Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel

ABSTRACT Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polyl...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic research Vol. 33; no. 4; pp. 572 - 583
Main Authors Baek, Jihye, Chen, Xian, Sovani, Sujata, Jin, Sungho, Grogan, Shawn P., D'Lima, Darryl D.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2015
Subjects
Online AccessGet full text
ISSN0736-0266
1554-527X
1554-527X
DOI10.1002/jor.22802

Cover

Abstract ABSTRACT Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus‐like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real‐time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell‐based meniscus regeneration strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:572–583, 2015.
AbstractList Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time PCR, respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.
Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.
Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.
ABSTRACT Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus‐like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real‐time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell‐based meniscus regeneration strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:572–583, 2015.
Author D'Lima, Darryl D.
Jin, Sungho
Grogan, Shawn P.
Chen, Xian
Baek, Jihye
Sovani, Sujata
AuthorAffiliation 2 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
AuthorAffiliation_xml – name: 2 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
– name: 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
Author_xml – sequence: 1
  givenname: Jihye
  surname: Baek
  fullname: Baek, Jihye
  organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, California
– sequence: 2
  givenname: Xian
  surname: Chen
  fullname: Chen, Xian
  organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla
– sequence: 3
  givenname: Sujata
  surname: Sovani
  fullname: Sovani, Sujata
  organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla
– sequence: 4
  givenname: Sungho
  surname: Jin
  fullname: Jin, Sungho
  organization: Materials Science and Engineering, University of California, La Jolla, California, San Diego
– sequence: 5
  givenname: Shawn P.
  surname: Grogan
  fullname: Grogan, Shawn P.
  organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla
– sequence: 6
  givenname: Darryl D.
  surname: D'Lima
  fullname: D'Lima, Darryl D.
  email: : Darryl D. D'Lima (T: +1-858-332-0166; F: +1-858-332-0669; ), ddlima@scripps.edu
  organization: Shiley Center for Orthopaedic Research and Education at Scripps Clinic, California, La Jolla
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25640671$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1u1DAQhS1URH_gghdAvgSktLYT29kbJFTRAipUoAK9sxxnsuvi2IuddHffhMfF2-2WH4ne2BfznTMzZ_bRjg8eEHpKySElhB1dhXjIWE3YA7RHOa8KzuTlDtojshQFYULsov2UrgghkrL6EdplXFRESLqHfn4Ab5MZEx5sSiNg8FPrAaL1Uzym9auxD9fgsAl9Y70ebPA4dBgcmCGGNB89TkZ3XXBtwtq3eDb22uN-a2zAuYShb6BtocULO8yszyCG5RD1ujo6HXGvh2iXeLZqY5iCe4wedtoleHL7H6AvJ28ujt8WZ-en745fnxWG0wkreMuJMYabjglZd5pLXrHSVLqedLQxQnYtB0MaVraSc11xKojQdWlA0kkzkeUBernxHf1crxbaOTWPttdxpShR63hVjlfdxJvhVxt4PjY9tAZ83uC3IGir_q54O1PTcK2qshZ1ybPB81uDGH6MkAbV55ByBNpDGJOiQsiSk0qIjD77s9ddk-3tMvBiA5h8hRShu3fwo39YY4ebU-YxrbtPsbAOVv-3Vu_PP28VxUZh0wDLO4WO31VeSnL17eOpqurLC_JVnKhP5S-Botzs
CitedBy_id crossref_primary_10_1002_jbm_b_34692
crossref_primary_10_1016_j_bprint_2017_08_001
crossref_primary_10_1186_s40634_016_0058_0
crossref_primary_10_1080_03008207_2016_1276177
crossref_primary_10_1016_j_actbio_2018_03_017
crossref_primary_10_1007_s11706_016_0335_y
crossref_primary_10_1039_D2TB02602C
crossref_primary_10_1016_j_msec_2016_06_084
crossref_primary_10_1016_j_actbio_2018_04_012
crossref_primary_10_3389_fbioe_2022_1082499
crossref_primary_10_1016_j_jmbbm_2022_105598
crossref_primary_10_1039_D2RA07756F
crossref_primary_10_1080_03008207_2019_1624733
crossref_primary_10_1088_1758_5090_aa8fb8
crossref_primary_10_1049_iet_nbt_2016_0159
crossref_primary_10_1016_j_nano_2019_102090
crossref_primary_10_1089_ten_teb_2020_0096
crossref_primary_10_1177_0885328217713631
crossref_primary_10_1089_ten_tea_2016_0205
crossref_primary_10_1016_j_actbio_2016_11_046
crossref_primary_10_1002_adhm_201801236
crossref_primary_10_1177_0363546517752668
crossref_primary_10_1002_adma_202000657
crossref_primary_10_1038_srep28170
crossref_primary_10_1089_ten_tea_2018_0319
crossref_primary_10_3389_fbioe_2024_1495015
crossref_primary_10_1016_j_addr_2016_06_018
crossref_primary_10_1002_jbm_b_34952
crossref_primary_10_1002_mabi_202300105
crossref_primary_10_4068_cmj_2021_57_1_13
crossref_primary_10_1002_adhm_201700927
crossref_primary_10_1038_s41598_018_32156_0
crossref_primary_10_1177_0885328220981189
crossref_primary_10_1088_1758_5090_ad22f0
crossref_primary_10_3389_fbioe_2020_00077
crossref_primary_10_1039_C5RA13859K
crossref_primary_10_2217_nnm_2020_0183
crossref_primary_10_1089_ten_tea_2020_0183
crossref_primary_10_1089_ten_tea_2015_0284
crossref_primary_10_1089_ten_teb_2023_0050
crossref_primary_10_1177_20417314211050141
crossref_primary_10_1088_1748_605X_aa7b51
crossref_primary_10_1007_s00289_022_04442_5
crossref_primary_10_2217_nnm_2021_0313
crossref_primary_10_1002_jbm_b_35178
crossref_primary_10_1016_j_biomaterials_2016_09_017
crossref_primary_10_1039_C8NR02002G
crossref_primary_10_1016_j_addr_2016_04_015
crossref_primary_10_3389_fbioe_2022_810705
crossref_primary_10_1002_jbm_a_36372
crossref_primary_10_1007_s42114_024_01196_8
crossref_primary_10_1089_ten_tea_2016_0460
crossref_primary_10_1038_nmat4520
crossref_primary_10_1177_08853282211000523
crossref_primary_10_1088_1748_605X_ac28a5
crossref_primary_10_1021_acsami_6b05199
crossref_primary_10_1016_j_jmbbm_2016_03_022
crossref_primary_10_1080_00914037_2022_2097675
crossref_primary_10_2217_3dp_2017_0012
crossref_primary_10_1021_acsabm_0c01225
crossref_primary_10_1016_j_bioactmat_2020_11_027
crossref_primary_10_1089_ten_tea_2015_0373
crossref_primary_10_1039_C6TB03299K
crossref_primary_10_1002_term_2602
crossref_primary_10_1016_j_actbio_2021_03_074
crossref_primary_10_3390_polym14152983
Cites_doi 10.1177/03635465010290020201
10.1016/S0749-8063(98)70099-4
10.1053/jars.2001.19975
10.1016/j.jbiomech.2006.09.004
10.1177/0363546505278702
10.1016/j.biomaterials.2004.08.028
10.1097/00132585-199901000-00006
10.1088/1758-5082/5/1/015001
10.1002/jor.20384
10.1097/BLO.0b013e31802ff806
10.1016/0142-9612(96)85754-1
10.1088/1748-6041/3/3/034002
10.1016/j.biomaterials.2011.06.037
10.1016/j.biomaterials.2007.01.004
10.1016/S0266-3538(03)00103-9
10.1023/B:JMSM.0000021114.39595.1e
10.1002/path.1169
10.1007/s004290050141
10.1089/ten.tea.2012.0052
10.1016/j.knee.2009.02.004
10.1016/j.joca.2004.02.010
10.1097/00003086-198711000-00008
10.1586/erd.09.39
10.1002/art.24363
10.1088/0957-4484/23/9/095705
10.1016/j.msec.2006.05.019
10.1097/00001433-200210000-00004
10.1002/art.11088
10.1007/s00167-002-0304-0
10.1186/ar2719
10.1016/j.cpm.2005.08.001
10.1089/107632701300062697
10.1007/s00402-012-1624-2
10.1016/j.actbio.2009.10.027
10.1097/00003086-199910001-00027
10.1053/joca.2000.0366
10.1016/j.biomaterials.2010.08.115
10.22203/eCM.v026a11
10.1016/j.actbio.2013.03.020
10.1016/j.joca.2011.05.008
10.1016/S0032-3861(00)00250-0
10.1097/JSA.0b013e318246f005
10.3390/jfb3030497
10.1089/ten.2006.12.1775
ContentType Journal Article
Copyright 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/jor.22802
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1554-527X
EndPage 583
ExternalDocumentID oai:pubmedcentral.nih.gov:4386835
PMC4386835
25640671
10_1002_jor_22802
JOR22802
ark_67375_WNG_48XT0V6F_Q
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: California Institute of Regenerative Medicine
  funderid: TR1‐01216
– fundername: National Institutes of Health
  funderid: P01 AG007996
– fundername: The National Science Foundation
  funderid: DMR‐1006081
– fundername: The Scripps Translational Science Institute
  funderid: UL1 RR025774
– fundername: The UC Discovery Grant
  funderid: ele08‐128656/Jin
– fundername: NCRR NIH HHS
  grantid: UL1 RR025774
– fundername: NIA NIH HHS
  grantid: P01 AG007996
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
29L
31~
33P
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHQN
AAIPD
AALRI
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACRPL
ACSCC
ACVFH
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADCNI
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFPUW
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIGII
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIWAO
RJQFR
RNS
ROL
RPZ
RWL
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
XV2
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
24P
3V.
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
RIG
RWI
RWR
WRC
WYB
YCJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5192-5d50ccc5cf2678fa575423c4a89f1bc67fd5ec0b23d755a451606a83ce719b973
IEDL.DBID DR2
ISSN 0736-0266
1554-527X
IngestDate Wed Aug 20 00:11:35 EDT 2025
Thu Aug 21 17:42:52 EDT 2025
Thu Sep 04 17:12:36 EDT 2025
Thu Apr 03 07:02:34 EDT 2025
Wed Oct 01 04:05:55 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Jan 22 16:39:16 EST 2025
Sun Sep 21 06:20:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords tissue engineering
ECM hydrogel
electrospinning
meniscus
Language English
License 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5192-5d50ccc5cf2678fa575423c4a89f1bc67fd5ec0b23d755a451606a83ce719b973
Notes The Scripps Translational Science Institute - No. UL1 RR025774
National Institutes of Health - No. P01 AG007996
The UC Discovery Grant - No. ele08-128656/Jin
The National Science Foundation - No. DMR-1006081
California Institute of Regenerative Medicine - No. TR1-01216
istex:F28ABD6493E88446C619F18C944B87FBCD480545
ArticleID:JOR22802
ark:/67375/WNG-48XT0V6F-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4386835
PMID 25640671
PQID 1667350466
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_jor_22802
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4386835
proquest_miscellaneous_1667350466
pubmed_primary_25640671
crossref_primary_10_1002_jor_22802
crossref_citationtrail_10_1002_jor_22802
wiley_primary_10_1002_jor_22802_JOR22802
istex_primary_ark_67375_WNG_48XT0V6F_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of orthopaedic research
PublicationTitleAlternate J. Orthop. Res
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Ionescu LC, Mauck RL. 2013. Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng Part A 19:538-547.
Arnoczky SP, Lavagnino M. 2001. Tensile fixation of absorbable meniscal repair devices as a function of hydrolysis time. Am J Sports Med 29:118-123.
Katz JN, Martin SD. 2009. Meniscus-friend or foe: epidemiologic observations and surgical implications. Arthritis Rheum 60:633-635.
Kai D, Prabhakaran MP, Stahl B, et al. 2012. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23:095705.
Rodkey WG, Steadman JR, Li S-T. 1999. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res 367S:S281-S292.
Scotti C, Hirschmann MT, Antinolfi P, et al. 2013. Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater 26:150-170.
Cook JL, Fox DB, Malaviya P, et al. 2006. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32-42.
Ghosh P, Taylor T. 1987. The knee joint meniscus: a fibrocartilage of some distinction. Clin Orthop Relat Res 224:52-63.
Sweigart MA, Athanasiou KA. 2001. Toward tissue engineering of the knee meniscus. Tissue Eng 7:111-129.
Lannutti J, Reneker D, et al. 2007. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl 27:504-509.
Asik M, Atalar AC. 2002. Failed resorption of bioabsorbable meniscus repair devices. Knee Surg Sports Traumatol Arthrosc 10:300-304.
Han N, Johnson JK, Bradley PA, et al. 2012. Cell attachment to hydrogel-electrospun fiber mat composite materials. J Funct Biomater 3:497-513.
McDevitt CA, Mukherjee S, Kambic H, et al. 2002. Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop 13:345-350.
Makris EA, Hadidi P, Athanasiou KA. 2011. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411-7431.
Lozano J, Ma C, Cannon W. 2007. All-inside meniscus repair: a systematic review. Clin Orthop Relat Res 455:134-141.
Martin I, Jakob M, Schäfer D, et al. 2001. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9:112-118.
Liu C, Toma I, Mastrogiacomo M, et al. 2013. Meniscus reconstruction: today's achievements and premises for the future. Arch Orthop Trauma Surg 133:95-109.
Heijkants RG, van Calck RV, De Groot JH, et al. 2004. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med 15:423-427.
Athanassiou K, Agrawal C, Barber F, et al. 1998. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726-737.
Grogan SP, Aklin B, Frenz M, et al. 2002. In vitro model for the study of necrosis and apoptosis in native cartilage. J Pathol 198:5-13.
Mandal BB, Park SH, Gil ES, et al. 2011. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639-651.
Petersen W, Tillmann B. 1998. Collagenous fibril texture of the human knee joint menisci. Anat Embryol 197:317-324.
Li WJ, Mauck RL, Cooper JA, et al. 2007. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686-1693.
Barber FA. 1999. Meniscus repair aftercare. Sports Med Arthrosc 7:43-47.
Deitzel JM, Kleinmeyer J, Harris D, et al. 2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261-272.
Pauli C, Grogan SP, Patil S, et al. 2011. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19:1132-1141.
Kumbar SG, James R, Nukavarapu SP, et al. 2008. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3:034002.
Lee AS, Kang RW, Kroin E, et al. 2012. Allograft meniscus transplatation. Sports Med Arthrosc 20:106-114.
Englund M, Roos EM, Lohmander LS. 2003. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 48:2178-2187.
Oksman K, Skrifvars M, Selin JF. 2003. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317-1324.
Roberts S, Menage J, Sandell LJ, et al. 2009. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 16:398-404.
Baker BM, Handorf AM, Ionescu LC, et al. 2009. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices 6:515-532.
Baker BM, Mauck RL. 2007. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967-1977.
Grogan SP, Miyaki S, Asahara H, et al. 2009. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11:R85.
Nerurkar NL, Elliott DM, Mauck RL. 2007. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25:1018-1028.
Grogan SP, Chung PH, Soman P, et al. 2013. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 9:7218-7226.
Platt MA. 2005. Tendon repair and healing. Clin Podiatr Med Surg 22:553-560.
Athanasiou KA, Niederauer GG, Agrawal CM. 1996. Sterilization, toxicit, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93-102.
Barbero A, Grogan S, Schäfer D, et al. 2004. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476-484.
Gloria A, De Santis R, Ambrosio L. 2010. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8:57-67.
Metter RB, Ifkovits JL, Hou K, et al. 2010. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library. Acta Biomater 6:1219-1226.
Kobayashi M, Chang YS, Oka M. 2005. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243-3248.
Li W-J, Jiang YJ, Tuan RS. 2006. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12:1775-1785.
Becker R, Schroder M, Starke C, et al. 2001. Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus. Arthroscopy 17:439-444.
McCullen SD, Stevens DR, Roberts WA, et al. 2007. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomedicine 2:253-263.
Xu T, Binder KW, Albanna MZ, et al. 2013. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001.
2013; 26
1996; 17
2006; 34
2006; 12
2002; 198
1987; 224
2009; 60
2002; 13
2002; 10
2011; 32
1999; 367S
2008; 3
2001; 29
2005; 26
1999; 7
2011; 19
2013; 5
2005; 22
1998; 197
2001; 42
2013; 9
2007; 455
2007; 28
2013; 19
2009; 11
2012; 3
2001; 7
2004; 15
2004; 12
2001; 9
2013; 133
2003; 48
2009; 6
2001; 17
2007; 40
2007; 2
2012; 23
2003; 63
2009; 16
2012; 20
2010; 6
2007; 25
1998; 14
2010; 8
2007; 27
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
McCullen SD (e_1_2_7_39_1) 2007; 2
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Gloria A (e_1_2_7_20_1) 2010; 8
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
15603819 - Biomaterials. 2005 Jun;26(16):3243-8
11292034 - Am J Sports Med. 2001 Mar-Apr;29(2):118-23
3311520 - Clin Orthop Relat Res. 1987 Nov;(224):52-63
12905471 - Arthritis Rheum. 2003 Aug;48(8):2178-87
19500336 - Arthritis Res Ther. 2009;11(3):R85
17179785 - Clin Orthop Relat Res. 2007 Feb;455:134-41
11337709 - Arthroscopy. 2001 May;17(5):439-44
20926132 - Biomaterials. 2011 Jan;32(2):639-51
21764438 - Biomaterials. 2011 Oct;32(30):7411-31
12210057 - J Pathol. 2002 Sep;198(1):5-13
15135144 - Osteoarthritis Cartilage. 2004 Jun;12(6):476-84
18689924 - Biomed Mater. 2008 Sep;3(3):034002
9788368 - Arthroscopy. 1998 Oct;14(7):726-37
23172542 - Biofabrication. 2013 Mar;5(1):015001
24955629 - J Funct Biomater. 2012 Jul 27;3(3):497-513
22994398 - Tissue Eng Part A. 2013 Feb;19(3-4):538-47
19853066 - Acta Biomater. 2010 Apr;6(4):1219-26
8624401 - Biomaterials. 1996 Jan;17(2):93-102
20740467 - J Appl Biomater Biomech. 2010 May-Aug;8(2):57-67
23523536 - Acta Biomater. 2013 Jul;9(7):7218-26
17457824 - J Orthop Res. 2007 Aug;25(8):1018-28
23076654 - Arch Orthop Trauma Surg. 2013 Jan;133(1):95-109
11304448 - Tissue Eng. 2001 Apr;7(2):111-29
9565324 - Anat Embryol (Berl). 1998 Apr;197(4):317-24
17056048 - J Biomech. 2007;40(8):1686-93
15332611 - J Mater Sci Mater Med. 2004 Apr;15(4):423-7
10546653 - Clin Orthop Relat Res. 1999 Oct;(367 Suppl):S281-92
11237658 - Osteoarthritis Cartilage. 2001 Feb;9(2):112-8
16213379 - Clin Podiatr Med Surg. 2005 Oct;22(4):553-60, vi
17250888 - Biomaterials. 2007 Apr;28(11):1967-77
21683797 - Osteoarthritis Cartilage. 2011 Sep;19(9):1132-41
19248081 - Arthritis Rheum. 2009 Mar;60(3):633-5
22322583 - Nanotechnology. 2012 Mar 9;23(9):095705
19751124 - Expert Rev Med Devices. 2009 Sep;6(5):515-32
22555208 - Sports Med Arthrosc. 2012 Jun;20(2):106-14
12355305 - Knee Surg Sports Traumatol Arthrosc. 2002 Sep;10(5):300-4
16157845 - Am J Sports Med. 2006 Jan;34(1):32-42
17722553 - Int J Nanomedicine. 2007;2(2):253-63
16889508 - Tissue Eng. 2006 Jul;12(7):1775-85
24057873 - Eur Cell Mater. 2013;26:150-70
19269183 - Knee. 2009 Oct;16(5):398-404
References_xml – reference: Englund M, Roos EM, Lohmander LS. 2003. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 48:2178-2187.
– reference: Gloria A, De Santis R, Ambrosio L. 2010. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8:57-67.
– reference: Lee AS, Kang RW, Kroin E, et al. 2012. Allograft meniscus transplatation. Sports Med Arthrosc 20:106-114.
– reference: McDevitt CA, Mukherjee S, Kambic H, et al. 2002. Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop 13:345-350.
– reference: Kobayashi M, Chang YS, Oka M. 2005. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243-3248.
– reference: Sweigart MA, Athanasiou KA. 2001. Toward tissue engineering of the knee meniscus. Tissue Eng 7:111-129.
– reference: Ionescu LC, Mauck RL. 2013. Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng Part A 19:538-547.
– reference: Cook JL, Fox DB, Malaviya P, et al. 2006. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32-42.
– reference: Li W-J, Jiang YJ, Tuan RS. 2006. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12:1775-1785.
– reference: Kai D, Prabhakaran MP, Stahl B, et al. 2012. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23:095705.
– reference: Athanasiou KA, Niederauer GG, Agrawal CM. 1996. Sterilization, toxicit, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93-102.
– reference: Platt MA. 2005. Tendon repair and healing. Clin Podiatr Med Surg 22:553-560.
– reference: Xu T, Binder KW, Albanna MZ, et al. 2013. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001.
– reference: Martin I, Jakob M, Schäfer D, et al. 2001. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9:112-118.
– reference: Grogan SP, Chung PH, Soman P, et al. 2013. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 9:7218-7226.
– reference: McCullen SD, Stevens DR, Roberts WA, et al. 2007. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomedicine 2:253-263.
– reference: Barber FA. 1999. Meniscus repair aftercare. Sports Med Arthrosc 7:43-47.
– reference: Han N, Johnson JK, Bradley PA, et al. 2012. Cell attachment to hydrogel-electrospun fiber mat composite materials. J Funct Biomater 3:497-513.
– reference: Rodkey WG, Steadman JR, Li S-T. 1999. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res 367S:S281-S292.
– reference: Liu C, Toma I, Mastrogiacomo M, et al. 2013. Meniscus reconstruction: today's achievements and premises for the future. Arch Orthop Trauma Surg 133:95-109.
– reference: Grogan SP, Aklin B, Frenz M, et al. 2002. In vitro model for the study of necrosis and apoptosis in native cartilage. J Pathol 198:5-13.
– reference: Roberts S, Menage J, Sandell LJ, et al. 2009. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 16:398-404.
– reference: Petersen W, Tillmann B. 1998. Collagenous fibril texture of the human knee joint menisci. Anat Embryol 197:317-324.
– reference: Mandal BB, Park SH, Gil ES, et al. 2011. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639-651.
– reference: Ghosh P, Taylor T. 1987. The knee joint meniscus: a fibrocartilage of some distinction. Clin Orthop Relat Res 224:52-63.
– reference: Kumbar SG, James R, Nukavarapu SP, et al. 2008. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3:034002.
– reference: Lannutti J, Reneker D, et al. 2007. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl 27:504-509.
– reference: Lozano J, Ma C, Cannon W. 2007. All-inside meniscus repair: a systematic review. Clin Orthop Relat Res 455:134-141.
– reference: Oksman K, Skrifvars M, Selin JF. 2003. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317-1324.
– reference: Katz JN, Martin SD. 2009. Meniscus-friend or foe: epidemiologic observations and surgical implications. Arthritis Rheum 60:633-635.
– reference: Deitzel JM, Kleinmeyer J, Harris D, et al. 2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261-272.
– reference: Makris EA, Hadidi P, Athanasiou KA. 2011. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411-7431.
– reference: Nerurkar NL, Elliott DM, Mauck RL. 2007. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25:1018-1028.
– reference: Metter RB, Ifkovits JL, Hou K, et al. 2010. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library. Acta Biomater 6:1219-1226.
– reference: Heijkants RG, van Calck RV, De Groot JH, et al. 2004. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med 15:423-427.
– reference: Grogan SP, Miyaki S, Asahara H, et al. 2009. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11:R85.
– reference: Li WJ, Mauck RL, Cooper JA, et al. 2007. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686-1693.
– reference: Asik M, Atalar AC. 2002. Failed resorption of bioabsorbable meniscus repair devices. Knee Surg Sports Traumatol Arthrosc 10:300-304.
– reference: Barbero A, Grogan S, Schäfer D, et al. 2004. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476-484.
– reference: Scotti C, Hirschmann MT, Antinolfi P, et al. 2013. Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater 26:150-170.
– reference: Arnoczky SP, Lavagnino M. 2001. Tensile fixation of absorbable meniscal repair devices as a function of hydrolysis time. Am J Sports Med 29:118-123.
– reference: Becker R, Schroder M, Starke C, et al. 2001. Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus. Arthroscopy 17:439-444.
– reference: Athanassiou K, Agrawal C, Barber F, et al. 1998. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726-737.
– reference: Pauli C, Grogan SP, Patil S, et al. 2011. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19:1132-1141.
– reference: Baker BM, Mauck RL. 2007. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967-1977.
– reference: Baker BM, Handorf AM, Ionescu LC, et al. 2009. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices 6:515-532.
– volume: 2
  start-page: 253
  year: 2007
  end-page: 263
  article-title: Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose‐derived human mesenchymal stem cells
  publication-title: Int J Nanomedicine
– volume: 27
  start-page: 504
  year: 2007
  end-page: 509
  article-title: Electrospinning for tissue engineering scaffolds
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 42
  start-page: 261
  year: 2001
  end-page: 272
  article-title: The effect of processing variables on the morphology of electrospun nanofibers and textiles
  publication-title: Polymer
– volume: 8
  start-page: 57
  year: 2010
  end-page: 67
  article-title: Polymer‐based composite scaffolds for tissue engineering
  publication-title: J Appl Biomater Biomech
– volume: 3
  start-page: 034002
  year: 2008
  article-title: Electrospun nanofiber scaffolds: engineering soft tissues
  publication-title: Biomed Mater
– volume: 19
  start-page: 1132
  year: 2011
  end-page: 1141
  article-title: Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis
  publication-title: Osteoarthritis Cartilage
– volume: 6
  start-page: 1219
  year: 2010
  end-page: 1226
  article-title: Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library
  publication-title: Acta Biomater
– volume: 23
  start-page: 095705
  year: 2012
  article-title: Mechanical properties and in vitro behavior of nanofiber‐hydrogel composites for tissue engineering applications
  publication-title: Nanotechnology
– volume: 7
  start-page: 111
  year: 2001
  end-page: 129
  article-title: Toward tissue engineering of the knee meniscus
  publication-title: Tissue Eng
– volume: 13
  start-page: 345
  year: 2002
  end-page: 350
  article-title: Emerging concepts of the cell biology of the meniscus
  publication-title: Curr Opin Orthop
– volume: 48
  start-page: 2178
  year: 2003
  end-page: 2187
  article-title: Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen‐year followup of meniscectomy with matched controls
  publication-title: Arthritis Rheum
– volume: 19
  start-page: 538
  year: 2013
  end-page: 547
  article-title: Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro
  publication-title: Tissue Eng Part A
– volume: 198
  start-page: 5
  year: 2002
  end-page: 13
  article-title: In vitro model for the study of necrosis and apoptosis in native cartilage
  publication-title: J Pathol
– volume: 15
  start-page: 423
  year: 2004
  end-page: 427
  article-title: Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration
  publication-title: J Mater Sci Mater Med
– volume: 25
  start-page: 1018
  year: 2007
  end-page: 1028
  article-title: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering
  publication-title: J Orthop Res
– volume: 10
  start-page: 300
  year: 2002
  end-page: 304
  article-title: Failed resorption of bioabsorbable meniscus repair devices
  publication-title: Knee Surg Sports Traumatol Arthrosc
– volume: 34
  start-page: 32
  year: 2006
  end-page: 42
  article-title: Long‐term outcome for large meniscal defects treated with small intestinal submucosa in a dog model
  publication-title: Am J Sports Med
– volume: 6
  start-page: 515
  year: 2009
  end-page: 532
  article-title: New directions in nanofibrous scaffolds for soft tissue engineering and regeneration
  publication-title: Expert Rev Med Devices
– volume: 12
  start-page: 1775
  year: 2006
  end-page: 1785
  article-title: Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size
  publication-title: Tissue Eng
– volume: 32
  start-page: 639
  year: 2011
  end-page: 651
  article-title: Multilayered silk scaffolds for meniscus tissue engineering
  publication-title: Biomaterials
– volume: 3
  start-page: 497
  year: 2012
  end-page: 513
  article-title: Cell attachment to hydrogel‐electrospun fiber mat composite materials
  publication-title: J Funct Biomater
– volume: 455
  start-page: 134
  year: 2007
  end-page: 141
  article-title: All‐inside meniscus repair: a systematic review
  publication-title: Clin Orthop Relat Res
– volume: 5
  start-page: 015001
  year: 2013
  article-title: Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
  publication-title: Biofabrication
– volume: 26
  start-page: 150
  year: 2013
  end-page: 170
  article-title: Meniscus repair and regeneration: review on current methods and research potential
  publication-title: Eur Cell Mater
– volume: 40
  start-page: 1686
  year: 2007
  end-page: 1693
  article-title: Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering
  publication-title: J Biomech
– volume: 9
  start-page: 112
  year: 2001
  end-page: 118
  article-title: Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints
  publication-title: Osteoarthritis Cartilage
– volume: 12
  start-page: 476
  year: 2004
  end-page: 484
  article-title: Age related changes in human articular chondrocyte yield, proliferation and post‐expansion chondrogenic capacity
  publication-title: Osteoarthritis Cartilage
– volume: 16
  start-page: 398
  year: 2009
  end-page: 404
  article-title: Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation
  publication-title: Knee
– volume: 9
  start-page: 7218
  year: 2013
  end-page: 7226
  article-title: Digital micromirror device projection printing system for meniscus tissue engineering
  publication-title: Acta Biomater
– volume: 11
  start-page: R85
  year: 2009
  article-title: Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis
  publication-title: Arthritis Res Ther
– volume: 26
  start-page: 3243
  year: 2005
  end-page: 3248
  article-title: A two year in vivo study of polyvinyl alcohol‐hydrogel (PVA‐H) artificial meniscus
  publication-title: Biomaterials
– volume: 17
  start-page: 439
  year: 2001
  end-page: 444
  article-title: Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus
  publication-title: Arthroscopy
– volume: 17
  start-page: 93
  year: 1996
  end-page: 102
  article-title: Sterilization, toxicit, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers
  publication-title: Biomaterials
– volume: 29
  start-page: 118
  year: 2001
  end-page: 123
  article-title: Tensile fixation of absorbable meniscal repair devices as a function of hydrolysis time
  publication-title: Am J Sports Med
– volume: 60
  start-page: 633
  year: 2009
  end-page: 635
  article-title: Meniscus–friend or foe: epidemiologic observations and surgical implications
  publication-title: Arthritis Rheum
– volume: 20
  start-page: 106
  year: 2012
  end-page: 114
  article-title: Allograft meniscus transplatation
  publication-title: Sports Med Arthrosc
– volume: 63
  start-page: 1317
  year: 2003
  end-page: 1324
  article-title: Natural fibres as reinforcement in polylactic acid (PLA) composites
  publication-title: Compos Sci Technol
– volume: 32
  start-page: 7411
  year: 2011
  end-page: 7431
  article-title: The knee meniscus: structure‐function, pathophysiology, current repair techniques, and prospects for regeneration
  publication-title: Biomaterials
– volume: 22
  start-page: 553
  year: 2005
  end-page: 560
  article-title: Tendon repair and healing
  publication-title: Clin Podiatr Med Surg
– volume: 7
  start-page: 43
  year: 1999
  end-page: 47
  article-title: Meniscus repair aftercare
  publication-title: Sports Med Arthrosc
– volume: 367S
  start-page: S281
  year: 1999
  end-page: S292
  article-title: A clinical study of collagen meniscus implants to restore the injured meniscus
  publication-title: Clin Orthop Relat Res
– volume: 14
  start-page: 726
  year: 1998
  end-page: 737
  article-title: Orthopaedic applications for PLA–PGA biodegradable polymers
  publication-title: Arthroscopy
– volume: 28
  start-page: 1967
  year: 2007
  end-page: 1977
  article-title: The effect of nanofiber alignment on the maturation of engineered meniscus constructs
  publication-title: Biomaterials
– volume: 224
  start-page: 52
  year: 1987
  end-page: 63
  article-title: The knee joint meniscus: a fibrocartilage of some distinction
  publication-title: Clin Orthop Relat Res
– volume: 133
  start-page: 95
  year: 2013
  end-page: 109
  article-title: Meniscus reconstruction: today's achievements and premises for the future
  publication-title: Arch Orthop Trauma Surg
– volume: 197
  start-page: 317
  year: 1998
  end-page: 324
  article-title: Collagenous fibril texture of the human knee joint menisci
  publication-title: Anat Embryol
– ident: e_1_2_7_23_1
  doi: 10.1177/03635465010290020201
– ident: e_1_2_7_21_1
  doi: 10.1016/S0749-8063(98)70099-4
– ident: e_1_2_7_25_1
  doi: 10.1053/jars.2001.19975
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jbiomech.2006.09.004
– ident: e_1_2_7_15_1
  doi: 10.1177/0363546505278702
– ident: e_1_2_7_14_1
  doi: 10.1016/j.biomaterials.2004.08.028
– ident: e_1_2_7_22_1
  doi: 10.1097/00132585-199901000-00006
– ident: e_1_2_7_47_1
  doi: 10.1088/1758-5082/5/1/015001
– ident: e_1_2_7_38_1
  doi: 10.1002/jor.20384
– ident: e_1_2_7_7_1
  doi: 10.1097/BLO.0b013e31802ff806
– ident: e_1_2_7_26_1
  doi: 10.1016/0142-9612(96)85754-1
– ident: e_1_2_7_18_1
  doi: 10.1088/1748-6041/3/3/034002
– ident: e_1_2_7_3_1
  doi: 10.1016/j.biomaterials.2011.06.037
– ident: e_1_2_7_16_1
  doi: 10.1016/j.biomaterials.2007.01.004
– ident: e_1_2_7_27_1
  doi: 10.1016/S0266-3538(03)00103-9
– ident: e_1_2_7_13_1
  doi: 10.1023/B:JMSM.0000021114.39595.1e
– ident: e_1_2_7_31_1
  doi: 10.1002/path.1169
– ident: e_1_2_7_28_1
  doi: 10.1007/s004290050141
– ident: e_1_2_7_17_1
  doi: 10.1089/ten.tea.2012.0052
– ident: e_1_2_7_32_1
  doi: 10.1016/j.knee.2009.02.004
– ident: e_1_2_7_30_1
  doi: 10.1016/j.joca.2004.02.010
– ident: e_1_2_7_2_1
  doi: 10.1097/00003086-198711000-00008
– ident: e_1_2_7_35_1
  doi: 10.1586/erd.09.39
– ident: e_1_2_7_5_1
  doi: 10.1002/art.24363
– ident: e_1_2_7_45_1
  doi: 10.1088/0957-4484/23/9/095705
– ident: e_1_2_7_44_1
  doi: 10.1016/j.msec.2006.05.019
– ident: e_1_2_7_4_1
  doi: 10.1097/00001433-200210000-00004
– ident: e_1_2_7_8_1
  doi: 10.1002/art.11088
– ident: e_1_2_7_24_1
  doi: 10.1007/s00167-002-0304-0
– ident: e_1_2_7_33_1
  doi: 10.1186/ar2719
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cpm.2005.08.001
– ident: e_1_2_7_12_1
  doi: 10.1089/107632701300062697
– ident: e_1_2_7_11_1
  doi: 10.1007/s00402-012-1624-2
– ident: e_1_2_7_37_1
  doi: 10.1016/j.actbio.2009.10.027
– ident: e_1_2_7_6_1
  doi: 10.1097/00003086-199910001-00027
– ident: e_1_2_7_34_1
  doi: 10.1053/joca.2000.0366
– ident: e_1_2_7_43_1
  doi: 10.1016/j.biomaterials.2010.08.115
– ident: e_1_2_7_9_1
  doi: 10.22203/eCM.v026a11
– volume: 8
  start-page: 57
  year: 2010
  ident: e_1_2_7_20_1
  article-title: Polymer‐based composite scaffolds for tissue engineering
  publication-title: J Appl Biomater Biomech
– ident: e_1_2_7_42_1
  doi: 10.1016/j.actbio.2013.03.020
– ident: e_1_2_7_29_1
  doi: 10.1016/j.joca.2011.05.008
– ident: e_1_2_7_40_1
  doi: 10.1016/S0032-3861(00)00250-0
– ident: e_1_2_7_10_1
  doi: 10.1097/JSA.0b013e318246f005
– volume: 2
  start-page: 253
  year: 2007
  ident: e_1_2_7_39_1
  article-title: Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose‐derived human mesenchymal stem cells
  publication-title: Int J Nanomedicine
– ident: e_1_2_7_46_1
  doi: 10.3390/jfb3030497
– ident: e_1_2_7_41_1
  doi: 10.1089/ten.2006.12.1775
– reference: 24955629 - J Funct Biomater. 2012 Jul 27;3(3):497-513
– reference: 15135144 - Osteoarthritis Cartilage. 2004 Jun;12(6):476-84
– reference: 22322583 - Nanotechnology. 2012 Mar 9;23(9):095705
– reference: 11292034 - Am J Sports Med. 2001 Mar-Apr;29(2):118-23
– reference: 8624401 - Biomaterials. 1996 Jan;17(2):93-102
– reference: 17457824 - J Orthop Res. 2007 Aug;25(8):1018-28
– reference: 16889508 - Tissue Eng. 2006 Jul;12(7):1775-85
– reference: 12210057 - J Pathol. 2002 Sep;198(1):5-13
– reference: 11304448 - Tissue Eng. 2001 Apr;7(2):111-29
– reference: 3311520 - Clin Orthop Relat Res. 1987 Nov;(224):52-63
– reference: 17056048 - J Biomech. 2007;40(8):1686-93
– reference: 19248081 - Arthritis Rheum. 2009 Mar;60(3):633-5
– reference: 21764438 - Biomaterials. 2011 Oct;32(30):7411-31
– reference: 10546653 - Clin Orthop Relat Res. 1999 Oct;(367 Suppl):S281-92
– reference: 16157845 - Am J Sports Med. 2006 Jan;34(1):32-42
– reference: 21683797 - Osteoarthritis Cartilage. 2011 Sep;19(9):1132-41
– reference: 17179785 - Clin Orthop Relat Res. 2007 Feb;455:134-41
– reference: 22555208 - Sports Med Arthrosc. 2012 Jun;20(2):106-14
– reference: 11237658 - Osteoarthritis Cartilage. 2001 Feb;9(2):112-8
– reference: 17722553 - Int J Nanomedicine. 2007;2(2):253-63
– reference: 22994398 - Tissue Eng Part A. 2013 Feb;19(3-4):538-47
– reference: 12355305 - Knee Surg Sports Traumatol Arthrosc. 2002 Sep;10(5):300-4
– reference: 20926132 - Biomaterials. 2011 Jan;32(2):639-51
– reference: 16213379 - Clin Podiatr Med Surg. 2005 Oct;22(4):553-60, vi
– reference: 19500336 - Arthritis Res Ther. 2009;11(3):R85
– reference: 12905471 - Arthritis Rheum. 2003 Aug;48(8):2178-87
– reference: 9788368 - Arthroscopy. 1998 Oct;14(7):726-37
– reference: 24057873 - Eur Cell Mater. 2013;26:150-70
– reference: 19853066 - Acta Biomater. 2010 Apr;6(4):1219-26
– reference: 18689924 - Biomed Mater. 2008 Sep;3(3):034002
– reference: 20740467 - J Appl Biomater Biomech. 2010 May-Aug;8(2):57-67
– reference: 23076654 - Arch Orthop Trauma Surg. 2013 Jan;133(1):95-109
– reference: 15603819 - Biomaterials. 2005 Jun;26(16):3243-8
– reference: 23523536 - Acta Biomater. 2013 Jul;9(7):7218-26
– reference: 23172542 - Biofabrication. 2013 Mar;5(1):015001
– reference: 11337709 - Arthroscopy. 2001 May;17(5):439-44
– reference: 15332611 - J Mater Sci Mater Med. 2004 Apr;15(4):423-7
– reference: 19751124 - Expert Rev Med Devices. 2009 Sep;6(5):515-32
– reference: 9565324 - Anat Embryol (Berl). 1998 Apr;197(4):317-24
– reference: 19269183 - Knee. 2009 Oct;16(5):398-404
– reference: 17250888 - Biomaterials. 2007 Apr;28(11):1967-77
SSID ssj0007128
Score 2.418486
Snippet ABSTRACT Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace...
Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 572
SubjectTerms Adult
Biocompatible Materials - chemistry
Biomechanical Phenomena
Cell Survival
Cells, Cultured
ECM hydrogel
electrospinning
Extracellular Matrix - chemistry
Female
Humans
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Male
Materials Testing - methods
Menisci, Tibial - cytology
Menisci, Tibial - ultrastructure
meniscus
Tensile Strength
tissue engineering
Tissue Engineering - methods
Tissue Scaffolds
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwGLXKzAEuLGILm8wi1EtmsthxcqwQQ1WpA1QdGE6Rt7RDE2eUTKDll_BzsZ0FDRQEtyj-ZMnxS77n-Pl9ALzwWJQIipnrS8RdhFnmMi8TrseEYGGICYvN4eTDebS_QAdLvNwBfn8Wxor2OVtNVF5M1OrUaivXBZ_2OrEpCuNI04YrYByZPaURGC_m7_Y-WbvN0Ahq7f6kSZN6kUWWvZuQF0w_l9XEuL8EWzlobB7n-WUE83ed5NVGrenFV5rn21zWJqPZDXDUD6PVoJxNmg2b8G-_ODz-1zhvgusdNYV7bdMtsCPVbfD9UKpVzZsabuwUQfnTwBAa0fwJpFCVX2QONXb1MtvONCwz2BXYqdeNgjWnWVbmooZUCWjrAsKi79jsHdRQFkzqj6CA5s_wSulAqPNGRU2rkcrCwhQTOIenF6IqT2R-Byxmr49f7btdNQeXa5aoV7wCe5xzzLNAJ8iMYlN7N-SIxknmMx6RTGDJPRaEgmBMTQFhL6JxyCXxE5aQ8C4YqVLJ-wBmQt-NQ5pQihBKAiY1y6CMUMk8nUgCB-z285vyzurcVNzI09akOUg1FFILBQc8G0LXrb_HZUEvLUiGCFqdGUEcwenH-ZsUxctj70M0S9874GmPolS_puYJUSXLpk59U14VeyiKHHCvRdXQm2admlYR3wFkC29DgLEA327RiLFW4B1IHPB8QObfhrFrMfvniPTg7ZG9ePBPHT4E1zR_xK2Q6REYbapGPtYcbcOedG_lDy1BQXM
  priority: 102
  providerName: Unpaywall
Title Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel
URI https://api.istex.fr/ark:/67375/WNG-48XT0V6F-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.22802
https://www.ncbi.nlm.nih.gov/pubmed/25640671
https://www.proquest.com/docview/1667350466
https://pubmed.ncbi.nlm.nih.gov/PMC4386835
https://www.ncbi.nlm.nih.gov/pmc/articles/4386835
UnpaywallVersion submittedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1554-527X
  databaseCode: DR2
  dateStart: 20010101
  customDbUrl:
  isFulltext: true
  eissn: 1554-527X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007128
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7QFeuIhbBkzmIrSXdM7FTiKeJkSZJq3AtEKRkCzfspWlTpU0sPFL-LnYTpOqMBDiLUpOEvn42Oezc_J9ADxHnGSSYe4HKhZ-jHnuc5RLH3EpeRThhKf25-SjETkYx4cTPNkAL7t_YVp-iH7DzY4MN1_bAc54vbciDf1SVgPL5WLn3yDC7hPt8Yo6KgmcrqqJYFtkS0jHKoTCvf7OtVy0Zd16cRXQ_L1e8lqj5-zyGyuKdUzrktLwJvjcNaetRTkfNAs-EN9_YXr8z_beAjeWYBXut9F1G2wofQf8OFJ6WoumhgvXaVCtKA2hLaM_hQzq8qsqoHmFWXi7vodlDpeSO_W80bAWLM_LQtaQaQmdUiCcdQ-2XxNqqGZcmWlRQrtXPNXGEJpMUjF71RbPwpmVF7iAZ5eyKk9VcReMh69PXh34S30HXxjcaNbAEiMhBBZ5aFJmzrBV441EzNIsD7ggSS6xEoiHkUwwZlZSGBGWRkIlQcazJLoHNnWp1QMAc2nOphHLGIvjOAu5MriD8YQpjkxqCT2w2_U0FUvyc6vBUdCWtjmkxr3UudcDT3vTecv4cZXRCxcuvQWrzm2JXILpx9EbGqeTE_SBDOl7Dzzp4omagWs9xLQqm5oGVnAVo5gQD9xv46t_msGhBmglgQeStcjrDSwp-PoVPT1z5OBxlBKDqj3wrI_RvzVj14Xcny3o4dtjd7D976YPwXUDK3Fb3_QIbC6qRj020G3Bd9wY3QFb49G7_U8_AYPJR9M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam7WG8cBG3cDUXob1ky825SLwgoJSxFjF10Bdk-ZatLHWqpoGNX8LPxcdpUhUGQrxFyUki2-f4fHZOvg-hpx6PM8kId30VCTciPHe5l0vX41LyMCQJT-Hn5MEw7h9F-2My3kDP239hGn6IbsMNIsPO1xDgsCG9t2IN_VLOd4HMxUzAW_B9DsLy1eGKPCrxrbKq8WEos43jllfIC_a6W9ey0RZ07NlFUPP3isntWs_Y-TdWFOuo1qal3hX0uW1QU41yulsv-K74_gvX4_-2-Cq6vMSr-EXjYNfQhtLX0Y-B0pNK1BVe2HHDasVqiKGS_hgzrMuvqsDmHWbtbYcflzlequ5Us1rjSrA8LwtZYaYltmKBeNo-GD4oVFhNuTIzo8SwXTzRxhCbZDJncBXqZ_EUFAbO8Mm5nJfHqriBjnqvRy_77lLiwRUGOpplsCSeEIKIPDBZM2cEBHlDEbE0y30u4iSXRAmPB6FMCGGgKuzFLA2FSvyMZ0l4E23qUqvbCOfSnE1DljEWRVEWcGWgB-MJU9wz2SVw0E471FQs-c9BhqOgDXNzQE33Utu9Dnrcmc4a0o-LjJ5Zf-ks2PwUquQSQj8N39AoHY-8j3GPfnDQo9ahqIld6CGmVVlX1AfNVeJFceygW42DdU8zUNRgrcR3ULLmep0B8IKvX9GTE8sPHoVpbIC1g550Tvq3ZuxYn_uzBd1_f2gP7vy76UO03R8NDujB2-G7u-iSQZmkKXe6hzYX81rdN0huwR_YgP0JbZxKPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLWqVgJeWMQWVrMI9SXTLLaTiCcEDKXQAaoW5gEp8toOzTijZAItX8LnYjuTjAYKQrxFyY0j29e-x871OQA8DhjJBMXMDyXiPsJM-SxQwg-YECyOccJSezh5d0S2D9DOGI_XwNPuLEzLD9FvuNmR4eZrO8BnQm0tSUO_lNXAcrmY-XcDEbO6sohob8kdlYROWNW4sM2yJaSjFQqirf7VlWC0Ydv15Cyk-XvC5PlGz-jpN1oUq6DWRaXhJfC5q0-bjHI8aOZswL__QvX4nxW-DC4u0Cp81rrXFbAm9VXwY1fqSc2bGs5dr0G55DSENo_-EFKoy6-ygOYTZuXtOh-WCi40d-pZo2HNqVJlIWpItYBOKhBOu4Lt74QayimTZl4U0G4WT7QxhCaUVNQ-tdmzcGr1BU7g0amoykNZXAMHw5f7z7f9hcCDzw1wNItggQPOOeYqMjFTUWzleGOOaJqpkHGSKIElD1gUiwRjajWFA0LTmMskzFiWxNfBui61vAmgEuZuGtOMUoRQFjFpgAdlCZUsMLEl8sBm19M5X7CfWxGOIm95m6PcNG_umtcDD3vTWUv5cZbRE-cuvQWtjm2OXILzT6NXOUrH-8FHMsw_eOBB50-5Gbm2haiWZVPnoVVcxQEixAM3Wv_qSzNA1CCtJPRAsuJ5vYFlBV99oidHjh0cxSkxsNoDj3of_Vs1Np3L_dki33m35y5u_bvpfXDu_Yth_vb16M1tcMFATNzmOt0B6_OqkXcNjJuze264_gRrn0ju
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwGLXKzAEuLGILm8wi1EtmsthxcqwQQ1WpA1QdGE6Rt7RDE2eUTKDll_BzsZ0FDRQEtyj-ZMnxS77n-Pl9ALzwWJQIipnrS8RdhFnmMi8TrseEYGGICYvN4eTDebS_QAdLvNwBfn8Wxor2OVtNVF5M1OrUaivXBZ_2OrEpCuNI04YrYByZPaURGC_m7_Y-WbvN0Ahq7f6kSZN6kUWWvZuQF0w_l9XEuL8EWzlobB7n-WUE83ed5NVGrenFV5rn21zWJqPZDXDUD6PVoJxNmg2b8G-_ODz-1zhvgusdNYV7bdMtsCPVbfD9UKpVzZsabuwUQfnTwBAa0fwJpFCVX2QONXb1MtvONCwz2BXYqdeNgjWnWVbmooZUCWjrAsKi79jsHdRQFkzqj6CA5s_wSulAqPNGRU2rkcrCwhQTOIenF6IqT2R-Byxmr49f7btdNQeXa5aoV7wCe5xzzLNAJ8iMYlN7N-SIxknmMx6RTGDJPRaEgmBMTQFhL6JxyCXxE5aQ8C4YqVLJ-wBmQt-NQ5pQihBKAiY1y6CMUMk8nUgCB-z285vyzurcVNzI09akOUg1FFILBQc8G0LXrb_HZUEvLUiGCFqdGUEcwenH-ZsUxctj70M0S9874GmPolS_puYJUSXLpk59U14VeyiKHHCvRdXQm2admlYR3wFkC29DgLEA327RiLFW4B1IHPB8QObfhrFrMfvniPTg7ZG9ePBPHT4E1zR_xK2Q6REYbapGPtYcbcOedG_lDy1BQXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meniscus+tissue+engineering+using+a+novel+combination+of+electrospun+scaffolds+and+human+meniscus+cells+embedded+within+an+extracellular+matrix+hydrogel&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Baek%2C+Jihye&rft.au=Chen%2C+Xian&rft.au=Sovani%2C+Sujata&rft.au=Jin%2C+Sungho&rft.date=2015-04-01&rft.issn=1554-527X&rft.eissn=1554-527X&rft.volume=33&rft.issue=4&rft.spage=572&rft_id=info:doi/10.1002%2Fjor.22802&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon