_s10705_023_10323_8
crossref_primary_10_1016_j_scitotenv_2021_148758
crossref_primary_10_1016_j_agee_2021_107813
crossref_primary_10_1016_j_geoderma_2019_01_014
crossref_primary_10_1017_S0021859615000519
crossref_primary_10_1111_gcb_13341
crossref_primary_10_1016_j_agee_2017_04_014
crossref_primary_10_1007_s10705_019_10045_w
crossref_primary_10_1073_pnas_1322434111
crossref_primary_10_3390_ani11051214
crossref_primary_10_1007_s11356_014_3811_x
crossref_primary_10_1002_ldr_3636
crossref_primary_10_1016_j_jclepro_2015_10_086
crossref_primary_10_1007_s11356_016_8270_0
crossref_primary_10_1016_j_agee_2021_107353
crossref_primary_10_3390_su11061513
crossref_primary_10_1016_j_scitotenv_2019_07_315
crossref_primary_10_1021_acs_est_4c04574
crossref_primary_10_1029_2020EF001504
crossref_primary_10_1016_j_fcr_2022_108732
crossref_primary_10_1093_nsr_nwz087
crossref_primary_10_1007_s11104_014_2174_x
crossref_primary_10_1111_gcb_17177
crossref_primary_10_1016_j_agee_2018_12_009
crossref_primary_10_1002_saj2_70039
crossref_primary_10_1080_1943815X_2020_1825227
crossref_primary_10_5194_bg_11_3031_2014
crossref_primary_10_3390_su12093527
crossref_primary_10_1002_jgrg_20081
crossref_primary_10_1016_j_fcr_2022_108737
crossref_primary_10_1007_s11356_021_16132_2
crossref_primary_10_4141_cjss2013_118
crossref_primary_10_1016_j_agee_2015_12_013
crossref_primary_10_1002_saj2_20370
Cites_doi 10.1016/j.agee.2009.12.014
10.1023/A:1004252012290
10.1016/S0269-7491(98)80031-6
10.1111/j.1365-2389.2009.01222.x
10.1111/j.1365-2486.2005.01040.x
10.1007/BF00334578
10.4141/S98-009
10.2136/sssaj2005.0104
10.2136/sssaj2000.6441396x
10.1126/science.194.4266.685
10.1146/annurev.micro.55.1.485
10.2136/sssaj1993.03615995005700010013x
10.2136/sssaj1979.03615995004300060016x
10.1111/j.1365-2486.2009.01932.x
10.1016/j.agee.2010.12.017
10.1071/EA07238
10.1029/2003GB002167
10.1007/s10705-006-9026-x
10.2134/jeq2006.0173
10.1029/2001GB001811
10.1002/qj.49709640815
10.2134/jeq1982.00472425001100010019x
10.1016/j.agee.2006.07.010
10.1016/S0038-0717(01)00096-7
10.1111/j.1365-2486.2010.02349.x
10.1016/S0038-0717(00)00084-5
10.1016/j.agee.2009.05.008
10.2134/jeq2007.0268
10.1007/BF00210224
10.1016/j.atmosenv.2011.01.003
10.1111/j.1365-2389.1985.tb00348.x
10.1016/j.soilbio.2008.06.024
10.1016/j.agee.2009.12.006
10.1016/j.atmosenv.2008.08.006
10.1016/j.atmosenv.2007.09.036
10.1007/BF01734107
10.4141/cjss94-032
10.5194/bg-9-839-2012
10.2136/sssaj1998.03615995006200030019x
10.1007/s10705-010-9365-5
10.4141/CJSS06006
10.1096/fasebj.11.11.9285481
10.1029/1999JD900378
10.1128/MMBR.46.1.43-70.1982
10.1071/SR07093
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7SN
7ST
7TV
7U6
C1K
SOI
DOI 10.1016/j.agee.2012.02.021
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Pollution Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Ecology Abstracts


AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Environmental Sciences
EISSN 1873-2305
EndPage 65
ExternalDocumentID 27238542
10_1016_j_agee_2012_02_021
US201400162983
S0167880912000837
GroupedDBID --K
--M
.~1
0R~
186
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABBQC
ABFNM
ABFRF
ABFYP
ABKYH
ABLST
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LCYCR
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SNL
SPCBC
SSA
SSH
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
ABGRD
ABJNI
ABWVN
ACRPL
ADMUD
ADNMO
AEGFY
AEIPS
AFJKZ
AGHFR
AI.
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
SEW
VH1
WUQ
AAYWO
AAYXX
ACIEU
ACMHX
ACVFH
ADCNI
ADSLC
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
IQODW
7S9
ACLOT
EFKBS
L.6
~HD
7SN
7ST
7TV
7U6
C1K
SOI
ID FETCH-LOGICAL-c519t-2b4666cb5aa7620e90c2936c0608789a4ac672926cc2c50e6f6dc2673ea636c3
IEDL.DBID AIKHN
ISSN 0167-8809
IngestDate Sat Sep 27 22:05:28 EDT 2025
Sat Sep 27 23:30:39 EDT 2025
Wed Apr 02 07:23:37 EDT 2025
Tue Jul 01 02:37:14 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Thu Apr 03 09:44:36 EDT 2025
Fri Feb 23 02:27:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords IPCC methodology
Emission factor
Open-access database
Nitrous oxide
Nitrogen input
Meta-analysis
Gas emission
Ecology
Nitrogen
Metaanalysis
Dynamical climatology
Climate change
Intergovernmental Panel on Climate Change
Database
Nonlinearity
Nitrogen protoxide
Nitrogen fertilizer
Open access
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-2b4666cb5aa7620e90c2936c0608789a4ac672926cc2c50e6f6dc2673ea636c3
Notes http://dx.doi.org/10.1016/j.agee.2012.02.021
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1431620007
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_1458529815
proquest_miscellaneous_1431620007
pascalfrancis_primary_27238542
crossref_citationtrail_10_1016_j_agee_2012_02_021
crossref_primary_10_1016_j_agee_2012_02_021
fao_agris_US201400162983
elsevier_sciencedirect_doi_10_1016_j_agee_2012_02_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-15
PublicationDateYYYYMMDD 2013-03-15
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Agriculture, ecosystems & environment
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Cardenas, Thorman, Ashlee, Butler, Chadwick, Chambers, Cuttle, Donovan, Kingston, Lane, Dhanoa, Scholefield (bib0030) 2010; 136
Hyde, Hawkins, Fanning, Noonan, Ryan, O’Toole, Carton (bib0105) 2006; 75
Rochette, van Bochove, Prévost, Angers, Côté, Bertrand (bib0220) 2000; 64
Rochette, Tremblay, Fallon, Angers, Chantigny, MacDonald, Bertrand, Parent (bib0215) 2010; 61
Zheng, Han, Huang, Wang, Wang (bib0290) 2004; 18
Velthof, Mosquera (bib0250) 2011
Weiss (bib0270) 1997; 11
Kuzyakov, Friedel, Stahr (bib0155) 2000; 32
Bouwman, Boumans, Batjes (bib0015) 2002; 16
Chantigny, Prevost, Angers, Simard, Chalifour (bib0040) 1998; 78
Lin, Iqbal, Hu, Wu, Zhao, Ruan, Malghani (bib0165) 2011
Thorburn, Biggs, Collins, Probert (bib0235) 2010; 136
Miller, Zebarth, Dandie, Burton, Goyer, Trevors (bib0195) 2008; 40
Kowalchuk, Stephen (bib0150) 2001; 55
Wrage, Velthof, van Beusichem, Oenema (bib0275) 2001; 33
Hong, Scharf, Davis, Kitchen, Sudduth (bib0095) 2007; 36
Chang, Janzen, Cho (bib0035) 1998; 62
Mosier, Hutchinson, Sabey, Baxter (bib0205) 1982; 11
Kammann, Grunhage, Muller, Jacobi, Jager (bib0130) 1998; 102
Michaelis, Menten (bib0190) 1913; 49
Jarecki, Parkin, Chan, Kaspar, Moorman, Singer, Kerr, Hatfield, Jones (bib0120) 2009; 134
Zebarth, Rochette, Burton (bib0280) 2008; 88
IPCC – Intergovernmental Panel on Climate Change, 1996. Revised 1996 Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at
Liang, Mackenzie (bib0160) 1994; 74
Dobbie, McTaggart, Smith (bib0055) 1999; 104
Liu, Wang, Zheng (bib0170) 2012; 9
Breitenbeck, Bremner (bib0020) 1986; 2
Ma, Wu, Tremblay, Deen, Morrison, Mclaughlin, Gregorich, Stewart (bib0180) 2010; 16
Koops, Beusichem, Oenema (bib0145) 1997; 188
Kim, Mishurov, Kiely (bib0135) 2010; 88
Saggar, Giltrap, Li, Tate (bib0225) 2007; 119
Bouwman (bib0010) 1996; 46
SYSTAT Software (bib0230) 2010
Knowles (bib0140) 1982; 46
Hoogendoorn, de Klein, Rutherford, Letica, Devantier (bib0100) 2008; 48
Tiedje (bib0240) 1988
Grant, Pattey, Goddard, Kryzanowski, Puurveen (bib0070) 2006; 70
Webster, Hopkins (bib0260) 1996; 22
Wang, Lacis, Mo, Hansen (bib0255) 1976; 194
(verified 27 May 2011).
Jenkinson, Fox, Rayner (bib0125) 1985; 36
McSwiney, Robertson (bib0185) 2005; 11
IPCC – Intergovernmental Panel on Climate Change, 2006. Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at
Hellebrand, Scholz, Kern (bib0080) 2008; 42
Halvorson, Del Grosso, Reule (bib0075) 2008; 37
Forster, Ramaswamy, Artaxo, Berntsen, Betts, Fahey, Haywood, Lean, Lowe, Myhre, Nganga, Prinn, Raga, Schulz, Van Dorland (bib0065) 2007
Weier, Doran, Power, Walters (bib0265) 1993; 57
Di, Cameron (bib0050) 2008; 46
Crutzen (bib0045) 1970; 96
Hill, Waightm, Bardsley (bib0085) 1977; 15
Firestone, Smith, Firestone, Tiedje (bib0060) 1979; 43
[verified 27 May 2011].
Hoben, Gehl, Millar, Grace, Robertson (bib0090) 2011; 17
Zhang, Han (bib0285) 2008; 42
Koops (10.1016/j.agee.2012.02.021_bib0145) 1997; 188
Wang (10.1016/j.agee.2012.02.021_bib0255) 1976; 194
Kuzyakov (10.1016/j.agee.2012.02.021_bib0155) 2000; 32
Bouwman (10.1016/j.agee.2012.02.021_bib0015) 2002; 16
Grant (10.1016/j.agee.2012.02.021_bib0070) 2006; 70
Saggar (10.1016/j.agee.2012.02.021_bib0225) 2007; 119
Cardenas (10.1016/j.agee.2012.02.021_bib0030) 2010; 136
Knowles (10.1016/j.agee.2012.02.021_bib0140) 1982; 46
Hoogendoorn (10.1016/j.agee.2012.02.021_bib0100) 2008; 48
Hill (10.1016/j.agee.2012.02.021_bib0085) 1977; 15
Hellebrand (10.1016/j.agee.2012.02.021_bib0080) 2008; 42
Crutzen (10.1016/j.agee.2012.02.021_bib0045) 1970; 96
Dobbie (10.1016/j.agee.2012.02.021_bib0055) 1999; 104
Zebarth (10.1016/j.agee.2012.02.021_bib0280) 2008; 88
Forster (10.1016/j.agee.2012.02.021_bib0065) 2007
Hyde (10.1016/j.agee.2012.02.021_bib0105) 2006; 75
Di (10.1016/j.agee.2012.02.021_bib0050) 2008; 46
10.1016/j.agee.2012.02.021_bib0110
Miller (10.1016/j.agee.2012.02.021_bib0195) 2008; 40
10.1016/j.agee.2012.02.021_bib0115
Kim (10.1016/j.agee.2012.02.021_bib0135) 2010; 88
Zheng (10.1016/j.agee.2012.02.021_bib0290) 2004; 18
Liu (10.1016/j.agee.2012.02.021_bib0170) 2012; 9
SYSTAT Software (10.1016/j.agee.2012.02.021_bib0230) 2010
Jenkinson (10.1016/j.agee.2012.02.021_bib0125) 1985; 36
Rochette (10.1016/j.agee.2012.02.021_bib0220) 2000; 64
Firestone (10.1016/j.agee.2012.02.021_bib0060) 1979; 43
Halvorson (10.1016/j.agee.2012.02.021_bib0075) 2008; 37
Velthof (10.1016/j.agee.2012.02.021_bib0250) 2011
Rochette (10.1016/j.agee.2012.02.021_bib0215) 2010; 61
Hoben (10.1016/j.agee.2012.02.021_bib0090) 2011; 17
Webster (10.1016/j.agee.2012.02.021_bib0260) 1996; 22
Bouwman (10.1016/j.agee.2012.02.021_bib0010) 1996; 46
Tiedje (10.1016/j.agee.2012.02.021_bib0240) 1988
Lin (10.1016/j.agee.2012.02.021_bib0165) 2011
Zhang (10.1016/j.agee.2012.02.021_bib0285) 2008; 42
Liang (10.1016/j.agee.2012.02.021_bib0160) 1994; 74
McSwiney (10.1016/j.agee.2012.02.021_bib0185) 2005; 11
Mosier (10.1016/j.agee.2012.02.021_bib0205) 1982; 11
Weier (10.1016/j.agee.2012.02.021_bib0265) 1993; 57
Michaelis (10.1016/j.agee.2012.02.021_bib0190) 1913; 49
Wrage (10.1016/j.agee.2012.02.021_bib0275) 2001; 33
Kowalchuk (10.1016/j.agee.2012.02.021_bib0150) 2001; 55
Hong (10.1016/j.agee.2012.02.021_bib0095) 2007; 36
Breitenbeck (10.1016/j.agee.2012.02.021_bib0020) 1986; 2
Chantigny (10.1016/j.agee.2012.02.021_bib0040) 1998; 78
Ma (10.1016/j.agee.2012.02.021_bib0180) 2010; 16
Weiss (10.1016/j.agee.2012.02.021_bib0270) 1997; 11
Kammann (10.1016/j.agee.2012.02.021_bib0130) 1998; 102
Thorburn (10.1016/j.agee.2012.02.021_bib0235) 2010; 136
Chang (10.1016/j.agee.2012.02.021_bib0035) 1998; 62
Jarecki (10.1016/j.agee.2012.02.021_bib0120) 2009; 134
References_xml – volume: 33
  start-page: 1723
  year: 2001
  end-page: 1732
  ident: bib0275
  article-title: Role of nitrifier denitrification in the production of nitrous oxide
  publication-title: Soil Biol. Biochem.
– volume: 36
  start-page: 354
  year: 2007
  end-page: 362
  ident: bib0095
  article-title: Economically optimal nitrogen rate reduces soil residual nitrate
  publication-title: J. Environ. Qual.
– year: 2011
  ident: bib0250
  article-title: The impact of slurry application technique on nitrous oxide emission from agricultural soils
  publication-title: Agric. Ecosyst. Environ.
– reference: IPCC – Intergovernmental Panel on Climate Change, 2006. Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at
– volume: 61
  start-page: 186
  year: 2010
  end-page: 196
  ident: bib0215
  article-title: N
  publication-title: Eur. J. Soil Sci.
– volume: 11
  start-page: 835
  year: 1997
  end-page: 841
  ident: bib0270
  article-title: The Hill equation revisited: uses and misuses
  publication-title: FASEB J.
– volume: 16
  start-page: 1058
  year: 2002
  ident: bib0015
  article-title: Emissions of N
  publication-title: Glob. Biogeochem. Cycles
– volume: 78
  start-page: 589
  year: 1998
  end-page: 596
  ident: bib0040
  article-title: Nitrous oxide production in soils cropped to corn with varying N fertilization
  publication-title: Can. J. Soil Sci.
– volume: 75
  start-page: 187
  year: 2006
  end-page: 200
  ident: bib0105
  article-title: Nitrous oxide emissions from a fertilized and grazed grassland in the South East of Ireland
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 70
  start-page: 235
  year: 2006
  end-page: 248
  ident: bib0070
  article-title: Modeling the effects of fertilizer application rate on nitrous oxide emissions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 16
  start-page: 156
  year: 2010
  end-page: 170
  ident: bib0180
  article-title: Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer
  publication-title: Glob. Change Biol.
– volume: 42
  start-page: 291
  year: 2008
  end-page: 302
  ident: bib0285
  article-title: N
  publication-title: Atmos. Environ.
– volume: 9
  start-page: 839
  year: 2012
  end-page: 850
  ident: bib0170
  article-title: Responses of N
  publication-title: Biogeosciences
– volume: 11
  start-page: 1712
  year: 2005
  end-page: 1719
  ident: bib0185
  article-title: Nonlinear response of N
  publication-title: Glob. Change Biol.
– volume: 22
  start-page: 331
  year: 1996
  end-page: 335
  ident: bib0260
  article-title: Contributions from different microbial processes to N
  publication-title: Biol. Fertil. Soils
– volume: 74
  start-page: 235
  year: 1994
  end-page: 240
  ident: bib0160
  article-title: Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization
  publication-title: Can. J. Soil Sci.
– year: 2011
  ident: bib0165
  article-title: Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: a case study in Central China
  publication-title: Atmos. Environ.
– volume: 48
  start-page: 147
  year: 2008
  end-page: 151
  ident: bib0100
  article-title: The effect of increasing rates of nitrogen fertiliser and a nitrification inhibitor on nitrous oxide emissions from urine patches on sheep grazed hill country pasture
  publication-title: Aust. J. Exp. Agric.
– volume: 36
  start-page: 425
  year: 1985
  end-page: 444
  ident: bib0125
  article-title: Interactions between fertilizer nitrogen and soil nitrogen-the so-called ‘priming’ effect
  publication-title: Eur. J. Soil Sci.
– volume: 102
  start-page: 179
  year: 1998
  end-page: 186
  ident: bib0130
  article-title: Seasonal variability and mitigation options for N
  publication-title: Environ. Pollut.
– year: 2007
  ident: bib0065
  article-title: Changes in atmospheric constituents and in radiative forcing
  publication-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 136
  start-page: 218
  year: 2010
  end-page: 226
  ident: bib0030
  article-title: Quantifying annual N
  publication-title: Agric. Ecosyst. Environ.
– volume: 46
  start-page: 53
  year: 1996
  end-page: 70
  ident: bib0010
  article-title: Direct emission of nitrous oxide from agricultural soils
  publication-title: Nutr. Cycl. Agroecosyst.
– reference: IPCC – Intergovernmental Panel on Climate Change, 1996. Revised 1996 Guidelines for National Greenhouse Gas Inventories. Geneva, Switzerland. Available at
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  ident: bib0155
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
– volume: 88
  start-page: 197
  year: 2008
  end-page: 205
  ident: bib0280
  article-title: N
  publication-title: Can. J. Soil Sci.
– volume: 64
  start-page: 1396
  year: 2000
  end-page: 1403
  ident: bib0220
  article-title: Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: II. Nitrous oxide fluxes and mineral nitrogen
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 179
  year: 1988
  end-page: 244
  ident: bib0240
  article-title: Ecology of denitrification and dissimilatory nitrate reduction to ammonium
  publication-title: Biology of Anaerobic Microorganisms
– volume: 42
  start-page: 8403
  year: 2008
  end-page: 8411
  ident: bib0080
  article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils
  publication-title: Atmos. Environ.
– volume: 2
  start-page: 201
  year: 1986
  end-page: 204
  ident: bib0020
  article-title: Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia
  publication-title: Biol. Fert. Soils
– volume: 119
  start-page: 205
  year: 2007
  end-page: 216
  ident: bib0225
  article-title: Modelling nitrous oxide emissions from grazed grasslands in New Zealand
  publication-title: Agric. Ecosyst. Environ.
– volume: 57
  start-page: 66
  year: 1993
  end-page: 72
  ident: bib0265
  article-title: Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil–water, available carbon, and nitrate
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 1140
  year: 1979
  end-page: 1144
  ident: bib0060
  article-title: The influence of nitrate, nitrite, and oxygen on the composition of the gaseous products of denitrification in soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 46
  start-page: 76
  year: 2008
  end-page: 82
  ident: bib0050
  article-title: Sources of nitrous oxide from
  publication-title: Aust. J. Soil Res.
– volume: 18
  start-page: GB2018
  year: 2004
  ident: bib0290
  article-title: Re-quantifying the emission factors based on field measurements and estimating the direct N
  publication-title: Glob. Biogeochem. Cycles
– volume: 37
  start-page: 1337
  year: 2008
  end-page: 1344
  ident: bib0075
  article-title: Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems
  publication-title: J. Environ. Qual.
– reference: (verified 27 May 2011).
– volume: 15
  start-page: 173
  year: 1977
  end-page: 178
  ident: bib0085
  article-title: Does any enzyme follow the Michaelis–Menten equation?
  publication-title: Mol. Cell. Biochem.
– volume: 46
  start-page: 43
  year: 1982
  end-page: 70
  ident: bib0140
  article-title: Denitrification
  publication-title: Microbiol. Rev.
– volume: 62
  start-page: 677
  year: 1998
  end-page: 682
  ident: bib0035
  article-title: Nitrous oxide emission from long-term manured soils
  publication-title: Soil Sci. Soc. Am. J.
– reference: [verified 27 May 2011].
– volume: 11
  start-page: 78
  year: 1982
  end-page: 81
  ident: bib0205
  article-title: Nitrous oxide emissions from barley plots treated with ammonium nitrate or sewage sludge
  publication-title: J. Environ. Qual.
– volume: 40
  start-page: 2553
  year: 2008
  end-page: 2562
  ident: bib0195
  article-title: Crop residue influence on denitrification, N
  publication-title: Soil Biol. Biochem.
– volume: 104
  start-page: 26,891
  year: 1999
  end-page: 26,899
  ident: bib0055
  article-title: Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors
  publication-title: J. Geophys. Res.
– volume: 88
  start-page: 397
  year: 2010
  end-page: 410
  ident: bib0135
  article-title: Effect of increased N use and drought on N
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 55
  start-page: 485
  year: 2001
  end-page: 529
  ident: bib0150
  article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology
  publication-title: Annu. Rev. Microbiol.
– year: 2010
  ident: bib0230
  article-title: SigmaPlot 11
– volume: 49
  start-page: 334
  year: 1913
  end-page: 336
  ident: bib0190
  article-title: Die kinetik der invertin wirkung
  publication-title: Biochemisches Zeitschrift
– volume: 96
  start-page: 320
  year: 1970
  end-page: 325
  ident: bib0045
  article-title: The influence of nitrogen oxides on the atmospheric ozone content
  publication-title: Quart. J. R. Meteor. Soc.
– volume: 134
  start-page: 29
  year: 2009
  end-page: 35
  ident: bib0120
  article-title: Cover crop effects on nitrous oxide emission from a manure-treated Mollisol
  publication-title: Agric. Ecosyst. Environ.
– volume: 194
  start-page: 685
  year: 1976
  end-page: 690
  ident: bib0255
  article-title: Greenhouse effect due to man made perturbation of trace gases
  publication-title: Science
– volume: 17
  start-page: 1140
  year: 2011
  end-page: 1152
  ident: bib0090
  article-title: Non-linear nitrous oxide (N
  publication-title: Glob. Change Biol.
– volume: 188
  start-page: 119
  year: 1997
  end-page: 130
  ident: bib0145
  article-title: Nitrogen loss from grassland on peat soils through nitrous oxide production
  publication-title: Plant Soil
– volume: 136
  start-page: 343
  year: 2010
  end-page: 350
  ident: bib0235
  article-title: Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems
  publication-title: Agric. Ecosyst. Environ.
– volume: 136
  start-page: 343
  year: 2010
  ident: 10.1016/j.agee.2012.02.021_bib0235
  article-title: Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.12.014
– volume: 188
  start-page: 119
  year: 1997
  ident: 10.1016/j.agee.2012.02.021_bib0145
  article-title: Nitrogen loss from grassland on peat soils through nitrous oxide production
  publication-title: Plant Soil
  doi: 10.1023/A:1004252012290
– volume: 102
  start-page: 179
  year: 1998
  ident: 10.1016/j.agee.2012.02.021_bib0130
  article-title: Seasonal variability and mitigation options for N2O emissions from differently managed grasslands
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(98)80031-6
– volume: 61
  start-page: 186
  year: 2010
  ident: 10.1016/j.agee.2012.02.021_bib0215
  article-title: N2O emissions from an irrigated and non-irrigated organic soil in eastern Canada as influenced by N fertilizer addition
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01222.x
– volume: 11
  start-page: 1712
  year: 2005
  ident: 10.1016/j.agee.2012.02.021_bib0185
  article-title: Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.01040.x
– volume: 22
  start-page: 331
  year: 1996
  ident: 10.1016/j.agee.2012.02.021_bib0260
  article-title: Contributions from different microbial processes to N2O emission from soil under different moisture regimes
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00334578
– volume: 78
  start-page: 589
  year: 1998
  ident: 10.1016/j.agee.2012.02.021_bib0040
  article-title: Nitrous oxide production in soils cropped to corn with varying N fertilization
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/S98-009
– volume: 70
  start-page: 235
  year: 2006
  ident: 10.1016/j.agee.2012.02.021_bib0070
  article-title: Modeling the effects of fertilizer application rate on nitrous oxide emissions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0104
– volume: 64
  start-page: 1396
  year: 2000
  ident: 10.1016/j.agee.2012.02.021_bib0220
  article-title: Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: II. Nitrous oxide fluxes and mineral nitrogen
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6441396x
– volume: 194
  start-page: 685
  year: 1976
  ident: 10.1016/j.agee.2012.02.021_bib0255
  article-title: Greenhouse effect due to man made perturbation of trace gases
  publication-title: Science
  doi: 10.1126/science.194.4266.685
– volume: 55
  start-page: 485
  year: 2001
  ident: 10.1016/j.agee.2012.02.021_bib0150
  article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.55.1.485
– volume: 57
  start-page: 66
  year: 1993
  ident: 10.1016/j.agee.2012.02.021_bib0265
  article-title: Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil–water, available carbon, and nitrate
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700010013x
– volume: 43
  start-page: 1140
  year: 1979
  ident: 10.1016/j.agee.2012.02.021_bib0060
  article-title: The influence of nitrate, nitrite, and oxygen on the composition of the gaseous products of denitrification in soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1979.03615995004300060016x
– year: 2010
  ident: 10.1016/j.agee.2012.02.021_bib0230
– volume: 16
  start-page: 156
  year: 2010
  ident: 10.1016/j.agee.2012.02.021_bib0180
  article-title: Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2009.01932.x
– year: 2011
  ident: 10.1016/j.agee.2012.02.021_bib0250
  article-title: The impact of slurry application technique on nitrous oxide emission from agricultural soils
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.017
– volume: 48
  start-page: 147
  year: 2008
  ident: 10.1016/j.agee.2012.02.021_bib0100
  article-title: The effect of increasing rates of nitrogen fertiliser and a nitrification inhibitor on nitrous oxide emissions from urine patches on sheep grazed hill country pasture
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA07238
– volume: 18
  start-page: GB2018
  year: 2004
  ident: 10.1016/j.agee.2012.02.021_bib0290
  article-title: Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2003GB002167
– volume: 75
  start-page: 187
  year: 2006
  ident: 10.1016/j.agee.2012.02.021_bib0105
  article-title: Nitrous oxide emissions from a fertilized and grazed grassland in the South East of Ireland
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-006-9026-x
– volume: 36
  start-page: 354
  year: 2007
  ident: 10.1016/j.agee.2012.02.021_bib0095
  article-title: Economically optimal nitrogen rate reduces soil residual nitrate
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2006.0173
– volume: 16
  start-page: 1058
  year: 2002
  ident: 10.1016/j.agee.2012.02.021_bib0015
  article-title: Emissions of N2O and NO from fertilized fields: summary of available measurement data
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2001GB001811
– volume: 96
  start-page: 320
  year: 1970
  ident: 10.1016/j.agee.2012.02.021_bib0045
  article-title: The influence of nitrogen oxides on the atmospheric ozone content
  publication-title: Quart. J. R. Meteor. Soc.
  doi: 10.1002/qj.49709640815
– volume: 11
  start-page: 78
  year: 1982
  ident: 10.1016/j.agee.2012.02.021_bib0205
  article-title: Nitrous oxide emissions from barley plots treated with ammonium nitrate or sewage sludge
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1982.00472425001100010019x
– volume: 119
  start-page: 205
  year: 2007
  ident: 10.1016/j.agee.2012.02.021_bib0225
  article-title: Modelling nitrous oxide emissions from grazed grasslands in New Zealand
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.07.010
– volume: 33
  start-page: 1723
  year: 2001
  ident: 10.1016/j.agee.2012.02.021_bib0275
  article-title: Role of nitrifier denitrification in the production of nitrous oxide
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00096-7
– volume: 17
  start-page: 1140
  year: 2011
  ident: 10.1016/j.agee.2012.02.021_bib0090
  article-title: Non-linear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the U.S. Midwest
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2010.02349.x
– volume: 32
  start-page: 1485
  year: 2000
  ident: 10.1016/j.agee.2012.02.021_bib0155
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 134
  start-page: 29
  year: 2009
  ident: 10.1016/j.agee.2012.02.021_bib0120
  article-title: Cover crop effects on nitrous oxide emission from a manure-treated Mollisol
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.05.008
– volume: 37
  start-page: 1337
  year: 2008
  ident: 10.1016/j.agee.2012.02.021_bib0075
  article-title: Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2007.0268
– volume: 46
  start-page: 53
  year: 1996
  ident: 10.1016/j.agee.2012.02.021_bib0010
  article-title: Direct emission of nitrous oxide from agricultural soils
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/BF00210224
– year: 2007
  ident: 10.1016/j.agee.2012.02.021_bib0065
  article-title: Changes in atmospheric constituents and in radiative forcing
– year: 2011
  ident: 10.1016/j.agee.2012.02.021_bib0165
  article-title: Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: a case study in Central China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.01.003
– volume: 36
  start-page: 425
  year: 1985
  ident: 10.1016/j.agee.2012.02.021_bib0125
  article-title: Interactions between fertilizer nitrogen and soil nitrogen-the so-called ‘priming’ effect
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1985.tb00348.x
– volume: 49
  start-page: 334
  year: 1913
  ident: 10.1016/j.agee.2012.02.021_bib0190
  article-title: Die kinetik der invertin wirkung
  publication-title: Biochemisches Zeitschrift
– ident: 10.1016/j.agee.2012.02.021_bib0110
– volume: 40
  start-page: 2553
  year: 2008
  ident: 10.1016/j.agee.2012.02.021_bib0195
  article-title: Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.06.024
– volume: 136
  start-page: 218
  year: 2010
  ident: 10.1016/j.agee.2012.02.021_bib0030
  article-title: Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.12.006
– volume: 42
  start-page: 8403
  year: 2008
  ident: 10.1016/j.agee.2012.02.021_bib0080
  article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.08.006
– volume: 42
  start-page: 291
  year: 2008
  ident: 10.1016/j.agee.2012.02.021_bib0285
  article-title: N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.09.036
– volume: 15
  start-page: 173
  year: 1977
  ident: 10.1016/j.agee.2012.02.021_bib0085
  article-title: Does any enzyme follow the Michaelis–Menten equation?
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF01734107
– volume: 74
  start-page: 235
  year: 1994
  ident: 10.1016/j.agee.2012.02.021_bib0160
  article-title: Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss94-032
– volume: 9
  start-page: 839
  year: 2012
  ident: 10.1016/j.agee.2012.02.021_bib0170
  article-title: Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-839-2012
– volume: 62
  start-page: 677
  year: 1998
  ident: 10.1016/j.agee.2012.02.021_bib0035
  article-title: Nitrous oxide emission from long-term manured soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1998.03615995006200030019x
– volume: 88
  start-page: 397
  year: 2010
  ident: 10.1016/j.agee.2012.02.021_bib0135
  article-title: Effect of increased N use and drought on N2O emission in a fertilized grassland
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-010-9365-5
– volume: 88
  start-page: 197
  year: 2008
  ident: 10.1016/j.agee.2012.02.021_bib0280
  article-title: N2O emissions from spring barley production as influenced by fertilizer nitrogen rate
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/CJSS06006
– volume: 11
  start-page: 835
  year: 1997
  ident: 10.1016/j.agee.2012.02.021_bib0270
  article-title: The Hill equation revisited: uses and misuses
  publication-title: FASEB J.
  doi: 10.1096/fasebj.11.11.9285481
– start-page: 179
  year: 1988
  ident: 10.1016/j.agee.2012.02.021_bib0240
  article-title: Ecology of denitrification and dissimilatory nitrate reduction to ammonium
– volume: 104
  start-page: 26,891
  year: 1999
  ident: 10.1016/j.agee.2012.02.021_bib0055
  article-title: Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JD900378
– volume: 46
  start-page: 43
  year: 1982
  ident: 10.1016/j.agee.2012.02.021_bib0140
  article-title: Denitrification
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.46.1.43-70.1982
– ident: 10.1016/j.agee.2012.02.021_bib0115
– volume: 2
  start-page: 201
  year: 1986
  ident: 10.1016/j.agee.2012.02.021_bib0020
  article-title: Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia
  publication-title: Biol. Fert. Soils
– volume: 46
  start-page: 76
  year: 2008
  ident: 10.1016/j.agee.2012.02.021_bib0050
  article-title: Sources of nitrous oxide from 15N-labelled animal urine and urea fertiliser with and without a nitrification inhibitor, dicyandiamide (DCD)
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR07093
SSID ssj0000238
Score 2.5241308
Snippet ► Dependency of direct N2O emission on N input examined using 26 published datasets. ► N2O response to increased N additions was non-linear in more cases than...
Rising atmospheric concentrations of nitrous oxide (N₂O) contribute to global warming and associated climate change. It is often assumed that there is a linear...
Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear...
Rising atmospheric concentrations of nitrous oxide (N sub(2)O) contribute to global warming and associated climate change. It is often assumed that there is a...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 53
SubjectTerms Agronomy. Soil science and plant productions
Biological and medical sciences
carbon
carbon footprint
data collection
ecosystems
Emission factor
Fundamental and applied biological sciences. Psychology
General agroecology
General agroecology. Agricultural and farming systems. Agricultural development. Rural area planning. Landscaping
General agronomy. Plant production
Generalities. Agricultural and farming systems. Agricultural development
global warming
greenhouse gas emissions
IPCC methodology
Meta-analysis
nitrogen
nitrogen fertilizers
Nitrogen input
Nitrogen, phosphorus, potassium fertilizations
Nitrous oxide
Open-access database
soil quality
Soil-plant relationships. Soil fertility. Fertilization. Amendments
Title Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis
URI https://dx.doi.org/10.1016/j.agee.2012.02.021
https://www.proquest.com/docview/1431620007
https://www.proquest.com/docview/1458529815
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-a9GV7GGu30qxd0GBvQ4skf_ctlJZsYX1YW9Y3o8jS8OjskDjQ7WF_--5suaWU5WFgMBYnW9ad7n5nn-4A3ifChcLZhNvQCR4uhOZZIkNuEZ4aUxSBa1NsfLmIZ9fh55voZgdO-70wFFbpdX-n01tt7VsmfjYny7KcXFIAPUpfJlULJJIB7Cq09ukQdqef5rOLB4Ws2oLWbYpv6uD3znRhXrhqKVsmfRKkQ_7LPg2crilwUq9x7lxX9OKJ_m6N0vlLeOHRJJt2A96DHVvtw_Pp95XPqGH34eDsYSsbkvq1vH4FNbqhKOZMVwWruoQZeNUXxTW_WO1YNzkMl_2q3qxZfVcWllGFOPrGhtcVcxSXfVv-tquOCuWRldVy05ywKftpG821T3vyGq7Oz65OZ9yXX-AGYV3D1SJE38YsIq1RYwqbCYPYIDYiFmmSZjrUJkZorijy2kTCxi4ujIqTwOoYyYIDGOLo7SGwNHKa6mLJ1EoCEIgZnULrbIWyCFfECGQ_57nxqcmpQsZt3seg_ciJTznxKRd0yBF8uO-z7BJzbKWOelbmj8QrR8uxtd8h8h2bUePm15eK_FGkVFkajGD8SBjuR6Gojhu-7gje9dKRI2PoR4yuLHIL3a0A70HwbBsNOnL4HBm9-c-xH8Ez1dbuCLiMjmHYrDb2LSKoZjGGwcc_cuzXCZ3nX7_N_wLIvxpf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5Bedj2MG1siDLGPGlvk1XH-c1bhUBlQF8oEm-W69hTJpZUbSoN_nruEgeEpvVhUl4SnRPHdz5_l5zvA_iWChcJZ1NuIyd4NBea52kQcYvw1JiiCF1bYuNqmkxuoh-38e0WnPR7YSit0vv-zqe33tpfGfnRHC3KcnRNCfRofXkgWyCRbsNORKTWA9gZn19Mps8OWbaE1m2Jb2rg9850aV44a6laJn0SpCP41_q07XRNiZN6hWPnOtKLv_x3uyidvYO3Hk2ycdfh97Blq114M_659BU17C7snT5vZUNRP5dXH6DGMBTNnOmqYFVXMAPPelJcc89qx7rBYTjtl_V6xeo_ZWEZMcTRNzY8r5ijvOy78sEuOym0R1ZWi3VzzMbst200177syUeYnZ3OTibc0y9wg7Cu4XIeYWxj5rHW6DGFzYVBbJAYkYgszXIdaZMgNJeUeW1iYROXFEYmaWh1gmLhHgyw93YfWBY7TbxYQWYDAhCIGZ3E1dkKaRGuiCEE_Zgr40uTE0PGnepz0H4p0pMiPSlBRzCE709tFl1hjo3Sca9K9cK8FK4cG9vto97xMnpcdXMtKR5FSZln4RCOXhjDUy8k8bjh6w7ha28dChVDP2J0ZVFbGG6FeA-CZ5tkMJDD5wTxwX_2_Qu8msyuLtXl-fTiE7yWLY9HyIP4EAbNcm0_I5pq5kd-tjwCl3Eaog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+and+nonlinear+dependency+of+direct+nitrous+oxide+emissions+on+fertilizer+nitrogen+input%3A+A+meta-analysis&rft.jtitle=Agriculture%2C+ecosystems+%26+environment&rft.au=Kim%2C+Dong-Gill&rft.au=Hernandez-Ramirez%2C+Guillermo&rft.au=Giltrap%2C+Donna&rft.date=2013-03-15&rft.pub=Elsevier+B.V&rft.issn=0167-8809&rft.volume=168&rft.spage=53&rft.epage=65&rft_id=info:doi/10.1016%2Fj.agee.2012.02.021&rft.externalDocID=US201400162983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8809&client=summon