Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel
ABSTRACT Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polyl...
Saved in:
Published in | Journal of orthopaedic research Vol. 33; no. 4; pp. 572 - 583 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0736-0266 1554-527X 1554-527X |
DOI | 10.1002/jor.22802 |
Cover
Abstract | ABSTRACT
Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus‐like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real‐time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell‐based meniscus regeneration strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:572–583, 2015. |
---|---|
AbstractList | Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time PCR, respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies. Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies. Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies. ABSTRACT Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus‐like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real‐time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell‐based meniscus regeneration strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:572–583, 2015. |
Author | D'Lima, Darryl D. Jin, Sungho Grogan, Shawn P. Chen, Xian Baek, Jihye Sovani, Sujata |
AuthorAffiliation | 2 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA |
AuthorAffiliation_xml | – name: 2 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California – name: 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA |
Author_xml | – sequence: 1 givenname: Jihye surname: Baek fullname: Baek, Jihye organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, California – sequence: 2 givenname: Xian surname: Chen fullname: Chen, Xian organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla – sequence: 3 givenname: Sujata surname: Sovani fullname: Sovani, Sujata organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla – sequence: 4 givenname: Sungho surname: Jin fullname: Jin, Sungho organization: Materials Science and Engineering, University of California, La Jolla, California, San Diego – sequence: 5 givenname: Shawn P. surname: Grogan fullname: Grogan, Shawn P. organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla – sequence: 6 givenname: Darryl D. surname: D'Lima fullname: D'Lima, Darryl D. email: : Darryl D. D'Lima (T: +1-858-332-0166; F: +1-858-332-0669; ), ddlima@scripps.edu organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25640671$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1u1DAQhS1URH_gghdAvgSktLYT29kbJFTRAipUoAK9sxxnsuvi2IuddHffhMfF2-2WH4ne2BfznTMzZ_bRjg8eEHpKySElhB1dhXjIWE3YA7RHOa8KzuTlDtojshQFYULsov2UrgghkrL6EdplXFRESLqHfn4Ab5MZEx5sSiNg8FPrAaL1Uzym9auxD9fgsAl9Y70ebPA4dBgcmCGGNB89TkZ3XXBtwtq3eDb22uN-a2zAuYShb6BtocULO8yszyCG5RD1ujo6HXGvh2iXeLZqY5iCe4wedtoleHL7H6AvJ28ujt8WZ-en745fnxWG0wkreMuJMYabjglZd5pLXrHSVLqedLQxQnYtB0MaVraSc11xKojQdWlA0kkzkeUBernxHf1crxbaOTWPttdxpShR63hVjlfdxJvhVxt4PjY9tAZ83uC3IGir_q54O1PTcK2qshZ1ybPB81uDGH6MkAbV55ByBNpDGJOiQsiSk0qIjD77s9ddk-3tMvBiA5h8hRShu3fwo39YY4ebU-YxrbtPsbAOVv-3Vu_PP28VxUZh0wDLO4WO31VeSnL17eOpqurLC_JVnKhP5S-Botzs |
CitedBy_id | crossref_primary_10_1002_jbm_b_34692 crossref_primary_10_1016_j_bprint_2017_08_001 crossref_primary_10_1186_s40634_016_0058_0 crossref_primary_10_1080_03008207_2016_1276177 crossref_primary_10_1016_j_actbio_2018_03_017 crossref_primary_10_1007_s11706_016_0335_y crossref_primary_10_1039_D2TB02602C crossref_primary_10_1016_j_msec_2016_06_084 crossref_primary_10_1016_j_actbio_2018_04_012 crossref_primary_10_3389_fbioe_2022_1082499 crossref_primary_10_1016_j_jmbbm_2022_105598 crossref_primary_10_1039_D2RA07756F crossref_primary_10_1080_03008207_2019_1624733 crossref_primary_10_1088_1758_5090_aa8fb8 crossref_primary_10_1049_iet_nbt_2016_0159 crossref_primary_10_1016_j_nano_2019_102090 crossref_primary_10_1089_ten_teb_2020_0096 crossref_primary_10_1177_0885328217713631 crossref_primary_10_1089_ten_tea_2016_0205 crossref_primary_10_1016_j_actbio_2016_11_046 crossref_primary_10_1002_adhm_201801236 crossref_primary_10_1177_0363546517752668 crossref_primary_10_1002_adma_202000657 crossref_primary_10_1038_srep28170 crossref_primary_10_1089_ten_tea_2018_0319 crossref_primary_10_3389_fbioe_2024_1495015 crossref_primary_10_1016_j_addr_2016_06_018 crossref_primary_10_1002_jbm_b_34952 crossref_primary_10_1002_mabi_202300105 crossref_primary_10_4068_cmj_2021_57_1_13 crossref_primary_10_1002_adhm_201700927 crossref_primary_10_1038_s41598_018_32156_0 crossref_primary_10_1177_0885328220981189 crossref_primary_10_1088_1758_5090_ad22f0 crossref_primary_10_3389_fbioe_2020_00077 crossref_primary_10_1039_C5RA13859K crossref_primary_10_2217_nnm_2020_0183 crossref_primary_10_1089_ten_tea_2020_0183 crossref_primary_10_1089_ten_tea_2015_0284 crossref_primary_10_1089_ten_teb_2023_0050 crossref_primary_10_1177_20417314211050141 crossref_primary_10_1088_1748_605X_aa7b51 crossref_primary_10_1007_s00289_022_04442_5 crossref_primary_10_2217_nnm_2021_0313 crossref_primary_10_1002_jbm_b_35178 crossref_primary_10_1016_j_biomaterials_2016_09_017 crossref_primary_10_1039_C8NR02002G crossref_primary_10_1016_j_addr_2016_04_015 crossref_primary_10_3389_fbioe_2022_810705 crossref_primary_10_1002_jbm_a_36372 crossref_primary_10_1007_s42114_024_01196_8 crossref_primary_10_1089_ten_tea_2016_0460 crossref_primary_10_1038_nmat4520 crossref_primary_10_1177_08853282211000523 crossref_primary_10_1088_1748_605X_ac28a5 crossref_primary_10_1021_acsami_6b05199 crossref_primary_10_1016_j_jmbbm_2016_03_022 crossref_primary_10_1080_00914037_2022_2097675 crossref_primary_10_2217_3dp_2017_0012 crossref_primary_10_1021_acsabm_0c01225 crossref_primary_10_1016_j_bioactmat_2020_11_027 crossref_primary_10_1089_ten_tea_2015_0373 crossref_primary_10_1039_C6TB03299K crossref_primary_10_1002_term_2602 crossref_primary_10_1016_j_actbio_2021_03_074 crossref_primary_10_3390_polym14152983 |
Cites_doi | 10.1177/03635465010290020201 10.1016/S0749-8063(98)70099-4 10.1053/jars.2001.19975 10.1016/j.jbiomech.2006.09.004 10.1177/0363546505278702 10.1016/j.biomaterials.2004.08.028 10.1097/00132585-199901000-00006 10.1088/1758-5082/5/1/015001 10.1002/jor.20384 10.1097/BLO.0b013e31802ff806 10.1016/0142-9612(96)85754-1 10.1088/1748-6041/3/3/034002 10.1016/j.biomaterials.2011.06.037 10.1016/j.biomaterials.2007.01.004 10.1016/S0266-3538(03)00103-9 10.1023/B:JMSM.0000021114.39595.1e 10.1002/path.1169 10.1007/s004290050141 10.1089/ten.tea.2012.0052 10.1016/j.knee.2009.02.004 10.1016/j.joca.2004.02.010 10.1097/00003086-198711000-00008 10.1586/erd.09.39 10.1002/art.24363 10.1088/0957-4484/23/9/095705 10.1016/j.msec.2006.05.019 10.1097/00001433-200210000-00004 10.1002/art.11088 10.1007/s00167-002-0304-0 10.1186/ar2719 10.1016/j.cpm.2005.08.001 10.1089/107632701300062697 10.1007/s00402-012-1624-2 10.1016/j.actbio.2009.10.027 10.1097/00003086-199910001-00027 10.1053/joca.2000.0366 10.1016/j.biomaterials.2010.08.115 10.22203/eCM.v026a11 10.1016/j.actbio.2013.03.020 10.1016/j.joca.2011.05.008 10.1016/S0032-3861(00)00250-0 10.1097/JSA.0b013e318246f005 10.3390/jfb3030497 10.1089/ten.2006.12.1775 |
ContentType | Journal Article |
Copyright | 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
DOI | 10.1002/jor.22802 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1554-527X |
EndPage | 583 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:4386835 PMC4386835 25640671 10_1002_jor_22802 JOR22802 ark_67375_WNG_48XT0V6F_Q |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: California Institute of Regenerative Medicine funderid: TR1‐01216 – fundername: National Institutes of Health funderid: P01 AG007996 – fundername: The National Science Foundation funderid: DMR‐1006081 – fundername: The Scripps Translational Science Institute funderid: UL1 RR025774 – fundername: The UC Discovery Grant funderid: ele08‐128656/Jin – fundername: NCRR NIH HHS grantid: UL1 RR025774 – fundername: NIA NIH HHS grantid: P01 AG007996 |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 29L 31~ 33P 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHQN AAIPD AALRI AAMMB AAMNL AANHP AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABWVN ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACRPL ACSCC ACVFH ACXBN ACXQS ACYXJ ADBBV ADBTR ADCNI ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFPUW AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHMBA AIACR AIAGR AIDQK AIDYY AIGII AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BSCLL BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO Q.N Q11 Q2X QB0 QRW R.K R2- RIWAO RJQFR RNS ROL RPZ RWL RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WXI WXSBR WYISQ X7M XG1 XV2 YQT ZGI ZXP ZZTAW ~IA ~WT 24P 3V. AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV RIG RWI RWR WRC WYB YCJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c5192-5d50ccc5cf2678fa575423c4a89f1bc67fd5ec0b23d755a451606a83ce719b973 |
IEDL.DBID | DR2 |
ISSN | 0736-0266 1554-527X |
IngestDate | Wed Aug 20 00:11:35 EDT 2025 Thu Aug 21 17:42:52 EDT 2025 Thu Sep 04 17:12:36 EDT 2025 Thu Apr 03 07:02:34 EDT 2025 Wed Oct 01 04:05:55 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Jan 22 16:39:16 EST 2025 Sun Sep 21 06:20:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | tissue engineering ECM hydrogel electrospinning meniscus |
Language | English |
License | 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5192-5d50ccc5cf2678fa575423c4a89f1bc67fd5ec0b23d755a451606a83ce719b973 |
Notes | The Scripps Translational Science Institute - No. UL1 RR025774 National Institutes of Health - No. P01 AG007996 The UC Discovery Grant - No. ele08-128656/Jin The National Science Foundation - No. DMR-1006081 California Institute of Regenerative Medicine - No. TR1-01216 istex:F28ABD6493E88446C619F18C944B87FBCD480545 ArticleID:JOR22802 ark:/67375/WNG-48XT0V6F-Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4386835 |
PMID | 25640671 |
PQID | 1667350466 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | unpaywall_primary_10_1002_jor_22802 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386835 proquest_miscellaneous_1667350466 pubmed_primary_25640671 crossref_primary_10_1002_jor_22802 crossref_citationtrail_10_1002_jor_22802 wiley_primary_10_1002_jor_22802_JOR22802 istex_primary_ark_67375_WNG_48XT0V6F_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2015 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J. Orthop. Res |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Ionescu LC, Mauck RL. 2013. Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng Part A 19:538-547. Arnoczky SP, Lavagnino M. 2001. Tensile fixation of absorbable meniscal repair devices as a function of hydrolysis time. Am J Sports Med 29:118-123. Katz JN, Martin SD. 2009. Meniscus-friend or foe: epidemiologic observations and surgical implications. Arthritis Rheum 60:633-635. Kai D, Prabhakaran MP, Stahl B, et al. 2012. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23:095705. Rodkey WG, Steadman JR, Li S-T. 1999. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res 367S:S281-S292. Scotti C, Hirschmann MT, Antinolfi P, et al. 2013. Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater 26:150-170. Cook JL, Fox DB, Malaviya P, et al. 2006. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32-42. Ghosh P, Taylor T. 1987. The knee joint meniscus: a fibrocartilage of some distinction. Clin Orthop Relat Res 224:52-63. Sweigart MA, Athanasiou KA. 2001. Toward tissue engineering of the knee meniscus. Tissue Eng 7:111-129. Lannutti J, Reneker D, et al. 2007. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl 27:504-509. Asik M, Atalar AC. 2002. Failed resorption of bioabsorbable meniscus repair devices. Knee Surg Sports Traumatol Arthrosc 10:300-304. Han N, Johnson JK, Bradley PA, et al. 2012. Cell attachment to hydrogel-electrospun fiber mat composite materials. J Funct Biomater 3:497-513. McDevitt CA, Mukherjee S, Kambic H, et al. 2002. Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop 13:345-350. Makris EA, Hadidi P, Athanasiou KA. 2011. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411-7431. Lozano J, Ma C, Cannon W. 2007. All-inside meniscus repair: a systematic review. Clin Orthop Relat Res 455:134-141. Martin I, Jakob M, Schäfer D, et al. 2001. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9:112-118. Liu C, Toma I, Mastrogiacomo M, et al. 2013. Meniscus reconstruction: today's achievements and premises for the future. Arch Orthop Trauma Surg 133:95-109. Heijkants RG, van Calck RV, De Groot JH, et al. 2004. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med 15:423-427. Athanassiou K, Agrawal C, Barber F, et al. 1998. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726-737. Grogan SP, Aklin B, Frenz M, et al. 2002. In vitro model for the study of necrosis and apoptosis in native cartilage. J Pathol 198:5-13. Mandal BB, Park SH, Gil ES, et al. 2011. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639-651. Petersen W, Tillmann B. 1998. Collagenous fibril texture of the human knee joint menisci. Anat Embryol 197:317-324. Li WJ, Mauck RL, Cooper JA, et al. 2007. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686-1693. Barber FA. 1999. Meniscus repair aftercare. Sports Med Arthrosc 7:43-47. Deitzel JM, Kleinmeyer J, Harris D, et al. 2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261-272. Pauli C, Grogan SP, Patil S, et al. 2011. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19:1132-1141. Kumbar SG, James R, Nukavarapu SP, et al. 2008. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3:034002. Lee AS, Kang RW, Kroin E, et al. 2012. Allograft meniscus transplatation. Sports Med Arthrosc 20:106-114. Englund M, Roos EM, Lohmander LS. 2003. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 48:2178-2187. Oksman K, Skrifvars M, Selin JF. 2003. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317-1324. Roberts S, Menage J, Sandell LJ, et al. 2009. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 16:398-404. Baker BM, Handorf AM, Ionescu LC, et al. 2009. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices 6:515-532. Baker BM, Mauck RL. 2007. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967-1977. Grogan SP, Miyaki S, Asahara H, et al. 2009. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11:R85. Nerurkar NL, Elliott DM, Mauck RL. 2007. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25:1018-1028. Grogan SP, Chung PH, Soman P, et al. 2013. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 9:7218-7226. Platt MA. 2005. Tendon repair and healing. Clin Podiatr Med Surg 22:553-560. Athanasiou KA, Niederauer GG, Agrawal CM. 1996. Sterilization, toxicit, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93-102. Barbero A, Grogan S, Schäfer D, et al. 2004. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476-484. Gloria A, De Santis R, Ambrosio L. 2010. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8:57-67. Metter RB, Ifkovits JL, Hou K, et al. 2010. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library. Acta Biomater 6:1219-1226. Kobayashi M, Chang YS, Oka M. 2005. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243-3248. Li W-J, Jiang YJ, Tuan RS. 2006. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12:1775-1785. Becker R, Schroder M, Starke C, et al. 2001. Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus. Arthroscopy 17:439-444. McCullen SD, Stevens DR, Roberts WA, et al. 2007. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomedicine 2:253-263. Xu T, Binder KW, Albanna MZ, et al. 2013. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001. 2013; 26 1996; 17 2006; 34 2006; 12 2002; 198 1987; 224 2009; 60 2002; 13 2002; 10 2011; 32 1999; 367S 2008; 3 2001; 29 2005; 26 1999; 7 2011; 19 2013; 5 2005; 22 1998; 197 2001; 42 2013; 9 2007; 455 2007; 28 2013; 19 2009; 11 2012; 3 2001; 7 2004; 15 2004; 12 2001; 9 2013; 133 2003; 48 2009; 6 2001; 17 2007; 40 2007; 2 2012; 23 2003; 63 2009; 16 2012; 20 2010; 6 2007; 25 1998; 14 2010; 8 2007; 27 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 McCullen SD (e_1_2_7_39_1) 2007; 2 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Gloria A (e_1_2_7_20_1) 2010; 8 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 15603819 - Biomaterials. 2005 Jun;26(16):3243-8 11292034 - Am J Sports Med. 2001 Mar-Apr;29(2):118-23 3311520 - Clin Orthop Relat Res. 1987 Nov;(224):52-63 12905471 - Arthritis Rheum. 2003 Aug;48(8):2178-87 19500336 - Arthritis Res Ther. 2009;11(3):R85 17179785 - Clin Orthop Relat Res. 2007 Feb;455:134-41 11337709 - Arthroscopy. 2001 May;17(5):439-44 20926132 - Biomaterials. 2011 Jan;32(2):639-51 21764438 - Biomaterials. 2011 Oct;32(30):7411-31 12210057 - J Pathol. 2002 Sep;198(1):5-13 15135144 - Osteoarthritis Cartilage. 2004 Jun;12(6):476-84 18689924 - Biomed Mater. 2008 Sep;3(3):034002 9788368 - Arthroscopy. 1998 Oct;14(7):726-37 23172542 - Biofabrication. 2013 Mar;5(1):015001 24955629 - J Funct Biomater. 2012 Jul 27;3(3):497-513 22994398 - Tissue Eng Part A. 2013 Feb;19(3-4):538-47 19853066 - Acta Biomater. 2010 Apr;6(4):1219-26 8624401 - Biomaterials. 1996 Jan;17(2):93-102 20740467 - J Appl Biomater Biomech. 2010 May-Aug;8(2):57-67 23523536 - Acta Biomater. 2013 Jul;9(7):7218-26 17457824 - J Orthop Res. 2007 Aug;25(8):1018-28 23076654 - Arch Orthop Trauma Surg. 2013 Jan;133(1):95-109 11304448 - Tissue Eng. 2001 Apr;7(2):111-29 9565324 - Anat Embryol (Berl). 1998 Apr;197(4):317-24 17056048 - J Biomech. 2007;40(8):1686-93 15332611 - J Mater Sci Mater Med. 2004 Apr;15(4):423-7 10546653 - Clin Orthop Relat Res. 1999 Oct;(367 Suppl):S281-92 11237658 - Osteoarthritis Cartilage. 2001 Feb;9(2):112-8 16213379 - Clin Podiatr Med Surg. 2005 Oct;22(4):553-60, vi 17250888 - Biomaterials. 2007 Apr;28(11):1967-77 21683797 - Osteoarthritis Cartilage. 2011 Sep;19(9):1132-41 19248081 - Arthritis Rheum. 2009 Mar;60(3):633-5 22322583 - Nanotechnology. 2012 Mar 9;23(9):095705 19751124 - Expert Rev Med Devices. 2009 Sep;6(5):515-32 22555208 - Sports Med Arthrosc. 2012 Jun;20(2):106-14 12355305 - Knee Surg Sports Traumatol Arthrosc. 2002 Sep;10(5):300-4 16157845 - Am J Sports Med. 2006 Jan;34(1):32-42 17722553 - Int J Nanomedicine. 2007;2(2):253-63 16889508 - Tissue Eng. 2006 Jul;12(7):1775-85 24057873 - Eur Cell Mater. 2013;26:150-70 19269183 - Knee. 2009 Oct;16(5):398-404 |
References_xml | – reference: Englund M, Roos EM, Lohmander LS. 2003. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 48:2178-2187. – reference: Gloria A, De Santis R, Ambrosio L. 2010. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8:57-67. – reference: Lee AS, Kang RW, Kroin E, et al. 2012. Allograft meniscus transplatation. Sports Med Arthrosc 20:106-114. – reference: McDevitt CA, Mukherjee S, Kambic H, et al. 2002. Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop 13:345-350. – reference: Kobayashi M, Chang YS, Oka M. 2005. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243-3248. – reference: Sweigart MA, Athanasiou KA. 2001. Toward tissue engineering of the knee meniscus. Tissue Eng 7:111-129. – reference: Ionescu LC, Mauck RL. 2013. Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng Part A 19:538-547. – reference: Cook JL, Fox DB, Malaviya P, et al. 2006. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32-42. – reference: Li W-J, Jiang YJ, Tuan RS. 2006. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12:1775-1785. – reference: Kai D, Prabhakaran MP, Stahl B, et al. 2012. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23:095705. – reference: Athanasiou KA, Niederauer GG, Agrawal CM. 1996. Sterilization, toxicit, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93-102. – reference: Platt MA. 2005. Tendon repair and healing. Clin Podiatr Med Surg 22:553-560. – reference: Xu T, Binder KW, Albanna MZ, et al. 2013. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001. – reference: Martin I, Jakob M, Schäfer D, et al. 2001. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9:112-118. – reference: Grogan SP, Chung PH, Soman P, et al. 2013. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 9:7218-7226. – reference: McCullen SD, Stevens DR, Roberts WA, et al. 2007. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomedicine 2:253-263. – reference: Barber FA. 1999. Meniscus repair aftercare. Sports Med Arthrosc 7:43-47. – reference: Han N, Johnson JK, Bradley PA, et al. 2012. Cell attachment to hydrogel-electrospun fiber mat composite materials. J Funct Biomater 3:497-513. – reference: Rodkey WG, Steadman JR, Li S-T. 1999. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res 367S:S281-S292. – reference: Liu C, Toma I, Mastrogiacomo M, et al. 2013. Meniscus reconstruction: today's achievements and premises for the future. Arch Orthop Trauma Surg 133:95-109. – reference: Grogan SP, Aklin B, Frenz M, et al. 2002. In vitro model for the study of necrosis and apoptosis in native cartilage. J Pathol 198:5-13. – reference: Roberts S, Menage J, Sandell LJ, et al. 2009. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 16:398-404. – reference: Petersen W, Tillmann B. 1998. Collagenous fibril texture of the human knee joint menisci. Anat Embryol 197:317-324. – reference: Mandal BB, Park SH, Gil ES, et al. 2011. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639-651. – reference: Ghosh P, Taylor T. 1987. The knee joint meniscus: a fibrocartilage of some distinction. Clin Orthop Relat Res 224:52-63. – reference: Kumbar SG, James R, Nukavarapu SP, et al. 2008. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3:034002. – reference: Lannutti J, Reneker D, et al. 2007. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl 27:504-509. – reference: Lozano J, Ma C, Cannon W. 2007. All-inside meniscus repair: a systematic review. Clin Orthop Relat Res 455:134-141. – reference: Oksman K, Skrifvars M, Selin JF. 2003. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317-1324. – reference: Katz JN, Martin SD. 2009. Meniscus-friend or foe: epidemiologic observations and surgical implications. Arthritis Rheum 60:633-635. – reference: Deitzel JM, Kleinmeyer J, Harris D, et al. 2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261-272. – reference: Makris EA, Hadidi P, Athanasiou KA. 2011. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411-7431. – reference: Nerurkar NL, Elliott DM, Mauck RL. 2007. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25:1018-1028. – reference: Metter RB, Ifkovits JL, Hou K, et al. 2010. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library. Acta Biomater 6:1219-1226. – reference: Heijkants RG, van Calck RV, De Groot JH, et al. 2004. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med 15:423-427. – reference: Grogan SP, Miyaki S, Asahara H, et al. 2009. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11:R85. – reference: Li WJ, Mauck RL, Cooper JA, et al. 2007. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686-1693. – reference: Asik M, Atalar AC. 2002. Failed resorption of bioabsorbable meniscus repair devices. Knee Surg Sports Traumatol Arthrosc 10:300-304. – reference: Barbero A, Grogan S, Schäfer D, et al. 2004. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476-484. – reference: Scotti C, Hirschmann MT, Antinolfi P, et al. 2013. Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater 26:150-170. – reference: Arnoczky SP, Lavagnino M. 2001. Tensile fixation of absorbable meniscal repair devices as a function of hydrolysis time. Am J Sports Med 29:118-123. – reference: Becker R, Schroder M, Starke C, et al. 2001. Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus. Arthroscopy 17:439-444. – reference: Athanassiou K, Agrawal C, Barber F, et al. 1998. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726-737. – reference: Pauli C, Grogan SP, Patil S, et al. 2011. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19:1132-1141. – reference: Baker BM, Mauck RL. 2007. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967-1977. – reference: Baker BM, Handorf AM, Ionescu LC, et al. 2009. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices 6:515-532. – volume: 2 start-page: 253 year: 2007 end-page: 263 article-title: Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose‐derived human mesenchymal stem cells publication-title: Int J Nanomedicine – volume: 27 start-page: 504 year: 2007 end-page: 509 article-title: Electrospinning for tissue engineering scaffolds publication-title: Mater Sci Eng C Mater Biol Appl – volume: 42 start-page: 261 year: 2001 end-page: 272 article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles publication-title: Polymer – volume: 8 start-page: 57 year: 2010 end-page: 67 article-title: Polymer‐based composite scaffolds for tissue engineering publication-title: J Appl Biomater Biomech – volume: 3 start-page: 034002 year: 2008 article-title: Electrospun nanofiber scaffolds: engineering soft tissues publication-title: Biomed Mater – volume: 19 start-page: 1132 year: 2011 end-page: 1141 article-title: Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis publication-title: Osteoarthritis Cartilage – volume: 6 start-page: 1219 year: 2010 end-page: 1226 article-title: Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library publication-title: Acta Biomater – volume: 23 start-page: 095705 year: 2012 article-title: Mechanical properties and in vitro behavior of nanofiber‐hydrogel composites for tissue engineering applications publication-title: Nanotechnology – volume: 7 start-page: 111 year: 2001 end-page: 129 article-title: Toward tissue engineering of the knee meniscus publication-title: Tissue Eng – volume: 13 start-page: 345 year: 2002 end-page: 350 article-title: Emerging concepts of the cell biology of the meniscus publication-title: Curr Opin Orthop – volume: 48 start-page: 2178 year: 2003 end-page: 2187 article-title: Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen‐year followup of meniscectomy with matched controls publication-title: Arthritis Rheum – volume: 19 start-page: 538 year: 2013 end-page: 547 article-title: Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro publication-title: Tissue Eng Part A – volume: 198 start-page: 5 year: 2002 end-page: 13 article-title: In vitro model for the study of necrosis and apoptosis in native cartilage publication-title: J Pathol – volume: 15 start-page: 423 year: 2004 end-page: 427 article-title: Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration publication-title: J Mater Sci Mater Med – volume: 25 start-page: 1018 year: 2007 end-page: 1028 article-title: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering publication-title: J Orthop Res – volume: 10 start-page: 300 year: 2002 end-page: 304 article-title: Failed resorption of bioabsorbable meniscus repair devices publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 34 start-page: 32 year: 2006 end-page: 42 article-title: Long‐term outcome for large meniscal defects treated with small intestinal submucosa in a dog model publication-title: Am J Sports Med – volume: 6 start-page: 515 year: 2009 end-page: 532 article-title: New directions in nanofibrous scaffolds for soft tissue engineering and regeneration publication-title: Expert Rev Med Devices – volume: 12 start-page: 1775 year: 2006 end-page: 1785 article-title: Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size publication-title: Tissue Eng – volume: 32 start-page: 639 year: 2011 end-page: 651 article-title: Multilayered silk scaffolds for meniscus tissue engineering publication-title: Biomaterials – volume: 3 start-page: 497 year: 2012 end-page: 513 article-title: Cell attachment to hydrogel‐electrospun fiber mat composite materials publication-title: J Funct Biomater – volume: 455 start-page: 134 year: 2007 end-page: 141 article-title: All‐inside meniscus repair: a systematic review publication-title: Clin Orthop Relat Res – volume: 5 start-page: 015001 year: 2013 article-title: Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications publication-title: Biofabrication – volume: 26 start-page: 150 year: 2013 end-page: 170 article-title: Meniscus repair and regeneration: review on current methods and research potential publication-title: Eur Cell Mater – volume: 40 start-page: 1686 year: 2007 end-page: 1693 article-title: Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering publication-title: J Biomech – volume: 9 start-page: 112 year: 2001 end-page: 118 article-title: Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints publication-title: Osteoarthritis Cartilage – volume: 12 start-page: 476 year: 2004 end-page: 484 article-title: Age related changes in human articular chondrocyte yield, proliferation and post‐expansion chondrogenic capacity publication-title: Osteoarthritis Cartilage – volume: 16 start-page: 398 year: 2009 end-page: 404 article-title: Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation publication-title: Knee – volume: 9 start-page: 7218 year: 2013 end-page: 7226 article-title: Digital micromirror device projection printing system for meniscus tissue engineering publication-title: Acta Biomater – volume: 11 start-page: R85 year: 2009 article-title: Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis publication-title: Arthritis Res Ther – volume: 26 start-page: 3243 year: 2005 end-page: 3248 article-title: A two year in vivo study of polyvinyl alcohol‐hydrogel (PVA‐H) artificial meniscus publication-title: Biomaterials – volume: 17 start-page: 439 year: 2001 end-page: 444 article-title: Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus publication-title: Arthroscopy – volume: 17 start-page: 93 year: 1996 end-page: 102 article-title: Sterilization, toxicit, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers publication-title: Biomaterials – volume: 29 start-page: 118 year: 2001 end-page: 123 article-title: Tensile fixation of absorbable meniscal repair devices as a function of hydrolysis time publication-title: Am J Sports Med – volume: 60 start-page: 633 year: 2009 end-page: 635 article-title: Meniscus–friend or foe: epidemiologic observations and surgical implications publication-title: Arthritis Rheum – volume: 20 start-page: 106 year: 2012 end-page: 114 article-title: Allograft meniscus transplatation publication-title: Sports Med Arthrosc – volume: 63 start-page: 1317 year: 2003 end-page: 1324 article-title: Natural fibres as reinforcement in polylactic acid (PLA) composites publication-title: Compos Sci Technol – volume: 32 start-page: 7411 year: 2011 end-page: 7431 article-title: The knee meniscus: structure‐function, pathophysiology, current repair techniques, and prospects for regeneration publication-title: Biomaterials – volume: 22 start-page: 553 year: 2005 end-page: 560 article-title: Tendon repair and healing publication-title: Clin Podiatr Med Surg – volume: 7 start-page: 43 year: 1999 end-page: 47 article-title: Meniscus repair aftercare publication-title: Sports Med Arthrosc – volume: 367S start-page: S281 year: 1999 end-page: S292 article-title: A clinical study of collagen meniscus implants to restore the injured meniscus publication-title: Clin Orthop Relat Res – volume: 14 start-page: 726 year: 1998 end-page: 737 article-title: Orthopaedic applications for PLA–PGA biodegradable polymers publication-title: Arthroscopy – volume: 28 start-page: 1967 year: 2007 end-page: 1977 article-title: The effect of nanofiber alignment on the maturation of engineered meniscus constructs publication-title: Biomaterials – volume: 224 start-page: 52 year: 1987 end-page: 63 article-title: The knee joint meniscus: a fibrocartilage of some distinction publication-title: Clin Orthop Relat Res – volume: 133 start-page: 95 year: 2013 end-page: 109 article-title: Meniscus reconstruction: today's achievements and premises for the future publication-title: Arch Orthop Trauma Surg – volume: 197 start-page: 317 year: 1998 end-page: 324 article-title: Collagenous fibril texture of the human knee joint menisci publication-title: Anat Embryol – ident: e_1_2_7_23_1 doi: 10.1177/03635465010290020201 – ident: e_1_2_7_21_1 doi: 10.1016/S0749-8063(98)70099-4 – ident: e_1_2_7_25_1 doi: 10.1053/jars.2001.19975 – ident: e_1_2_7_36_1 doi: 10.1016/j.jbiomech.2006.09.004 – ident: e_1_2_7_15_1 doi: 10.1177/0363546505278702 – ident: e_1_2_7_14_1 doi: 10.1016/j.biomaterials.2004.08.028 – ident: e_1_2_7_22_1 doi: 10.1097/00132585-199901000-00006 – ident: e_1_2_7_47_1 doi: 10.1088/1758-5082/5/1/015001 – ident: e_1_2_7_38_1 doi: 10.1002/jor.20384 – ident: e_1_2_7_7_1 doi: 10.1097/BLO.0b013e31802ff806 – ident: e_1_2_7_26_1 doi: 10.1016/0142-9612(96)85754-1 – ident: e_1_2_7_18_1 doi: 10.1088/1748-6041/3/3/034002 – ident: e_1_2_7_3_1 doi: 10.1016/j.biomaterials.2011.06.037 – ident: e_1_2_7_16_1 doi: 10.1016/j.biomaterials.2007.01.004 – ident: e_1_2_7_27_1 doi: 10.1016/S0266-3538(03)00103-9 – ident: e_1_2_7_13_1 doi: 10.1023/B:JMSM.0000021114.39595.1e – ident: e_1_2_7_31_1 doi: 10.1002/path.1169 – ident: e_1_2_7_28_1 doi: 10.1007/s004290050141 – ident: e_1_2_7_17_1 doi: 10.1089/ten.tea.2012.0052 – ident: e_1_2_7_32_1 doi: 10.1016/j.knee.2009.02.004 – ident: e_1_2_7_30_1 doi: 10.1016/j.joca.2004.02.010 – ident: e_1_2_7_2_1 doi: 10.1097/00003086-198711000-00008 – ident: e_1_2_7_35_1 doi: 10.1586/erd.09.39 – ident: e_1_2_7_5_1 doi: 10.1002/art.24363 – ident: e_1_2_7_45_1 doi: 10.1088/0957-4484/23/9/095705 – ident: e_1_2_7_44_1 doi: 10.1016/j.msec.2006.05.019 – ident: e_1_2_7_4_1 doi: 10.1097/00001433-200210000-00004 – ident: e_1_2_7_8_1 doi: 10.1002/art.11088 – ident: e_1_2_7_24_1 doi: 10.1007/s00167-002-0304-0 – ident: e_1_2_7_33_1 doi: 10.1186/ar2719 – ident: e_1_2_7_19_1 doi: 10.1016/j.cpm.2005.08.001 – ident: e_1_2_7_12_1 doi: 10.1089/107632701300062697 – ident: e_1_2_7_11_1 doi: 10.1007/s00402-012-1624-2 – ident: e_1_2_7_37_1 doi: 10.1016/j.actbio.2009.10.027 – ident: e_1_2_7_6_1 doi: 10.1097/00003086-199910001-00027 – ident: e_1_2_7_34_1 doi: 10.1053/joca.2000.0366 – ident: e_1_2_7_43_1 doi: 10.1016/j.biomaterials.2010.08.115 – ident: e_1_2_7_9_1 doi: 10.22203/eCM.v026a11 – volume: 8 start-page: 57 year: 2010 ident: e_1_2_7_20_1 article-title: Polymer‐based composite scaffolds for tissue engineering publication-title: J Appl Biomater Biomech – ident: e_1_2_7_42_1 doi: 10.1016/j.actbio.2013.03.020 – ident: e_1_2_7_29_1 doi: 10.1016/j.joca.2011.05.008 – ident: e_1_2_7_40_1 doi: 10.1016/S0032-3861(00)00250-0 – ident: e_1_2_7_10_1 doi: 10.1097/JSA.0b013e318246f005 – volume: 2 start-page: 253 year: 2007 ident: e_1_2_7_39_1 article-title: Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose‐derived human mesenchymal stem cells publication-title: Int J Nanomedicine – ident: e_1_2_7_46_1 doi: 10.3390/jfb3030497 – ident: e_1_2_7_41_1 doi: 10.1089/ten.2006.12.1775 – reference: 24955629 - J Funct Biomater. 2012 Jul 27;3(3):497-513 – reference: 15135144 - Osteoarthritis Cartilage. 2004 Jun;12(6):476-84 – reference: 22322583 - Nanotechnology. 2012 Mar 9;23(9):095705 – reference: 11292034 - Am J Sports Med. 2001 Mar-Apr;29(2):118-23 – reference: 8624401 - Biomaterials. 1996 Jan;17(2):93-102 – reference: 17457824 - J Orthop Res. 2007 Aug;25(8):1018-28 – reference: 16889508 - Tissue Eng. 2006 Jul;12(7):1775-85 – reference: 12210057 - J Pathol. 2002 Sep;198(1):5-13 – reference: 11304448 - Tissue Eng. 2001 Apr;7(2):111-29 – reference: 3311520 - Clin Orthop Relat Res. 1987 Nov;(224):52-63 – reference: 17056048 - J Biomech. 2007;40(8):1686-93 – reference: 19248081 - Arthritis Rheum. 2009 Mar;60(3):633-5 – reference: 21764438 - Biomaterials. 2011 Oct;32(30):7411-31 – reference: 10546653 - Clin Orthop Relat Res. 1999 Oct;(367 Suppl):S281-92 – reference: 16157845 - Am J Sports Med. 2006 Jan;34(1):32-42 – reference: 21683797 - Osteoarthritis Cartilage. 2011 Sep;19(9):1132-41 – reference: 17179785 - Clin Orthop Relat Res. 2007 Feb;455:134-41 – reference: 22555208 - Sports Med Arthrosc. 2012 Jun;20(2):106-14 – reference: 11237658 - Osteoarthritis Cartilage. 2001 Feb;9(2):112-8 – reference: 17722553 - Int J Nanomedicine. 2007;2(2):253-63 – reference: 22994398 - Tissue Eng Part A. 2013 Feb;19(3-4):538-47 – reference: 12355305 - Knee Surg Sports Traumatol Arthrosc. 2002 Sep;10(5):300-4 – reference: 20926132 - Biomaterials. 2011 Jan;32(2):639-51 – reference: 16213379 - Clin Podiatr Med Surg. 2005 Oct;22(4):553-60, vi – reference: 19500336 - Arthritis Res Ther. 2009;11(3):R85 – reference: 12905471 - Arthritis Rheum. 2003 Aug;48(8):2178-87 – reference: 9788368 - Arthroscopy. 1998 Oct;14(7):726-37 – reference: 24057873 - Eur Cell Mater. 2013;26:150-70 – reference: 19853066 - Acta Biomater. 2010 Apr;6(4):1219-26 – reference: 18689924 - Biomed Mater. 2008 Sep;3(3):034002 – reference: 20740467 - J Appl Biomater Biomech. 2010 May-Aug;8(2):57-67 – reference: 23076654 - Arch Orthop Trauma Surg. 2013 Jan;133(1):95-109 – reference: 15603819 - Biomaterials. 2005 Jun;26(16):3243-8 – reference: 23523536 - Acta Biomater. 2013 Jul;9(7):7218-26 – reference: 23172542 - Biofabrication. 2013 Mar;5(1):015001 – reference: 11337709 - Arthroscopy. 2001 May;17(5):439-44 – reference: 15332611 - J Mater Sci Mater Med. 2004 Apr;15(4):423-7 – reference: 19751124 - Expert Rev Med Devices. 2009 Sep;6(5):515-32 – reference: 9565324 - Anat Embryol (Berl). 1998 Apr;197(4):317-24 – reference: 19269183 - Knee. 2009 Oct;16(5):398-404 – reference: 17250888 - Biomaterials. 2007 Apr;28(11):1967-77 |
SSID | ssj0007128 |
Score | 2.418486 |
Snippet | ABSTRACT
Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace... Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 572 |
SubjectTerms | Adult Biocompatible Materials - chemistry Biomechanical Phenomena Cell Survival Cells, Cultured ECM hydrogel electrospinning Extracellular Matrix - chemistry Female Humans Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry Male Materials Testing - methods Menisci, Tibial - cytology Menisci, Tibial - ultrastructure meniscus Tensile Strength tissue engineering Tissue Engineering - methods Tissue Scaffolds Young Adult |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwGLXKzAEuLGILm8wi1EtmsthxcqwQQ1WpA1QdGE6Rt7RDE2eUTKDll_BzsZ0FDRQEtyj-ZMnxS77n-Pl9ALzwWJQIipnrS8RdhFnmMi8TrseEYGGICYvN4eTDebS_QAdLvNwBfn8Wxor2OVtNVF5M1OrUaivXBZ_2OrEpCuNI04YrYByZPaURGC_m7_Y-WbvN0Ahq7f6kSZN6kUWWvZuQF0w_l9XEuL8EWzlobB7n-WUE83ed5NVGrenFV5rn21zWJqPZDXDUD6PVoJxNmg2b8G-_ODz-1zhvgusdNYV7bdMtsCPVbfD9UKpVzZsabuwUQfnTwBAa0fwJpFCVX2QONXb1MtvONCwz2BXYqdeNgjWnWVbmooZUCWjrAsKi79jsHdRQFkzqj6CA5s_wSulAqPNGRU2rkcrCwhQTOIenF6IqT2R-Byxmr49f7btdNQeXa5aoV7wCe5xzzLNAJ8iMYlN7N-SIxknmMx6RTGDJPRaEgmBMTQFhL6JxyCXxE5aQ8C4YqVLJ-wBmQt-NQ5pQihBKAiY1y6CMUMk8nUgCB-z285vyzurcVNzI09akOUg1FFILBQc8G0LXrb_HZUEvLUiGCFqdGUEcwenH-ZsUxctj70M0S9874GmPolS_puYJUSXLpk59U14VeyiKHHCvRdXQm2admlYR3wFkC29DgLEA327RiLFW4B1IHPB8QObfhrFrMfvniPTg7ZG9ePBPHT4E1zR_xK2Q6REYbapGPtYcbcOedG_lDy1BQXM priority: 102 providerName: Unpaywall |
Title | Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel |
URI | https://api.istex.fr/ark:/67375/WNG-48XT0V6F-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.22802 https://www.ncbi.nlm.nih.gov/pubmed/25640671 https://www.proquest.com/docview/1667350466 https://pubmed.ncbi.nlm.nih.gov/PMC4386835 https://www.ncbi.nlm.nih.gov/pmc/articles/4386835 |
UnpaywallVersion | submittedVersion |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1554-527X databaseCode: DR2 dateStart: 20010101 customDbUrl: isFulltext: true eissn: 1554-527X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007128 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7QFeuIhbBkzmIrSXdM7FTiKeJkSZJq3AtEKRkCzfspWlTpU0sPFL-LnYTpOqMBDiLUpOEvn42Oezc_J9ADxHnGSSYe4HKhZ-jHnuc5RLH3EpeRThhKf25-SjETkYx4cTPNkAL7t_YVp-iH7DzY4MN1_bAc54vbciDf1SVgPL5WLn3yDC7hPt8Yo6KgmcrqqJYFtkS0jHKoTCvf7OtVy0Zd16cRXQ_L1e8lqj5-zyGyuKdUzrktLwJvjcNaetRTkfNAs-EN9_YXr8z_beAjeWYBXut9F1G2wofQf8OFJ6WoumhgvXaVCtKA2hLaM_hQzq8qsqoHmFWXi7vodlDpeSO_W80bAWLM_LQtaQaQmdUiCcdQ-2XxNqqGZcmWlRQrtXPNXGEJpMUjF71RbPwpmVF7iAZ5eyKk9VcReMh69PXh34S30HXxjcaNbAEiMhBBZ5aFJmzrBV441EzNIsD7ggSS6xEoiHkUwwZlZSGBGWRkIlQcazJLoHNnWp1QMAc2nOphHLGIvjOAu5MriD8YQpjkxqCT2w2_U0FUvyc6vBUdCWtjmkxr3UudcDT3vTecv4cZXRCxcuvQWrzm2JXILpx9EbGqeTE_SBDOl7Dzzp4omagWs9xLQqm5oGVnAVo5gQD9xv46t_msGhBmglgQeStcjrDSwp-PoVPT1z5OBxlBKDqj3wrI_RvzVj14Xcny3o4dtjd7D976YPwXUDK3Fb3_QIbC6qRj020G3Bd9wY3QFb49G7_U8_AYPJR9M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7WG8cBG3cDUXob1ky825SLwgoJSxFjF10Bdk-ZatLHWqpoGNX8LPxcdpUhUGQrxFyUki2-f4fHZOvg-hpx6PM8kId30VCTciPHe5l0vX41LyMCQJT-Hn5MEw7h9F-2My3kDP239hGn6IbsMNIsPO1xDgsCG9t2IN_VLOd4HMxUzAW_B9DsLy1eGKPCrxrbKq8WEos43jllfIC_a6W9ey0RZ07NlFUPP3isntWs_Y-TdWFOuo1qal3hX0uW1QU41yulsv-K74_gvX4_-2-Cq6vMSr-EXjYNfQhtLX0Y-B0pNK1BVe2HHDasVqiKGS_hgzrMuvqsDmHWbtbYcflzlequ5Us1rjSrA8LwtZYaYltmKBeNo-GD4oVFhNuTIzo8SwXTzRxhCbZDJncBXqZ_EUFAbO8Mm5nJfHqriBjnqvRy_77lLiwRUGOpplsCSeEIKIPDBZM2cEBHlDEbE0y30u4iSXRAmPB6FMCGGgKuzFLA2FSvyMZ0l4E23qUqvbCOfSnE1DljEWRVEWcGWgB-MJU9wz2SVw0E471FQs-c9BhqOgDXNzQE33Utu9Dnrcmc4a0o-LjJ5Zf-ks2PwUquQSQj8N39AoHY-8j3GPfnDQo9ahqIld6CGmVVlX1AfNVeJFceygW42DdU8zUNRgrcR3ULLmep0B8IKvX9GTE8sPHoVpbIC1g550Tvq3ZuxYn_uzBd1_f2gP7vy76UO03R8NDujB2-G7u-iSQZmkKXe6hzYX81rdN0huwR_YgP0JbZxKPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLWqVgJeWMQWVrMI9SXTLLaTiCcEDKXQAaoW5gEp8toOzTijZAItX8LnYjuTjAYKQrxFyY0j29e-x871OQA8DhjJBMXMDyXiPsJM-SxQwg-YECyOccJSezh5d0S2D9DOGI_XwNPuLEzLD9FvuNmR4eZrO8BnQm0tSUO_lNXAcrmY-XcDEbO6sohob8kdlYROWNW4sM2yJaSjFQqirf7VlWC0Ydv15Cyk-XvC5PlGz-jpN1oUq6DWRaXhJfC5q0-bjHI8aOZswL__QvX4nxW-DC4u0Cp81rrXFbAm9VXwY1fqSc2bGs5dr0G55DSENo_-EFKoy6-ygOYTZuXtOh-WCi40d-pZo2HNqVJlIWpItYBOKhBOu4Lt74QayimTZl4U0G4WT7QxhCaUVNQ-tdmzcGr1BU7g0amoykNZXAMHw5f7z7f9hcCDzw1wNItggQPOOeYqMjFTUWzleGOOaJqpkHGSKIElD1gUiwRjajWFA0LTmMskzFiWxNfBui61vAmgEuZuGtOMUoRQFjFpgAdlCZUsMLEl8sBm19M5X7CfWxGOIm95m6PcNG_umtcDD3vTWUv5cZbRE-cuvQWtjm2OXILzT6NXOUrH-8FHMsw_eOBB50-5Gbm2haiWZVPnoVVcxQEixAM3Wv_qSzNA1CCtJPRAsuJ5vYFlBV99oidHjh0cxSkxsNoDj3of_Vs1Np3L_dki33m35y5u_bvpfXDu_Yth_vb16M1tcMFATNzmOt0B6_OqkXcNjJuze264_gRrn0ju |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwGLXKzAEuLGILm8wi1EtmsthxcqwQQ1WpA1QdGE6Rt7RDE2eUTKDll_BzsZ0FDRQEtyj-ZMnxS77n-Pl9ALzwWJQIipnrS8RdhFnmMi8TrseEYGGICYvN4eTDebS_QAdLvNwBfn8Wxor2OVtNVF5M1OrUaivXBZ_2OrEpCuNI04YrYByZPaURGC_m7_Y-WbvN0Ahq7f6kSZN6kUWWvZuQF0w_l9XEuL8EWzlobB7n-WUE83ed5NVGrenFV5rn21zWJqPZDXDUD6PVoJxNmg2b8G-_ODz-1zhvgusdNYV7bdMtsCPVbfD9UKpVzZsabuwUQfnTwBAa0fwJpFCVX2QONXb1MtvONCwz2BXYqdeNgjWnWVbmooZUCWjrAsKi79jsHdRQFkzqj6CA5s_wSulAqPNGRU2rkcrCwhQTOIenF6IqT2R-Byxmr49f7btdNQeXa5aoV7wCe5xzzLNAJ8iMYlN7N-SIxknmMx6RTGDJPRaEgmBMTQFhL6JxyCXxE5aQ8C4YqVLJ-wBmQt-NQ5pQihBKAiY1y6CMUMk8nUgCB-z285vyzurcVNzI09akOUg1FFILBQc8G0LXrb_HZUEvLUiGCFqdGUEcwenH-ZsUxctj70M0S9874GmPolS_puYJUSXLpk59U14VeyiKHHCvRdXQm2admlYR3wFkC29DgLEA327RiLFW4B1IHPB8QObfhrFrMfvniPTg7ZG9ePBPHT4E1zR_xK2Q6REYbapGPtYcbcOedG_lDy1BQXM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meniscus+tissue+engineering+using+a+novel+combination+of+electrospun+scaffolds+and+human+meniscus+cells+embedded+within+an+extracellular+matrix+hydrogel&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Baek%2C+Jihye&rft.au=Chen%2C+Xian&rft.au=Sovani%2C+Sujata&rft.au=Jin%2C+Sungho&rft.date=2015-04-01&rft.issn=1554-527X&rft.eissn=1554-527X&rft.volume=33&rft.issue=4&rft.spage=572&rft_id=info:doi/10.1002%2Fjor.22802&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |