Advanced Meta-Heuristics, Convolutional Neural Networks, and Feature Selectors for Efficient COVID-19 X-Ray Chest Image Classification
The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. D...
        Saved in:
      
    
          | Published in | IEEE access Vol. 9; pp. 36019 - 36037 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2021.3061058 | 
Cover
| Abstract | The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network's connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases. | 
    
|---|---|
| AbstractList | The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network’s connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases. The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network's connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases.The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections, such as bacteria and viruses, leading to pneumonia. Efficient and reliable classification method facilities the diagnosis of such infections. Deep transfer learning has been introduced for pneumonia detection from chest X-rays in different models. However, there is still a need for further improvements in the feature extraction and advanced classification stages. This paper proposes a classification method with two stages to classify different cases from the chest X-ray images based on a proposed Advanced Squirrel Search Optimization Algorithm (ASSOA). The first stage is the feature learning and extraction processes based on a Convolutional Neural Network (CNN) model named ResNet-50 with image augmentation and dropout processes. The ASSOA algorithm is then applied to the extracted features for the feature selection process. Finally, the Multi-layer Perceptron (MLP) Neural Network's connection weights are optimized by the proposed ASSOA algorithm (using the selected features) to classify input cases. A Kaggle chest X-ray images (Pneumonia) dataset consists of 5,863 X-rays is employed in the experiments. The proposed ASSOA algorithm is compared with the basic Squirrel Search (SS) optimization algorithm, Grey Wolf Optimizer (GWO), and Genetic Algorithm (GA) for feature selection to validate its efficiency. The proposed (ASSOA + MLP) is also compared with other classifiers, based on (SS + MLP), (GWO + MLP), and (GA + MLP), in performance metrics. The proposed (ASSOA + MLP) algorithm achieved a classification mean accuracy of (99.26%). The ASSOA + MLP algorithm also achieved a classification mean accuracy of (99.7%) for a chest X-ray COVID-19 dataset tested from GitHub. The results and statistical tests demonstrate the high effectiveness of the proposed method in determining the infected cases.  | 
    
| Author | Zaki, Rokaia M. Ibrahim, Abdelhameed El-Said, M. Alrahmawy, Mohammed El-Kenawy, El-Sayed M. Mirjalili, Seyedali Eid, Marwa Metwally  | 
    
| AuthorAffiliation | 3 Yonsei Frontier Lab Yonsei University 26721 Seoul 03722 South Korea 8 Department of Electrical Engineering Shoubra Faculty of Engineering Benha University 68816 Benha 11629 Egypt 4 Computer Engineering and Control Systems Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt 6 Electrical Engineering Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt 7 Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt 1 Department of Communications and Electronics Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt 2 Centre for Artificial Intelligence Research and Optimization Torrens University Australia 386703 Fortitude Valley QLD 4006 Australia 5 Department of Computer Science Faculty of Computers and Information Mansoura University 68779 Mansoura 35516 Egypt  | 
    
| AuthorAffiliation_xml | – name: 7 Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt – name: 8 Department of Electrical Engineering Shoubra Faculty of Engineering Benha University 68816 Benha 11629 Egypt – name: 1 Department of Communications and Electronics Delta Higher Institute of Engineering and Technology (DHIET) Mansoura 35111 Egypt – name: 3 Yonsei Frontier Lab Yonsei University 26721 Seoul 03722 South Korea – name: 5 Department of Computer Science Faculty of Computers and Information Mansoura University 68779 Mansoura 35516 Egypt – name: 2 Centre for Artificial Intelligence Research and Optimization Torrens University Australia 386703 Fortitude Valley QLD 4006 Australia – name: 6 Electrical Engineering Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt – name: 4 Computer Engineering and Control Systems Department Faculty of Engineering Mansoura University 68779 Mansoura 35516 Egypt  | 
    
| Author_xml | – sequence: 1 givenname: El-Sayed M. orcidid: 0000-0002-9221-7658 surname: El-Kenawy fullname: El-Kenawy, El-Sayed M. email: skenawy@ieee.org organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology (DHIET), Mansoura, Egypt – sequence: 2 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD, Australia – sequence: 3 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed email: afai79@mans.edu.eg organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt – sequence: 4 givenname: Mohammed orcidid: 0000-0001-8978-8268 surname: Alrahmawy fullname: Alrahmawy, Mohammed organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt – sequence: 5 givenname: M. surname: El-Said fullname: El-Said, M. organization: Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt – sequence: 6 givenname: Rokaia M. orcidid: 0000-0002-7111-9389 surname: Zaki fullname: Zaki, Rokaia M. organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology (DHIET), Mansoura, Egypt – sequence: 7 givenname: Marwa Metwally orcidid: 0000-0002-8557-3566 surname: Eid fullname: Eid, Marwa Metwally organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology (DHIET), Mansoura, Egypt  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34812381$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptUl1v0zAUjdAQG2O_YBKyxAsPpNjxR-0XpCp0rNJgEgXEm3XrOJ1LGhc72dQ_wO_G_aDaKvLi2Pec43PP9cvspPWtzbJLggeEYPV-VJbj6XRQ4IIMKBYEc_ksOyuIUDnlVJw8-j_NLmJc4PTJdMSHL7JTyiQpqCRn2Z9RdQ-tsRX6bDvIr20fXOycie9Q6dt73_Sd8y006EuqbJfuwYdfqQxtha4sdH2waGobazofIqp9QOO6dsbZtkPl7Y_Jx5wo9DP_CmtU3tnYockS5haVDcToEhA2F7zKntfQRHuxX8-z71fjb-V1fnP7aVKObnLDiepyUs0Ik2pGZ3VRUD5k1Nq0KSwXVQ1DARIqxmHIADNJC4WLioqCGkENVEQKep5NdrqVh4VeBbeEsNYenN4e-DDXEFL7jdUcgNSCAecVZzgpz2qCDU4OlKKU0aTFdlp9u4L1AzTNQZBgvZmSBmNsjHozJb2fUqJ92NFW_WxpK5NySsE-8fK00ro7Pff3WnLGC4qTwNu9QPC_-5SoXrpobNNAa32fbhM4hbRxmKBvjqAL34c0zoRiSsqh4Ewl1OvHjg5W_r2SBFA7gAk-xmBrbVy3nVsy6JpDu7tHedwuPeIeh_R_1uWO5ay1B4aiAnMq6V8dpus7 | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_32604_cmc_2022_027653 crossref_primary_10_3389_fphys_2025_1512835 crossref_primary_10_3390_biomimetics9040204 crossref_primary_10_1016_j_smhl_2024_100500 crossref_primary_10_32604_cmc_2022_021268 crossref_primary_10_32604_cmc_2022_023126 crossref_primary_10_32604_cmc_2022_023884 crossref_primary_10_3934_era_2023383 crossref_primary_10_1016_j_compbiomed_2022_105344 crossref_primary_10_32604_cmc_2022_021186 crossref_primary_10_3390_diagnostics12112892 crossref_primary_10_32604_cmc_2021_019114 crossref_primary_10_3390_jcm12103446 crossref_primary_10_1109_ACCESS_2021_3111408 crossref_primary_10_1007_s10586_023_04172_x crossref_primary_10_1080_19475705_2023_2225691 crossref_primary_10_1109_ACCESS_2022_3166901 crossref_primary_10_3390_act12010012 crossref_primary_10_32604_cmc_2022_025220 crossref_primary_10_1109_ACCESS_2021_3083593 crossref_primary_10_3233_JIFS_230523 crossref_primary_10_1016_j_cmpbup_2022_100054 crossref_primary_10_1016_j_health_2023_100153 crossref_primary_10_1109_ACCESS_2023_3279402 crossref_primary_10_1016_j_eswa_2022_118650 crossref_primary_10_32604_csse_2023_031943 crossref_primary_10_32604_cmc_2022_025739 crossref_primary_10_3934_era_2025079 crossref_primary_10_1109_ACCESS_2021_3106233 crossref_primary_10_1109_TETCI_2022_3219858 crossref_primary_10_1016_j_eswa_2023_122810 crossref_primary_10_32604_cmc_2022_026026 crossref_primary_10_1016_j_compbiomed_2024_109093 crossref_primary_10_1016_j_eswa_2024_123362 crossref_primary_10_1371_journal_pone_0278491 crossref_primary_10_1109_ACCESS_2022_3190508 crossref_primary_10_1016_j_compbiomed_2024_108680 crossref_primary_10_32604_cmc_2023_033513 crossref_primary_10_32604_cmc_2023_033039 crossref_primary_10_32604_cmc_2022_027311 crossref_primary_10_1038_s41598_024_74475_5 crossref_primary_10_32604_cmc_2022_030447 crossref_primary_10_32604_cmc_2022_024043 crossref_primary_10_32604_cmc_2022_030445 crossref_primary_10_1016_j_cosrev_2024_100666 crossref_primary_10_32604_cmc_2022_032229 crossref_primary_10_4236_ijcns_2023_163003 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_3233_XST_221360 crossref_primary_10_1016_j_engappai_2024_108494 crossref_primary_10_1007_s11042_024_18789_6 crossref_primary_10_3390_math10173144 crossref_primary_10_3390_bioengineering10060639 crossref_primary_10_32604_cmc_2023_033042 crossref_primary_10_32604_cmc_2022_029605 crossref_primary_10_3390_math10234421 crossref_primary_10_32604_cmc_2022_031147 crossref_primary_10_32604_cmc_2022_028550 crossref_primary_10_32604_cmc_2024_055574 crossref_primary_10_1038_s41598_022_22933_3 crossref_primary_10_3390_s21238045 crossref_primary_10_1016_j_eswa_2021_115834 crossref_primary_10_1038_s41598_022_18463_7 crossref_primary_10_12720_jait_15_8_982_990 crossref_primary_10_1007_s11517_024_03107_x crossref_primary_10_1007_s11042_022_13486_8 crossref_primary_10_1007_s11042_023_14367_4 crossref_primary_10_32604_cmc_2023_031723 crossref_primary_10_3390_s22155643 crossref_primary_10_3390_jimaging10080176 crossref_primary_10_32604_cmc_2022_023257 crossref_primary_10_1038_s41598_024_61322_w crossref_primary_10_1109_ACCESS_2022_3153059 crossref_primary_10_32604_cmc_2021_018179 crossref_primary_10_1016_j_jjimei_2022_100100 crossref_primary_10_32604_cmc_2023_033153 crossref_primary_10_32604_csse_2023_032497 crossref_primary_10_32604_cmc_2023_033273 crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_32604_cmc_2022_021998  | 
    
| Cites_doi | 10.1109/ACCESS.2020.2990828 10.3390/jcm9010248 10.1109/INCoS.2015.67 10.1007/978-3-319-26690-9_15 10.1109/ICSCCC.2018.8703309 10.1016/j.swevo.2018.02.013 10.1007/978-981-15-0936-0_39 10.1109/ACCESS.2020.3007336 10.1109/ACCESS.2019.2962284 10.1016/j.neunet.2019.12.005 10.1148/radiol.2018181422 10.3892/etm.2019.8333 10.1038/s41433-018-0269-y 10.1016/j.compeleceng.2019.08.004 10.1109/ACCESS.2020.3028012 10.1109/ACCESS.2020.3015892 10.1109/ISBI.2018.8363574 10.1016/j.bspc.2017.09.019 10.1155/2019/4180949 10.1109/ACCESS.2020.2963926 10.1016/j.ultrasmedbio.2020.01.014 10.1109/ACCESS.2019.2955983 10.1007/s11760-017-1212-6 10.1371/journal.pone.0235187 10.1016/j.cell.2018.02.010 10.1016/j.swevo.2019.06.002 10.1109/LGRS.2019.2944970 10.1016/j.irbm.2019.12.001 10.1080/13814788.2019.1649651 10.1109/ACCESS.2020.2982906 10.3390/app10020559 10.1007/978-3-319-74690-6_49 10.1145/3331453.3361326 10.1109/MSP.2017.2749125 10.1016/j.chaos.2020.109944 10.1007/s13042-018-0811-z 10.1007/978-981-13-1540-4_11 10.1117/12.2549302 10.1016/j.asoc.2020.106580 10.1186/s40537-019-0197-0 10.1148/radiol.2018171820 10.1109/TGRS.2016.2645703 10.3390/a13030067 10.1109/ACCESS.2018.2885997 10.1007/s00500-019-03901-y 10.1109/ACCESS.2020.3001151 10.1007/978-981-15-0339-9_13 10.1016/j.neucom.2011.03.034 10.1109/TCYB.2018.2810806 10.1109/ACCESS.2020.2989273 10.24018/ejece.2021.5.1.268 10.1016/j.cell.2020.04.045 10.1049/iet-ipr.2017.0518 10.1109/ICECCT.2019.8869364 10.1109/ACCESS.2020.3005510 10.1016/j.measurement.2019.05.076 10.1109/JSTARS.2018.2847042  | 
    
| ContentType | Journal Article | 
    
| Copyright | This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/. Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 2021  | 
    
| Copyright_xml | – notice: This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/. – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 2021  | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2021.3061058 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 36037 | 
    
| ExternalDocumentID | oai_doaj_org_article_5aa1f64a55d540a8abf10c0db1993343 10.1109/access.2021.3061058 PMC8545230 34812381 10_1109_ACCESS_2021_3061058 9360538  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c519t-1db1489b3bf2235743eeb3b2e56dfa76a8ad45a74a04832902d3623c63cad1863 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:53:19 EDT 2025 Sun Oct 26 03:39:02 EDT 2025 Thu Aug 21 14:11:40 EDT 2025 Wed Oct 01 14:13:35 EDT 2025 Mon Jun 30 03:17:13 EDT 2025 Thu Apr 03 06:53:29 EDT 2025 Wed Oct 01 04:43:55 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Wed Aug 27 02:29:01 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | multilayer perceptron transfer learning optimization algorithm squirrel search optimization Chest X-ray convolutional neural network  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c519t-1db1489b3bf2235743eeb3b2e56dfa76a8ad45a74a04832902d3623c63cad1863 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-7111-9389 0000-0001-8978-8268 0000-0002-1443-9458 0000-0002-8557-3566 0000-0002-8352-6731 0000-0002-9221-7658  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9360538 | 
    
| PMID | 34812381 | 
    
| PQID | 2498876549 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2021_3061058 unpaywall_primary_10_1109_access_2021_3061058 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8545230 proquest_miscellaneous_2601483433 proquest_journals_2498876549 ieee_primary_9360538 doaj_primary_oai_doaj_org_article_5aa1f64a55d540a8abf10c0db1993343 pubmed_primary_34812381 crossref_primary_10_1109_ACCESS_2021_3061058  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-01 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Piscataway  | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationTitleAlternate | IEEE Access | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref10 ref16 ref19 simonyan (ref57) 2014 butt (ref49) 2020 el-kenawy (ref18) 2021; 17 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ibrahim (ref1) 2020; 15 ref8 ref7 ref9 ibrahim (ref54) 2020; 15 ref4 ref3 ref5 ref40 el-kenawy (ref17) 2021; 17 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref39 ref38 cohen (ref31) 2020 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 (ref55) 2020 ref29 ref60 ref62 el-kenawy (ref6) 2020; 16 ref61  | 
    
| References_xml | – ident: ref27 doi: 10.1109/ACCESS.2020.2990828 – ident: ref19 doi: 10.3390/jcm9010248 – ident: ref8 doi: 10.1109/INCoS.2015.67 – ident: ref7 doi: 10.1007/978-3-319-26690-9_15 – ident: ref59 doi: 10.1109/ICSCCC.2018.8703309 – ident: ref32 doi: 10.1016/j.swevo.2018.02.013 – ident: ref61 doi: 10.1007/978-981-15-0936-0_39 – ident: ref3 doi: 10.1109/ACCESS.2020.3007336 – year: 2014 ident: ref57 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref60 doi: 10.1109/ACCESS.2019.2962284 – volume: 16 start-page: 831 year: 2020 ident: ref6 article-title: Hybrid gray wolf and particle swarm optimization for feature selection publication-title: Int J Innov Comput Inf Control – ident: ref64 doi: 10.1016/j.neunet.2019.12.005 – ident: ref15 doi: 10.1148/radiol.2018181422 – year: 2020 ident: ref31 article-title: COVID-19 image data collection: Prospective predictions are the future publication-title: arXiv 2006 11988 – ident: ref45 doi: 10.3892/etm.2019.8333 – ident: ref38 doi: 10.1038/s41433-018-0269-y – ident: ref40 doi: 10.1016/j.compeleceng.2019.08.004 – ident: ref16 doi: 10.1109/ACCESS.2020.3028012 – ident: ref24 doi: 10.1109/ACCESS.2020.3015892 – ident: ref37 doi: 10.1109/ISBI.2018.8363574 – start-page: 1 year: 2020 ident: ref49 article-title: Deep learning system to screen coronavirus disease 2019 pneumonia publication-title: Appl Intell – ident: ref43 doi: 10.1016/j.bspc.2017.09.019 – ident: ref34 doi: 10.1155/2019/4180949 – ident: ref2 doi: 10.1109/ACCESS.2020.2963926 – ident: ref44 doi: 10.1016/j.ultrasmedbio.2020.01.014 – ident: ref26 doi: 10.1109/ACCESS.2019.2955983 – volume: 15 start-page: 1 year: 2020 ident: ref54 article-title: Applications and datasets for superpixel techniques: A survey publication-title: Comp Sci Inf Syst – ident: ref25 doi: 10.1007/s11760-017-1212-6 – volume: 17 start-page: 1 year: 2021 ident: ref18 article-title: Anemia estimation for COVID-19 patients using a machine learning model publication-title: Comp Sci Inf Syst – ident: ref53 doi: 10.1371/journal.pone.0235187 – ident: ref30 doi: 10.1016/j.cell.2018.02.010 – ident: ref63 doi: 10.1016/j.swevo.2019.06.002 – ident: ref9 doi: 10.1109/LGRS.2019.2944970 – ident: ref36 doi: 10.1016/j.irbm.2019.12.001 – ident: ref39 doi: 10.1080/13814788.2019.1649651 – ident: ref58 doi: 10.1109/ACCESS.2020.2982906 – ident: ref20 doi: 10.3390/app10020559 – ident: ref4 doi: 10.1007/978-3-319-74690-6_49 – ident: ref62 doi: 10.1145/3331453.3361326 – year: 2020 ident: ref55 publication-title: Convolutional neural network – ident: ref56 doi: 10.1109/MSP.2017.2749125 – ident: ref50 doi: 10.1016/j.chaos.2020.109944 – ident: ref22 doi: 10.1007/s13042-018-0811-z – ident: ref65 doi: 10.1007/978-981-13-1540-4_11 – ident: ref35 doi: 10.1117/12.2549302 – volume: 15 start-page: 1 year: 2020 ident: ref1 article-title: Image segmentation methods based on superpixel techniques: A survey publication-title: Comp Sci Inf Syst – ident: ref51 doi: 10.1016/j.asoc.2020.106580 – ident: ref66 doi: 10.1186/s40537-019-0197-0 – ident: ref14 doi: 10.1148/radiol.2018171820 – ident: ref12 doi: 10.1109/TGRS.2016.2645703 – ident: ref21 doi: 10.3390/a13030067 – ident: ref5 doi: 10.1109/ACCESS.2018.2885997 – ident: ref28 doi: 10.1007/s00500-019-03901-y – ident: ref29 doi: 10.1109/ACCESS.2020.3001151 – ident: ref47 doi: 10.1007/978-981-15-0339-9_13 – ident: ref33 doi: 10.1016/j.neucom.2011.03.034 – ident: ref10 doi: 10.1109/TCYB.2018.2810806 – ident: ref13 doi: 10.1109/ACCESS.2020.2989273 – volume: 17 start-page: 1 year: 2021 ident: ref17 article-title: An advanced patient health monitoring system publication-title: Comp Sci Inf Syst – ident: ref23 doi: 10.24018/ejece.2021.5.1.268 – ident: ref48 doi: 10.1016/j.cell.2020.04.045 – ident: ref42 doi: 10.1049/iet-ipr.2017.0518 – ident: ref46 doi: 10.1109/ICECCT.2019.8869364 – ident: ref52 doi: 10.1109/ACCESS.2020.3005510 – ident: ref41 doi: 10.1016/j.measurement.2019.05.076 – ident: ref11 doi: 10.1109/JSTARS.2018.2847042  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.5445874 | 
    
| Snippet | The chest X-ray is considered a significant clinical utility for basic examination and diagnosis. The human lung area can be affected by various infections,... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 36019 | 
    
| SubjectTerms | Artificial neural networks Chest Chest X-ray Classification Classification algorithms Computational and Artificial Intelligence Computers and Information Processing convolutional neural network Coronaviruses COVID-19 Datasets Diagnosis Diseases Feature extraction Feature selection Genetic algorithms Image classification Lung Machine learning multilayer perceptron Multilayers Neural networks Optimization optimization algorithm Optimization algorithms Performance measurement Pneumonia Selectors squirrel search optimization Squirrels Statistical tests transfer learning X-ray imaging X-rays  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAeURKMhIHGvqJH7ExyW02iIVJKBob5EdOyrSkq3aXVD_AL-bGceNNiqCC6dIsTOKZ8b2N87kG0Jec895W5iOqS50TFhuWKWcY6psrXC8K3X8fezkg5qfivcLudgq9YU5YQM98KC4A2lt3ilhpfQALmxlXZfzlnuHmWeliDyfvDJbwVRcg6tcGakTzVDOzcGsrmFEEBAW-RuAyQArqslWFBn7U4mVP6HNm0mTtzf9ub36aZfLrR3p6D65l6AknQ1DeEBuhf4hubtFMLhLfs3SJ356EtaWzcMmETPv03rV_0huB0KQoyNeYlI4NNveU4SHm4tAP4fhbP-SAsKlh5F0Al6P1h-_Hr9juaEL9sle0RpLb9Hj77BC0VhrE7OQouEfkdOjwy_1nKXKC6wFRLdmOahXVMaVriuQD0eUAYJuVwSpfGe1AjN4Ia0G2wpYEgwvPGyEZYsW9nmlysdkp1_14Smh0hWytVprqYJog3QOEab32hVa5UpnpLg2QtMmWnKsjrFsYnjCTTNYrkHLNclyGdkfHzofWDn-3v0tWnfsipTa8QY4WpMcrfmXo2VkF31jFGJKiARLkL137StNmv6XDcS0sHgriL0z8mpshomLX2NsH1Yb6KPwMBcEg-Qng2uNsvHvaMRSGdETp5uMYNrSfzuL5OAVFo0veUbY6J43VGRjLc6Jip79DxU9J3dQ5nBCtUd21heb8AIw29q9jNPzN2i_Os8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgewAOfJVCaEFG4lgvThw7yXEJrbZILQhYtJwiO3EEYslW3QRUfgC_mxnHjXYpquAUJXZG8uTZfhPbbwh5zivOyyirmaptzWLNM5YqY5gSpY4Nr0Xijo8dn6jpLH49l3Ovs41nYdbX70OevdAubSDEcVE4BnYLbCC9TraUBOI9Iluzk7eTT5g-LlQZE24hcveKNzfmHifR73Oq_I1eXt4leaNrTvX5D71YrE1Bh3f6s90rp1yIO0--jrvWjMuff-g6_mPr7pLbnorSSY-de-Sabe6TW2sChdvk18RvEaDHttVsajsv7LxP82Xz3cMWjKDGh7u4TeVQrJuKIr3szix9b_u1gRUFhkwPnGgFtJbmbz4evWJhRufsnT6nOabuokffYISjLlcn7mJywHlAZocHH_Ip85kbWAmMsGVhZSDMyowwdYR6OrGwELSbyEpV1TpROtVVLHUC2IhhSMl4VMFEKkpESBWmSuyQUbNs7CNCpYlkqZMkkcrGpZXGIEOtqsREiQpVEpDo4psWpZc1x-wai8KFNzwrJnkOWC7QyYV3ckD2h5dOe1WPq6u_RLAMVVGS2z2Ab1n4Hl5IrcNaxVrKClgwtNDUIS85eAIooIhFQLYRaoORTEAkKcD23gX0Cj98rAqIiWHwVxC7B-TZUAwdH1dzdGOXHdRR-DMYDIPlhz1SB9t4uhq5WECSDQxvtGCzpPny2YmLp5h0XvCAsAHtl1zUw3bDRY__s_4uuYm3_c-sPTJqzzr7BOhda576bv0bpKJHGw priority: 102 providerName: Unpaywall  | 
    
| Title | Advanced Meta-Heuristics, Convolutional Neural Networks, and Feature Selectors for Efficient COVID-19 X-Ray Chest Image Classification | 
    
| URI | https://ieeexplore.ieee.org/document/9360538 https://www.ncbi.nlm.nih.gov/pubmed/34812381 https://www.proquest.com/docview/2498876549 https://www.proquest.com/docview/2601483433 https://pubmed.ncbi.nlm.nih.gov/PMC8545230 https://doi.org/10.1109/access.2021.3061058 https://doaj.org/article/5aa1f64a55d540a8abf10c0db1993343  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLW28QB74GswAqMyEo9158SxnTyWsKlD6kBAUXmK7NgRiJJOWwMaP4DfzbXjRiubEE-NaseK7WP7XPv6XIReUkNpleQ1EbWtSapoTjKhNRGsUqmmNZP--tj0VExm6Zs5n2-hYX8Xxlrrnc_syD36s3yzrFq3VXaYMyDfLNtG2zIT3V2tfj_FBZDIuQzCQjHND8dFAXUAEzCJR0CMgUhkG4uP1-gPQVVu4pfX3SRvt82ZuvypFosra9DxPTRdf33nevJt1K70qPr1l7Dj_1bvProbyCged-h5gLZs8xDtXpEo3EO_x8FJAE_tSpGJbYO08xAXy-ZHAC4U4lQ-_I93K4dk1RjsCGZ7bvEH250OXGDgyPjIy1bAt-Di7aeT1yTO8Zy8V5e4cMG78Ml3mOOwj9bp_Jg8dB6h2fHRx2JCQuwGUgEnXJHYaDC0cs10nThFnZRZMNt1YrkwtZJCZcqkXElARwqTSk4TA0spqxxGTJwJ9hjtNMvGPkGY64RXSkrJhU0ry7V2HNUYqRMpYiEjlKw7tayCsLmLr7EovYFD87JDQumQUAYkRGjYv3TW6Xr8O_srh5Y-qxPl9n9AB5ZhjJdcqbgWqeLcAA-GGuo6phWFlgASyFIWoT3X6X0hob8jdLDGXhkmkIsSrGKY_gVY7xF60SfD0HfnOaqxyxbyCLcdDAVDyfsdVPuy3f1qx8YiJDdAvFGDzZTm6xcvL565sPOMRoj0cL_WRMpH89xooqc31-4ZuuNydbtWB2hndd7a58DjVnrg9z8GfhgP0K3Z6bvx5z9jY0cE | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGeBh74DYugQFG4rHpnPiWPJawqYV1SLChvkV27Ai0kk5bAxo_gN_NseNGK5sQT41qx4rtz_Z37OPvIPSGGEKqNK9jUds6ZorkcSa0jgWtFNOkptJfH5seifEJez_jsw006O_CWGu985kdukd_lm8WVeu2yvZyCuSbZrfQbc4Y491trX5HxYWQyLkM0kIJyfdGRQG1ACMwTYZAjYFKZGvLj1fpD2FVbmKY1x0lt9rmTF3-VPP5lVXo4B6arr6_cz45HbZLPax-_SXt-L8VvI_uBjqKRx1-HqAN2zxE21dECnfQ71FwE8BTu1Tx2LZB3HmAi0XzI0AXCnE6H_7HO5ZDsmoMdhSzPbf4s-3OBy4wsGS874Ur4Ftw8fHL5F2c5HgWf1KXuHDhu_DkO8xy2MfrdJ5MHjyP0MnB_nExjkP0hrgCVriME6PB1Mo11XXqNHUYtWC469RyYWolhcqUYVxJwAeDaSUnqYHFlFYOJSbJBH2MNptFY58izHXKKyWl5MKyynKtHUs1RupUikTICKWrTi2rIG3uImzMS2_ikLzskFA6JJQBCREa9C-ddcoe_87-1qGlz-pkuf0f0IFlGOUlVyqpBVOcG2DCUENdJ6Qi0BJAAymjEdpxnd4XEvo7Qrsr7JVhCrkowS6GBUCA_R6h130yDH53oqMau2ghj3AbwlAwlPykg2pftrth7fhYhOQaiNdqsJ7SfPvqBcYzF3iekgjFPdyvNZHy8TzXmujZzbV7hbbGx9PD8nBy9OE5uuPe6PawdtHm8ry1L4DVLfVLP5j_AKEdR6w | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgewAOfJVCaEFG4lgvThw7yXEJrbZILQhYtJwiO3EEYslW3QRUfgC_mxnHjXYpquAUJXZG8uTZfhPbbwh5zivOyyirmaptzWLNM5YqY5gSpY4Nr0Xijo8dn6jpLH49l3Ovs41nYdbX70OevdAubSDEcVE4BnYLbCC9TraUBOI9Iluzk7eTT5g-LlQZE24hcveKNzfmHifR73Oq_I1eXt4leaNrTvX5D71YrE1Bh3f6s90rp1yIO0--jrvWjMuff-g6_mPr7pLbnorSSY-de-Sabe6TW2sChdvk18RvEaDHttVsajsv7LxP82Xz3cMWjKDGh7u4TeVQrJuKIr3szix9b_u1gRUFhkwPnGgFtJbmbz4evWJhRufsnT6nOabuokffYISjLlcn7mJywHlAZocHH_Ip85kbWAmMsGVhZSDMyowwdYR6OrGwELSbyEpV1TpROtVVLHUC2IhhSMl4VMFEKkpESBWmSuyQUbNs7CNCpYlkqZMkkcrGpZXGIEOtqsREiQpVEpDo4psWpZc1x-wai8KFNzwrJnkOWC7QyYV3ckD2h5dOe1WPq6u_RLAMVVGS2z2Ab1n4Hl5IrcNaxVrKClgwtNDUIS85eAIooIhFQLYRaoORTEAkKcD23gX0Cj98rAqIiWHwVxC7B-TZUAwdH1dzdGOXHdRR-DMYDIPlhz1SB9t4uhq5WECSDQxvtGCzpPny2YmLp5h0XvCAsAHtl1zUw3bDRY__s_4uuYm3_c-sPTJqzzr7BOhda576bv0bpKJHGw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Meta-Heuristics%2C+Convolutional+Neural+Networks%2C+and+Feature+Selectors+for+Efficient+COVID-19+X-Ray+Chest+Image+Classification&rft.jtitle=IEEE+access&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Mirjalili%2C+Seyedali&rft.au=Ibrahim%2C+Abdelhameed&rft.au=Alrahmawy%2C+Mohammed&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=36019&rft.epage=36037&rft_id=info:doi/10.1109%2FACCESS.2021.3061058&rft.externalDocID=9360538 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |