Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations

Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but a...

Full description

Saved in:
Bibliographic Details
Published inCancer Vol. 122; no. 1; pp. 20 - 33
Main Authors Bosse, Kristopher R., Maris, John M.
Format Journal Article
LanguageEnglish
Published United States 01.01.2016
Subjects
Online AccessGet full text
ISSN0008-543X
1097-0142
DOI10.1002/cncr.29706

Cover

Abstract Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high‐level MYCN (v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016;122:20–33. © 2015 American Cancer Society. Advances in defining the biologic importance of neuroblastoma‐associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways.
AbstractList Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high‐level MYCN (v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016;122:20–33. © 2015 American Cancer Society. Advances in defining the biologic importance of neuroblastoma‐associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways.
Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016; 122:20-33. copyright 2015 American Cancer Society. Advances in defining the biologic importance of neuroblastoma-associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways.
Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma.
Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high‐level MYCN (v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. Cancer 2016;122:20–33. © 2015 American Cancer Society . Advances in defining the biologic importance of neuroblastoma‐associated genomic aberrations and the genetic underpinnings of neuroblastoma predisposition have led not only to improved risk stratification but also to novel insights into activated oncogenic pathways and to the first molecularly targeted agent for this disease. Defining the clonally evolved neuroblastoma genome may unveil additional activated and clinically actionable biologic pathways.
Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus, which has catalyzed not only a more comprehensive understanding of neuroblastoma tumorigenesis, but has also revealed novel oncogenic vulnerabilities that are being leveraged therapeutically. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN amplification, for risk stratification. Given the relative paucity of recurrent activating somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed towards aberrantly regulated pathways in relapsed disease. This review will summarize the current state of knowledge of neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma.
Author Maris, John M.
Bosse, Kristopher R.
Author_xml – sequence: 1
  givenname: Kristopher R.
  surname: Bosse
  fullname: Bosse, Kristopher R.
  organization: University of Pennsylvania
– sequence: 2
  givenname: John M.
  surname: Maris
  fullname: Maris, John M.
  organization: University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26539795$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9qFDEUxoNU7LZ64wNILqUwNcn8ycQLoSxWC0VBLPQuZDJnttFMsibZkX0g39PsbLeoiF6FcH7fdz7OOSfoyHkHCD2n5JwSwl5pp8M5E5w0j9CCEsELQit2hBaEkLaoq_L2GJ3E-CV_OavLJ-iYNXUpuKgX6MdFPymnIWLjcLoDnIJy0apkvFMWr8D50eiI_YAdbILvrIrJj-o1vgx-xGZcBz8Zt8LBxK84ZnUyg9GzHivX4wATKLsjnJ_A4s5461dbnDw2PbhMb3dFpeeOnYVDT6xsgjAbxafo8aBshGf37ym6uXz7efm-uP747mp5cV3omoqmUBTqqia8YbprewJcVIzWAxtACNEwThStKAFadgy0Vn1Vtf3AeNc2otf9UJan6M3ed73pRuh1zheUletgRhW20isjf684cydXfpIVJ3n8TTZ4eW8Q_LcNxCRHEzVYqxz4TZRU0JykKWn5f5Q3pK3zWtuMvvg11kOewxozQPaADj7GAIPUJs2jyymNlZTI3aXI3aXI-VKy5OwPycH1rzDdw9-Nhe0_SLn8sPy01_wEd2rUiw
CitedBy_id crossref_primary_10_1158_0008_5472_CAN_19_0695
crossref_primary_10_3233_CBM_160546
crossref_primary_10_4174_astr_2023_105_3_148
crossref_primary_10_1016_j_pharmthera_2021_108054
crossref_primary_10_1016_j_devcel_2021_05_014
crossref_primary_10_1111_cas_14512
crossref_primary_10_1016_j_ccell_2017_08_003
crossref_primary_10_1016_j_ccell_2021_12_005
crossref_primary_10_1891_0730_0832_38_6_341
crossref_primary_10_3390_ijms26010136
crossref_primary_10_1038_s41598_019_41918_3
crossref_primary_10_1073_pnas_1801435115
crossref_primary_10_1002_ana_24659
crossref_primary_10_3389_fgene_2018_00589
crossref_primary_10_1089_dna_2020_6193
crossref_primary_10_21518_ms2024_255
crossref_primary_10_1186_s12967_024_04954_w
crossref_primary_10_1016_j_jpedsurg_2018_09_004
crossref_primary_10_1053_j_sempedsurg_2016_09_007
crossref_primary_10_1080_2162402X_2019_1593804
crossref_primary_10_1002_ctm2_1328
crossref_primary_10_3390_cancers12092343
crossref_primary_10_1007_s00117_018_0410_8
crossref_primary_10_1530_ERC_18_0116
crossref_primary_10_3390_ijms18010037
crossref_primary_10_1016_j_neo_2017_09_006
crossref_primary_10_7554_eLife_41637
crossref_primary_10_1016_j_canlet_2017_04_022
crossref_primary_10_1097_MOP_0000000000000711
crossref_primary_10_1038_s41598_023_43219_2
crossref_primary_10_1158_0008_5472_CAN_21_1033
crossref_primary_10_1158_2767_9764_CRC_22_0137
crossref_primary_10_1016_j_ab_2016_06_005
crossref_primary_10_3390_biom12010079
crossref_primary_10_1186_s12885_020_6562_8
crossref_primary_10_1002_bdr2_1606
crossref_primary_10_1016_j_yexmp_2019_104272
crossref_primary_10_1158_1535_7163_MCT_20_1034
crossref_primary_10_3390_ijms23126513
crossref_primary_10_3390_life13030818
crossref_primary_10_7554_eLife_90993
crossref_primary_10_1111_ans_16595
crossref_primary_10_1111_cas_70043
crossref_primary_10_1158_1078_0432_CCR_16_0115
crossref_primary_10_1007_s00259_023_06221_4
crossref_primary_10_1016_j_biochi_2017_04_011
crossref_primary_10_1200_PO_18_00312
crossref_primary_10_1016_j_neo_2025_101122
crossref_primary_10_1007_s00109_023_02372_x
crossref_primary_10_1080_17460441_2017_1340269
crossref_primary_10_1016_j_ctarc_2020_100274
crossref_primary_10_1158_0008_5472_CAN_21_4309
crossref_primary_10_1016_j_critrevonc_2016_10_001
crossref_primary_10_1007_s12035_024_04680_w
crossref_primary_10_1053_j_semdp_2021_06_007
crossref_primary_10_3389_fcell_2021_769547
crossref_primary_10_1038_s41598_018_37240_z
crossref_primary_10_3390_cells10051001
crossref_primary_10_1093_carcin_bgw037
crossref_primary_10_1038_sdata_2018_240
crossref_primary_10_1093_jnci_djy022
crossref_primary_10_1038_nrdp_2016_78
crossref_primary_10_18632_oncotarget_17033
crossref_primary_10_1016_j_critrevonc_2023_103956
crossref_primary_10_3390_ijms20194764
crossref_primary_10_3390_ijms24098141
crossref_primary_10_1093_narcan_zcad002
crossref_primary_10_3390_cancers11121938
crossref_primary_10_1002_jgm_3190
crossref_primary_10_1038_s41467_021_27502_2
crossref_primary_10_1093_neuonc_noae152
crossref_primary_10_1007_s10585_024_10286_2
crossref_primary_10_1126_sciadv_adm9449
crossref_primary_10_1002_cac2_12016
crossref_primary_10_1016_j_ejca_2016_06_005
crossref_primary_10_1158_1078_0432_CCR_17_1767
crossref_primary_10_3390_ijms221810070
crossref_primary_10_3892_ol_2022_13256
crossref_primary_10_1002_cam4_3663
crossref_primary_10_12677_ACM_2023_134771
crossref_primary_10_3390_cells11193172
crossref_primary_10_3892_ijo_2019_4813
crossref_primary_10_3389_fnmol_2019_00009
crossref_primary_10_1186_s13062_018_0213_x
crossref_primary_10_7554_eLife_90993_3
crossref_primary_10_1186_s13073_016_0389_6
crossref_primary_10_3390_diagnostics13111915
crossref_primary_10_1158_1078_0432_CCR_16_2876
crossref_primary_10_3390_children8020163
crossref_primary_10_1002_pbc_27901
crossref_primary_10_1002_med_21750
crossref_primary_10_1126_scitranslmed_aau9732
crossref_primary_10_1242_dmm_024448
crossref_primary_10_1002_14651858_CD012442_pub2
crossref_primary_10_1007_s12032_019_1289_6
crossref_primary_10_1002_pbc_31176
crossref_primary_10_3892_mco_2021_2378
crossref_primary_10_1038_sdata_2017_33
crossref_primary_10_1155_2022_8319221
crossref_primary_10_3390_jpm11080691
crossref_primary_10_3390_ijms22073667
crossref_primary_10_1186_s13062_023_00414_5
crossref_primary_10_18632_oncotarget_14233
crossref_primary_10_3233_PRM_170456
crossref_primary_10_3390_children8060456
crossref_primary_10_1016_j_ebiom_2022_104300
crossref_primary_10_1158_1078_0432_CCR_18_2728
crossref_primary_10_1158_1535_7163_MCT_17_0841
crossref_primary_10_3390_cancers15010208
crossref_primary_10_1016_j_jconrel_2018_02_031
crossref_primary_10_1038_s41419_018_0728_1
crossref_primary_10_3389_fphar_2021_766909
crossref_primary_10_3390_cancers15072035
crossref_primary_10_1002_ijc_30706
crossref_primary_10_1534_genetics_117_300124
crossref_primary_10_3166_onco_2019_0036
crossref_primary_10_3390_molecules25225234
crossref_primary_10_1002_gcc_22676
crossref_primary_10_3389_fonc_2024_1383805
crossref_primary_10_1097_PAP_0000000000000306
crossref_primary_10_1016_j_canlet_2020_11_044
crossref_primary_10_1002_pbc_29800
crossref_primary_10_1097_MPH_0000000000002954
crossref_primary_10_1007_s12672_024_01518_8
crossref_primary_10_1016_j_dnarep_2022_103302
crossref_primary_10_3390_diagnostics10050315
crossref_primary_10_1016_j_tranon_2021_101114
crossref_primary_10_1097_CCO_0000000000000504
crossref_primary_10_1111_cas_14610
crossref_primary_10_1016_j_prp_2022_154240
crossref_primary_10_1111_jphp_13224
crossref_primary_10_3389_fmed_2022_840777
crossref_primary_10_1038_s41598_020_68829_y
crossref_primary_10_1186_s12935_018_0521_3
crossref_primary_10_1016_j_gene_2018_04_015
crossref_primary_10_1111_his_13288
crossref_primary_10_3389_fonc_2019_00455
crossref_primary_10_1038_s41419_017_0060_1
crossref_primary_10_1038_s41571_022_00643_z
crossref_primary_10_1126_scitranslmed_aao4680
crossref_primary_10_1158_2159_8290_CD_16_0861
crossref_primary_10_1126_scisignal_aam7550
crossref_primary_10_1136_jclinpath_2022_208177
crossref_primary_10_1136_bcr_2018_225568
crossref_primary_10_1186_s12943_017_0686_8
crossref_primary_10_1080_08880018_2017_1330375
crossref_primary_10_1016_j_genrep_2018_06_018
crossref_primary_10_1080_21678707_2020_1865918
crossref_primary_10_3390_pharmaceutics16070943
crossref_primary_10_1096_fj_202200394RRR
crossref_primary_10_3892_ol_2019_10602
crossref_primary_10_3390_children8010048
crossref_primary_10_1038_srep38347
crossref_primary_10_1016_j_ccell_2017_08_014
crossref_primary_10_18632_oncotarget_14408
crossref_primary_10_1016_j_ejmech_2023_116021
crossref_primary_10_3389_fonc_2023_1124737
crossref_primary_10_1038_s41698_024_00657_z
crossref_primary_10_1134_S1022795423100022
crossref_primary_10_3389_fimmu_2020_584214
crossref_primary_10_3390_cancers13205173
crossref_primary_10_1007_s12031_022_02087_7
Cites_doi 10.1016/j.jpedsurg.2014.09.029
10.1158/1078-0432.CCR-13-1675
10.1200/JCO.2013.54.0674
10.1054/bjoc.2001.1849
10.1056/NEJM199910143411601
10.1056/NEJMoa0911123
10.1038/nature07399
10.4161/cc.24091
10.1038/ng.2387
10.1097/00000658-195609000-00007
10.1002/gcc.20926
10.1101/gad.1339905
10.1158/1078-0432.CCR-13-0680
10.1073/pnas.1012351108
10.1056/NEJMoa052399
10.1038/sj.onc.1204621
10.1093/jnci/dju047
10.1200/JCO.2009.26.7955
10.1038/onc.2011.270
10.1038/ng.374
10.1038/ng1130
10.1200/JCO.2004.00.2931
10.1016/j.bbrc.2006.10.020
10.1126/science.1207313
10.1038/ng.2529
10.1038/sj.onc.1202750
10.1200/JCO.2000.18.9.1888
10.1038/nature07261
10.1002/pbc.24311
10.1002/1096-911X(20010101)36:1<37::AID-MPO1010>3.0.CO;2-L
10.1126/scitranslmed.3007094
10.1002/pbc.22816
10.1038/ng.2493
10.1371/journal.pgen.1002026
10.1001/jama.2012.228
10.1038/ng.2436
10.3390/genes3020320
10.1093/emboj/16.11.2985
10.1002/ajmg.a.10167
10.1158/1535-7163.MCT-10-1090
10.1158/1078-0432.CCR-11-2056
10.1056/NEJMra0804577
10.1038/ng.926
10.1016/0014-4827(83)90184-2
10.1101/cshperspect.a014415
10.1126/science.1254721
10.1200/JCO.1996.14.2.373
10.1158/1055-9965.EPI-11-0830
10.1016/S1470-2045(13)70095-0
10.1056/NEJM199906243402504
10.1002/gcc.10166
10.1055/s-2008-1033816
10.1158/0008-5472.CAN-10-2366
10.1038/sj.onc.1208341
10.1200/JCO.1991.9.4.581
10.1158/1078-0432.CCR-09-1865
10.1073/pnas.68.4.820
10.1002/pbc.22430
10.1200/JCO.2012.45.2011
10.1200/JCO.2008.16.0630
10.18632/oncotarget.3504
10.1186/1471-2164-9-353
10.1038/nature08035
10.1038/nature09504
10.1016/j.cell.2010.06.004
10.1016/j.ccell.2014.09.019
10.1002/1097-0142(19940615)73:12<3087::AID-CNCR2820731230>3.0.CO;2-9
10.1002/(SICI)1098-2264(199805)22:1<42::AID-GCC6>3.0.CO;2-7
10.1158/0008-5472.CAN-11-3703
10.1038/ng0693-187
10.1038/nature07398
10.1038/bjc.2012.375
10.1158/0008-5472.CAN-14-3613
10.1016/S0140-6736(07)60983-0
10.1158/0008-5472.CAN-07-5032
10.1002/ajmg.c.30300
10.1038/nature09609
10.1158/0008-5472.CAN-12-1242
10.1158/1078-0432.CCR-13-2281
10.1002/gcc.20850
10.1093/carcin/bgs380
10.1200/JCO.2009.27.0421
10.1038/nature07397
10.1200/JCO.1996.14.9.2504
10.1371/journal.pone.0072967
10.1007/s00383-013-3374-9
10.1056/NEJM198510313131802
10.1056/NEJMoa1001527
10.1002/humu.21442
10.1200/JCO.2008.16.6785
10.1038/sj.bjc.6605029
10.1002/gcc.22223
10.1038/nrclinonc.2012.72
10.1016/j.cancergencyto.2007.12.005
10.1200/JCO.2007.13.8925
10.1016/j.ccell.2014.09.014
10.1126/science.959840
10.1158/0008-5472.CAN-04-1923
10.1158/2159-8290.CD-12-0418
10.1126/science.1235122
10.1200/JCO.2005.05.582
10.1038/nature10910
10.1158/0008-5472.CAN-11-3891
10.1002/ajmg.a.33384
10.1002/1096-911X(20010101)36:1<14::AID-MPO1005>3.0.CO;2-G
10.1200/JCO.2005.02.014
10.1371/journal.pone.0072182
10.1093/jnci/djg045
10.1371/journal.pone.0077731
10.1016/j.cell.2011.08.017
10.1002/ajmg.a.36229
10.1038/ng.3333
10.1126/science.6719137
10.1038/sj.onc.1210659
10.1200/JCO.2008.16.6876
10.1002/cam4.414
10.1056/NEJMoa0708698
10.1158/0008-5472.CAN-14-0431
ContentType Journal Article
Copyright 2015 American Cancer Society
2015 American Cancer Society.
Copyright_xml – notice: 2015 American Cancer Society
– notice: 2015 American Cancer Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
5PM
DOI 10.1002/cncr.29706
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0142
EndPage 33
ExternalDocumentID PMC4707066
26539795
10_1002_cncr_29706
CNCR29706
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA124709
– fundername: NCI NIH HHS
  grantid: R35 CA220500
– fundername: NCI NIH HHS
  grantid: T32 CA009615
– fundername: NCI NIH HHS
  grantid: T32 CA9615-25
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1CY
1L6
1OC
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AAQOH
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABHFT
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FD6
FUBAC
G-S
G.N
GNP
GODZA
GX1
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
KZ1
L7B
LATKE
LAW
LC2
LC3
LH4
LITHE
LMP
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SJN
SUPJJ
TEORI
UDS
UHB
V2E
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XPP
XV2
Z0Y
ZGI
ZZTAW
~IA
~WT
.GJ
.Y3
31~
3O-
AAHHS
AARRQ
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AFFNX
AGNAY
AI.
AIWBW
AJBDE
C1A
CITATION
HF~
H~9
J5H
N4W
NEJ
OHT
RSU
VH1
WHG
Y6R
YQJ
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c5196-a1e5450762cb8d0e794215f2fe9996270a1410e13b2eccad448df27b869dcdf33
IEDL.DBID DR2
ISSN 0008-543X
IngestDate Thu Aug 21 13:37:51 EDT 2025
Thu Jul 10 23:44:01 EDT 2025
Sat Sep 27 19:16:14 EDT 2025
Mon Jul 21 05:48:03 EDT 2025
Tue Jul 01 04:09:17 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Thu Sep 25 07:36:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords neuroblastoma
clonal evolution
genome-wide association studies
v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog (MYCN)
anaplastic lymphoma kinase (ALK)
pediatric
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 American Cancer Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5196-a1e5450762cb8d0e794215f2fe9996270a1410e13b2eccad448df27b869dcdf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cncr.29706
PMID 26539795
PQID 1760852978
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4707066
proquest_miscellaneous_1919966313
proquest_miscellaneous_1760852978
pubmed_primary_26539795
crossref_citationtrail_10_1002_cncr_29706
crossref_primary_10_1002_cncr_29706
wiley_primary_10_1002_cncr_29706_CNCR29706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 1, 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 1, 2016
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer
PublicationTitleAlternate Cancer
PublicationYear 2016
References 2012; 483
2013; 3
2010; 16
2010; 468
2015; 75
2014; 26
2012; 18
2011; 56
2013; 161A
2013; 8
2008; 182
2014; 20
1983; 148
2001; 61
2003; 118A
2000; 18
1976; 194
2010; 28
2011; 71
2008; 27
2013; 60
2008; 358
2012; 21
1994; 73
1984; 224
2005; 353
2015; 54
1999; 340
2014; 49
2003; 36
1999; 341
2006; 351
1996; 14
2009; 459
2012; 107
2011; 7
2012; 31
2003; 33
2001; 20
2011; 146
2005; 19
2013; 339
2013; 73
2009; 100
1985; 313
2012; 44
2001; 36
2014; 32
2010; 55
2013; 29
2004; 64
2009; 41
2008; 9
2011; 10
2010; 142
2003; 95
2005; 23
1993; 4
2001; 85
2005; 24
2012; 51
2012; 72
2013; 19
2015; 47
2013; 14
1999; 18
2013; 12
2010; 152A
1997; 16
2008; 68
1956; 144
2014; 6
1998; 58
2011; 333
2015; 6
2007; 369
2015; 4
1985; 3
2013; 45
1971; 68
2010; 363
2010; 362
2011; 32
1972; 24
1991; 9
2009; 27
1998; 22
2012; 307
2014; 106
1991; 366
2012; 3
2011; 108
2011; 469
2001; 7
2013; 34
2011; 157C
2011; 50
2011; 43
2015
2008; 455
2014; 74
2014; 346
2012; 9
1982; 194
e_1_2_15_108_1
e_1_2_15_104_1
e_1_2_15_127_1
Bourhis J (e_1_2_15_15_1) 1991; 366
e_1_2_15_42_1
e_1_2_15_88_1
e_1_2_15_69_1
e_1_2_15_3_1
e_1_2_15_80_1
e_1_2_15_27_1
e_1_2_15_61_1
e_1_2_15_111_1
e_1_2_15_46_1
e_1_2_15_84_1
e_1_2_15_23_1
e_1_2_15_65_1
e_1_2_15_7_1
e_1_2_15_31_1
e_1_2_15_77_1
e_1_2_15_58_1
Helson L (e_1_2_15_113_1) 1985; 3
e_1_2_15_100_1
e_1_2_15_123_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_50_1
e_1_2_15_92_1
Knudson AG (e_1_2_15_44_1) 1972; 24
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_54_1
e_1_2_15_109_1
e_1_2_15_105_1
Oldridge D (e_1_2_15_35_1)
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_66_1
e_1_2_15_89_1
e_1_2_15_28_1
e_1_2_15_81_1
e_1_2_15_112_1
e_1_2_15_2_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_62_1
e_1_2_15_85_1
e_1_2_15_6_1
Omura‐Minamisawa M (e_1_2_15_96_1) 2001; 7
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_78_1
e_1_2_15_59_1
e_1_2_15_17_1
e_1_2_15_70_1
e_1_2_15_93_1
e_1_2_15_124_1
e_1_2_15_101_1
e_1_2_15_13_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_74_1
e_1_2_15_97_1
e_1_2_15_120_1
e_1_2_15_106_1
e_1_2_15_125_1
e_1_2_15_21_1
e_1_2_15_67_1
e_1_2_15_40_1
Thompson PM (e_1_2_15_116_1) 2001; 61
e_1_2_15_29_1
e_1_2_15_48_1
e_1_2_15_82_1
e_1_2_15_25_1
e_1_2_15_63_1
e_1_2_15_86_1
e_1_2_15_9_1
e_1_2_15_118_1
e_1_2_15_90_1
e_1_2_15_5_1
e_1_2_15_114_1
e_1_2_15_10_1
e_1_2_15_56_1
e_1_2_15_79_1
e_1_2_15_18_1
e_1_2_15_94_1
e_1_2_15_102_1
e_1_2_15_121_1
e_1_2_15_37_1
e_1_2_15_71_1
e_1_2_15_14_1
e_1_2_15_52_1
e_1_2_15_98_1
e_1_2_15_33_1
e_1_2_15_75_1
e_1_2_15_107_1
e_1_2_15_103_1
e_1_2_15_19_1
e_1_2_15_126_1
e_1_2_15_41_1
e_1_2_15_68_1
e_1_2_15_110_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_83_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_64_1
e_1_2_15_87_1
e_1_2_15_8_1
e_1_2_15_119_1
e_1_2_15_4_1
e_1_2_15_115_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_99_1
e_1_2_15_38_1
e_1_2_15_72_1
e_1_2_15_91_1
Easton J (e_1_2_15_117_1) 1998; 58
e_1_2_15_122_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
e_1_2_15_76_1
e_1_2_15_95_1
20503330 - Am J Med Genet A. 2010 Jun;152A(6):1531-5
18923525 - Nature. 2008 Oct 16;455(7215):975-8
19412175 - Nat Genet. 2009 Jun;41(6):718-23
22328350 - Cancer Epidemiol Biomarkers Prev. 2012 Apr;21(4):658-63
19047290 - J Clin Oncol. 2009 Jan 10;27(2):298-303
19401690 - Br J Cancer. 2009 May 19;100(10):1627-37
11498785 - Oncogene. 2001 Aug 2;20(34):4621-8
12687660 - Am J Med Genet A. 2003 May 1;118A(4):309-13
21460101 - Mol Cancer Ther. 2011 Jun;10(6):983-93
24449238 - J Clin Oncol. 2014 Feb 20;32(6):579-86
17586306 - Lancet. 2007 Jun 23;369(9579):2106-20
21059859 - Cancer Res. 2011 Jan 1;71(1):98-105
20879881 - N Engl J Med. 2010 Sep 30;363(14):1324-34
13363274 - Ann Surg. 1956 Sep;144(3):366-83
18724359 - Nature. 2008 Oct 16;455(7215):930-5
20516441 - J Clin Oncol. 2010 Jul 1;28(19):3122-30
21124317 - Nature. 2011 Jan 13;469(7329):216-20
2987426 - J Neurooncol. 1985;3(1):39-41
11212268 - Cancer Res. 2001 Jan 15;61(2):679-86
21972109 - Hum Mutat. 2011 Mar;32(3):272-6
12640453 - Nat Genet. 2003 Apr;33(4):459-61
8636746 - J Clin Oncol. 1996 Feb;14(2):373-81
8823329 - J Clin Oncol. 1996 Sep;14(9):2504-10
22997192 - Pediatr Blood Cancer. 2013 Feb;60(2):332-5
10378692 - Oncogene. 1999 May 13;18(19):2955-66
4340974 - Am J Hum Genet. 1972 Sep;24(5):514-32
24297863 - Clin Cancer Res. 2014 Feb 15;20(4):912-25
22142829 - Clin Cancer Res. 2012 Feb 1;18(3):748-57
16306521 - N Engl J Med. 2005 Nov 24;353(21):2243-53
23462184 - Cell Cycle. 2013 Apr 1;12(7):1091-104
23334666 - Nat Genet. 2013 Mar;45(3):279-84
18923523 - Nature. 2008 Oct 16;455(7215):967-70
25312269 - Cancer Res. 2014 Dec 1;74(23):6913-24
11464868 - Med Pediatr Oncol. 2001 Jan;36(1):14-9
21725357 - Oncogene. 2012 Feb 9;31(6):752-63
24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24
23598171 - Lancet Oncol. 2013 May;14(6):472-80
21370407 - Pediatr Blood Cancer. 2011 May;56(5):757-61
959840 - Science. 1976 Oct 1;194(4260):23-8
22034077 - Genes Chromosomes Cancer. 2012 Jan;51(1):10-9
20558371 - N Engl J Med. 2010 Jun 10;362(23):2202-11
18923524 - Nature. 2008 Oct 16;455(7215):971-4
11461074 - Br J Cancer. 2001 Jul 20;85(2):182-9
9635589 - Cancer Res. 1998 Jun 15;58(12):2624-32
23539594 - Science. 2013 Mar 29;339(6127):1546-58
11464901 - Med Pediatr Oncol. 2001 Jan;36(1):37-41
22350409 - Cancer Res. 2012 Apr 15;72(8):2068-78
16131611 - Genes Dev. 2005 Sep 15;19(18):2122-37
25517750 - Cancer Cell. 2014 Nov 10;26(5):722-37
20871596 - Nature. 2010 Dec 23;468(7327):1067-73
26121087 - Nat Genet. 2015 Aug;47(8):864-71
20108338 - Pediatr Blood Cancer. 2010 Jul 15;55(1):26-34
2066755 - J Clin Oncol. 1991 Apr;9(4):581-91
6313408 - Exp Cell Res. 1983 Oct;148(1):21-30
24086065 - Cold Spring Harb Perspect Med. 2013 Oct;3(10):a014415
19536264 - Nature. 2009 Jun 18;459(7249):987-91
25653133 - Cancer Med. 2015 Apr;4(4):540-50
20145180 - Clin Cancer Res. 2010 Feb 15;16(4):1108-18
21289283 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3336-41
4047115 - N Engl J Med. 1985 Oct 31;313(18):1111-6
19171713 - J Clin Oncol. 2009 Mar 1;27(7):1026-33
24022278 - Pediatr Surg Int. 2013 Nov;29(11):1139-45
12557224 - Genes Chromosomes Cancer. 2003 Mar;36(3):242-9
2068130 - Prog Clin Biol Res. 1991;366:107-13
16314642 - J Clin Oncol. 2005 Dec 1;23(34):8819-27
21436895 - PLoS Genet. 2011 Mar;7(3):e1002026
25071110 - J Clin Oncol. 2014 Sep 1;32(25):2727-34
24634504 - J Natl Cancer Inst. 2014 Apr;106(4):dju047
15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20
22585002 - Nat Rev Clin Oncol. 2012 Jul;9(7):391-9
20404250 - J Clin Oncol. 2010 May 20;28(15):2625-34
10519894 - N Engl J Med. 1999 Oct 14;341(16):1165-73
23139213 - Cancer Res. 2013 Jan 1;73(1):195-204
6719137 - Science. 1984 Jun 8;224(4653):1121-4
19171716 - J Clin Oncol. 2009 Mar 1;27(7):1007-13
18413728 - Cancer Res. 2008 Apr 15;68(8):2599-609
9214616 - EMBO J. 1997 Jun 2;16(11):2985-95
10784629 - J Clin Oncol. 2000 May;18(9):1888-99
22367537 - Nature. 2012 Mar 29;483(7391):589-93
8200007 - Cancer. 1994 Jun 15;73(12):3087-93
20655465 - Cell. 2010 Jul 23;142(2):218-29
10379019 - N Engl J Med. 1999 Jun 24;340(25):1954-61
17055458 - Biochem Biophys Res Commun. 2006 Dec 8;351(1):192-7
23202128 - Nat Genet. 2013 Jan;45(1):12-7
18463370 - N Engl J Med. 2008 Jun 12;358(24):2585-93
25517749 - Cancer Cell. 2014 Nov 10;26(5):682-94
7132228 - Klin Padiatr. 1982 Jul-Aug;194(4):270-4
21889194 - Cell. 2011 Sep 16;146(6):904-17
25844600 - Oncotarget. 2015 Apr 30;6(12):10207-21
21946351 - Nat Genet. 2011 Nov;43(11):1098-103
25487495 - J Pediatr Surg. 2014 Dec;49(12):1835-8
25251827 - Genes Chromosomes Cancer. 2015 Feb;54(2):99-109
23430699 - Cancer Discov. 2013 Mar;3(3):308-23
11705866 - Clin Cancer Res. 2001 Nov;7(11):3481-90
15592497 - Oncogene. 2005 Feb 24;24(9):1533-41
24009722 - PLoS One. 2013;8(8):e72967
18328949 - Cancer Genet Cytogenet. 2008 Apr 1;182(1):40-2
21319260 - Genes Chromosomes Cancer. 2011 Apr;50(4):250-62
20879880 - N Engl J Med. 2010 Sep 30;363(14):1313-23
24704920 - Genes (Basel). 2012 May 29;3(2):320-43
21719641 - Science. 2011 Jul 22;333(6041):425
19047291 - J Clin Oncol. 2009 Jan 10;27(2):289-97
18664255 - BMC Genomics. 2008;9:353
22941191 - Nat Genet. 2012 Oct;44(10):1126-30
24214728 - Am J Med Genet A. 2013 Dec;161A(12):2972-80
9591633 - Genes Chromosomes Cancer. 1998 May;22(1):42-9
16051962 - J Clin Oncol. 2005 Aug 1;23(22):5205-10
16116152 - J Clin Oncol. 2005 Sep 20;23(27):6466-73
26100672 - Cancer Res. 2015 Aug 1;75(15):3155-66
26560027 - Nature. 2015 Dec 17;528(7582):418-21
17637745 - Oncogene. 2008 Jan 17;27(4):469-76
22706201 - Cancer Res. 2012 Jul 1;72(13):3119-24
24147068 - PLoS One. 2013;8(10):e77731
25394791 - Science. 2014 Dec 19;346(6216):1480-6
23042116 - Nat Genet. 2012 Nov;44(11):1199-206
22976801 - Br J Cancer. 2012 Oct 9;107(8):1418-22
22416102 - JAMA. 2012 Mar 14;307(10):1062-71
5279523 - Proc Natl Acad Sci U S A. 1971 Apr;68(4):820-3
21500339 - Am J Med Genet C Semin Med Genet. 2011 May 15;157C(2):83-9
23965898 - Clin Cancer Res. 2013 Nov 1;19(21):5814-21
24045179 - Clin Cancer Res. 2013 Nov 15;19(22):6173-82
23222812 - Carcinogenesis. 2013 Mar;34(3):605-11
23991058 - PLoS One. 2013;8(8):e72182
8102298 - Nat Genet. 1993 Jun;4(2):187-90
13130115 - J Natl Cancer Inst. 2003 Sep 17;95(18):1394-403
References_xml – volume: 6
  start-page: 224ra24
  year: 2014
  article-title: Detection of circulating tumor DNA in early‐ and late‐stage human malignancies [serial online]
  publication-title: Sci Transl Med.
– volume: 100
  start-page: 1627
  year: 2009
  end-page: 1637
  article-title: Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT‐PCR: recommendations by the International Neuroblastoma Risk Group Task Force
  publication-title: Br J Cancer.
– volume: 12
  start-page: 1091
  year: 2013
  end-page: 1104
  article-title: CDK4 inhibition restores G(1)‐S arrest in MYCN‐amplified neuroblastoma cells in the context of doxorubicin‐induced DNA damage
  publication-title: Cell Cycle.
– volume: 72
  start-page: 3119
  year: 2012
  end-page: 3124
  article-title: MAX and MYC: a heritable breakup
  publication-title: Cancer Res.
– volume: 50
  start-page: 250
  year: 2011
  end-page: 262
  article-title: Alternative lengthening of telomeres—an enhanced chromosomal instability in aggressive non‐MYCN amplified and telomere elongated neuroblastomas
  publication-title: Genes Chromosomes Cancer.
– volume: 16
  start-page: 1108
  year: 2010
  end-page: 1118
  article-title: High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma
  publication-title: Clin Cancer Res.
– volume: 55
  start-page: 26
  year: 2010
  end-page: 34
  article-title: Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP)
  publication-title: Pediatr Blood Cancer.
– volume: 27
  start-page: 1007
  year: 2009
  end-page: 1013
  article-title: Long‐term results for children with high‐risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13‐cis‐retinoic acid: a Children's Oncology Group study
  publication-title: J Clin Oncol.
– volume: 44
  start-page: 1126
  year: 2012
  end-page: 1130
  article-title: Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma
  publication-title: Nat Genet.
– volume: 33
  start-page: 459
  year: 2003
  end-page: 461
  article-title: Polyalanine expansion and frameshift mutations of the paired‐like homeobox gene PHOX2B in congenital central hypoventilation syndrome
  publication-title: Nat Genet.
– volume: 23
  start-page: 8819
  year: 2005
  end-page: 8827
  article-title: Outcomes of children with intermediate‐risk neuroblastoma after treatment stratified by MYCN status and tumor cell ploidy
  publication-title: J Clin Oncol.
– volume: 106
  start-page: dju047
  year: 2014
  article-title: Rare variants in TP53 and susceptibility to neuroblastoma [serial online]
  publication-title: J Natl Cancer Inst
– volume: 3
  start-page: 308
  year: 2013
  end-page: 323
  article-title: Targeting MYCN in neuroblastoma by BET bromodomain inhibition
  publication-title: Cancer Discov.
– volume: 22
  start-page: 42
  year: 1998
  end-page: 49
  article-title: Human neuroblastoma demonstrating clonal evolution in vivo
  publication-title: Genes Chromosomes Cancer.
– volume: 43
  start-page: 1098
  year: 2011
  end-page: 1103
  article-title: A germline variant in the TP53 polyadenylation signal confers cancer susceptibility
  publication-title: Nat Genet.
– volume: 224
  start-page: 1121
  year: 1984
  end-page: 1124
  article-title: Amplification of N‐myc in untreated human neuroblastomas correlates with advanced disease stage
  publication-title: Science.
– volume: 362
  start-page: 2202
  year: 2010
  end-page: 2211
  article-title: Recent advances in neuroblastoma
  publication-title: N Engl J Med.
– volume: 346
  start-page: 1480
  year: 2014
  end-page: 1486
  article-title: Patient‐derived models of acquired resistance can identify effective drug combinations for cancer
  publication-title: Science.
– volume: 144
  start-page: 366
  year: 1956
  end-page: 383
  article-title: Spontaneous regression of cancer: preliminary report
  publication-title: Ann Surg.
– volume: 3
  start-page: a014415
  year: 2013
  article-title: Neuroblastoma and MYCN [serial online]
  publication-title: Cold Spring Harb Perspect Med.
– volume: 85
  start-page: 182
  year: 2001
  end-page: 189
  article-title: Genetic heterogeneity and clonal evolution in neuroblastoma
  publication-title: Br J Cancer.
– volume: 27
  start-page: 289
  year: 2009
  end-page: 297
  article-title: The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report
  publication-title: J Clin Oncol.
– volume: 363
  start-page: 1324
  year: 2010
  end-page: 1334
  article-title: Anti‐GD2 antibody with GM‐CSF, interleukin‐2, and isotretinoin for neuroblastoma
  publication-title: N Engl J Med.
– volume: 32
  start-page: 272
  year: 2011
  end-page: 276
  article-title: Germline gain‐of‐function mutations of ALK disrupt central nervous system development
  publication-title: Hum Mutat.
– volume: 74
  start-page: 6913
  year: 2014
  end-page: 6924
  article-title: Common genetic variants in NEFL influence gene expression and neuroblastoma risk
  publication-title: Cancer Res.
– volume: 28
  start-page: 2625
  year: 2010
  end-page: 2634
  article-title: Outcomes for children and adolescents with cancer: challenges for the twenty‐first century
  publication-title: J Clin Oncol.
– volume: 27
  start-page: 298
  year: 2009
  end-page: 303
  article-title: The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report
  publication-title: J Clin Oncol.
– volume: 34
  start-page: 605
  year: 2013
  end-page: 611
  article-title: Replication of GWAS‐identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility
  publication-title: Carcinogenesis.
– volume: 20
  start-page: 4621
  year: 2001
  end-page: 4628
  article-title: Relative frequency and morphology of cancers in carriers of germline TP53 mutations
  publication-title: Oncogene.
– volume: 4
  start-page: 187
  year: 1993
  end-page: 190
  article-title: Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N‐myc amplification
  publication-title: Nat Genet.
– volume: 19
  start-page: 6173
  year: 2013
  end-page: 6182
  article-title: Dual CDK4/CDK6 inhibition induces cell‐cycle arrest and senescence in neuroblastoma
  publication-title: Clin Cancer Res.
– volume: 9
  start-page: 581
  year: 1991
  end-page: 591
  article-title: Clinical relevance of tumor cell ploidy and N‐myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study
  publication-title: J Clin Oncol.
– volume: 455
  start-page: 975
  year: 2008
  end-page: 978
  article-title: Activating mutations in ALK provide a therapeutic target in neuroblastoma
  publication-title: Nature.
– volume: 32
  start-page: 579
  year: 2014
  end-page: 586
  article-title: Liquid biopsies: genotyping circulating tumor DNA
  publication-title: J Clin Oncol.
– volume: 161A
  start-page: 2972
  year: 2013
  end-page: 2980
  article-title: Weaver syndrome and EZH2 mutations: clarifying the clinical phenotype
  publication-title: Am J Med Genet A.
– volume: 307
  start-page: 1062
  year: 2012
  end-page: 1071
  article-title: Association of age at diagnosis and genetic mutations in patients with neuroblastoma
  publication-title: JAMA.
– volume: 455
  start-page: 971
  year: 2008
  end-page: 974
  article-title: Oncogenic mutations of ALK kinase in neuroblastoma
  publication-title: Nature.
– volume: 73
  start-page: 3087
  year: 1994
  end-page: 3093
  article-title: Low frequency of the p53 gene mutations in neuroblastoma
  publication-title: Cancer.
– volume: 68
  start-page: 820
  year: 1971
  end-page: 823
  article-title: Mutation and cancer: statistical study of retinoblastoma
  publication-title: Proc Natl Acad Sci U S A.
– volume: 54
  start-page: 99
  year: 2015
  end-page: 109
  article-title: Intragenic anaplastic lymphoma kinase (ALK) rearrangements: translocations as a novel mechanism of ALK activation in neuroblastoma tumors
  publication-title: Genes Chromosomes Cancer.
– volume: 142
  start-page: 218
  year: 2010
  end-page: 229
  article-title: NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome
  publication-title: Cell.
– volume: 41
  start-page: 718
  year: 2009
  end-page: 723
  article-title: Common variations in BARD1 influence susceptibility to high‐risk neuroblastoma
  publication-title: Nat Genet.
– article-title: Genetic predisposition to neuroblastoma mediated by a LMO1 oncogene super‐enhancer polymorphism
  publication-title: Nature
– volume: 18
  start-page: 1888
  year: 2000
  end-page: 1899
  article-title: Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study
  publication-title: J Clin Oncol.
– volume: 194
  start-page: 23
  year: 1976
  end-page: 28
  article-title: The clonal evolution of tumor cell populations
  publication-title: Science.
– volume: 363
  start-page: 1313
  year: 2010
  end-page: 1323
  article-title: Outcome after reduced chemotherapy for intermediate‐risk neuroblastoma
  publication-title: N Engl J Med.
– volume: 313
  start-page: 1111
  year: 1985
  end-page: 1116
  article-title: Association of multiple copies of the N‐myc oncogene with rapid progression of neuroblastomas
  publication-title: N Engl J Med.
– volume: 7
  start-page: e1002026
  year: 2011
  article-title: Phenotype restricted genome‐wide association study using a gene‐centric approach identifies three low‐risk neuroblastoma susceptibility loci [serial online]
  publication-title: PLoS Genet.
– volume: 21
  start-page: 658
  year: 2012
  end-page: 663
  article-title: Replication of neuroblastoma SNP association at the BARD1 locus in African‐Americans
  publication-title: Cancer Epidemiol Biomarkers Prev.
– volume: 14
  start-page: 2504
  year: 1996
  end-page: 2510
  article-title: Successful management of low‐stage neuroblastoma without adjuvant therapies: a comparison of two decades, 1972 through 1981 and 1982 through 1992, in a single institution
  publication-title: J Clin Oncol.
– volume: 26
  start-page: 722
  year: 2014
  end-page: 737
  article-title: The risk‐associated long noncoding RNA NBAT‐1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation
  publication-title: Cancer Cell.
– volume: 72
  start-page: 2068
  year: 2012
  end-page: 2078
  article-title: Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity
  publication-title: Cancer Res.
– volume: 14
  start-page: 373
  year: 1996
  end-page: 381
  article-title: Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy
  publication-title: J Clin Oncol.
– volume: 339
  start-page: 1546
  year: 2013
  end-page: 1558
  article-title: Cancer genome landscapes
  publication-title: Science.
– volume: 6
  start-page: 10207
  year: 2015
  end-page: 10221
  article-title: Preclinical evaluation of the MDM2‐p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma
  publication-title: Oncotarget.
– volume: 146
  start-page: 904
  year: 2011
  end-page: 917
  article-title: BET bromodomain inhibition as a therapeutic strategy to target c‐Myc
  publication-title: Cell.
– volume: 358
  start-page: 2585
  year: 2008
  end-page: 2593
  article-title: Chromosome 6p22 locus associated with clinically aggressive neuroblastoma
  publication-title: N Engl J Med.
– volume: 27
  start-page: 469
  year: 2008
  end-page: 476
  article-title: Prevalence and functional consequence of PHOX2B mutations in neuroblastoma
  publication-title: Oncogene.
– volume: 32
  start-page: 2727
  year: 2014
  end-page: 2734
  article-title: Emergence of new ALK mutations at relapse of neuroblastoma
  publication-title: J Clin Oncol.
– volume: 455
  start-page: 930
  year: 2008
  end-page: 935
  article-title: Identification of ALK as a major familial neuroblastoma predisposition gene
  publication-title: Nature.
– volume: 353
  start-page: 2243
  year: 2005
  end-page: 2253
  article-title: Chromosome 1p and 11q deletions and outcome in neuroblastoma
  publication-title: N Engl J Med.
– volume: 44
  start-page: 1199
  year: 2012
  end-page: 1206
  article-title: LIN28B induces neuroblastoma and enhances MYCN levels via let‐7 suppression
  publication-title: Nat Genet.
– volume: 107
  start-page: 1418
  year: 2012
  end-page: 1422
  article-title: Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project
  publication-title: Br J Cancer.
– volume: 340
  start-page: 1954
  year: 1999
  end-page: 1961
  article-title: Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma
  publication-title: N Engl J Med.
– volume: 26
  start-page: 682
  year: 2014
  end-page: 694
  article-title: ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma
  publication-title: Cancer Cell.
– volume: 58
  start-page: 2624
  year: 1998
  end-page: 2632
  article-title: Disruption of the cyclin D/cyclin‐dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma
  publication-title: Cancer Res.
– volume: 351
  start-page: 192
  year: 2006
  end-page: 197
  article-title: MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells
  publication-title: Biochem Biophys Res Commun.
– volume: 19
  start-page: 2122
  year: 2005
  end-page: 2137
  article-title: p53 isoforms can regulate p53 transcriptional activity
  publication-title: Genes Dev.
– volume: 8
  start-page: e72182
  year: 2013
  article-title: Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis [serial online]
  publication-title: PLoS One.
– volume: 27
  start-page: 1026
  year: 2009
  end-page: 1033
  article-title: Overall genomic pattern is a predictor of outcome in neuroblastoma
  publication-title: J Clin Oncol.
– volume: 10
  start-page: 983
  year: 2011
  end-page: 993
  article-title: Functional analysis of the p53 pathway in neuroblastoma cells using the small‐molecule MDM2 antagonist nutlin‐3
  publication-title: Mol Cancer Ther.
– volume: 9
  start-page: 353
  year: 2008
  article-title: High‐resolution array copy number analyses for detection of deletion, gain, amplification and copy‐neutral LOH in primary neuroblastoma tumors: four cases of homozygous deletions of the CDKN2A gene [serial online]
  publication-title: BMC Genomics.
– volume: 369
  start-page: 2106
  year: 2007
  end-page: 2120
  article-title: Neuroblastoma
  publication-title: Lancet.
– volume: 64
  start-page: 8816
  year: 2004
  end-page: 8820
  article-title: Activating mutations of the Noonan syndrome‐associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia
  publication-title: Cancer Res.
– volume: 7
  start-page: 3481
  year: 2001
  end-page: 3490
  article-title: p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease
  publication-title: Clin Cancer Res.
– volume: 73
  start-page: 195
  year: 2013
  end-page: 204
  article-title: Characterization of rearrangements involving the ALK gene reveals a novel truncated form associated with tumor aggressiveness in neuroblastoma
  publication-title: Cancer Res.
– volume: 45
  start-page: 12
  year: 2013
  end-page: 17
  article-title: Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma
  publication-title: Nat Genet.
– volume: 95
  start-page: 1394
  year: 2003
  end-page: 1403
  article-title: Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma
  publication-title: J Natl Cancer Inst.
– volume: 29
  start-page: 1139
  year: 2013
  end-page: 1145
  article-title: Detection of MYCN amplification using blood plasma: noninvasive therapy evaluation and prediction of prognosis in neuroblastoma
  publication-title: Pediatr Surg Int.
– volume: 36
  start-page: 14
  year: 2001
  end-page: 19
  article-title: 17q gain in neuroblastoma predicts adverse clinical outcome. UK Cancer Cytogenetics Group and the UK Children's Cancer Study Group
  publication-title: Med Pediatr Oncol.
– volume: 483
  start-page: 589
  year: 2012
  end-page: 593
  article-title: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes
  publication-title: Nature.
– volume: 14
  start-page: 472
  year: 2013
  end-page: 480
  article-title: Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large‐cell lymphoma: a Children's Oncology Group phase 1 consortium study
  publication-title: Lancet Oncol.
– volume: 455
  start-page: 967
  year: 2008
  end-page: 970
  article-title: Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma
  publication-title: Nature.
– volume: 118A
  start-page: 309
  year: 2003
  end-page: 313
  article-title: Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma
  publication-title: Am J Med Genet A.
– volume: 8
  start-page: e72967
  year: 2013
  article-title: BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models [serial online]
  publication-title: PLoS One.
– volume: 148
  start-page: 21
  year: 1983
  end-page: 30
  article-title: Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines
  publication-title: Exp Cell Res.
– volume: 18
  start-page: 2955
  year: 1999
  end-page: 2966
  article-title: The basic region/helix‐loop‐helix/leucine zipper domain of Myc proto‐oncoproteins: function and regulation
  publication-title: Oncogene.
– volume: 51
  start-page: 10
  year: 2012
  end-page: 19
  article-title: Copy number defects of G1‐cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis
  publication-title: Genes Chromosomes Cancer.
– volume: 469
  start-page: 216
  year: 2011
  end-page: 220
  article-title: Integrative genomics identifies LMO1 as a neuroblastoma oncogene
  publication-title: Nature.
– volume: 61
  start-page: 679
  year: 2001
  end-page: 686
  article-title: Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma
  publication-title: Cancer Res.
– volume: 36
  start-page: 37
  year: 2001
  end-page: 41
  article-title: Detailed molecular analysis of 1p36 in neuroblastoma
  publication-title: Med Pediatr Oncol.
– volume: 56
  start-page: 757
  year: 2011
  end-page: 761
  article-title: Determination of 17q gain in patients with neuroblastoma by analysis of circulating DNA
  publication-title: Pediatr Blood Cancer.
– volume: 157C
  start-page: 83
  year: 2011
  end-page: 89
  article-title: Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes
  publication-title: Am J Med Genet C Semin Med Genet.
– volume: 45
  start-page: 279
  year: 2013
  end-page: 284
  article-title: The genetic landscape of high‐risk neuroblastoma
  publication-title: Nat Genet.
– volume: 23
  start-page: 5205
  year: 2005
  end-page: 5210
  article-title: Prediction of MYCN amplification in neuroblastoma using serum DNA and real‐time quantitative polymerase chain reaction
  publication-title: J Clin Oncol.
– volume: 47
  start-page: 864
  year: 2015
  end-page: 871
  article-title: Relapsed neuroblastomas show frequent RAS‐MAPK pathway mutations
  publication-title: Nat Genet.
– volume: 28
  start-page: 3122
  year: 2010
  end-page: 3130
  article-title: Accumulation of segmental alterations determines progression in neuroblastoma
  publication-title: J Clin Oncol.
– volume: 3
  start-page: 39
  year: 1985
  end-page: 41
  article-title: Human neuroblastoma cells and 13‐cis‐retinoic acid
  publication-title: J Neurooncol.
– year: 2015
– volume: 341
  start-page: 1165
  year: 1999
  end-page: 1173
  article-title: Treatment of high‐risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13‐cis‐retinoic acid. Children's Cancer Group
  publication-title: N Engl J Med.
– volume: 16
  start-page: 2985
  year: 1997
  end-page: 2995
  article-title: Targeted expression of MYCN causes neuroblastoma in transgenic mice
  publication-title: EMBO J.
– volume: 31
  start-page: 752
  year: 2012
  end-page: 763
  article-title: MYCN sensitizes neuroblastoma to the MDM2‐p53 antagonists Nutlin‐3 and MI‐63
  publication-title: Oncogene.
– volume: 9
  start-page: 391
  year: 2012
  end-page: 399
  article-title: Targeting ALK in neuroblastoma—preclinical and clinical advancements
  publication-title: Nat Rev Clin Oncol.
– volume: 75
  start-page: 3156
  year: 2015
  end-page: 3166
  article-title: CASC15‐S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus
  publication-title: Cancer Res.
– volume: 24
  start-page: 1533
  year: 2005
  end-page: 1541
  article-title: Altered expression of cell cycle genes distinguishes aggressive neuroblastoma
  publication-title: Oncogene.
– volume: 108
  start-page: 3336
  year: 2011
  end-page: 3341
  article-title: RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma
  publication-title: Proc Natl Acad Sci U S A.
– volume: 71
  start-page: 98
  year: 2011
  end-page: 105
  article-title: Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy
  publication-title: Cancer Res.
– volume: 20
  start-page: 912
  year: 2014
  end-page: 925
  article-title: BET bromodomain inhibition of MYC‐amplified medulloblastoma
  publication-title: Clin Cancer Res.
– volume: 36
  start-page: 242
  year: 2003
  end-page: 249
  article-title: Rearrangements and increased expression of cyclin D1 (CCND1) in neuroblastoma
  publication-title: Genes Chromosomes Cancer.
– volume: 68
  start-page: 2599
  year: 2008
  end-page: 2609
  article-title: Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma
  publication-title: Cancer Res.
– volume: 459
  start-page: 987
  year: 2009
  end-page: 991
  article-title: Copy number variation at 1q21.1 associated with neuroblastoma
  publication-title: Nature.
– volume: 333
  start-page: 425
  year: 2011
  article-title: Altered telomeres in tumors with ATRX and DAXX mutations [serial online]
  publication-title: Science.
– volume: 49
  start-page: 1835
  year: 2014
  end-page: 1838
  article-title: Clinical features of ATRX or DAXX mutated neuroblastoma
  publication-title: J Pediatr Surg.
– volume: 182
  start-page: 40
  year: 2008
  end-page: 42
  article-title: Germline PTPN11 missense mutation in a case of Noonan syndrome associated with mediastinal and retroperitoneal neuroblastic tumors
  publication-title: Cancer Genet Cytogenet.
– volume: 18
  start-page: 748
  year: 2012
  end-page: 757
  article-title: Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways
  publication-title: Clin Cancer Res.
– volume: 152A
  start-page: 1531
  year: 2010
  end-page: 1535
  article-title: Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30‐year‐old mystery
  publication-title: Am J Med Genet A.
– volume: 468
  start-page: 1067
  year: 2010
  end-page: 1073
  article-title: Selective inhibition of BET bromodomains
  publication-title: Nature.
– volume: 60
  start-page: 332
  year: 2013
  end-page: 335
  article-title: Two cases of localized neuroblastoma with multiple segmental chromosomal alterations and metastatic progression
  publication-title: Pediatr Blood Cancer.
– volume: 4
  start-page: 540
  year: 2015
  end-page: 550
  article-title: Detection of tumor ALK status in neuroblastoma patients using peripheral blood
  publication-title: Cancer Med.
– volume: 23
  start-page: 6466
  year: 2005
  end-page: 6473
  article-title: Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study
  publication-title: J Clin Oncol.
– volume: 3
  start-page: 320
  year: 2012
  end-page: 343
  article-title: The role of bromodomain proteins in regulating gene expression
  publication-title: Genes (Basel).
– volume: 194
  start-page: 270
  year: 1982
  end-page: 274
  article-title: DNA‐ploidy and proliferation in metastatic neuroblastoma [article in German]
  publication-title: Klin Padiatr.
– volume: 19
  start-page: 5814
  year: 2013
  end-page: 5821
  article-title: New strategies in neuroblastoma: therapeutic targeting of MYCN and ALK
  publication-title: Clin Cancer Res.
– volume: 24
  start-page: 514
  year: 1972
  end-page: 532
  article-title: Mutation and cancer: neuroblastoma and pheochromocytoma
  publication-title: Am J Hum Genet.
– volume: 8
  start-page: e77731
  year: 2013
  article-title: Massively parallel sequencing reveals an accumulation of de novo mutations and an activating mutation of LPAR1 in a patient with metastatic neuroblastoma [serial online]
  publication-title: PLoS One.
– volume: 366
  start-page: 107
  year: 1991
  end-page: 113
  article-title: Combined analysis of DNA ploidy index and N‐myc genomic content in neuroblastoma
  publication-title: Prog Clin Biol Res.
– ident: e_1_2_15_101_1
  doi: 10.1016/j.jpedsurg.2014.09.029
– ident: e_1_2_15_92_1
  doi: 10.1158/1078-0432.CCR-13-1675
– ident: e_1_2_15_89_1
  doi: 10.1200/JCO.2013.54.0674
– ident: e_1_2_15_104_1
  doi: 10.1054/bjoc.2001.1849
– ident: e_1_2_15_112_1
  doi: 10.1056/NEJM199910143411601
– ident: e_1_2_15_8_1
  doi: 10.1056/NEJMoa0911123
– ident: e_1_2_15_38_1
  doi: 10.1038/nature07399
– ident: e_1_2_15_93_1
  doi: 10.4161/cc.24091
– ident: e_1_2_15_20_1
  doi: 10.1038/ng.2387
– ident: e_1_2_15_35_1
  article-title: Genetic predisposition to neuroblastoma mediated by a LMO1 oncogene super‐enhancer polymorphism
  publication-title: Nature
– ident: e_1_2_15_7_1
  doi: 10.1097/00000658-195609000-00007
– ident: e_1_2_15_91_1
  doi: 10.1002/gcc.20926
– ident: e_1_2_15_3_1
– ident: e_1_2_15_60_1
  doi: 10.1101/gad.1339905
– ident: e_1_2_15_36_1
  doi: 10.1158/1078-0432.CCR-13-0680
– ident: e_1_2_15_118_1
  doi: 10.1073/pnas.1012351108
– ident: e_1_2_15_13_1
  doi: 10.1056/NEJMoa052399
– ident: e_1_2_15_54_1
  doi: 10.1038/sj.onc.1204621
– ident: e_1_2_15_27_1
  doi: 10.1093/jnci/dju047
– ident: e_1_2_15_69_1
  doi: 10.1200/JCO.2009.26.7955
– ident: e_1_2_15_98_1
  doi: 10.1038/onc.2011.270
– ident: e_1_2_15_22_1
  doi: 10.1038/ng.374
– volume: 7
  start-page: 3481
  year: 2001
  ident: e_1_2_15_96_1
  article-title: p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease
  publication-title: Clin Cancer Res.
– ident: e_1_2_15_50_1
  doi: 10.1038/ng1130
– ident: e_1_2_15_67_1
  doi: 10.1200/JCO.2004.00.2931
– ident: e_1_2_15_77_1
  doi: 10.1016/j.bbrc.2006.10.020
– ident: e_1_2_15_100_1
  doi: 10.1126/science.1207313
– ident: e_1_2_15_41_1
  doi: 10.1038/ng.2529
– ident: e_1_2_15_78_1
  doi: 10.1038/sj.onc.1202750
– ident: e_1_2_15_64_1
  doi: 10.1200/JCO.2000.18.9.1888
– ident: e_1_2_15_23_1
  doi: 10.1038/nature07261
– ident: e_1_2_15_70_1
  doi: 10.1002/pbc.24311
– ident: e_1_2_15_86_1
  doi: 10.1002/1096-911X(20010101)36:1<37::AID-MPO1010>3.0.CO;2-L
– ident: e_1_2_15_123_1
  doi: 10.1126/scitranslmed.3007094
– ident: e_1_2_15_126_1
  doi: 10.1002/pbc.22816
– ident: e_1_2_15_40_1
  doi: 10.1038/ng.2493
– volume: 24
  start-page: 514
  year: 1972
  ident: e_1_2_15_44_1
  article-title: Mutation and cancer: neuroblastoma and pheochromocytoma
  publication-title: Am J Hum Genet.
– ident: e_1_2_15_30_1
  doi: 10.1371/journal.pgen.1002026
– ident: e_1_2_15_43_1
  doi: 10.1001/jama.2012.228
– ident: e_1_2_15_57_1
  doi: 10.1038/ng.2436
– ident: e_1_2_15_80_1
  doi: 10.3390/genes3020320
– ident: e_1_2_15_74_1
  doi: 10.1093/emboj/16.11.2985
– ident: e_1_2_15_51_1
  doi: 10.1002/ajmg.a.10167
– ident: e_1_2_15_99_1
  doi: 10.1158/1535-7163.MCT-10-1090
– ident: e_1_2_15_88_1
  doi: 10.1158/1078-0432.CCR-11-2056
– ident: e_1_2_15_2_1
  doi: 10.1056/NEJMra0804577
– ident: e_1_2_15_58_1
  doi: 10.1038/ng.926
– ident: e_1_2_15_111_1
  doi: 10.1016/0014-4827(83)90184-2
– ident: e_1_2_15_79_1
  doi: 10.1101/cshperspect.a014415
– ident: e_1_2_15_121_1
  doi: 10.1126/science.1254721
– ident: e_1_2_15_10_1
  doi: 10.1200/JCO.1996.14.2.373
– ident: e_1_2_15_29_1
  doi: 10.1158/1055-9965.EPI-11-0830
– ident: e_1_2_15_48_1
  doi: 10.1016/S1470-2045(13)70095-0
– ident: e_1_2_15_14_1
  doi: 10.1056/NEJM199906243402504
– ident: e_1_2_15_94_1
  doi: 10.1002/gcc.10166
– ident: e_1_2_15_106_1
  doi: 10.1055/s-2008-1033816
– ident: e_1_2_15_108_1
  doi: 10.1158/0008-5472.CAN-10-2366
– ident: e_1_2_15_115_1
  doi: 10.1038/sj.onc.1208341
– ident: e_1_2_15_16_1
  doi: 10.1200/JCO.1991.9.4.581
– ident: e_1_2_15_95_1
  doi: 10.1158/1078-0432.CCR-09-1865
– ident: e_1_2_15_45_1
  doi: 10.1073/pnas.68.4.820
– ident: e_1_2_15_59_1
  doi: 10.1002/pbc.22430
– ident: e_1_2_15_122_1
  doi: 10.1200/JCO.2012.45.2011
– ident: e_1_2_15_68_1
  doi: 10.1200/JCO.2008.16.0630
– ident: e_1_2_15_97_1
  doi: 10.18632/oncotarget.3504
– ident: e_1_2_15_119_1
  doi: 10.1186/1471-2164-9-353
– ident: e_1_2_15_31_1
  doi: 10.1038/nature08035
– ident: e_1_2_15_81_1
  doi: 10.1038/nature09504
– ident: e_1_2_15_110_1
  doi: 10.1016/j.cell.2010.06.004
– ident: e_1_2_15_46_1
  doi: 10.1016/j.ccell.2014.09.019
– ident: e_1_2_15_61_1
  doi: 10.1002/1097-0142(19940615)73:12<3087::AID-CNCR2820731230>3.0.CO;2-9
– ident: e_1_2_15_105_1
  doi: 10.1002/(SICI)1098-2264(199805)22:1<42::AID-GCC6>3.0.CO;2-7
– ident: e_1_2_15_33_1
  doi: 10.1158/0008-5472.CAN-11-3703
– ident: e_1_2_15_65_1
  doi: 10.1038/ng0693-187
– ident: e_1_2_15_25_1
  doi: 10.1038/nature07398
– ident: e_1_2_15_62_1
  doi: 10.1038/bjc.2012.375
– ident: e_1_2_15_32_1
  doi: 10.1158/0008-5472.CAN-14-3613
– ident: e_1_2_15_4_1
  doi: 10.1016/S0140-6736(07)60983-0
– ident: e_1_2_15_114_1
  doi: 10.1158/0008-5472.CAN-07-5032
– ident: e_1_2_15_52_1
  doi: 10.1002/ajmg.c.30300
– ident: e_1_2_15_21_1
  doi: 10.1038/nature09609
– ident: e_1_2_15_73_1
  doi: 10.1158/0008-5472.CAN-12-1242
– ident: e_1_2_15_84_1
  doi: 10.1158/1078-0432.CCR-13-2281
– ident: e_1_2_15_102_1
  doi: 10.1002/gcc.20850
– ident: e_1_2_15_28_1
  doi: 10.1093/carcin/bgs380
– ident: e_1_2_15_5_1
  doi: 10.1200/JCO.2009.27.0421
– ident: e_1_2_15_37_1
  doi: 10.1038/nature07397
– ident: e_1_2_15_6_1
  doi: 10.1200/JCO.1996.14.9.2504
– ident: e_1_2_15_85_1
  doi: 10.1371/journal.pone.0072967
– ident: e_1_2_15_124_1
  doi: 10.1007/s00383-013-3374-9
– ident: e_1_2_15_12_1
  doi: 10.1056/NEJM198510313131802
– ident: e_1_2_15_66_1
  doi: 10.1056/NEJMoa1001527
– ident: e_1_2_15_47_1
  doi: 10.1002/humu.21442
– ident: e_1_2_15_18_1
  doi: 10.1200/JCO.2008.16.6785
– ident: e_1_2_15_120_1
  doi: 10.1038/sj.bjc.6605029
– ident: e_1_2_15_72_1
  doi: 10.1002/gcc.22223
– ident: e_1_2_15_39_1
  doi: 10.1038/nrclinonc.2012.72
– volume: 366
  start-page: 107
  year: 1991
  ident: e_1_2_15_15_1
  article-title: Combined analysis of DNA ploidy index and N‐myc genomic content in neuroblastoma
  publication-title: Prog Clin Biol Res.
– ident: e_1_2_15_53_1
  doi: 10.1016/j.cancergencyto.2007.12.005
– ident: e_1_2_15_9_1
  doi: 10.1200/JCO.2007.13.8925
– ident: e_1_2_15_34_1
  doi: 10.1016/j.ccell.2014.09.014
– volume: 3
  start-page: 39
  year: 1985
  ident: e_1_2_15_113_1
  article-title: Human neuroblastoma cells and 13‐cis‐retinoic acid
  publication-title: J Neurooncol.
– ident: e_1_2_15_103_1
  doi: 10.1126/science.959840
– ident: e_1_2_15_109_1
  doi: 10.1158/0008-5472.CAN-04-1923
– ident: e_1_2_15_83_1
  doi: 10.1158/2159-8290.CD-12-0418
– ident: e_1_2_15_87_1
  doi: 10.1126/science.1235122
– ident: e_1_2_15_17_1
  doi: 10.1200/JCO.2005.05.582
– ident: e_1_2_15_42_1
  doi: 10.1038/nature10910
– ident: e_1_2_15_75_1
  doi: 10.1158/0008-5472.CAN-11-3891
– ident: e_1_2_15_56_1
  doi: 10.1002/ajmg.a.33384
– volume: 58
  start-page: 2624
  year: 1998
  ident: e_1_2_15_117_1
  article-title: Disruption of the cyclin D/cyclin‐dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma
  publication-title: Cancer Res.
– ident: e_1_2_15_63_1
  doi: 10.1002/1096-911X(20010101)36:1<14::AID-MPO1005>3.0.CO;2-G
– ident: e_1_2_15_125_1
  doi: 10.1200/JCO.2005.02.014
– ident: e_1_2_15_71_1
  doi: 10.1371/journal.pone.0072182
– ident: e_1_2_15_76_1
  doi: 10.1093/jnci/djg045
– ident: e_1_2_15_107_1
  doi: 10.1371/journal.pone.0077731
– ident: e_1_2_15_82_1
  doi: 10.1016/j.cell.2011.08.017
– volume: 61
  start-page: 679
  year: 2001
  ident: e_1_2_15_116_1
  article-title: Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma
  publication-title: Cancer Res.
– ident: e_1_2_15_55_1
  doi: 10.1002/ajmg.a.36229
– ident: e_1_2_15_90_1
  doi: 10.1038/ng.3333
– ident: e_1_2_15_11_1
  doi: 10.1126/science.6719137
– ident: e_1_2_15_49_1
  doi: 10.1038/sj.onc.1210659
– ident: e_1_2_15_19_1
  doi: 10.1200/JCO.2008.16.6876
– ident: e_1_2_15_127_1
  doi: 10.1002/cam4.414
– ident: e_1_2_15_24_1
  doi: 10.1056/NEJMoa0708698
– ident: e_1_2_15_26_1
  doi: 10.1158/0008-5472.CAN-14-0431
– reference: 21719641 - Science. 2011 Jul 22;333(6041):425
– reference: 10379019 - N Engl J Med. 1999 Jun 24;340(25):1954-61
– reference: 20108338 - Pediatr Blood Cancer. 2010 Jul 15;55(1):26-34
– reference: 24045179 - Clin Cancer Res. 2013 Nov 15;19(22):6173-82
– reference: 17637745 - Oncogene. 2008 Jan 17;27(4):469-76
– reference: 20145180 - Clin Cancer Res. 2010 Feb 15;16(4):1108-18
– reference: 10378692 - Oncogene. 1999 May 13;18(19):2955-66
– reference: 21370407 - Pediatr Blood Cancer. 2011 May;56(5):757-61
– reference: 19412175 - Nat Genet. 2009 Jun;41(6):718-23
– reference: 23539594 - Science. 2013 Mar 29;339(6127):1546-58
– reference: 21059859 - Cancer Res. 2011 Jan 1;71(1):98-105
– reference: 24297863 - Clin Cancer Res. 2014 Feb 15;20(4):912-25
– reference: 25517750 - Cancer Cell. 2014 Nov 10;26(5):722-37
– reference: 19171713 - J Clin Oncol. 2009 Mar 1;27(7):1026-33
– reference: 24634504 - J Natl Cancer Inst. 2014 Apr;106(4):dju047
– reference: 20871596 - Nature. 2010 Dec 23;468(7327):1067-73
– reference: 22328350 - Cancer Epidemiol Biomarkers Prev. 2012 Apr;21(4):658-63
– reference: 24022278 - Pediatr Surg Int. 2013 Nov;29(11):1139-45
– reference: 21725357 - Oncogene. 2012 Feb 9;31(6):752-63
– reference: 24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24
– reference: 25517749 - Cancer Cell. 2014 Nov 10;26(5):682-94
– reference: 17055458 - Biochem Biophys Res Commun. 2006 Dec 8;351(1):192-7
– reference: 12687660 - Am J Med Genet A. 2003 May 1;118A(4):309-13
– reference: 18923525 - Nature. 2008 Oct 16;455(7215):975-8
– reference: 21500339 - Am J Med Genet C Semin Med Genet. 2011 May 15;157C(2):83-9
– reference: 22976801 - Br J Cancer. 2012 Oct 9;107(8):1418-22
– reference: 25394791 - Science. 2014 Dec 19;346(6216):1480-6
– reference: 12640453 - Nat Genet. 2003 Apr;33(4):459-61
– reference: 9635589 - Cancer Res. 1998 Jun 15;58(12):2624-32
– reference: 21124317 - Nature. 2011 Jan 13;469(7329):216-20
– reference: 18463370 - N Engl J Med. 2008 Jun 12;358(24):2585-93
– reference: 22416102 - JAMA. 2012 Mar 14;307(10):1062-71
– reference: 20516441 - J Clin Oncol. 2010 Jul 1;28(19):3122-30
– reference: 20655465 - Cell. 2010 Jul 23;142(2):218-29
– reference: 16116152 - J Clin Oncol. 2005 Sep 20;23(27):6466-73
– reference: 22367537 - Nature. 2012 Mar 29;483(7391):589-93
– reference: 21946351 - Nat Genet. 2011 Nov;43(11):1098-103
– reference: 23139213 - Cancer Res. 2013 Jan 1;73(1):195-204
– reference: 11498785 - Oncogene. 2001 Aug 2;20(34):4621-8
– reference: 2068130 - Prog Clin Biol Res. 1991;366:107-13
– reference: 17586306 - Lancet. 2007 Jun 23;369(9579):2106-20
– reference: 20879881 - N Engl J Med. 2010 Sep 30;363(14):1324-34
– reference: 20503330 - Am J Med Genet A. 2010 Jun;152A(6):1531-5
– reference: 26100672 - Cancer Res. 2015 Aug 1;75(15):3155-66
– reference: 13363274 - Ann Surg. 1956 Sep;144(3):366-83
– reference: 20404250 - J Clin Oncol. 2010 May 20;28(15):2625-34
– reference: 23334666 - Nat Genet. 2013 Mar;45(3):279-84
– reference: 24449238 - J Clin Oncol. 2014 Feb 20;32(6):579-86
– reference: 24704920 - Genes (Basel). 2012 May 29;3(2):320-43
– reference: 19171716 - J Clin Oncol. 2009 Mar 1;27(7):1007-13
– reference: 2066755 - J Clin Oncol. 1991 Apr;9(4):581-91
– reference: 4340974 - Am J Hum Genet. 1972 Sep;24(5):514-32
– reference: 15592497 - Oncogene. 2005 Feb 24;24(9):1533-41
– reference: 23202128 - Nat Genet. 2013 Jan;45(1):12-7
– reference: 959840 - Science. 1976 Oct 1;194(4260):23-8
– reference: 24086065 - Cold Spring Harb Perspect Med. 2013 Oct;3(10):a014415
– reference: 8200007 - Cancer. 1994 Jun 15;73(12):3087-93
– reference: 20879880 - N Engl J Med. 2010 Sep 30;363(14):1313-23
– reference: 6313408 - Exp Cell Res. 1983 Oct;148(1):21-30
– reference: 10519894 - N Engl J Med. 1999 Oct 14;341(16):1165-73
– reference: 25487495 - J Pediatr Surg. 2014 Dec;49(12):1835-8
– reference: 11212268 - Cancer Res. 2001 Jan 15;61(2):679-86
– reference: 18923524 - Nature. 2008 Oct 16;455(7215):971-4
– reference: 4047115 - N Engl J Med. 1985 Oct 31;313(18):1111-6
– reference: 16131611 - Genes Dev. 2005 Sep 15;19(18):2122-37
– reference: 25071110 - J Clin Oncol. 2014 Sep 1;32(25):2727-34
– reference: 23462184 - Cell Cycle. 2013 Apr 1;12(7):1091-104
– reference: 21436895 - PLoS Genet. 2011 Mar;7(3):e1002026
– reference: 19047290 - J Clin Oncol. 2009 Jan 10;27(2):298-303
– reference: 10784629 - J Clin Oncol. 2000 May;18(9):1888-99
– reference: 24147068 - PLoS One. 2013;8(10):e77731
– reference: 15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20
– reference: 23430699 - Cancer Discov. 2013 Mar;3(3):308-23
– reference: 19401690 - Br J Cancer. 2009 May 19;100(10):1627-37
– reference: 21319260 - Genes Chromosomes Cancer. 2011 Apr;50(4):250-62
– reference: 25653133 - Cancer Med. 2015 Apr;4(4):540-50
– reference: 16314642 - J Clin Oncol. 2005 Dec 1;23(34):8819-27
– reference: 23965898 - Clin Cancer Res. 2013 Nov 1;19(21):5814-21
– reference: 26560027 - Nature. 2015 Dec 17;528(7582):418-21
– reference: 26121087 - Nat Genet. 2015 Aug;47(8):864-71
– reference: 19047291 - J Clin Oncol. 2009 Jan 10;27(2):289-97
– reference: 21972109 - Hum Mutat. 2011 Mar;32(3):272-6
– reference: 18664255 - BMC Genomics. 2008;9:353
– reference: 5279523 - Proc Natl Acad Sci U S A. 1971 Apr;68(4):820-3
– reference: 9214616 - EMBO J. 1997 Jun 2;16(11):2985-95
– reference: 22941191 - Nat Genet. 2012 Oct;44(10):1126-30
– reference: 22034077 - Genes Chromosomes Cancer. 2012 Jan;51(1):10-9
– reference: 2987426 - J Neurooncol. 1985;3(1):39-41
– reference: 16051962 - J Clin Oncol. 2005 Aug 1;23(22):5205-10
– reference: 25312269 - Cancer Res. 2014 Dec 1;74(23):6913-24
– reference: 21889194 - Cell. 2011 Sep 16;146(6):904-17
– reference: 16306521 - N Engl J Med. 2005 Nov 24;353(21):2243-53
– reference: 23991058 - PLoS One. 2013;8(8):e72182
– reference: 25844600 - Oncotarget. 2015 Apr 30;6(12):10207-21
– reference: 18328949 - Cancer Genet Cytogenet. 2008 Apr 1;182(1):40-2
– reference: 19536264 - Nature. 2009 Jun 18;459(7249):987-91
– reference: 21289283 - Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3336-41
– reference: 7132228 - Klin Padiatr. 1982 Jul-Aug;194(4):270-4
– reference: 13130115 - J Natl Cancer Inst. 2003 Sep 17;95(18):1394-403
– reference: 8636746 - J Clin Oncol. 1996 Feb;14(2):373-81
– reference: 24009722 - PLoS One. 2013;8(8):e72967
– reference: 22997192 - Pediatr Blood Cancer. 2013 Feb;60(2):332-5
– reference: 9591633 - Genes Chromosomes Cancer. 1998 May;22(1):42-9
– reference: 23042116 - Nat Genet. 2012 Nov;44(11):1199-206
– reference: 22706201 - Cancer Res. 2012 Jul 1;72(13):3119-24
– reference: 18724359 - Nature. 2008 Oct 16;455(7215):930-5
– reference: 11461074 - Br J Cancer. 2001 Jul 20;85(2):182-9
– reference: 23222812 - Carcinogenesis. 2013 Mar;34(3):605-11
– reference: 24214728 - Am J Med Genet A. 2013 Dec;161A(12):2972-80
– reference: 23598171 - Lancet Oncol. 2013 May;14(6):472-80
– reference: 25251827 - Genes Chromosomes Cancer. 2015 Feb;54(2):99-109
– reference: 22585002 - Nat Rev Clin Oncol. 2012 Jul;9(7):391-9
– reference: 18413728 - Cancer Res. 2008 Apr 15;68(8):2599-609
– reference: 6719137 - Science. 1984 Jun 8;224(4653):1121-4
– reference: 21460101 - Mol Cancer Ther. 2011 Jun;10(6):983-93
– reference: 20558371 - N Engl J Med. 2010 Jun 10;362(23):2202-11
– reference: 11705866 - Clin Cancer Res. 2001 Nov;7(11):3481-90
– reference: 12557224 - Genes Chromosomes Cancer. 2003 Mar;36(3):242-9
– reference: 8102298 - Nat Genet. 1993 Jun;4(2):187-90
– reference: 11464868 - Med Pediatr Oncol. 2001 Jan;36(1):14-9
– reference: 18923523 - Nature. 2008 Oct 16;455(7215):967-70
– reference: 22142829 - Clin Cancer Res. 2012 Feb 1;18(3):748-57
– reference: 22350409 - Cancer Res. 2012 Apr 15;72(8):2068-78
– reference: 8823329 - J Clin Oncol. 1996 Sep;14(9):2504-10
– reference: 11464901 - Med Pediatr Oncol. 2001 Jan;36(1):37-41
SSID ssj0007253
Score 2.561498
SecondaryResourceType review_article
Snippet Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms anaplastic lymphoma kinase (ALK)
Animals
clonal evolution
Genome-Wide Association Study - methods
Genome-Wide Association Study - trends
genome‐wide association studies
Genomics - methods
Genomics - trends
Humans
neuroblastoma
Neuroblastoma - genetics
pediatric
v‐myc avian myelocytomatosis viral oncogene neuroblastoma‐derived homolog (MYCN)
Title Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcncr.29706
https://www.ncbi.nlm.nih.gov/pubmed/26539795
https://www.proquest.com/docview/1760852978
https://www.proquest.com/docview/1919966313
https://pubmed.ncbi.nlm.nih.gov/PMC4707066
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXVQ-IC-9HeGkQXEByaq8fayMuVSCqkNpDRaVckOV9qRaJjRKHA9-H78nMru0QiirBLVIm8mY9O_v37MzPjL3WRDuNVBhoXqRBUqUmkDZNA1FhyBTaVlJRc_LpWXZykXxapIsD9n7ohfF8iDHhRivDxWta4JXcHO2goapR6ykvhONtR3FG4PwP5zt2lOA9gjLMgzSJFyOblB_tfrq_G12RmFcrJX9XsG4Lmt9mX4bB-8qTr9NtJ6fqxx9cx__9d3fYrV6bwrF3prvswDT32I3T_vT9Pvt57AsGNlA3gMIROtroln06EQj3uqrVBloLDpMpUZl37ap6B_N1u4J6yF8A1bODB_baPmcIVaOBcFIV9cdD0343S-gJUdC1ULuGYteUBb4Xg3q-hmuCO_T3yccH7GL-8fPsJOhf8xAolI9ZUEUGZVyIUVnJXIcGIwTqEMutoYcxLsKKalFNFEtO_qbxgVJbLmSeFVppG8cP2WHTNuYxAxVbhcGbx8rqxKQCHc3gJKLHSaFsmE_Ym-F2l6pnoNOrOJalpzfzkua9dPM-Ya9G22-e_PFXq5eD15S4MOm0pWpMu92UkchQzqJRfo1NQUXgWRzFE_bIe9p4LU7QYFGkEyb2fHA0IDD4_jdNfekA4YnAQJ7h2N46F7tm-OXsbHbuPj35F-On7CYKxz4V9YwdduuteY7irJMv3CL8BYVbPak
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXqEjApbwhPAfBBSSn9vqxNrcqEAVocqhaKTfL3oewSOwqcTjwffiezKw3DqGoEtwiZSI769nZv2dnfsvYG0W000D6nuJZ7EVFrL3SxLEnCgyZQpmilNScPJ0lk_Po8zyeu9oc6oXp-BB9wo1mho3XNMEpIX20o4bKWq6GPBME3L5OG3Q0Lz-c7uhRgjsIpZ96cRTOezopP9r9dn89uiQyL9dK_q5h7SI0vt2dtLq27EKqPfk23LTlUP74g-z43__vDjt08hSOO3-6y67p-h67MXUb8PfZz-OuZmANVQ2oHaGltW7hMopAxNdlJdfQGLCkzBLFedssi_cwXjVLqLYpDKCSduiYvcalDaGoFRBRqqAWeaib73oBDhIFbQOV7Sm2fVnQtWNQ29f2mmD3_bv84wN2Pv54Npp47qQHT6KCTLwi0KjkfAzMskyVrzFIoBQx3Gh6H-PCL6gcVQdhycnlFL5TKsNFmSaZksqE4UN2UDe1fsxAhkZi_OahNCrSsUBf0ziI6HSlkMZPB-zt9nnn0mHQ6TSORd4BnHlO457bcR-w173tRQf_-KvVq63b5Dg3acOlqHWzWeeBSFDRolF6hU1GdeBJGIQD9qhztf5anLjBIosHTOw5YW9AbPD9b-rqq2WERwJjeYL39s762BW3n49mo1P76cm_GL9kNydn05P85NPsy1N2C3Wky0w9YwftaqOfo1Zryxd2Rv4CIn9Bxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXVZEqLryhKa9BcAHJqb1-bIy4VIGoPBqhikq5IMveh7Ca2FXicOD78D2Z2bUdQlEluEXKRN6sZ2f_np35mbEXimingfQ9xdPYi_JYe4WJY0_kGDKFMnkhqTn5ZJocn0UfZvFsh73pemEcH6JPuNHKsPGaFviFMocbaKis5HLIU0G87WtRgo9XJIlON_AowVsGpT_y4iic9XBSfrj57fZ2dEljXi6V_F3C2j1ocpN97UbvSk_Oh-umGMoff4Ad__fv3WI3WnEKR86bbrMdXd1heyft8ftd9vPIVQysoKwAlSM0tNPN23wiEO91UcoV1AYsJ7NAad7Ui_w1TJb1AsougQFU0A6O2GvapCHklQLiSeXUIA9V_V3PoUVEQVNDaTuKbVcWuGYMavrqrgn21N9lH--xs8m7L-Njr33PgydRPyZeHmjUcT6GZVmMlK8xRKAQMdxoehrjws-pGFUHYcHJ4RQ-USrDRTFKUiWVCcP7bLeqK73PQIZGYvTmoTQq0rFAT9M4iehyhZDGHw3Yy-52Z7KFoNO7OOaZwzfzjOY9s_M-YM972wuH_vir1bPOazJcmXTckle6Xq-yQCSoZ9FodIVNSlXgSRiEA_bAeVp_LU7UYJHGAya2fLA3IDL49jdV-c0SwiOBkTzBsb2yLnbF8LPxdHxqPx38i_FTtvf57ST79H768SG7jiKyTUs9YrvNcq0fo1Briid2Pf4CQ2FAdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+translational+genomics+of+neuroblastoma%3A+From+improving+risk+stratification+and+revealing+novel+biology+to+identifying+actionable+genomic+alterations&rft.jtitle=Cancer&rft.au=Bosse%2C+Kristopher+R.&rft.au=Maris%2C+John+M.&rft.date=2016-01-01&rft.issn=0008-543X&rft.eissn=1097-0142&rft.volume=122&rft.issue=1&rft.spage=20&rft.epage=33&rft_id=info:doi/10.1002%2Fcncr.29706&rft.externalDBID=10.1002%252Fcncr.29706&rft.externalDocID=CNCR29706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-543X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-543X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-543X&client=summon