Advanced Meta-Heuristics, Convolutional Neural Networks, and Feature Selectors for Efficient COVID-19 X-Ray Chest Image Classification

The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. D...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 36019 - 36037
Main Authors El-Kenawy, El-Sayed M., Mirjalili, Seyedali, Ibrahim, Abdelhameed, Alrahmawy, Mohammed, El-Said, M., Zaki, Rokaia M., Eid, Marwa Metwally
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3061058

Cover

Abstract The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network's connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases.
AbstractList The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network’s connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases.
The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network's connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases.The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network's connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases.
Author Zaki, Rokaia M.
Ibrahim, Abdelhameed
El-Said, M.
Alrahmawy, Mohammed
El-Kenawy, El-Sayed M.
Mirjalili, Seyedali
Eid, Marwa Metwally
AuthorAffiliation 3 Yonsei Frontier Lab Yonsei University 26721 Seoul 03722 South Korea
8 Department of Electrical Engineering Shoubra Faculty of Engineering Benha University 68816 Benha 11629 Egypt
4 Computer Engineering and Control Systems Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt
6 Electrical Engineering Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt
7 Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt
1 Department of Communications and Electronics Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt
2 Centre for Artificial Intelligence Research and Optimization Torrens University Australia 386703 Fortitude Valley QLD 4006 Australia
5 Department of Computer Science Faculty of Computers and Information Mansoura University 68779 Mansoura 35516 Egypt
AuthorAffiliation_xml – name: 7 Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt
– name: 8 Department of Electrical Engineering Shoubra Faculty of Engineering Benha University 68816 Benha 11629 Egypt
– name: 1 Department of Communications and Electronics Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt
– name: 3 Yonsei Frontier Lab Yonsei University 26721 Seoul 03722 South Korea
– name: 5 Department of Computer Science Faculty of Computers and Information Mansoura University 68779 Mansoura 35516 Egypt
– name: 2 Centre for Artificial Intelligence Research and Optimization Torrens University Australia 386703 Fortitude Valley QLD 4006 Australia
– name: 6 Electrical Engineering Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt
– name: 4 Computer Engineering and Control Systems Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt
Author_xml – sequence: 1
  givenname: El-Sayed M.
  orcidid: 0000-0002-9221-7658
  surname: El-Kenawy
  fullname: El-Kenawy, El-Sayed M.
  email: skenawy@ieee.org
  organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology (DHIET), Mansoura, Egypt
– sequence: 2
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD, Australia
– sequence: 3
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
  email: afai79@mans.edu.eg
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
– sequence: 4
  givenname: Mohammed
  orcidid: 0000-0001-8978-8268
  surname: Alrahmawy
  fullname: Alrahmawy, Mohammed
  organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
– sequence: 5
  givenname: M.
  surname: El-Said
  fullname: El-Said, M.
  organization: Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
– sequence: 6
  givenname: Rokaia M.
  orcidid: 0000-0002-7111-9389
  surname: Zaki
  fullname: Zaki, Rokaia M.
  organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology (DHIET), Mansoura, Egypt
– sequence: 7
  givenname: Marwa Metwally
  orcidid: 0000-0002-8557-3566
  surname: Eid
  fullname: Eid, Marwa Metwally
  organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology (DHIET), Mansoura, Egypt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34812381$$D View this record in MEDLINE/PubMed
BookMark eNptUl1v0zAUjdAQG2O_YBKyxAsPpNjxR-0XpCp0rNJgEgXEm3XrOJ1LGhc72dQ_wO_G_aDaKvLi2Pec43PP9cvspPWtzbJLggeEYPV-VJbj6XRQ4IIMKBYEc_ksOyuIUDnlVJw8-j_NLmJc4PTJdMSHL7JTyiQpqCRn2Z9RdQ-tsRX6bDvIr20fXOycie9Q6dt73_Sd8y006EuqbJfuwYdfqQxtha4sdH2waGobazofIqp9QOO6dsbZtkPl7Y_Jx5wo9DP_CmtU3tnYockS5haVDcToEhA2F7zKntfQRHuxX8-z71fjb-V1fnP7aVKObnLDiepyUs0Ik2pGZ3VRUD5k1Nq0KSwXVQ1DARIqxmHIADNJC4WLioqCGkENVEQKep5NdrqVh4VeBbeEsNYenN4e-DDXEFL7jdUcgNSCAecVZzgpz2qCDU4OlKKU0aTFdlp9u4L1AzTNQZBgvZmSBmNsjHozJb2fUqJ92NFW_WxpK5NySsE-8fK00ro7Pff3WnLGC4qTwNu9QPC_-5SoXrpobNNAa32fbhM4hbRxmKBvjqAL34c0zoRiSsqh4Ewl1OvHjg5W_r2SBFA7gAk-xmBrbVy3nVsy6JpDu7tHedwuPeIeh_R_1uWO5ay1B4aiAnMq6V8dpus7
CODEN IAECCG
CitedBy_id crossref_primary_10_32604_cmc_2022_027653
crossref_primary_10_3389_fphys_2025_1512835
crossref_primary_10_3390_biomimetics9040204
crossref_primary_10_1016_j_smhl_2024_100500
crossref_primary_10_32604_cmc_2022_021268
crossref_primary_10_32604_cmc_2022_023126
crossref_primary_10_32604_cmc_2022_023884
crossref_primary_10_3934_era_2023383
crossref_primary_10_1016_j_compbiomed_2022_105344
crossref_primary_10_32604_cmc_2022_021186
crossref_primary_10_3390_diagnostics12112892
crossref_primary_10_32604_cmc_2021_019114
crossref_primary_10_3390_jcm12103446
crossref_primary_10_1109_ACCESS_2021_3111408
crossref_primary_10_1007_s10586_023_04172_x
crossref_primary_10_1080_19475705_2023_2225691
crossref_primary_10_1109_ACCESS_2022_3166901
crossref_primary_10_3390_act12010012
crossref_primary_10_32604_cmc_2022_025220
crossref_primary_10_1109_ACCESS_2021_3083593
crossref_primary_10_3233_JIFS_230523
crossref_primary_10_1016_j_cmpbup_2022_100054
crossref_primary_10_1016_j_health_2023_100153
crossref_primary_10_1109_ACCESS_2023_3279402
crossref_primary_10_1016_j_eswa_2022_118650
crossref_primary_10_32604_csse_2023_031943
crossref_primary_10_32604_cmc_2022_025739
crossref_primary_10_3934_era_2025079
crossref_primary_10_1109_ACCESS_2021_3106233
crossref_primary_10_1109_TETCI_2022_3219858
crossref_primary_10_1016_j_eswa_2023_122810
crossref_primary_10_32604_cmc_2022_026026
crossref_primary_10_1016_j_compbiomed_2024_109093
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_1371_journal_pone_0278491
crossref_primary_10_1109_ACCESS_2022_3190508
crossref_primary_10_1016_j_compbiomed_2024_108680
crossref_primary_10_32604_cmc_2023_033513
crossref_primary_10_32604_cmc_2023_033039
crossref_primary_10_32604_cmc_2022_027311
crossref_primary_10_1038_s41598_024_74475_5
crossref_primary_10_32604_cmc_2022_030447
crossref_primary_10_32604_cmc_2022_024043
crossref_primary_10_32604_cmc_2022_030445
crossref_primary_10_1016_j_cosrev_2024_100666
crossref_primary_10_32604_cmc_2022_032229
crossref_primary_10_4236_ijcns_2023_163003
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_3233_XST_221360
crossref_primary_10_1016_j_engappai_2024_108494
crossref_primary_10_1007_s11042_024_18789_6
crossref_primary_10_3390_math10173144
crossref_primary_10_3390_bioengineering10060639
crossref_primary_10_32604_cmc_2023_033042
crossref_primary_10_32604_cmc_2022_029605
crossref_primary_10_3390_math10234421
crossref_primary_10_32604_cmc_2022_031147
crossref_primary_10_32604_cmc_2022_028550
crossref_primary_10_32604_cmc_2024_055574
crossref_primary_10_1038_s41598_022_22933_3
crossref_primary_10_3390_s21238045
crossref_primary_10_1016_j_eswa_2021_115834
crossref_primary_10_1038_s41598_022_18463_7
crossref_primary_10_12720_jait_15_8_982_990
crossref_primary_10_1007_s11517_024_03107_x
crossref_primary_10_1007_s11042_022_13486_8
crossref_primary_10_1007_s11042_023_14367_4
crossref_primary_10_32604_cmc_2023_031723
crossref_primary_10_3390_s22155643
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_32604_cmc_2022_023257
crossref_primary_10_1038_s41598_024_61322_w
crossref_primary_10_1109_ACCESS_2022_3153059
crossref_primary_10_32604_cmc_2021_018179
crossref_primary_10_1016_j_jjimei_2022_100100
crossref_primary_10_32604_cmc_2023_033153
crossref_primary_10_32604_csse_2023_032497
crossref_primary_10_32604_cmc_2023_033273
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_32604_cmc_2022_021998
Cites_doi 10.1109/ACCESS.2020.2990828
10.3390/jcm9010248
10.1109/INCoS.2015.67
10.1007/978-3-319-26690-9_15
10.1109/ICSCCC.2018.8703309
10.1016/j.swevo.2018.02.013
10.1007/978-981-15-0936-0_39
10.1109/ACCESS.2020.3007336
10.1109/ACCESS.2019.2962284
10.1016/j.neunet.2019.12.005
10.1148/radiol.2018181422
10.3892/etm.2019.8333
10.1038/s41433-018-0269-y
10.1016/j.compeleceng.2019.08.004
10.1109/ACCESS.2020.3028012
10.1109/ACCESS.2020.3015892
10.1109/ISBI.2018.8363574
10.1016/j.bspc.2017.09.019
10.1155/2019/4180949
10.1109/ACCESS.2020.2963926
10.1016/j.ultrasmedbio.2020.01.014
10.1109/ACCESS.2019.2955983
10.1007/s11760-017-1212-6
10.1371/journal.pone.0235187
10.1016/j.cell.2018.02.010
10.1016/j.swevo.2019.06.002
10.1109/LGRS.2019.2944970
10.1016/j.irbm.2019.12.001
10.1080/13814788.2019.1649651
10.1109/ACCESS.2020.2982906
10.3390/app10020559
10.1007/978-3-319-74690-6_49
10.1145/3331453.3361326
10.1109/MSP.2017.2749125
10.1016/j.chaos.2020.109944
10.1007/s13042-018-0811-z
10.1007/978-981-13-1540-4_11
10.1117/12.2549302
10.1016/j.asoc.2020.106580
10.1186/s40537-019-0197-0
10.1148/radiol.2018171820
10.1109/TGRS.2016.2645703
10.3390/a13030067
10.1109/ACCESS.2018.2885997
10.1007/s00500-019-03901-y
10.1109/ACCESS.2020.3001151
10.1007/978-981-15-0339-9_13
10.1016/j.neucom.2011.03.034
10.1109/TCYB.2018.2810806
10.1109/ACCESS.2020.2989273
10.24018/ejece.2021.5.1.268
10.1016/j.cell.2020.04.045
10.1049/iet-ipr.2017.0518
10.1109/ICECCT.2019.8869364
10.1109/ACCESS.2020.3005510
10.1016/j.measurement.2019.05.076
10.1109/JSTARS.2018.2847042
ContentType Journal Article
Copyright This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 2021
Copyright_xml – notice: This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3061058
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Materials Research Database


MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 36037
ExternalDocumentID oai_doaj_org_article_5aa1f64a55d540a8abf10c0db1993343
10.1109/access.2021.3061058
PMC8545230
34812381
10_1109_ACCESS_2021_3061058
9360538
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c519t-1db1489b3bf2235743eeb3b2e56dfa76a8ad45a74a04832902d3623c63cad1863
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:19 EDT 2025
Sun Oct 26 03:39:02 EDT 2025
Thu Aug 21 14:11:40 EDT 2025
Wed Oct 01 14:13:35 EDT 2025
Mon Jun 30 03:17:13 EDT 2025
Thu Apr 03 06:53:29 EDT 2025
Wed Oct 01 04:43:55 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Wed Aug 27 02:29:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords multilayer perceptron
transfer learning
optimization algorithm
squirrel search optimization
Chest X-ray
convolutional neural network
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-1db1489b3bf2235743eeb3b2e56dfa76a8ad45a74a04832902d3623c63cad1863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7111-9389
0000-0001-8978-8268
0000-0002-1443-9458
0000-0002-8557-3566
0000-0002-8352-6731
0000-0002-9221-7658
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9360538
PMID 34812381
PQID 2498876549
PQPubID 4845423
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2021_3061058
unpaywall_primary_10_1109_access_2021_3061058
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8545230
proquest_miscellaneous_2601483433
proquest_journals_2498876549
ieee_primary_9360538
doaj_primary_oai_doaj_org_article_5aa1f64a55d540a8abf10c0db1993343
pubmed_primary_34812381
crossref_primary_10_1109_ACCESS_2021_3061058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationTitleAlternate IEEE Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref10
ref16
ref19
simonyan (ref57) 2014
butt (ref49) 2020
el-kenawy (ref18) 2021; 17
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ibrahim (ref1) 2020; 15
ref8
ref7
ref9
ibrahim (ref54) 2020; 15
ref4
ref3
ref5
ref40
el-kenawy (ref17) 2021; 17
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref39
ref38
cohen (ref31) 2020
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
(ref55) 2020
ref29
ref60
ref62
el-kenawy (ref6) 2020; 16
ref61
References_xml – ident: ref27
  doi: 10.1109/ACCESS.2020.2990828
– ident: ref19
  doi: 10.3390/jcm9010248
– ident: ref8
  doi: 10.1109/INCoS.2015.67
– ident: ref7
  doi: 10.1007/978-3-319-26690-9_15
– ident: ref59
  doi: 10.1109/ICSCCC.2018.8703309
– ident: ref32
  doi: 10.1016/j.swevo.2018.02.013
– ident: ref61
  doi: 10.1007/978-981-15-0936-0_39
– ident: ref3
  doi: 10.1109/ACCESS.2020.3007336
– year: 2014
  ident: ref57
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref60
  doi: 10.1109/ACCESS.2019.2962284
– volume: 16
  start-page: 831
  year: 2020
  ident: ref6
  article-title: Hybrid gray wolf and particle swarm optimization for feature selection
  publication-title: Int J Innov Comput Inf Control
– ident: ref64
  doi: 10.1016/j.neunet.2019.12.005
– ident: ref15
  doi: 10.1148/radiol.2018181422
– year: 2020
  ident: ref31
  article-title: COVID-19 image data collection: Prospective predictions are the future
  publication-title: arXiv 2006 11988
– ident: ref45
  doi: 10.3892/etm.2019.8333
– ident: ref38
  doi: 10.1038/s41433-018-0269-y
– ident: ref40
  doi: 10.1016/j.compeleceng.2019.08.004
– ident: ref16
  doi: 10.1109/ACCESS.2020.3028012
– ident: ref24
  doi: 10.1109/ACCESS.2020.3015892
– ident: ref37
  doi: 10.1109/ISBI.2018.8363574
– start-page: 1
  year: 2020
  ident: ref49
  article-title: Deep learning system to screen coronavirus disease 2019 pneumonia
  publication-title: Appl Intell
– ident: ref43
  doi: 10.1016/j.bspc.2017.09.019
– ident: ref34
  doi: 10.1155/2019/4180949
– ident: ref2
  doi: 10.1109/ACCESS.2020.2963926
– ident: ref44
  doi: 10.1016/j.ultrasmedbio.2020.01.014
– ident: ref26
  doi: 10.1109/ACCESS.2019.2955983
– volume: 15
  start-page: 1
  year: 2020
  ident: ref54
  article-title: Applications and datasets for superpixel techniques: A survey
  publication-title: Comp Sci Inf Syst
– ident: ref25
  doi: 10.1007/s11760-017-1212-6
– volume: 17
  start-page: 1
  year: 2021
  ident: ref18
  article-title: Anemia estimation for COVID-19 patients using a machine learning model
  publication-title: Comp Sci Inf Syst
– ident: ref53
  doi: 10.1371/journal.pone.0235187
– ident: ref30
  doi: 10.1016/j.cell.2018.02.010
– ident: ref63
  doi: 10.1016/j.swevo.2019.06.002
– ident: ref9
  doi: 10.1109/LGRS.2019.2944970
– ident: ref36
  doi: 10.1016/j.irbm.2019.12.001
– ident: ref39
  doi: 10.1080/13814788.2019.1649651
– ident: ref58
  doi: 10.1109/ACCESS.2020.2982906
– ident: ref20
  doi: 10.3390/app10020559
– ident: ref4
  doi: 10.1007/978-3-319-74690-6_49
– ident: ref62
  doi: 10.1145/3331453.3361326
– year: 2020
  ident: ref55
  publication-title: Convolutional neural network
– ident: ref56
  doi: 10.1109/MSP.2017.2749125
– ident: ref50
  doi: 10.1016/j.chaos.2020.109944
– ident: ref22
  doi: 10.1007/s13042-018-0811-z
– ident: ref65
  doi: 10.1007/978-981-13-1540-4_11
– ident: ref35
  doi: 10.1117/12.2549302
– volume: 15
  start-page: 1
  year: 2020
  ident: ref1
  article-title: Image segmentation methods based on superpixel techniques: A survey
  publication-title: Comp Sci Inf Syst
– ident: ref51
  doi: 10.1016/j.asoc.2020.106580
– ident: ref66
  doi: 10.1186/s40537-019-0197-0
– ident: ref14
  doi: 10.1148/radiol.2018171820
– ident: ref12
  doi: 10.1109/TGRS.2016.2645703
– ident: ref21
  doi: 10.3390/a13030067
– ident: ref5
  doi: 10.1109/ACCESS.2018.2885997
– ident: ref28
  doi: 10.1007/s00500-019-03901-y
– ident: ref29
  doi: 10.1109/ACCESS.2020.3001151
– ident: ref47
  doi: 10.1007/978-981-15-0339-9_13
– ident: ref33
  doi: 10.1016/j.neucom.2011.03.034
– ident: ref10
  doi: 10.1109/TCYB.2018.2810806
– ident: ref13
  doi: 10.1109/ACCESS.2020.2989273
– volume: 17
  start-page: 1
  year: 2021
  ident: ref17
  article-title: An advanced patient health monitoring system
  publication-title: Comp Sci Inf Syst
– ident: ref23
  doi: 10.24018/ejece.2021.5.1.268
– ident: ref48
  doi: 10.1016/j.cell.2020.04.045
– ident: ref42
  doi: 10.1049/iet-ipr.2017.0518
– ident: ref46
  doi: 10.1109/ICECCT.2019.8869364
– ident: ref52
  doi: 10.1109/ACCESS.2020.3005510
– ident: ref41
  doi: 10.1016/j.measurement.2019.05.076
– ident: ref11
  doi: 10.1109/JSTARS.2018.2847042
SSID ssj0000816957
Score 2.5445874
Snippet The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections,...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36019
SubjectTerms Artificial neural networks
Chest
Chest X-ray
Classification
Classification algorithms
Computational and Artificial Intelligence
Computers and Information Processing
convolutional neural network
Coronaviruses
COVID-19
Datasets
Diagnosis
Diseases
Feature extraction
Feature selection
Genetic algorithms
Image classification
Lung
Machine learning
multilayer perceptron
Multilayers
Neural networks
Optimization
optimization algorithm
Optimization algorithms
Performance measurement
Pneumonia
Selectors
squirrel search optimization
Squirrels
Statistical tests
transfer learning
X-ray imaging
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAeURKMhIHGvqJH7ExyW02iIVJKBob5EdOyrSkq3aXVD_AL-bGceNNiqCC6dIsTOKZ8b2N87kG0Jec895W5iOqS50TFhuWKWcY6psrXC8K3X8fezkg5qfivcLudgq9YU5YQM98KC4A2lt3ilhpfQALmxlXZfzlnuHmWeliDyfvDJbwVRcg6tcGakTzVDOzcGsrmFEEBAW-RuAyQArqslWFBn7U4mVP6HNm0mTtzf9ub36aZfLrR3p6D65l6AknQ1DeEBuhf4hubtFMLhLfs3SJ356EtaWzcMmETPv03rV_0huB0KQoyNeYlI4NNveU4SHm4tAP4fhbP-SAsKlh5F0Al6P1h-_Hr9juaEL9sle0RpLb9Hj77BC0VhrE7OQouEfkdOjwy_1nKXKC6wFRLdmOahXVMaVriuQD0eUAYJuVwSpfGe1AjN4Ia0G2wpYEgwvPGyEZYsW9nmlysdkp1_14Smh0hWytVprqYJog3QOEab32hVa5UpnpLg2QtMmWnKsjrFsYnjCTTNYrkHLNclyGdkfHzofWDn-3v0tWnfsipTa8QY4WpMcrfmXo2VkF31jFGJKiARLkL137StNmv6XDcS0sHgriL0z8mpshomLX2NsH1Yb6KPwMBcEg-Qng2uNsvHvaMRSGdETp5uMYNrSfzuL5OAVFo0veUbY6J43VGRjLc6Jip79DxU9J3dQ5nBCtUd21heb8AIw29q9jNPzN2i_Os8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgewAOfJVCaEFG4lgvThw7yXEJrbZILQhYtJwiO3EEYslW3QRUfgC_mxnHjXYpquAUJXZG8uTZfhPbbwh5zivOyyirmaptzWLNM5YqY5gSpY4Nr0Xijo8dn6jpLH49l3Ovs41nYdbX70OevdAubSDEcVE4BnYLbCC9TraUBOI9Iluzk7eTT5g-LlQZE24hcveKNzfmHifR73Oq_I1eXt4leaNrTvX5D71YrE1Bh3f6s90rp1yIO0--jrvWjMuff-g6_mPr7pLbnorSSY-de-Sabe6TW2sChdvk18RvEaDHttVsajsv7LxP82Xz3cMWjKDGh7u4TeVQrJuKIr3szix9b_u1gRUFhkwPnGgFtJbmbz4evWJhRufsnT6nOabuokffYISjLlcn7mJywHlAZocHH_Ip85kbWAmMsGVhZSDMyowwdYR6OrGwELSbyEpV1TpROtVVLHUC2IhhSMl4VMFEKkpESBWmSuyQUbNs7CNCpYlkqZMkkcrGpZXGIEOtqsREiQpVEpDo4psWpZc1x-wai8KFNzwrJnkOWC7QyYV3ckD2h5dOe1WPq6u_RLAMVVGS2z2Ab1n4Hl5IrcNaxVrKClgwtNDUIS85eAIooIhFQLYRaoORTEAkKcD23gX0Cj98rAqIiWHwVxC7B-TZUAwdH1dzdGOXHdRR-DMYDIPlhz1SB9t4uhq5WECSDQxvtGCzpPny2YmLp5h0XvCAsAHtl1zUw3bDRY__s_4uuYm3_c-sPTJqzzr7BOhda576bv0bpKJHGw
  priority: 102
  providerName: Unpaywall
Title Advanced Meta-Heuristics, Convolutional Neural Networks, and Feature Selectors for Efficient COVID-19 X-Ray Chest Image Classification
URI https://ieeexplore.ieee.org/document/9360538
https://www.ncbi.nlm.nih.gov/pubmed/34812381
https://www.proquest.com/docview/2498876549
https://www.proquest.com/docview/2601483433
https://pubmed.ncbi.nlm.nih.gov/PMC8545230
https://doi.org/10.1109/access.2021.3061058
https://doaj.org/article/5aa1f64a55d540a8abf10c0db1993343
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLW28QB74GswAqMyEo9158SxnTyWsKlD6kBAUXmK7NgRiJJOWwMaP4DfzbXjRiubEE-NaseK7WP7XPv6XIReUkNpleQ1EbWtSapoTjKhNRGsUqmmNZP--tj0VExm6Zs5n2-hYX8Xxlrrnc_syD36s3yzrFq3VXaYMyDfLNtG2zIT3V2tfj_FBZDIuQzCQjHND8dFAXUAEzCJR0CMgUhkG4uP1-gPQVVu4pfX3SRvt82ZuvypFosra9DxPTRdf33nevJt1K70qPr1l7Dj_1bvProbyCged-h5gLZs8xDtXpEo3EO_x8FJAE_tSpGJbYO08xAXy-ZHAC4U4lQ-_I93K4dk1RjsCGZ7bvEH250OXGDgyPjIy1bAt-Di7aeT1yTO8Zy8V5e4cMG78Ml3mOOwj9bp_Jg8dB6h2fHRx2JCQuwGUgEnXJHYaDC0cs10nThFnZRZMNt1YrkwtZJCZcqkXElARwqTSk4TA0spqxxGTJwJ9hjtNMvGPkGY64RXSkrJhU0ry7V2HNUYqRMpYiEjlKw7tayCsLmLr7EovYFD87JDQumQUAYkRGjYv3TW6Xr8O_srh5Y-qxPl9n9AB5ZhjJdcqbgWqeLcAA-GGuo6phWFlgASyFIWoT3X6X0hob8jdLDGXhkmkIsSrGKY_gVY7xF60SfD0HfnOaqxyxbyCLcdDAVDyfsdVPuy3f1qx8YiJDdAvFGDzZTm6xcvL565sPOMRoj0cL_WRMpH89xooqc31-4ZuuNydbtWB2hndd7a58DjVnrg9z8GfhgP0K3Z6bvx5z9jY0cE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGeBh74DYugQFG4rHpnPiWPJawqYV1SLChvkV27Ai0kk5bAxo_gN_NseNGK5sQT41qx4rtz_Z37OPvIPSGGEKqNK9jUds6ZorkcSa0jgWtFNOkptJfH5seifEJez_jsw006O_CWGu985kdukd_lm8WVeu2yvZyCuSbZrfQbc4Y491trX5HxYWQyLkM0kIJyfdGRQG1ACMwTYZAjYFKZGvLj1fpD2FVbmKY1x0lt9rmTF3-VPP5lVXo4B6arr6_cz45HbZLPax-_SXt-L8VvI_uBjqKRx1-HqAN2zxE21dECnfQ71FwE8BTu1Tx2LZB3HmAi0XzI0AXCnE6H_7HO5ZDsmoMdhSzPbf4s-3OBy4wsGS874Ur4Ftw8fHL5F2c5HgWf1KXuHDhu_DkO8xy2MfrdJ5MHjyP0MnB_nExjkP0hrgCVriME6PB1Mo11XXqNHUYtWC469RyYWolhcqUYVxJwAeDaSUnqYHFlFYOJSbJBH2MNptFY58izHXKKyWl5MKyynKtHUs1RupUikTICKWrTi2rIG3uImzMS2_ikLzskFA6JJQBCREa9C-ddcoe_87-1qGlz-pkuf0f0IFlGOUlVyqpBVOcG2DCUENdJ6Qi0BJAAymjEdpxnd4XEvo7Qrsr7JVhCrkowS6GBUCA_R6h130yDH53oqMau2ghj3AbwlAwlPykg2pftrth7fhYhOQaiNdqsJ7SfPvqBcYzF3iekgjFPdyvNZHy8TzXmujZzbV7hbbGx9PD8nBy9OE5uuPe6PawdtHm8ry1L4DVLfVLP5j_AKEdR6w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgewAOfJVCaEFG4lgvThw7yXEJrbZILQhYtJwiO3EEYslW3QRUfgC_mxnHjXYpquAUJXZG8uTZfhPbbwh5zivOyyirmaptzWLNM5YqY5gSpY4Nr0Xijo8dn6jpLH49l3Ovs41nYdbX70OevdAubSDEcVE4BnYLbCC9TraUBOI9Iluzk7eTT5g-LlQZE24hcveKNzfmHifR73Oq_I1eXt4leaNrTvX5D71YrE1Bh3f6s90rp1yIO0--jrvWjMuff-g6_mPr7pLbnorSSY-de-Sabe6TW2sChdvk18RvEaDHttVsajsv7LxP82Xz3cMWjKDGh7u4TeVQrJuKIr3szix9b_u1gRUFhkwPnGgFtJbmbz4evWJhRufsnT6nOabuokffYISjLlcn7mJywHlAZocHH_Ip85kbWAmMsGVhZSDMyowwdYR6OrGwELSbyEpV1TpROtVVLHUC2IhhSMl4VMFEKkpESBWmSuyQUbNs7CNCpYlkqZMkkcrGpZXGIEOtqsREiQpVEpDo4psWpZc1x-wai8KFNzwrJnkOWC7QyYV3ckD2h5dOe1WPq6u_RLAMVVGS2z2Ab1n4Hl5IrcNaxVrKClgwtNDUIS85eAIooIhFQLYRaoORTEAkKcD23gX0Cj98rAqIiWHwVxC7B-TZUAwdH1dzdGOXHdRR-DMYDIPlhz1SB9t4uhq5WECSDQxvtGCzpPny2YmLp5h0XvCAsAHtl1zUw3bDRY__s_4uuYm3_c-sPTJqzzr7BOhda576bv0bpKJHGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Meta-Heuristics%2C+Convolutional+Neural+Networks%2C+and+Feature+Selectors+for+Efficient+COVID-19+X-Ray+Chest+Image+Classification&rft.jtitle=IEEE+access&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Mirjalili%2C+Seyedali&rft.au=Ibrahim%2C+Abdelhameed&rft.au=Alrahmawy%2C+Mohammed&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=36019&rft.epage=36037&rft_id=info:doi/10.1109%2FACCESS.2021.3061058&rft.externalDocID=9360538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon