Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations
Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but a...
Saved in:
Published in | Cancer Vol. 122; no. 1; pp. 20 - 33 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-543X 1097-0142 |
DOI | 10.1002/cncr.29706 |
Cover
Abstract | Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high‐level MYCN (v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016;122:20–33. © 2015 American Cancer Society.
Advances in defining the biologic importance of neuroblastoma‐associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways. |
---|---|
AbstractList | Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high‐level MYCN (v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016;122:20–33. © 2015 American Cancer Society.
Advances in defining the biologic importance of neuroblastoma‐associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways. Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016; 122:20-33. copyright 2015 American Cancer Society. Advances in defining the biologic importance of neuroblastoma-associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways. Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high‐level MYCN (v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016;122:20–33. © 2015 American Cancer Society . Advances in defining the biologic importance of neuroblastoma‐associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways. Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus, which has catalyzed not only a more comprehensive understanding of neuroblastoma tumorigenesis, but has also revealed novel oncogenic vulnerabilities that are being leveraged therapeutically. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN amplification, for risk stratification. Given the relative paucity of recurrent activating somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed towards aberrantly regulated pathways in relapsed disease. This review will summarize the current state of knowledge of neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. |
Author | Maris, John M. Bosse, Kristopher R. |
Author_xml | – sequence: 1 givenname: Kristopher R. surname: Bosse fullname: Bosse, Kristopher R. organization: University of Pennsylvania – sequence: 2 givenname: John M. surname: Maris fullname: Maris, John M. organization: University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26539795$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9qFDEUxoNU7LZ64wNILqUwNcn8ycQLoSxWC0VBLPQuZDJnttFMsibZkX0g39PsbLeoiF6FcH7fdz7OOSfoyHkHCD2n5JwSwl5pp8M5E5w0j9CCEsELQit2hBaEkLaoq_L2GJ3E-CV_OavLJ-iYNXUpuKgX6MdFPymnIWLjcLoDnIJy0apkvFMWr8D50eiI_YAdbILvrIrJj-o1vgx-xGZcBz8Zt8LBxK84ZnUyg9GzHivX4wATKLsjnJ_A4s5461dbnDw2PbhMb3dFpeeOnYVDT6xsgjAbxafo8aBshGf37ym6uXz7efm-uP747mp5cV3omoqmUBTqqia8YbprewJcVIzWAxtACNEwThStKAFadgy0Vn1Vtf3AeNc2otf9UJan6M3ed73pRuh1zheUletgRhW20isjf684cydXfpIVJ3n8TTZ4eW8Q_LcNxCRHEzVYqxz4TZRU0JykKWn5f5Q3pK3zWtuMvvg11kOewxozQPaADj7GAIPUJs2jyymNlZTI3aXI3aXI-VKy5OwPycH1rzDdw9-Nhe0_SLn8sPy01_wEd2rUiw |
CitedBy_id | crossref_primary_10_1158_0008_5472_CAN_19_0695 crossref_primary_10_3233_CBM_160546 crossref_primary_10_4174_astr_2023_105_3_148 crossref_primary_10_1016_j_pharmthera_2021_108054 crossref_primary_10_1016_j_devcel_2021_05_014 crossref_primary_10_1111_cas_14512 crossref_primary_10_1016_j_ccell_2017_08_003 crossref_primary_10_1016_j_ccell_2021_12_005 crossref_primary_10_1891_0730_0832_38_6_341 crossref_primary_10_3390_ijms26010136 crossref_primary_10_1038_s41598_019_41918_3 crossref_primary_10_1073_pnas_1801435115 crossref_primary_10_1002_ana_24659 crossref_primary_10_3389_fgene_2018_00589 crossref_primary_10_1089_dna_2020_6193 crossref_primary_10_21518_ms2024_255 crossref_primary_10_1186_s12967_024_04954_w crossref_primary_10_1016_j_jpedsurg_2018_09_004 crossref_primary_10_1053_j_sempedsurg_2016_09_007 crossref_primary_10_1080_2162402X_2019_1593804 crossref_primary_10_1002_ctm2_1328 crossref_primary_10_3390_cancers12092343 crossref_primary_10_1007_s00117_018_0410_8 crossref_primary_10_1530_ERC_18_0116 crossref_primary_10_3390_ijms18010037 crossref_primary_10_1016_j_neo_2017_09_006 crossref_primary_10_7554_eLife_41637 crossref_primary_10_1016_j_canlet_2017_04_022 crossref_primary_10_1097_MOP_0000000000000711 crossref_primary_10_1038_s41598_023_43219_2 crossref_primary_10_1158_0008_5472_CAN_21_1033 crossref_primary_10_1158_2767_9764_CRC_22_0137 crossref_primary_10_1016_j_ab_2016_06_005 crossref_primary_10_3390_biom12010079 crossref_primary_10_1186_s12885_020_6562_8 crossref_primary_10_1002_bdr2_1606 crossref_primary_10_1016_j_yexmp_2019_104272 crossref_primary_10_1158_1535_7163_MCT_20_1034 crossref_primary_10_3390_ijms23126513 crossref_primary_10_3390_life13030818 crossref_primary_10_7554_eLife_90993 crossref_primary_10_1111_ans_16595 crossref_primary_10_1111_cas_70043 crossref_primary_10_1158_1078_0432_CCR_16_0115 crossref_primary_10_1007_s00259_023_06221_4 crossref_primary_10_1016_j_biochi_2017_04_011 crossref_primary_10_1200_PO_18_00312 crossref_primary_10_1016_j_neo_2025_101122 crossref_primary_10_1007_s00109_023_02372_x crossref_primary_10_1080_17460441_2017_1340269 crossref_primary_10_1016_j_ctarc_2020_100274 crossref_primary_10_1158_0008_5472_CAN_21_4309 crossref_primary_10_1016_j_critrevonc_2016_10_001 crossref_primary_10_1007_s12035_024_04680_w crossref_primary_10_1053_j_semdp_2021_06_007 crossref_primary_10_3389_fcell_2021_769547 crossref_primary_10_1038_s41598_018_37240_z crossref_primary_10_3390_cells10051001 crossref_primary_10_1093_carcin_bgw037 crossref_primary_10_1038_sdata_2018_240 crossref_primary_10_1093_jnci_djy022 crossref_primary_10_1038_nrdp_2016_78 crossref_primary_10_18632_oncotarget_17033 crossref_primary_10_1016_j_critrevonc_2023_103956 crossref_primary_10_3390_ijms20194764 crossref_primary_10_3390_ijms24098141 crossref_primary_10_1093_narcan_zcad002 crossref_primary_10_3390_cancers11121938 crossref_primary_10_1002_jgm_3190 crossref_primary_10_1038_s41467_021_27502_2 crossref_primary_10_1093_neuonc_noae152 crossref_primary_10_1007_s10585_024_10286_2 crossref_primary_10_1126_sciadv_adm9449 crossref_primary_10_1002_cac2_12016 crossref_primary_10_1016_j_ejca_2016_06_005 crossref_primary_10_1158_1078_0432_CCR_17_1767 crossref_primary_10_3390_ijms221810070 crossref_primary_10_3892_ol_2022_13256 crossref_primary_10_1002_cam4_3663 crossref_primary_10_12677_ACM_2023_134771 crossref_primary_10_3390_cells11193172 crossref_primary_10_3892_ijo_2019_4813 crossref_primary_10_3389_fnmol_2019_00009 crossref_primary_10_1186_s13062_018_0213_x crossref_primary_10_7554_eLife_90993_3 crossref_primary_10_1186_s13073_016_0389_6 crossref_primary_10_3390_diagnostics13111915 crossref_primary_10_1158_1078_0432_CCR_16_2876 crossref_primary_10_3390_children8020163 crossref_primary_10_1002_pbc_27901 crossref_primary_10_1002_med_21750 crossref_primary_10_1126_scitranslmed_aau9732 crossref_primary_10_1242_dmm_024448 crossref_primary_10_1002_14651858_CD012442_pub2 crossref_primary_10_1007_s12032_019_1289_6 crossref_primary_10_1002_pbc_31176 crossref_primary_10_3892_mco_2021_2378 crossref_primary_10_1038_sdata_2017_33 crossref_primary_10_1155_2022_8319221 crossref_primary_10_3390_jpm11080691 crossref_primary_10_3390_ijms22073667 crossref_primary_10_1186_s13062_023_00414_5 crossref_primary_10_18632_oncotarget_14233 crossref_primary_10_3233_PRM_170456 crossref_primary_10_3390_children8060456 crossref_primary_10_1016_j_ebiom_2022_104300 crossref_primary_10_1158_1078_0432_CCR_18_2728 crossref_primary_10_1158_1535_7163_MCT_17_0841 crossref_primary_10_3390_cancers15010208 crossref_primary_10_1016_j_jconrel_2018_02_031 crossref_primary_10_1038_s41419_018_0728_1 crossref_primary_10_3389_fphar_2021_766909 crossref_primary_10_3390_cancers15072035 crossref_primary_10_1002_ijc_30706 crossref_primary_10_1534_genetics_117_300124 crossref_primary_10_3166_onco_2019_0036 crossref_primary_10_3390_molecules25225234 crossref_primary_10_1002_gcc_22676 crossref_primary_10_3389_fonc_2024_1383805 crossref_primary_10_1097_PAP_0000000000000306 crossref_primary_10_1016_j_canlet_2020_11_044 crossref_primary_10_1002_pbc_29800 crossref_primary_10_1097_MPH_0000000000002954 crossref_primary_10_1007_s12672_024_01518_8 crossref_primary_10_1016_j_dnarep_2022_103302 crossref_primary_10_3390_diagnostics10050315 crossref_primary_10_1016_j_tranon_2021_101114 crossref_primary_10_1097_CCO_0000000000000504 crossref_primary_10_1111_cas_14610 crossref_primary_10_1016_j_prp_2022_154240 crossref_primary_10_1111_jphp_13224 crossref_primary_10_3389_fmed_2022_840777 crossref_primary_10_1038_s41598_020_68829_y crossref_primary_10_1186_s12935_018_0521_3 crossref_primary_10_1016_j_gene_2018_04_015 crossref_primary_10_1111_his_13288 crossref_primary_10_3389_fonc_2019_00455 crossref_primary_10_1038_s41419_017_0060_1 crossref_primary_10_1038_s41571_022_00643_z crossref_primary_10_1126_scitranslmed_aao4680 crossref_primary_10_1158_2159_8290_CD_16_0861 crossref_primary_10_1126_scisignal_aam7550 crossref_primary_10_1136_jclinpath_2022_208177 crossref_primary_10_1136_bcr_2018_225568 crossref_primary_10_1186_s12943_017_0686_8 crossref_primary_10_1080_08880018_2017_1330375 crossref_primary_10_1016_j_genrep_2018_06_018 crossref_primary_10_1080_21678707_2020_1865918 crossref_primary_10_3390_pharmaceutics16070943 crossref_primary_10_1096_fj_202200394RRR crossref_primary_10_3892_ol_2019_10602 crossref_primary_10_3390_children8010048 crossref_primary_10_1038_srep38347 crossref_primary_10_1016_j_ccell_2017_08_014 crossref_primary_10_18632_oncotarget_14408 crossref_primary_10_1016_j_ejmech_2023_116021 crossref_primary_10_3389_fonc_2023_1124737 crossref_primary_10_1038_s41698_024_00657_z crossref_primary_10_1134_S1022795423100022 crossref_primary_10_3389_fimmu_2020_584214 crossref_primary_10_3390_cancers13205173 crossref_primary_10_1007_s12031_022_02087_7 |
Cites_doi | 10.1016/j.jpedsurg.2014.09.029 10.1158/1078-0432.CCR-13-1675 10.1200/JCO.2013.54.0674 10.1054/bjoc.2001.1849 10.1056/NEJM199910143411601 10.1056/NEJMoa0911123 10.1038/nature07399 10.4161/cc.24091 10.1038/ng.2387 10.1097/00000658-195609000-00007 10.1002/gcc.20926 10.1101/gad.1339905 10.1158/1078-0432.CCR-13-0680 10.1073/pnas.1012351108 10.1056/NEJMoa052399 10.1038/sj.onc.1204621 10.1093/jnci/dju047 10.1200/JCO.2009.26.7955 10.1038/onc.2011.270 10.1038/ng.374 10.1038/ng1130 10.1200/JCO.2004.00.2931 10.1016/j.bbrc.2006.10.020 10.1126/science.1207313 10.1038/ng.2529 10.1038/sj.onc.1202750 10.1200/JCO.2000.18.9.1888 10.1038/nature07261 10.1002/pbc.24311 10.1002/1096-911X(20010101)36:1<37::AID-MPO1010>3.0.CO;2-L 10.1126/scitranslmed.3007094 10.1002/pbc.22816 10.1038/ng.2493 10.1371/journal.pgen.1002026 10.1001/jama.2012.228 10.1038/ng.2436 10.3390/genes3020320 10.1093/emboj/16.11.2985 10.1002/ajmg.a.10167 10.1158/1535-7163.MCT-10-1090 10.1158/1078-0432.CCR-11-2056 10.1056/NEJMra0804577 10.1038/ng.926 10.1016/0014-4827(83)90184-2 10.1101/cshperspect.a014415 10.1126/science.1254721 10.1200/JCO.1996.14.2.373 10.1158/1055-9965.EPI-11-0830 10.1016/S1470-2045(13)70095-0 10.1056/NEJM199906243402504 10.1002/gcc.10166 10.1055/s-2008-1033816 10.1158/0008-5472.CAN-10-2366 10.1038/sj.onc.1208341 10.1200/JCO.1991.9.4.581 10.1158/1078-0432.CCR-09-1865 10.1073/pnas.68.4.820 10.1002/pbc.22430 10.1200/JCO.2012.45.2011 10.1200/JCO.2008.16.0630 10.18632/oncotarget.3504 10.1186/1471-2164-9-353 10.1038/nature08035 10.1038/nature09504 10.1016/j.cell.2010.06.004 10.1016/j.ccell.2014.09.019 10.1002/1097-0142(19940615)73:12<3087::AID-CNCR2820731230>3.0.CO;2-9 10.1002/(SICI)1098-2264(199805)22:1<42::AID-GCC6>3.0.CO;2-7 10.1158/0008-5472.CAN-11-3703 10.1038/ng0693-187 10.1038/nature07398 10.1038/bjc.2012.375 10.1158/0008-5472.CAN-14-3613 10.1016/S0140-6736(07)60983-0 10.1158/0008-5472.CAN-07-5032 10.1002/ajmg.c.30300 10.1038/nature09609 10.1158/0008-5472.CAN-12-1242 10.1158/1078-0432.CCR-13-2281 10.1002/gcc.20850 10.1093/carcin/bgs380 10.1200/JCO.2009.27.0421 10.1038/nature07397 10.1200/JCO.1996.14.9.2504 10.1371/journal.pone.0072967 10.1007/s00383-013-3374-9 10.1056/NEJM198510313131802 10.1056/NEJMoa1001527 10.1002/humu.21442 10.1200/JCO.2008.16.6785 10.1038/sj.bjc.6605029 10.1002/gcc.22223 10.1038/nrclinonc.2012.72 10.1016/j.cancergencyto.2007.12.005 10.1200/JCO.2007.13.8925 10.1016/j.ccell.2014.09.014 10.1126/science.959840 10.1158/0008-5472.CAN-04-1923 10.1158/2159-8290.CD-12-0418 10.1126/science.1235122 10.1200/JCO.2005.05.582 10.1038/nature10910 10.1158/0008-5472.CAN-11-3891 10.1002/ajmg.a.33384 10.1002/1096-911X(20010101)36:1<14::AID-MPO1005>3.0.CO;2-G 10.1200/JCO.2005.02.014 10.1371/journal.pone.0072182 10.1093/jnci/djg045 10.1371/journal.pone.0077731 10.1016/j.cell.2011.08.017 10.1002/ajmg.a.36229 10.1038/ng.3333 10.1126/science.6719137 10.1038/sj.onc.1210659 10.1200/JCO.2008.16.6876 10.1002/cam4.414 10.1056/NEJMoa0708698 10.1158/0008-5472.CAN-14-0431 |
ContentType | Journal Article |
Copyright | 2015 American Cancer Society 2015 American Cancer Society. |
Copyright_xml | – notice: 2015 American Cancer Society – notice: 2015 American Cancer Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 5PM |
DOI | 10.1002/cncr.29706 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0142 |
EndPage | 33 |
ExternalDocumentID | PMC4707066 26539795 10_1002_cncr_29706 CNCR29706 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA124709 – fundername: NCI NIH HHS grantid: R35 CA220500 – fundername: NCI NIH HHS grantid: T32 CA009615 – fundername: NCI NIH HHS grantid: T32 CA9615-25 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1CY 1L6 1OC 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AAQOH AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABHFT ABIJN ABIVO ABJNI ABLJU ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FD6 FUBAC G-S G.N GNP GODZA GX1 H.X HBH HGLYW HHY HHZ HZ~ IH2 IX1 J0M JPC KBYEO KQQ KZ1 L7B LATKE LAW LC2 LC3 LH4 LITHE LMP LOXES LP6 LP7 LSO LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SJN SUPJJ TEORI UDS UHB V2E V8K V9Y W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XPP XV2 Z0Y ZGI ZZTAW ~IA ~WT .GJ .Y3 31~ 3O- AAHHS AARRQ AAYXX ACCFJ ADZOD AEEZP AEQDE AFFNX AGNAY AI. AIWBW AJBDE C1A CITATION HF~ H~9 J5H N4W NEJ OHT RSU VH1 WHG Y6R YQJ ZXP CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c5196-a1e5450762cb8d0e794215f2fe9996270a1410e13b2eccad448df27b869dcdf33 |
IEDL.DBID | DR2 |
ISSN | 0008-543X |
IngestDate | Thu Aug 21 13:37:51 EDT 2025 Thu Jul 10 23:44:01 EDT 2025 Sat Sep 27 19:16:14 EDT 2025 Mon Jul 21 05:48:03 EDT 2025 Tue Jul 01 04:09:17 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Thu Sep 25 07:36:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | neuroblastoma clonal evolution genome-wide association studies v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog (MYCN) anaplastic lymphoma kinase (ALK) pediatric |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 American Cancer Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5196-a1e5450762cb8d0e794215f2fe9996270a1410e13b2eccad448df27b869dcdf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cncr.29706 |
PMID | 26539795 |
PQID | 1760852978 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4707066 proquest_miscellaneous_1919966313 proquest_miscellaneous_1760852978 pubmed_primary_26539795 crossref_citationtrail_10_1002_cncr_29706 crossref_primary_10_1002_cncr_29706 wiley_primary_10_1002_cncr_29706_CNCR29706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 1, 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 1, 2016 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer |
PublicationTitleAlternate | Cancer |
PublicationYear | 2016 |
References | 2012; 483 2013; 3 2010; 16 2010; 468 2015; 75 2014; 26 2012; 18 2011; 56 2013; 161A 2013; 8 2008; 182 2014; 20 1983; 148 2001; 61 2003; 118A 2000; 18 1976; 194 2010; 28 2011; 71 2008; 27 2013; 60 2008; 358 2012; 21 1994; 73 1984; 224 2005; 353 2015; 54 1999; 340 2014; 49 2003; 36 1999; 341 2006; 351 1996; 14 2009; 459 2012; 107 2011; 7 2012; 31 2003; 33 2001; 20 2011; 146 2005; 19 2013; 339 2013; 73 2009; 100 1985; 313 2012; 44 2001; 36 2014; 32 2010; 55 2013; 29 2004; 64 2009; 41 2008; 9 2011; 10 2010; 142 2003; 95 2005; 23 1993; 4 2001; 85 2005; 24 2012; 51 2012; 72 2013; 19 2015; 47 2013; 14 1999; 18 2013; 12 2010; 152A 1997; 16 2008; 68 1956; 144 2014; 6 1998; 58 2011; 333 2015; 6 2007; 369 2015; 4 1985; 3 2013; 45 1971; 68 2010; 363 2010; 362 2011; 32 1972; 24 1991; 9 2009; 27 1998; 22 2012; 307 2014; 106 1991; 366 2012; 3 2011; 108 2011; 469 2001; 7 2013; 34 2011; 157C 2011; 50 2011; 43 2015 2008; 455 2014; 74 2014; 346 2012; 9 1982; 194 e_1_2_15_108_1 e_1_2_15_104_1 e_1_2_15_127_1 Bourhis J (e_1_2_15_15_1) 1991; 366 e_1_2_15_42_1 e_1_2_15_88_1 e_1_2_15_69_1 e_1_2_15_3_1 e_1_2_15_80_1 e_1_2_15_27_1 e_1_2_15_61_1 e_1_2_15_111_1 e_1_2_15_46_1 e_1_2_15_84_1 e_1_2_15_23_1 e_1_2_15_65_1 e_1_2_15_7_1 e_1_2_15_31_1 e_1_2_15_77_1 e_1_2_15_58_1 Helson L (e_1_2_15_113_1) 1985; 3 e_1_2_15_100_1 e_1_2_15_123_1 e_1_2_15_39_1 e_1_2_15_16_1 e_1_2_15_50_1 e_1_2_15_92_1 Knudson AG (e_1_2_15_44_1) 1972; 24 e_1_2_15_73_1 e_1_2_15_12_1 e_1_2_15_54_1 e_1_2_15_109_1 e_1_2_15_105_1 Oldridge D (e_1_2_15_35_1) e_1_2_15_20_1 e_1_2_15_43_1 e_1_2_15_66_1 e_1_2_15_89_1 e_1_2_15_28_1 e_1_2_15_81_1 e_1_2_15_112_1 e_1_2_15_2_1 e_1_2_15_24_1 e_1_2_15_47_1 e_1_2_15_62_1 e_1_2_15_85_1 e_1_2_15_6_1 Omura‐Minamisawa M (e_1_2_15_96_1) 2001; 7 e_1_2_15_32_1 e_1_2_15_55_1 e_1_2_15_78_1 e_1_2_15_59_1 e_1_2_15_17_1 e_1_2_15_70_1 e_1_2_15_93_1 e_1_2_15_124_1 e_1_2_15_101_1 e_1_2_15_13_1 e_1_2_15_36_1 e_1_2_15_51_1 e_1_2_15_74_1 e_1_2_15_97_1 e_1_2_15_120_1 e_1_2_15_106_1 e_1_2_15_125_1 e_1_2_15_21_1 e_1_2_15_67_1 e_1_2_15_40_1 Thompson PM (e_1_2_15_116_1) 2001; 61 e_1_2_15_29_1 e_1_2_15_48_1 e_1_2_15_82_1 e_1_2_15_25_1 e_1_2_15_63_1 e_1_2_15_86_1 e_1_2_15_9_1 e_1_2_15_118_1 e_1_2_15_90_1 e_1_2_15_5_1 e_1_2_15_114_1 e_1_2_15_10_1 e_1_2_15_56_1 e_1_2_15_79_1 e_1_2_15_18_1 e_1_2_15_94_1 e_1_2_15_102_1 e_1_2_15_121_1 e_1_2_15_37_1 e_1_2_15_71_1 e_1_2_15_14_1 e_1_2_15_52_1 e_1_2_15_98_1 e_1_2_15_33_1 e_1_2_15_75_1 e_1_2_15_107_1 e_1_2_15_103_1 e_1_2_15_19_1 e_1_2_15_126_1 e_1_2_15_41_1 e_1_2_15_68_1 e_1_2_15_110_1 e_1_2_15_26_1 e_1_2_15_49_1 e_1_2_15_60_1 e_1_2_15_83_1 e_1_2_15_22_1 e_1_2_15_45_1 e_1_2_15_64_1 e_1_2_15_87_1 e_1_2_15_8_1 e_1_2_15_119_1 e_1_2_15_4_1 e_1_2_15_115_1 e_1_2_15_30_1 e_1_2_15_57_1 e_1_2_15_99_1 e_1_2_15_38_1 e_1_2_15_72_1 e_1_2_15_91_1 Easton J (e_1_2_15_117_1) 1998; 58 e_1_2_15_122_1 e_1_2_15_11_1 e_1_2_15_34_1 e_1_2_15_53_1 e_1_2_15_76_1 e_1_2_15_95_1 20503330 - Am J Med Genet A. 2010 Jun;152A(6):1531-5 18923525 - Nature. 2008 Oct 16;455(7215):975-8 19412175 - Nat Genet. 2009 Jun;41(6):718-23 22328350 - Cancer Epidemiol Biomarkers Prev. 2012 Apr;21(4):658-63 19047290 - J Clin Oncol. 2009 Jan 10;27(2):298-303 19401690 - Br J Cancer. 2009 May 19;100(10):1627-37 11498785 - Oncogene. 2001 Aug 2;20(34):4621-8 12687660 - Am J Med Genet A. 2003 May 1;118A(4):309-13 21460101 - Mol Cancer Ther. 2011 Jun;10(6):983-93 24449238 - J Clin Oncol. 2014 Feb 20;32(6):579-86 17586306 - Lancet. 2007 Jun 23;369(9579):2106-20 21059859 - Cancer Res. 2011 Jan 1;71(1):98-105 20879881 - N Engl J Med. 2010 Sep 30;363(14):1324-34 13363274 - Ann Surg. 1956 Sep;144(3):366-83 18724359 - Nature. 2008 Oct 16;455(7215):930-5 20516441 - J Clin Oncol. 2010 Jul 1;28(19):3122-30 21124317 - Nature. 2011 Jan 13;469(7329):216-20 2987426 - J Neurooncol. 1985;3(1):39-41 11212268 - Cancer Res. 2001 Jan 15;61(2):679-86 21972109 - Hum Mutat. 2011 Mar;32(3):272-6 12640453 - Nat Genet. 2003 Apr;33(4):459-61 8636746 - J Clin Oncol. 1996 Feb;14(2):373-81 8823329 - J Clin Oncol. 1996 Sep;14(9):2504-10 22997192 - Pediatr Blood Cancer. 2013 Feb;60(2):332-5 10378692 - Oncogene. 1999 May 13;18(19):2955-66 4340974 - Am J Hum Genet. 1972 Sep;24(5):514-32 24297863 - Clin Cancer Res. 2014 Feb 15;20(4):912-25 22142829 - Clin Cancer Res. 2012 Feb 1;18(3):748-57 16306521 - N Engl J Med. 2005 Nov 24;353(21):2243-53 23462184 - Cell Cycle. 2013 Apr 1;12(7):1091-104 23334666 - Nat Genet. 2013 Mar;45(3):279-84 18923523 - Nature. 2008 Oct 16;455(7215):967-70 25312269 - Cancer Res. 2014 Dec 1;74(23):6913-24 11464868 - Med Pediatr Oncol. 2001 Jan;36(1):14-9 21725357 - Oncogene. 2012 Feb 9;31(6):752-63 24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24 23598171 - Lancet Oncol. 2013 May;14(6):472-80 21370407 - Pediatr Blood Cancer. 2011 May;56(5):757-61 959840 - Science. 1976 Oct 1;194(4260):23-8 22034077 - Genes Chromosomes Cancer. 2012 Jan;51(1):10-9 20558371 - N Engl J Med. 2010 Jun 10;362(23):2202-11 18923524 - Nature. 2008 Oct 16;455(7215):971-4 11461074 - Br J Cancer. 2001 Jul 20;85(2):182-9 9635589 - Cancer Res. 1998 Jun 15;58(12):2624-32 23539594 - Science. 2013 Mar 29;339(6127):1546-58 11464901 - Med Pediatr Oncol. 2001 Jan;36(1):37-41 22350409 - Cancer Res. 2012 Apr 15;72(8):2068-78 16131611 - Genes Dev. 2005 Sep 15;19(18):2122-37 25517750 - Cancer Cell. 2014 Nov 10;26(5):722-37 20871596 - Nature. 2010 Dec 23;468(7327):1067-73 26121087 - Nat Genet. 2015 Aug;47(8):864-71 20108338 - Pediatr Blood Cancer. 2010 Jul 15;55(1):26-34 2066755 - J Clin Oncol. 1991 Apr;9(4):581-91 6313408 - Exp Cell Res. 1983 Oct;148(1):21-30 24086065 - Cold Spring Harb Perspect Med. 2013 Oct;3(10):a014415 19536264 - Nature. 2009 Jun 18;459(7249):987-91 25653133 - Cancer Med. 2015 Apr;4(4):540-50 20145180 - Clin Cancer Res. 2010 Feb 15;16(4):1108-18 21289283 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3336-41 4047115 - N Engl J Med. 1985 Oct 31;313(18):1111-6 19171713 - J Clin Oncol. 2009 Mar 1;27(7):1026-33 24022278 - Pediatr Surg Int. 2013 Nov;29(11):1139-45 12557224 - Genes Chromosomes Cancer. 2003 Mar;36(3):242-9 2068130 - Prog Clin Biol Res. 1991;366:107-13 16314642 - J Clin Oncol. 2005 Dec 1;23(34):8819-27 21436895 - PLoS Genet. 2011 Mar;7(3):e1002026 25071110 - J Clin Oncol. 2014 Sep 1;32(25):2727-34 24634504 - J Natl Cancer Inst. 2014 Apr;106(4):dju047 15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20 22585002 - Nat Rev Clin Oncol. 2012 Jul;9(7):391-9 20404250 - J Clin Oncol. 2010 May 20;28(15):2625-34 10519894 - N Engl J Med. 1999 Oct 14;341(16):1165-73 23139213 - Cancer Res. 2013 Jan 1;73(1):195-204 6719137 - Science. 1984 Jun 8;224(4653):1121-4 19171716 - J Clin Oncol. 2009 Mar 1;27(7):1007-13 18413728 - Cancer Res. 2008 Apr 15;68(8):2599-609 9214616 - EMBO J. 1997 Jun 2;16(11):2985-95 10784629 - J Clin Oncol. 2000 May;18(9):1888-99 22367537 - Nature. 2012 Mar 29;483(7391):589-93 8200007 - Cancer. 1994 Jun 15;73(12):3087-93 20655465 - Cell. 2010 Jul 23;142(2):218-29 10379019 - N Engl J Med. 1999 Jun 24;340(25):1954-61 17055458 - Biochem Biophys Res Commun. 2006 Dec 8;351(1):192-7 23202128 - Nat Genet. 2013 Jan;45(1):12-7 18463370 - N Engl J Med. 2008 Jun 12;358(24):2585-93 25517749 - Cancer Cell. 2014 Nov 10;26(5):682-94 7132228 - Klin Padiatr. 1982 Jul-Aug;194(4):270-4 21889194 - Cell. 2011 Sep 16;146(6):904-17 25844600 - Oncotarget. 2015 Apr 30;6(12):10207-21 21946351 - Nat Genet. 2011 Nov;43(11):1098-103 25487495 - J Pediatr Surg. 2014 Dec;49(12):1835-8 25251827 - Genes Chromosomes Cancer. 2015 Feb;54(2):99-109 23430699 - Cancer Discov. 2013 Mar;3(3):308-23 11705866 - Clin Cancer Res. 2001 Nov;7(11):3481-90 15592497 - Oncogene. 2005 Feb 24;24(9):1533-41 24009722 - PLoS One. 2013;8(8):e72967 18328949 - Cancer Genet Cytogenet. 2008 Apr 1;182(1):40-2 21319260 - Genes Chromosomes Cancer. 2011 Apr;50(4):250-62 20879880 - N Engl J Med. 2010 Sep 30;363(14):1313-23 24704920 - Genes (Basel). 2012 May 29;3(2):320-43 21719641 - Science. 2011 Jul 22;333(6041):425 19047291 - J Clin Oncol. 2009 Jan 10;27(2):289-97 18664255 - BMC Genomics. 2008;9:353 22941191 - Nat Genet. 2012 Oct;44(10):1126-30 24214728 - Am J Med Genet A. 2013 Dec;161A(12):2972-80 9591633 - Genes Chromosomes Cancer. 1998 May;22(1):42-9 16051962 - J Clin Oncol. 2005 Aug 1;23(22):5205-10 16116152 - J Clin Oncol. 2005 Sep 20;23(27):6466-73 26100672 - Cancer Res. 2015 Aug 1;75(15):3155-66 26560027 - Nature. 2015 Dec 17;528(7582):418-21 17637745 - Oncogene. 2008 Jan 17;27(4):469-76 22706201 - Cancer Res. 2012 Jul 1;72(13):3119-24 24147068 - PLoS One. 2013;8(10):e77731 25394791 - Science. 2014 Dec 19;346(6216):1480-6 23042116 - Nat Genet. 2012 Nov;44(11):1199-206 22976801 - Br J Cancer. 2012 Oct 9;107(8):1418-22 22416102 - JAMA. 2012 Mar 14;307(10):1062-71 5279523 - Proc Natl Acad Sci U S A. 1971 Apr;68(4):820-3 21500339 - Am J Med Genet C Semin Med Genet. 2011 May 15;157C(2):83-9 23965898 - Clin Cancer Res. 2013 Nov 1;19(21):5814-21 24045179 - Clin Cancer Res. 2013 Nov 15;19(22):6173-82 23222812 - Carcinogenesis. 2013 Mar;34(3):605-11 23991058 - PLoS One. 2013;8(8):e72182 8102298 - Nat Genet. 1993 Jun;4(2):187-90 13130115 - J Natl Cancer Inst. 2003 Sep 17;95(18):1394-403 |
References_xml | – volume: 6 start-page: 224ra24 year: 2014 article-title: Detection of circulating tumor DNA in early‐ and late‐stage human malignancies [serial online] publication-title: Sci Transl Med. – volume: 100 start-page: 1627 year: 2009 end-page: 1637 article-title: Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT‐PCR: recommendations by the International Neuroblastoma Risk Group Task Force publication-title: Br J Cancer. – volume: 12 start-page: 1091 year: 2013 end-page: 1104 article-title: CDK4 inhibition restores G(1)‐S arrest in MYCN‐amplified neuroblastoma cells in the context of doxorubicin‐induced DNA damage publication-title: Cell Cycle. – volume: 72 start-page: 3119 year: 2012 end-page: 3124 article-title: MAX and MYC: a heritable breakup publication-title: Cancer Res. – volume: 50 start-page: 250 year: 2011 end-page: 262 article-title: Alternative lengthening of telomeres—an enhanced chromosomal instability in aggressive non‐MYCN amplified and telomere elongated neuroblastomas publication-title: Genes Chromosomes Cancer. – volume: 16 start-page: 1108 year: 2010 end-page: 1118 article-title: High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma publication-title: Clin Cancer Res. – volume: 55 start-page: 26 year: 2010 end-page: 34 article-title: Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP) publication-title: Pediatr Blood Cancer. – volume: 27 start-page: 1007 year: 2009 end-page: 1013 article-title: Long‐term results for children with high‐risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13‐cis‐retinoic acid: a Children's Oncology Group study publication-title: J Clin Oncol. – volume: 44 start-page: 1126 year: 2012 end-page: 1130 article-title: Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma publication-title: Nat Genet. – volume: 33 start-page: 459 year: 2003 end-page: 461 article-title: Polyalanine expansion and frameshift mutations of the paired‐like homeobox gene PHOX2B in congenital central hypoventilation syndrome publication-title: Nat Genet. – volume: 23 start-page: 8819 year: 2005 end-page: 8827 article-title: Outcomes of children with intermediate‐risk neuroblastoma after treatment stratified by MYCN status and tumor cell ploidy publication-title: J Clin Oncol. – volume: 106 start-page: dju047 year: 2014 article-title: Rare variants in TP53 and susceptibility to neuroblastoma [serial online] publication-title: J Natl Cancer Inst – volume: 3 start-page: 308 year: 2013 end-page: 323 article-title: Targeting MYCN in neuroblastoma by BET bromodomain inhibition publication-title: Cancer Discov. – volume: 22 start-page: 42 year: 1998 end-page: 49 article-title: Human neuroblastoma demonstrating clonal evolution in vivo publication-title: Genes Chromosomes Cancer. – volume: 43 start-page: 1098 year: 2011 end-page: 1103 article-title: A germline variant in the TP53 polyadenylation signal confers cancer susceptibility publication-title: Nat Genet. – volume: 224 start-page: 1121 year: 1984 end-page: 1124 article-title: Amplification of N‐myc in untreated human neuroblastomas correlates with advanced disease stage publication-title: Science. – volume: 362 start-page: 2202 year: 2010 end-page: 2211 article-title: Recent advances in neuroblastoma publication-title: N Engl J Med. – volume: 346 start-page: 1480 year: 2014 end-page: 1486 article-title: Patient‐derived models of acquired resistance can identify effective drug combinations for cancer publication-title: Science. – volume: 144 start-page: 366 year: 1956 end-page: 383 article-title: Spontaneous regression of cancer: preliminary report publication-title: Ann Surg. – volume: 3 start-page: a014415 year: 2013 article-title: Neuroblastoma and MYCN [serial online] publication-title: Cold Spring Harb Perspect Med. – volume: 85 start-page: 182 year: 2001 end-page: 189 article-title: Genetic heterogeneity and clonal evolution in neuroblastoma publication-title: Br J Cancer. – volume: 27 start-page: 289 year: 2009 end-page: 297 article-title: The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report publication-title: J Clin Oncol. – volume: 363 start-page: 1324 year: 2010 end-page: 1334 article-title: Anti‐GD2 antibody with GM‐CSF, interleukin‐2, and isotretinoin for neuroblastoma publication-title: N Engl J Med. – volume: 32 start-page: 272 year: 2011 end-page: 276 article-title: Germline gain‐of‐function mutations of ALK disrupt central nervous system development publication-title: Hum Mutat. – volume: 74 start-page: 6913 year: 2014 end-page: 6924 article-title: Common genetic variants in NEFL influence gene expression and neuroblastoma risk publication-title: Cancer Res. – volume: 28 start-page: 2625 year: 2010 end-page: 2634 article-title: Outcomes for children and adolescents with cancer: challenges for the twenty‐first century publication-title: J Clin Oncol. – volume: 27 start-page: 298 year: 2009 end-page: 303 article-title: The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report publication-title: J Clin Oncol. – volume: 34 start-page: 605 year: 2013 end-page: 611 article-title: Replication of GWAS‐identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility publication-title: Carcinogenesis. – volume: 20 start-page: 4621 year: 2001 end-page: 4628 article-title: Relative frequency and morphology of cancers in carriers of germline TP53 mutations publication-title: Oncogene. – volume: 4 start-page: 187 year: 1993 end-page: 190 article-title: Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N‐myc amplification publication-title: Nat Genet. – volume: 19 start-page: 6173 year: 2013 end-page: 6182 article-title: Dual CDK4/CDK6 inhibition induces cell‐cycle arrest and senescence in neuroblastoma publication-title: Clin Cancer Res. – volume: 9 start-page: 581 year: 1991 end-page: 591 article-title: Clinical relevance of tumor cell ploidy and N‐myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study publication-title: J Clin Oncol. – volume: 455 start-page: 975 year: 2008 end-page: 978 article-title: Activating mutations in ALK provide a therapeutic target in neuroblastoma publication-title: Nature. – volume: 32 start-page: 579 year: 2014 end-page: 586 article-title: Liquid biopsies: genotyping circulating tumor DNA publication-title: J Clin Oncol. – volume: 161A start-page: 2972 year: 2013 end-page: 2980 article-title: Weaver syndrome and EZH2 mutations: clarifying the clinical phenotype publication-title: Am J Med Genet A. – volume: 307 start-page: 1062 year: 2012 end-page: 1071 article-title: Association of age at diagnosis and genetic mutations in patients with neuroblastoma publication-title: JAMA. – volume: 455 start-page: 971 year: 2008 end-page: 974 article-title: Oncogenic mutations of ALK kinase in neuroblastoma publication-title: Nature. – volume: 73 start-page: 3087 year: 1994 end-page: 3093 article-title: Low frequency of the p53 gene mutations in neuroblastoma publication-title: Cancer. – volume: 68 start-page: 820 year: 1971 end-page: 823 article-title: Mutation and cancer: statistical study of retinoblastoma publication-title: Proc Natl Acad Sci U S A. – volume: 54 start-page: 99 year: 2015 end-page: 109 article-title: Intragenic anaplastic lymphoma kinase (ALK) rearrangements: translocations as a novel mechanism of ALK activation in neuroblastoma tumors publication-title: Genes Chromosomes Cancer. – volume: 142 start-page: 218 year: 2010 end-page: 229 article-title: NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome publication-title: Cell. – volume: 41 start-page: 718 year: 2009 end-page: 723 article-title: Common variations in BARD1 influence susceptibility to high‐risk neuroblastoma publication-title: Nat Genet. – article-title: Genetic predisposition to neuroblastoma mediated by a LMO1 oncogene super‐enhancer polymorphism publication-title: Nature – volume: 18 start-page: 1888 year: 2000 end-page: 1899 article-title: Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study publication-title: J Clin Oncol. – volume: 194 start-page: 23 year: 1976 end-page: 28 article-title: The clonal evolution of tumor cell populations publication-title: Science. – volume: 363 start-page: 1313 year: 2010 end-page: 1323 article-title: Outcome after reduced chemotherapy for intermediate‐risk neuroblastoma publication-title: N Engl J Med. – volume: 313 start-page: 1111 year: 1985 end-page: 1116 article-title: Association of multiple copies of the N‐myc oncogene with rapid progression of neuroblastomas publication-title: N Engl J Med. – volume: 7 start-page: e1002026 year: 2011 article-title: Phenotype restricted genome‐wide association study using a gene‐centric approach identifies three low‐risk neuroblastoma susceptibility loci [serial online] publication-title: PLoS Genet. – volume: 21 start-page: 658 year: 2012 end-page: 663 article-title: Replication of neuroblastoma SNP association at the BARD1 locus in African‐Americans publication-title: Cancer Epidemiol Biomarkers Prev. – volume: 14 start-page: 2504 year: 1996 end-page: 2510 article-title: Successful management of low‐stage neuroblastoma without adjuvant therapies: a comparison of two decades, 1972 through 1981 and 1982 through 1992, in a single institution publication-title: J Clin Oncol. – volume: 26 start-page: 722 year: 2014 end-page: 737 article-title: The risk‐associated long noncoding RNA NBAT‐1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation publication-title: Cancer Cell. – volume: 72 start-page: 2068 year: 2012 end-page: 2078 article-title: Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity publication-title: Cancer Res. – volume: 14 start-page: 373 year: 1996 end-page: 381 article-title: Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy publication-title: J Clin Oncol. – volume: 339 start-page: 1546 year: 2013 end-page: 1558 article-title: Cancer genome landscapes publication-title: Science. – volume: 6 start-page: 10207 year: 2015 end-page: 10221 article-title: Preclinical evaluation of the MDM2‐p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma publication-title: Oncotarget. – volume: 146 start-page: 904 year: 2011 end-page: 917 article-title: BET bromodomain inhibition as a therapeutic strategy to target c‐Myc publication-title: Cell. – volume: 358 start-page: 2585 year: 2008 end-page: 2593 article-title: Chromosome 6p22 locus associated with clinically aggressive neuroblastoma publication-title: N Engl J Med. – volume: 27 start-page: 469 year: 2008 end-page: 476 article-title: Prevalence and functional consequence of PHOX2B mutations in neuroblastoma publication-title: Oncogene. – volume: 32 start-page: 2727 year: 2014 end-page: 2734 article-title: Emergence of new ALK mutations at relapse of neuroblastoma publication-title: J Clin Oncol. – volume: 455 start-page: 930 year: 2008 end-page: 935 article-title: Identification of ALK as a major familial neuroblastoma predisposition gene publication-title: Nature. – volume: 353 start-page: 2243 year: 2005 end-page: 2253 article-title: Chromosome 1p and 11q deletions and outcome in neuroblastoma publication-title: N Engl J Med. – volume: 44 start-page: 1199 year: 2012 end-page: 1206 article-title: LIN28B induces neuroblastoma and enhances MYCN levels via let‐7 suppression publication-title: Nat Genet. – volume: 107 start-page: 1418 year: 2012 end-page: 1422 article-title: Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project publication-title: Br J Cancer. – volume: 340 start-page: 1954 year: 1999 end-page: 1961 article-title: Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma publication-title: N Engl J Med. – volume: 26 start-page: 682 year: 2014 end-page: 694 article-title: ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma publication-title: Cancer Cell. – volume: 58 start-page: 2624 year: 1998 end-page: 2632 article-title: Disruption of the cyclin D/cyclin‐dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma publication-title: Cancer Res. – volume: 351 start-page: 192 year: 2006 end-page: 197 article-title: MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells publication-title: Biochem Biophys Res Commun. – volume: 19 start-page: 2122 year: 2005 end-page: 2137 article-title: p53 isoforms can regulate p53 transcriptional activity publication-title: Genes Dev. – volume: 8 start-page: e72182 year: 2013 article-title: Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis [serial online] publication-title: PLoS One. – volume: 27 start-page: 1026 year: 2009 end-page: 1033 article-title: Overall genomic pattern is a predictor of outcome in neuroblastoma publication-title: J Clin Oncol. – volume: 10 start-page: 983 year: 2011 end-page: 993 article-title: Functional analysis of the p53 pathway in neuroblastoma cells using the small‐molecule MDM2 antagonist nutlin‐3 publication-title: Mol Cancer Ther. – volume: 9 start-page: 353 year: 2008 article-title: High‐resolution array copy number analyses for detection of deletion, gain, amplification and copy‐neutral LOH in primary neuroblastoma tumors: four cases of homozygous deletions of the CDKN2A gene [serial online] publication-title: BMC Genomics. – volume: 369 start-page: 2106 year: 2007 end-page: 2120 article-title: Neuroblastoma publication-title: Lancet. – volume: 64 start-page: 8816 year: 2004 end-page: 8820 article-title: Activating mutations of the Noonan syndrome‐associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia publication-title: Cancer Res. – volume: 7 start-page: 3481 year: 2001 end-page: 3490 article-title: p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease publication-title: Clin Cancer Res. – volume: 73 start-page: 195 year: 2013 end-page: 204 article-title: Characterization of rearrangements involving the ALK gene reveals a novel truncated form associated with tumor aggressiveness in neuroblastoma publication-title: Cancer Res. – volume: 45 start-page: 12 year: 2013 end-page: 17 article-title: Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma publication-title: Nat Genet. – volume: 95 start-page: 1394 year: 2003 end-page: 1403 article-title: Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma publication-title: J Natl Cancer Inst. – volume: 29 start-page: 1139 year: 2013 end-page: 1145 article-title: Detection of MYCN amplification using blood plasma: noninvasive therapy evaluation and prediction of prognosis in neuroblastoma publication-title: Pediatr Surg Int. – volume: 36 start-page: 14 year: 2001 end-page: 19 article-title: 17q gain in neuroblastoma predicts adverse clinical outcome. UK Cancer Cytogenetics Group and the UK Children's Cancer Study Group publication-title: Med Pediatr Oncol. – volume: 483 start-page: 589 year: 2012 end-page: 593 article-title: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes publication-title: Nature. – volume: 14 start-page: 472 year: 2013 end-page: 480 article-title: Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large‐cell lymphoma: a Children's Oncology Group phase 1 consortium study publication-title: Lancet Oncol. – volume: 455 start-page: 967 year: 2008 end-page: 970 article-title: Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma publication-title: Nature. – volume: 118A start-page: 309 year: 2003 end-page: 313 article-title: Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma publication-title: Am J Med Genet A. – volume: 8 start-page: e72967 year: 2013 article-title: BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models [serial online] publication-title: PLoS One. – volume: 148 start-page: 21 year: 1983 end-page: 30 article-title: Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines publication-title: Exp Cell Res. – volume: 18 start-page: 2955 year: 1999 end-page: 2966 article-title: The basic region/helix‐loop‐helix/leucine zipper domain of Myc proto‐oncoproteins: function and regulation publication-title: Oncogene. – volume: 51 start-page: 10 year: 2012 end-page: 19 article-title: Copy number defects of G1‐cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis publication-title: Genes Chromosomes Cancer. – volume: 469 start-page: 216 year: 2011 end-page: 220 article-title: Integrative genomics identifies LMO1 as a neuroblastoma oncogene publication-title: Nature. – volume: 61 start-page: 679 year: 2001 end-page: 686 article-title: Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma publication-title: Cancer Res. – volume: 36 start-page: 37 year: 2001 end-page: 41 article-title: Detailed molecular analysis of 1p36 in neuroblastoma publication-title: Med Pediatr Oncol. – volume: 56 start-page: 757 year: 2011 end-page: 761 article-title: Determination of 17q gain in patients with neuroblastoma by analysis of circulating DNA publication-title: Pediatr Blood Cancer. – volume: 157C start-page: 83 year: 2011 end-page: 89 article-title: Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes publication-title: Am J Med Genet C Semin Med Genet. – volume: 45 start-page: 279 year: 2013 end-page: 284 article-title: The genetic landscape of high‐risk neuroblastoma publication-title: Nat Genet. – volume: 23 start-page: 5205 year: 2005 end-page: 5210 article-title: Prediction of MYCN amplification in neuroblastoma using serum DNA and real‐time quantitative polymerase chain reaction publication-title: J Clin Oncol. – volume: 47 start-page: 864 year: 2015 end-page: 871 article-title: Relapsed neuroblastomas show frequent RAS‐MAPK pathway mutations publication-title: Nat Genet. – volume: 28 start-page: 3122 year: 2010 end-page: 3130 article-title: Accumulation of segmental alterations determines progression in neuroblastoma publication-title: J Clin Oncol. – volume: 3 start-page: 39 year: 1985 end-page: 41 article-title: Human neuroblastoma cells and 13‐cis‐retinoic acid publication-title: J Neurooncol. – year: 2015 – volume: 341 start-page: 1165 year: 1999 end-page: 1173 article-title: Treatment of high‐risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13‐cis‐retinoic acid. Children's Cancer Group publication-title: N Engl J Med. – volume: 16 start-page: 2985 year: 1997 end-page: 2995 article-title: Targeted expression of MYCN causes neuroblastoma in transgenic mice publication-title: EMBO J. – volume: 31 start-page: 752 year: 2012 end-page: 763 article-title: MYCN sensitizes neuroblastoma to the MDM2‐p53 antagonists Nutlin‐3 and MI‐63 publication-title: Oncogene. – volume: 9 start-page: 391 year: 2012 end-page: 399 article-title: Targeting ALK in neuroblastoma—preclinical and clinical advancements publication-title: Nat Rev Clin Oncol. – volume: 75 start-page: 3156 year: 2015 end-page: 3166 article-title: CASC15‐S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus publication-title: Cancer Res. – volume: 24 start-page: 1533 year: 2005 end-page: 1541 article-title: Altered expression of cell cycle genes distinguishes aggressive neuroblastoma publication-title: Oncogene. – volume: 108 start-page: 3336 year: 2011 end-page: 3341 article-title: RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma publication-title: Proc Natl Acad Sci U S A. – volume: 71 start-page: 98 year: 2011 end-page: 105 article-title: Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy publication-title: Cancer Res. – volume: 20 start-page: 912 year: 2014 end-page: 925 article-title: BET bromodomain inhibition of MYC‐amplified medulloblastoma publication-title: Clin Cancer Res. – volume: 36 start-page: 242 year: 2003 end-page: 249 article-title: Rearrangements and increased expression of cyclin D1 (CCND1) in neuroblastoma publication-title: Genes Chromosomes Cancer. – volume: 68 start-page: 2599 year: 2008 end-page: 2609 article-title: Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma publication-title: Cancer Res. – volume: 459 start-page: 987 year: 2009 end-page: 991 article-title: Copy number variation at 1q21.1 associated with neuroblastoma publication-title: Nature. – volume: 333 start-page: 425 year: 2011 article-title: Altered telomeres in tumors with ATRX and DAXX mutations [serial online] publication-title: Science. – volume: 49 start-page: 1835 year: 2014 end-page: 1838 article-title: Clinical features of ATRX or DAXX mutated neuroblastoma publication-title: J Pediatr Surg. – volume: 182 start-page: 40 year: 2008 end-page: 42 article-title: Germline PTPN11 missense mutation in a case of Noonan syndrome associated with mediastinal and retroperitoneal neuroblastic tumors publication-title: Cancer Genet Cytogenet. – volume: 18 start-page: 748 year: 2012 end-page: 757 article-title: Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways publication-title: Clin Cancer Res. – volume: 152A start-page: 1531 year: 2010 end-page: 1535 article-title: Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30‐year‐old mystery publication-title: Am J Med Genet A. – volume: 468 start-page: 1067 year: 2010 end-page: 1073 article-title: Selective inhibition of BET bromodomains publication-title: Nature. – volume: 60 start-page: 332 year: 2013 end-page: 335 article-title: Two cases of localized neuroblastoma with multiple segmental chromosomal alterations and metastatic progression publication-title: Pediatr Blood Cancer. – volume: 4 start-page: 540 year: 2015 end-page: 550 article-title: Detection of tumor ALK status in neuroblastoma patients using peripheral blood publication-title: Cancer Med. – volume: 23 start-page: 6466 year: 2005 end-page: 6473 article-title: Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study publication-title: J Clin Oncol. – volume: 3 start-page: 320 year: 2012 end-page: 343 article-title: The role of bromodomain proteins in regulating gene expression publication-title: Genes (Basel). – volume: 194 start-page: 270 year: 1982 end-page: 274 article-title: DNA‐ploidy and proliferation in metastatic neuroblastoma [article in German] publication-title: Klin Padiatr. – volume: 19 start-page: 5814 year: 2013 end-page: 5821 article-title: New strategies in neuroblastoma: therapeutic targeting of MYCN and ALK publication-title: Clin Cancer Res. – volume: 24 start-page: 514 year: 1972 end-page: 532 article-title: Mutation and cancer: neuroblastoma and pheochromocytoma publication-title: Am J Hum Genet. – volume: 8 start-page: e77731 year: 2013 article-title: Massively parallel sequencing reveals an accumulation of de novo mutations and an activating mutation of LPAR1 in a patient with metastatic neuroblastoma [serial online] publication-title: PLoS One. – volume: 366 start-page: 107 year: 1991 end-page: 113 article-title: Combined analysis of DNA ploidy index and N‐myc genomic content in neuroblastoma publication-title: Prog Clin Biol Res. – ident: e_1_2_15_101_1 doi: 10.1016/j.jpedsurg.2014.09.029 – ident: e_1_2_15_92_1 doi: 10.1158/1078-0432.CCR-13-1675 – ident: e_1_2_15_89_1 doi: 10.1200/JCO.2013.54.0674 – ident: e_1_2_15_104_1 doi: 10.1054/bjoc.2001.1849 – ident: e_1_2_15_112_1 doi: 10.1056/NEJM199910143411601 – ident: e_1_2_15_8_1 doi: 10.1056/NEJMoa0911123 – ident: e_1_2_15_38_1 doi: 10.1038/nature07399 – ident: e_1_2_15_93_1 doi: 10.4161/cc.24091 – ident: e_1_2_15_20_1 doi: 10.1038/ng.2387 – ident: e_1_2_15_35_1 article-title: Genetic predisposition to neuroblastoma mediated by a LMO1 oncogene super‐enhancer polymorphism publication-title: Nature – ident: e_1_2_15_7_1 doi: 10.1097/00000658-195609000-00007 – ident: e_1_2_15_91_1 doi: 10.1002/gcc.20926 – ident: e_1_2_15_3_1 – ident: e_1_2_15_60_1 doi: 10.1101/gad.1339905 – ident: e_1_2_15_36_1 doi: 10.1158/1078-0432.CCR-13-0680 – ident: e_1_2_15_118_1 doi: 10.1073/pnas.1012351108 – ident: e_1_2_15_13_1 doi: 10.1056/NEJMoa052399 – ident: e_1_2_15_54_1 doi: 10.1038/sj.onc.1204621 – ident: e_1_2_15_27_1 doi: 10.1093/jnci/dju047 – ident: e_1_2_15_69_1 doi: 10.1200/JCO.2009.26.7955 – ident: e_1_2_15_98_1 doi: 10.1038/onc.2011.270 – ident: e_1_2_15_22_1 doi: 10.1038/ng.374 – volume: 7 start-page: 3481 year: 2001 ident: e_1_2_15_96_1 article-title: p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease publication-title: Clin Cancer Res. – ident: e_1_2_15_50_1 doi: 10.1038/ng1130 – ident: e_1_2_15_67_1 doi: 10.1200/JCO.2004.00.2931 – ident: e_1_2_15_77_1 doi: 10.1016/j.bbrc.2006.10.020 – ident: e_1_2_15_100_1 doi: 10.1126/science.1207313 – ident: e_1_2_15_41_1 doi: 10.1038/ng.2529 – ident: e_1_2_15_78_1 doi: 10.1038/sj.onc.1202750 – ident: e_1_2_15_64_1 doi: 10.1200/JCO.2000.18.9.1888 – ident: e_1_2_15_23_1 doi: 10.1038/nature07261 – ident: e_1_2_15_70_1 doi: 10.1002/pbc.24311 – ident: e_1_2_15_86_1 doi: 10.1002/1096-911X(20010101)36:1<37::AID-MPO1010>3.0.CO;2-L – ident: e_1_2_15_123_1 doi: 10.1126/scitranslmed.3007094 – ident: e_1_2_15_126_1 doi: 10.1002/pbc.22816 – ident: e_1_2_15_40_1 doi: 10.1038/ng.2493 – volume: 24 start-page: 514 year: 1972 ident: e_1_2_15_44_1 article-title: Mutation and cancer: neuroblastoma and pheochromocytoma publication-title: Am J Hum Genet. – ident: e_1_2_15_30_1 doi: 10.1371/journal.pgen.1002026 – ident: e_1_2_15_43_1 doi: 10.1001/jama.2012.228 – ident: e_1_2_15_57_1 doi: 10.1038/ng.2436 – ident: e_1_2_15_80_1 doi: 10.3390/genes3020320 – ident: e_1_2_15_74_1 doi: 10.1093/emboj/16.11.2985 – ident: e_1_2_15_51_1 doi: 10.1002/ajmg.a.10167 – ident: e_1_2_15_99_1 doi: 10.1158/1535-7163.MCT-10-1090 – ident: e_1_2_15_88_1 doi: 10.1158/1078-0432.CCR-11-2056 – ident: e_1_2_15_2_1 doi: 10.1056/NEJMra0804577 – ident: e_1_2_15_58_1 doi: 10.1038/ng.926 – ident: e_1_2_15_111_1 doi: 10.1016/0014-4827(83)90184-2 – ident: e_1_2_15_79_1 doi: 10.1101/cshperspect.a014415 – ident: e_1_2_15_121_1 doi: 10.1126/science.1254721 – ident: e_1_2_15_10_1 doi: 10.1200/JCO.1996.14.2.373 – ident: e_1_2_15_29_1 doi: 10.1158/1055-9965.EPI-11-0830 – ident: e_1_2_15_48_1 doi: 10.1016/S1470-2045(13)70095-0 – ident: e_1_2_15_14_1 doi: 10.1056/NEJM199906243402504 – ident: e_1_2_15_94_1 doi: 10.1002/gcc.10166 – ident: e_1_2_15_106_1 doi: 10.1055/s-2008-1033816 – ident: e_1_2_15_108_1 doi: 10.1158/0008-5472.CAN-10-2366 – ident: e_1_2_15_115_1 doi: 10.1038/sj.onc.1208341 – ident: e_1_2_15_16_1 doi: 10.1200/JCO.1991.9.4.581 – ident: e_1_2_15_95_1 doi: 10.1158/1078-0432.CCR-09-1865 – ident: e_1_2_15_45_1 doi: 10.1073/pnas.68.4.820 – ident: e_1_2_15_59_1 doi: 10.1002/pbc.22430 – ident: e_1_2_15_122_1 doi: 10.1200/JCO.2012.45.2011 – ident: e_1_2_15_68_1 doi: 10.1200/JCO.2008.16.0630 – ident: e_1_2_15_97_1 doi: 10.18632/oncotarget.3504 – ident: e_1_2_15_119_1 doi: 10.1186/1471-2164-9-353 – ident: e_1_2_15_31_1 doi: 10.1038/nature08035 – ident: e_1_2_15_81_1 doi: 10.1038/nature09504 – ident: e_1_2_15_110_1 doi: 10.1016/j.cell.2010.06.004 – ident: e_1_2_15_46_1 doi: 10.1016/j.ccell.2014.09.019 – ident: e_1_2_15_61_1 doi: 10.1002/1097-0142(19940615)73:12<3087::AID-CNCR2820731230>3.0.CO;2-9 – ident: e_1_2_15_105_1 doi: 10.1002/(SICI)1098-2264(199805)22:1<42::AID-GCC6>3.0.CO;2-7 – ident: e_1_2_15_33_1 doi: 10.1158/0008-5472.CAN-11-3703 – ident: e_1_2_15_65_1 doi: 10.1038/ng0693-187 – ident: e_1_2_15_25_1 doi: 10.1038/nature07398 – ident: e_1_2_15_62_1 doi: 10.1038/bjc.2012.375 – ident: e_1_2_15_32_1 doi: 10.1158/0008-5472.CAN-14-3613 – ident: e_1_2_15_4_1 doi: 10.1016/S0140-6736(07)60983-0 – ident: e_1_2_15_114_1 doi: 10.1158/0008-5472.CAN-07-5032 – ident: e_1_2_15_52_1 doi: 10.1002/ajmg.c.30300 – ident: e_1_2_15_21_1 doi: 10.1038/nature09609 – ident: e_1_2_15_73_1 doi: 10.1158/0008-5472.CAN-12-1242 – ident: e_1_2_15_84_1 doi: 10.1158/1078-0432.CCR-13-2281 – ident: e_1_2_15_102_1 doi: 10.1002/gcc.20850 – ident: e_1_2_15_28_1 doi: 10.1093/carcin/bgs380 – ident: e_1_2_15_5_1 doi: 10.1200/JCO.2009.27.0421 – ident: e_1_2_15_37_1 doi: 10.1038/nature07397 – ident: e_1_2_15_6_1 doi: 10.1200/JCO.1996.14.9.2504 – ident: e_1_2_15_85_1 doi: 10.1371/journal.pone.0072967 – ident: e_1_2_15_124_1 doi: 10.1007/s00383-013-3374-9 – ident: e_1_2_15_12_1 doi: 10.1056/NEJM198510313131802 – ident: e_1_2_15_66_1 doi: 10.1056/NEJMoa1001527 – ident: e_1_2_15_47_1 doi: 10.1002/humu.21442 – ident: e_1_2_15_18_1 doi: 10.1200/JCO.2008.16.6785 – ident: e_1_2_15_120_1 doi: 10.1038/sj.bjc.6605029 – ident: e_1_2_15_72_1 doi: 10.1002/gcc.22223 – ident: e_1_2_15_39_1 doi: 10.1038/nrclinonc.2012.72 – volume: 366 start-page: 107 year: 1991 ident: e_1_2_15_15_1 article-title: Combined analysis of DNA ploidy index and N‐myc genomic content in neuroblastoma publication-title: Prog Clin Biol Res. – ident: e_1_2_15_53_1 doi: 10.1016/j.cancergencyto.2007.12.005 – ident: e_1_2_15_9_1 doi: 10.1200/JCO.2007.13.8925 – ident: e_1_2_15_34_1 doi: 10.1016/j.ccell.2014.09.014 – volume: 3 start-page: 39 year: 1985 ident: e_1_2_15_113_1 article-title: Human neuroblastoma cells and 13‐cis‐retinoic acid publication-title: J Neurooncol. – ident: e_1_2_15_103_1 doi: 10.1126/science.959840 – ident: e_1_2_15_109_1 doi: 10.1158/0008-5472.CAN-04-1923 – ident: e_1_2_15_83_1 doi: 10.1158/2159-8290.CD-12-0418 – ident: e_1_2_15_87_1 doi: 10.1126/science.1235122 – ident: e_1_2_15_17_1 doi: 10.1200/JCO.2005.05.582 – ident: e_1_2_15_42_1 doi: 10.1038/nature10910 – ident: e_1_2_15_75_1 doi: 10.1158/0008-5472.CAN-11-3891 – ident: e_1_2_15_56_1 doi: 10.1002/ajmg.a.33384 – volume: 58 start-page: 2624 year: 1998 ident: e_1_2_15_117_1 article-title: Disruption of the cyclin D/cyclin‐dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma publication-title: Cancer Res. – ident: e_1_2_15_63_1 doi: 10.1002/1096-911X(20010101)36:1<14::AID-MPO1005>3.0.CO;2-G – ident: e_1_2_15_125_1 doi: 10.1200/JCO.2005.02.014 – ident: e_1_2_15_71_1 doi: 10.1371/journal.pone.0072182 – ident: e_1_2_15_76_1 doi: 10.1093/jnci/djg045 – ident: e_1_2_15_107_1 doi: 10.1371/journal.pone.0077731 – ident: e_1_2_15_82_1 doi: 10.1016/j.cell.2011.08.017 – volume: 61 start-page: 679 year: 2001 ident: e_1_2_15_116_1 article-title: Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma publication-title: Cancer Res. – ident: e_1_2_15_55_1 doi: 10.1002/ajmg.a.36229 – ident: e_1_2_15_90_1 doi: 10.1038/ng.3333 – ident: e_1_2_15_11_1 doi: 10.1126/science.6719137 – ident: e_1_2_15_49_1 doi: 10.1038/sj.onc.1210659 – ident: e_1_2_15_19_1 doi: 10.1200/JCO.2008.16.6876 – ident: e_1_2_15_127_1 doi: 10.1002/cam4.414 – ident: e_1_2_15_24_1 doi: 10.1056/NEJMoa0708698 – ident: e_1_2_15_26_1 doi: 10.1158/0008-5472.CAN-14-0431 – reference: 21719641 - Science. 2011 Jul 22;333(6041):425 – reference: 10379019 - N Engl J Med. 1999 Jun 24;340(25):1954-61 – reference: 20108338 - Pediatr Blood Cancer. 2010 Jul 15;55(1):26-34 – reference: 24045179 - Clin Cancer Res. 2013 Nov 15;19(22):6173-82 – reference: 17637745 - Oncogene. 2008 Jan 17;27(4):469-76 – reference: 20145180 - Clin Cancer Res. 2010 Feb 15;16(4):1108-18 – reference: 10378692 - Oncogene. 1999 May 13;18(19):2955-66 – reference: 21370407 - Pediatr Blood Cancer. 2011 May;56(5):757-61 – reference: 19412175 - Nat Genet. 2009 Jun;41(6):718-23 – reference: 23539594 - Science. 2013 Mar 29;339(6127):1546-58 – reference: 21059859 - Cancer Res. 2011 Jan 1;71(1):98-105 – reference: 24297863 - Clin Cancer Res. 2014 Feb 15;20(4):912-25 – reference: 25517750 - Cancer Cell. 2014 Nov 10;26(5):722-37 – reference: 19171713 - J Clin Oncol. 2009 Mar 1;27(7):1026-33 – reference: 24634504 - J Natl Cancer Inst. 2014 Apr;106(4):dju047 – reference: 20871596 - Nature. 2010 Dec 23;468(7327):1067-73 – reference: 22328350 - Cancer Epidemiol Biomarkers Prev. 2012 Apr;21(4):658-63 – reference: 24022278 - Pediatr Surg Int. 2013 Nov;29(11):1139-45 – reference: 21725357 - Oncogene. 2012 Feb 9;31(6):752-63 – reference: 24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24 – reference: 25517749 - Cancer Cell. 2014 Nov 10;26(5):682-94 – reference: 17055458 - Biochem Biophys Res Commun. 2006 Dec 8;351(1):192-7 – reference: 12687660 - Am J Med Genet A. 2003 May 1;118A(4):309-13 – reference: 18923525 - Nature. 2008 Oct 16;455(7215):975-8 – reference: 21500339 - Am J Med Genet C Semin Med Genet. 2011 May 15;157C(2):83-9 – reference: 22976801 - Br J Cancer. 2012 Oct 9;107(8):1418-22 – reference: 25394791 - Science. 2014 Dec 19;346(6216):1480-6 – reference: 12640453 - Nat Genet. 2003 Apr;33(4):459-61 – reference: 9635589 - Cancer Res. 1998 Jun 15;58(12):2624-32 – reference: 21124317 - Nature. 2011 Jan 13;469(7329):216-20 – reference: 18463370 - N Engl J Med. 2008 Jun 12;358(24):2585-93 – reference: 22416102 - JAMA. 2012 Mar 14;307(10):1062-71 – reference: 20516441 - J Clin Oncol. 2010 Jul 1;28(19):3122-30 – reference: 20655465 - Cell. 2010 Jul 23;142(2):218-29 – reference: 16116152 - J Clin Oncol. 2005 Sep 20;23(27):6466-73 – reference: 22367537 - Nature. 2012 Mar 29;483(7391):589-93 – reference: 21946351 - Nat Genet. 2011 Nov;43(11):1098-103 – reference: 23139213 - Cancer Res. 2013 Jan 1;73(1):195-204 – reference: 11498785 - Oncogene. 2001 Aug 2;20(34):4621-8 – reference: 2068130 - Prog Clin Biol Res. 1991;366:107-13 – reference: 17586306 - Lancet. 2007 Jun 23;369(9579):2106-20 – reference: 20879881 - N Engl J Med. 2010 Sep 30;363(14):1324-34 – reference: 20503330 - Am J Med Genet A. 2010 Jun;152A(6):1531-5 – reference: 26100672 - Cancer Res. 2015 Aug 1;75(15):3155-66 – reference: 13363274 - Ann Surg. 1956 Sep;144(3):366-83 – reference: 20404250 - J Clin Oncol. 2010 May 20;28(15):2625-34 – reference: 23334666 - Nat Genet. 2013 Mar;45(3):279-84 – reference: 24449238 - J Clin Oncol. 2014 Feb 20;32(6):579-86 – reference: 24704920 - Genes (Basel). 2012 May 29;3(2):320-43 – reference: 19171716 - J Clin Oncol. 2009 Mar 1;27(7):1007-13 – reference: 2066755 - J Clin Oncol. 1991 Apr;9(4):581-91 – reference: 4340974 - Am J Hum Genet. 1972 Sep;24(5):514-32 – reference: 15592497 - Oncogene. 2005 Feb 24;24(9):1533-41 – reference: 23202128 - Nat Genet. 2013 Jan;45(1):12-7 – reference: 959840 - Science. 1976 Oct 1;194(4260):23-8 – reference: 24086065 - Cold Spring Harb Perspect Med. 2013 Oct;3(10):a014415 – reference: 8200007 - Cancer. 1994 Jun 15;73(12):3087-93 – reference: 20879880 - N Engl J Med. 2010 Sep 30;363(14):1313-23 – reference: 6313408 - Exp Cell Res. 1983 Oct;148(1):21-30 – reference: 10519894 - N Engl J Med. 1999 Oct 14;341(16):1165-73 – reference: 25487495 - J Pediatr Surg. 2014 Dec;49(12):1835-8 – reference: 11212268 - Cancer Res. 2001 Jan 15;61(2):679-86 – reference: 18923524 - Nature. 2008 Oct 16;455(7215):971-4 – reference: 4047115 - N Engl J Med. 1985 Oct 31;313(18):1111-6 – reference: 16131611 - Genes Dev. 2005 Sep 15;19(18):2122-37 – reference: 25071110 - J Clin Oncol. 2014 Sep 1;32(25):2727-34 – reference: 23462184 - Cell Cycle. 2013 Apr 1;12(7):1091-104 – reference: 21436895 - PLoS Genet. 2011 Mar;7(3):e1002026 – reference: 19047290 - J Clin Oncol. 2009 Jan 10;27(2):298-303 – reference: 10784629 - J Clin Oncol. 2000 May;18(9):1888-99 – reference: 24147068 - PLoS One. 2013;8(10):e77731 – reference: 15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20 – reference: 23430699 - Cancer Discov. 2013 Mar;3(3):308-23 – reference: 19401690 - Br J Cancer. 2009 May 19;100(10):1627-37 – reference: 21319260 - Genes Chromosomes Cancer. 2011 Apr;50(4):250-62 – reference: 25653133 - Cancer Med. 2015 Apr;4(4):540-50 – reference: 16314642 - J Clin Oncol. 2005 Dec 1;23(34):8819-27 – reference: 23965898 - Clin Cancer Res. 2013 Nov 1;19(21):5814-21 – reference: 26560027 - Nature. 2015 Dec 17;528(7582):418-21 – reference: 26121087 - Nat Genet. 2015 Aug;47(8):864-71 – reference: 19047291 - J Clin Oncol. 2009 Jan 10;27(2):289-97 – reference: 21972109 - Hum Mutat. 2011 Mar;32(3):272-6 – reference: 18664255 - BMC Genomics. 2008;9:353 – reference: 5279523 - Proc Natl Acad Sci U S A. 1971 Apr;68(4):820-3 – reference: 9214616 - EMBO J. 1997 Jun 2;16(11):2985-95 – reference: 22941191 - Nat Genet. 2012 Oct;44(10):1126-30 – reference: 22034077 - Genes Chromosomes Cancer. 2012 Jan;51(1):10-9 – reference: 2987426 - J Neurooncol. 1985;3(1):39-41 – reference: 16051962 - J Clin Oncol. 2005 Aug 1;23(22):5205-10 – reference: 25312269 - Cancer Res. 2014 Dec 1;74(23):6913-24 – reference: 21889194 - Cell. 2011 Sep 16;146(6):904-17 – reference: 16306521 - N Engl J Med. 2005 Nov 24;353(21):2243-53 – reference: 23991058 - PLoS One. 2013;8(8):e72182 – reference: 25844600 - Oncotarget. 2015 Apr 30;6(12):10207-21 – reference: 18328949 - Cancer Genet Cytogenet. 2008 Apr 1;182(1):40-2 – reference: 19536264 - Nature. 2009 Jun 18;459(7249):987-91 – reference: 21289283 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3336-41 – reference: 7132228 - Klin Padiatr. 1982 Jul-Aug;194(4):270-4 – reference: 13130115 - J Natl Cancer Inst. 2003 Sep 17;95(18):1394-403 – reference: 8636746 - J Clin Oncol. 1996 Feb;14(2):373-81 – reference: 24009722 - PLoS One. 2013;8(8):e72967 – reference: 22997192 - Pediatr Blood Cancer. 2013 Feb;60(2):332-5 – reference: 9591633 - Genes Chromosomes Cancer. 1998 May;22(1):42-9 – reference: 23042116 - Nat Genet. 2012 Nov;44(11):1199-206 – reference: 22706201 - Cancer Res. 2012 Jul 1;72(13):3119-24 – reference: 18724359 - Nature. 2008 Oct 16;455(7215):930-5 – reference: 11461074 - Br J Cancer. 2001 Jul 20;85(2):182-9 – reference: 23222812 - Carcinogenesis. 2013 Mar;34(3):605-11 – reference: 24214728 - Am J Med Genet A. 2013 Dec;161A(12):2972-80 – reference: 23598171 - Lancet Oncol. 2013 May;14(6):472-80 – reference: 25251827 - Genes Chromosomes Cancer. 2015 Feb;54(2):99-109 – reference: 22585002 - Nat Rev Clin Oncol. 2012 Jul;9(7):391-9 – reference: 18413728 - Cancer Res. 2008 Apr 15;68(8):2599-609 – reference: 6719137 - Science. 1984 Jun 8;224(4653):1121-4 – reference: 21460101 - Mol Cancer Ther. 2011 Jun;10(6):983-93 – reference: 20558371 - N Engl J Med. 2010 Jun 10;362(23):2202-11 – reference: 11705866 - Clin Cancer Res. 2001 Nov;7(11):3481-90 – reference: 12557224 - Genes Chromosomes Cancer. 2003 Mar;36(3):242-9 – reference: 8102298 - Nat Genet. 1993 Jun;4(2):187-90 – reference: 11464868 - Med Pediatr Oncol. 2001 Jan;36(1):14-9 – reference: 18923523 - Nature. 2008 Oct 16;455(7215):967-70 – reference: 22142829 - Clin Cancer Res. 2012 Feb 1;18(3):748-57 – reference: 22350409 - Cancer Res. 2012 Apr 15;72(8):2068-78 – reference: 8823329 - J Clin Oncol. 1996 Sep;14(9):2504-10 – reference: 11464901 - Med Pediatr Oncol. 2001 Jan;36(1):37-41 |
SSID | ssj0007253 |
Score | 2.561498 |
SecondaryResourceType | review_article |
Snippet | Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | anaplastic lymphoma kinase (ALK) Animals clonal evolution Genome-Wide Association Study - methods Genome-Wide Association Study - trends genome‐wide association studies Genomics - methods Genomics - trends Humans neuroblastoma Neuroblastoma - genetics pediatric v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog (MYCN) |
Title | Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcncr.29706 https://www.ncbi.nlm.nih.gov/pubmed/26539795 https://www.proquest.com/docview/1760852978 https://www.proquest.com/docview/1919966313 https://pubmed.ncbi.nlm.nih.gov/PMC4707066 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXVQ-IC-9HeGkQXEByaq8fayMuVSCqkNpDRaVckOV9qRaJjRKHA9-H78nMru0QiirBLVIm8mY9O_v37MzPjL3WRDuNVBhoXqRBUqUmkDZNA1FhyBTaVlJRc_LpWXZykXxapIsD9n7ohfF8iDHhRivDxWta4JXcHO2goapR6ykvhONtR3FG4PwP5zt2lOA9gjLMgzSJFyOblB_tfrq_G12RmFcrJX9XsG4Lmt9mX4bB-8qTr9NtJ6fqxx9cx__9d3fYrV6bwrF3prvswDT32I3T_vT9Pvt57AsGNlA3gMIROtroln06EQj3uqrVBloLDpMpUZl37ap6B_N1u4J6yF8A1bODB_baPmcIVaOBcFIV9cdD0343S-gJUdC1ULuGYteUBb4Xg3q-hmuCO_T3yccH7GL-8fPsJOhf8xAolI9ZUEUGZVyIUVnJXIcGIwTqEMutoYcxLsKKalFNFEtO_qbxgVJbLmSeFVppG8cP2WHTNuYxAxVbhcGbx8rqxKQCHc3gJKLHSaFsmE_Ym-F2l6pnoNOrOJalpzfzkua9dPM-Ya9G22-e_PFXq5eD15S4MOm0pWpMu92UkchQzqJRfo1NQUXgWRzFE_bIe9p4LU7QYFGkEyb2fHA0IDD4_jdNfekA4YnAQJ7h2N46F7tm-OXsbHbuPj35F-On7CYKxz4V9YwdduuteY7irJMv3CL8BYVbPak |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXqEjApbwhPAfBBSSn9vqxNrcqEAVocqhaKTfL3oewSOwqcTjwffiezKw3DqGoEtwiZSI769nZv2dnfsvYG0W000D6nuJZ7EVFrL3SxLEnCgyZQpmilNScPJ0lk_Po8zyeu9oc6oXp-BB9wo1mho3XNMEpIX20o4bKWq6GPBME3L5OG3Q0Lz-c7uhRgjsIpZ96cRTOezopP9r9dn89uiQyL9dK_q5h7SI0vt2dtLq27EKqPfk23LTlUP74g-z43__vDjt08hSOO3-6y67p-h67MXUb8PfZz-OuZmANVQ2oHaGltW7hMopAxNdlJdfQGLCkzBLFedssi_cwXjVLqLYpDKCSduiYvcalDaGoFRBRqqAWeaib73oBDhIFbQOV7Sm2fVnQtWNQ29f2mmD3_bv84wN2Pv54Npp47qQHT6KCTLwi0KjkfAzMskyVrzFIoBQx3Gh6H-PCL6gcVQdhycnlFL5TKsNFmSaZksqE4UN2UDe1fsxAhkZi_OahNCrSsUBf0ziI6HSlkMZPB-zt9nnn0mHQ6TSORd4BnHlO457bcR-w173tRQf_-KvVq63b5Dg3acOlqHWzWeeBSFDRolF6hU1GdeBJGIQD9qhztf5anLjBIosHTOw5YW9AbPD9b-rqq2WERwJjeYL39s762BW3n49mo1P76cm_GL9kNydn05P85NPsy1N2C3Wky0w9YwftaqOfo1Zryxd2Rv4CIn9Bxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXVZEqLryhKa9BcAHJqb1-bIy4VIGoPBqhikq5IMveh7Ca2FXicOD78D2Z2bUdQlEluEXKRN6sZ2f_np35mbEXimingfQ9xdPYi_JYe4WJY0_kGDKFMnkhqTn5ZJocn0UfZvFsh73pemEcH6JPuNHKsPGaFviFMocbaKis5HLIU0G87WtRgo9XJIlON_AowVsGpT_y4iic9XBSfrj57fZ2dEljXi6V_F3C2j1ocpN97UbvSk_Oh-umGMoff4Ad__fv3WI3WnEKR86bbrMdXd1heyft8ftd9vPIVQysoKwAlSM0tNPN23wiEO91UcoV1AYsJ7NAad7Ui_w1TJb1AsougQFU0A6O2GvapCHklQLiSeXUIA9V_V3PoUVEQVNDaTuKbVcWuGYMavrqrgn21N9lH--xs8m7L-Njr33PgydRPyZeHmjUcT6GZVmMlK8xRKAQMdxoehrjws-pGFUHYcHJ4RQ-USrDRTFKUiWVCcP7bLeqK73PQIZGYvTmoTQq0rFAT9M4iehyhZDGHw3Yy-52Z7KFoNO7OOaZwzfzjOY9s_M-YM972wuH_vir1bPOazJcmXTckle6Xq-yQCSoZ9FodIVNSlXgSRiEA_bAeVp_LU7UYJHGAya2fLA3IDL49jdV-c0SwiOBkTzBsb2yLnbF8LPxdHxqPx38i_FTtvf57ST79H768SG7jiKyTUs9YrvNcq0fo1Briid2Pf4CQ2FAdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+translational+genomics+of+neuroblastoma%3A+From+improving+risk+stratification+and+revealing+novel+biology+to+identifying+actionable+genomic+alterations&rft.jtitle=Cancer&rft.au=Bosse%2C+Kristopher+R.&rft.au=Maris%2C+John+M.&rft.date=2016-01-01&rft.issn=0008-543X&rft.eissn=1097-0142&rft.volume=122&rft.issue=1&rft.spage=20&rft.epage=33&rft_id=info:doi/10.1002%2Fcncr.29706&rft.externalDBID=10.1002%252Fcncr.29706&rft.externalDocID=CNCR29706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-543X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-543X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-543X&client=summon |