A Convenient Photocatalytic Fluorination of Unactivated CH Bonds
Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site‐selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 18; pp. 4690 - 4693 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
25.04.2014
WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201400420 |
Cover
Abstract | Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site‐selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated CH bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated CH bonds that exploits the hydrogen ing ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N‐fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives.
The direct fluorination of unactivated C(sp3)H bonds is catalyzed by the inexpensive photocatalyst tetrabutylammonium decatungstate (TBADT). This convenient reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acids. |
---|---|
AbstractList | Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site-selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated CH bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated CH bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N-fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives.Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site-selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated CH bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated CH bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N-fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives. Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site-selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated CH bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated CH bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N-fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives. Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site‐selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated CH bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated CH bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N ‐fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives. Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site-selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated C--H bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated C--H bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N-fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives. The direct fluorination of unactivated C(sp super(3))--H bonds is catalyzed by the inexpensive photocatalyst tetrabutylammonium decatungstate (TBADT). This convenient reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acids. Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site-selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated CH bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated CH bonds that exploits the hydrogen abstracting ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N-fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives. Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site‐selective metabolic degradation of drugs and access radiotracers for positron emission tomography imaging. Despite current sophistication in fluorination reagents and processes, the fluorination of unactivated CH bonds remains a significant challenge. Reported herein is a convenient and economic process for direct fluorination of unactivated CH bonds that exploits the hydrogen ing ability of a decatungstate photocatalyst in combination with the mild fluorine atom transfer reagent N‐fluorobenzenesulfonimide. This operationally straightforward reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acid derivatives. The direct fluorination of unactivated C(sp3)H bonds is catalyzed by the inexpensive photocatalyst tetrabutylammonium decatungstate (TBADT). This convenient reaction provides direct access to a wide range of fluorinated organic molecules, including structurally complex natural products, acyl fluorides, and fluorinated amino acids. |
Author | Chang, Stanley Fan, Hope Britton, Robert Halperin, Shira D. Martin, Rainer E. |
Author_xml | – sequence: 1 givenname: Shira D. surname: Halperin fullname: Halperin, Shira D. organization: Department of Chemistry, Simon Fraser University, Burnaby, British Columbia (Canada) – sequence: 2 givenname: Hope surname: Fan fullname: Fan, Hope organization: Department of Chemistry, Simon Fraser University, Burnaby, British Columbia (Canada) – sequence: 3 givenname: Stanley surname: Chang fullname: Chang, Stanley organization: Department of Chemistry, Simon Fraser University, Burnaby, British Columbia (Canada) – sequence: 4 givenname: Rainer E. surname: Martin fullname: Martin, Rainer E. organization: Medicinal Chemistry, Small Molecule Research, Pharma Research & Early Development (pRED), F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel (Switzerland) – sequence: 5 givenname: Robert surname: Britton fullname: Britton, Robert email: rbritton@sfu.ca organization: Department of Chemistry, Simon Fraser University, Burnaby, British Columbia (Canada) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24668727$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhi3Uil5gyxJliVRl8P2yHEJvompZtLC0HMcRhoxdYqdlnocH4ZF4BTzMdISQUFn5LL7v-Nd_DsBOiMEB8ALBGYIQvzbBuxmGiEJIMXwC9hHDqCZCkJ0yU0JqIRnaAwcpfS68lJA_BXuYci4FFvugmVdNDHeurAm5ev8p5mhNNsMye1udDFMcfTDZx1DFvroJxmZ_Z7Lrqubn9x9n1ZsYuvQM7PZmSO755j0ENyfH181ZfXF1et7ML2rLkII1axnpFMHW9lZxjnsnO1vSMthK2VNFDGKCS-6U7FtppDLYdKzjbSeMtYaRQ_Bqvfd2jF8nl7Je-GTdMJjg4pQ0EhBBhBUTj6MlEWYcIV7Qlxt0aheu07ejX5hxqR86KoBcA_eujX2ypSnrthiEkBAqFUWriTY-_66riVPIRT36f7XQdE3bMaY0ul7bzbY8Gj9oBPXq5np1c729edFmf2kPH_xTUJtUfnDLR2g9vzw__tOt165P2X3bumb8orkggumPl6f6rfgAJX13rRn5Bdrgyy4 |
CitedBy_id | crossref_primary_10_1002_cjoc_202100827 crossref_primary_10_1039_C6CY02484J crossref_primary_10_1038_s44160_022_00125_1 crossref_primary_10_1002_anie_201710330 crossref_primary_10_1007_s11237_022_09713_w crossref_primary_10_1002_ejoc_202400248 crossref_primary_10_1039_C6RA07100G crossref_primary_10_1021_acs_chemrev_0c00278 crossref_primary_10_1039_C4CC05650G crossref_primary_10_1016_j_trechm_2019_04_001 crossref_primary_10_1002_ajoc_202100471 crossref_primary_10_1126_science_abh4308 crossref_primary_10_1002_ejoc_202000109 crossref_primary_10_1002_chem_202401669 crossref_primary_10_1002_anie_201708497 crossref_primary_10_1038_s43586_021_00042_1 crossref_primary_10_3390_molecules25225270 crossref_primary_10_1002_ejoc_202401206 crossref_primary_10_1016_j_checat_2024_101009 crossref_primary_10_1021_acs_oprd_0c00235 crossref_primary_10_1021_jacs_6b02838 crossref_primary_10_1039_D0GC02067B crossref_primary_10_1039_D3SC01945D crossref_primary_10_1002_ange_201603149 crossref_primary_10_1002_chem_201501081 crossref_primary_10_1002_anie_201800818 crossref_primary_10_1002_chem_201701865 crossref_primary_10_1002_anie_201411807 crossref_primary_10_1021_jacs_5b03989 crossref_primary_10_1039_C5CC04058B crossref_primary_10_1039_D3SC04027E crossref_primary_10_1515_pac_2020_0803 crossref_primary_10_1021_ja508469u crossref_primary_10_1039_C7SC02703F crossref_primary_10_1021_acs_chemrev_1c00263 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1021_jacs_5b12308 crossref_primary_10_1039_C5OB01486G crossref_primary_10_1016_j_tet_2017_05_008 crossref_primary_10_6023_cjoc202306028 crossref_primary_10_1016_j_xcrp_2024_102216 crossref_primary_10_1007_s11426_019_9636_8 crossref_primary_10_1021_acs_organomet_2c00215 crossref_primary_10_1021_acschembio_4c00825 crossref_primary_10_1021_jacs_1c04722 crossref_primary_10_1021_acs_joc_1c02244 crossref_primary_10_1039_C5SC01973G crossref_primary_10_1002_cmdc_202200365 crossref_primary_10_1055_a_1463_9527 crossref_primary_10_1021_jacs_5b06547 crossref_primary_10_1021_acs_chemrev_9b00024 crossref_primary_10_1002_ejoc_201500300 crossref_primary_10_1039_C5OB00632E crossref_primary_10_1002_ange_201806554 crossref_primary_10_1002_ange_201806434 crossref_primary_10_1021_acscatal_3c00750 crossref_primary_10_1021_acs_orglett_7b00536 crossref_primary_10_1021_acs_orglett_1c01020 crossref_primary_10_1021_ja509548z crossref_primary_10_1039_D2SC04605A crossref_primary_10_1039_D3CS00366C crossref_primary_10_1248_cpb_c20_00075 crossref_primary_10_1021_acscatal_8b04079 crossref_primary_10_1002_ejoc_201501405 crossref_primary_10_1021_acs_chemrev_2c00478 crossref_primary_10_3390_molecules29061408 crossref_primary_10_1021_acs_orglett_0c01121 crossref_primary_10_1016_j_tetlet_2018_01_044 crossref_primary_10_1515_revce_2024_0021 crossref_primary_10_1021_acs_orglett_5b01774 crossref_primary_10_3762_bjoc_11_293 crossref_primary_10_1038_nchem_2604 crossref_primary_10_1021_jacs_5b00939 crossref_primary_10_1021_ol503094m crossref_primary_10_1021_acs_joc_7b00036 crossref_primary_10_1126_science_abb4688 crossref_primary_10_1021_acs_accounts_0c00866 crossref_primary_10_1002_anie_201603424 crossref_primary_10_1002_chem_201805256 crossref_primary_10_1021_acs_orglett_0c04087 crossref_primary_10_1002_adsc_202500103 crossref_primary_10_1016_j_jfluchem_2016_11_012 crossref_primary_10_1021_jacs_7b00335 crossref_primary_10_1021_acs_joc_6b00984 crossref_primary_10_1002_chem_202301996 crossref_primary_10_1021_jacs_5b05848 crossref_primary_10_1002_anie_201806434 crossref_primary_10_1002_anie_201806554 crossref_primary_10_1002_ijch_201600115 crossref_primary_10_1039_C7CC07165E crossref_primary_10_1002_cctc_202300677 crossref_primary_10_1002_chem_201405229 crossref_primary_10_1038_s41467_022_31617_5 crossref_primary_10_1002_ejoc_201700678 crossref_primary_10_1039_C8CC03519A crossref_primary_10_1021_cr500706a crossref_primary_10_1080_03602532_2024_2370330 crossref_primary_10_1002_ange_201608210 crossref_primary_10_1021_jacs_8b00592 crossref_primary_10_1021_acs_orglett_8b02514 crossref_primary_10_1039_C7DT00894E crossref_primary_10_1021_acscatal_9b02220 crossref_primary_10_1021_acs_orglett_4c01420 crossref_primary_10_1002_ange_201800818 crossref_primary_10_1039_C4QO00256C crossref_primary_10_1039_D2SC01907H crossref_primary_10_1134_S1070428021090013 crossref_primary_10_1021_jacs_9b05588 crossref_primary_10_1021_acs_inorgchem_7b01499 crossref_primary_10_1021_acs_orglett_5b02532 crossref_primary_10_1021_acs_orglett_1c03087 crossref_primary_10_1021_acs_chemrev_5b00707 crossref_primary_10_1021_jacs_4c02548 crossref_primary_10_1002_anie_201608210 crossref_primary_10_1039_C8CC06375C crossref_primary_10_1039_C5CS00628G crossref_primary_10_1039_C4CC01848F crossref_primary_10_1021_acs_orglett_4c03175 crossref_primary_10_1070_RCR4833 crossref_primary_10_1021_acs_joc_7b02807 crossref_primary_10_1039_C6CC00862C crossref_primary_10_1021_acs_orglett_3c00868 crossref_primary_10_1039_C6CC09725A crossref_primary_10_1039_C5NJ01045D crossref_primary_10_1039_C9CC07285C crossref_primary_10_1038_s41467_020_15878_6 crossref_primary_10_1016_j_tetlet_2014_05_093 crossref_primary_10_1039_D4OB00171K crossref_primary_10_1039_C6SC04145K crossref_primary_10_1021_acs_orglett_3c01154 crossref_primary_10_1038_s41557_020_0436_1 crossref_primary_10_1002_cctc_201500562 crossref_primary_10_1039_D4OB00213J crossref_primary_10_2174_1385272826666220616155337 crossref_primary_10_1002_chem_201800543 crossref_primary_10_1002_chem_202003416 crossref_primary_10_1039_D4OB02090A crossref_primary_10_1002_ange_201814457 crossref_primary_10_1021_acs_orglett_5b03001 crossref_primary_10_1002_ange_201603424 crossref_primary_10_1021_acs_orglett_7b02452 crossref_primary_10_1002_jccs_201700134 crossref_primary_10_1039_D0GC01035A crossref_primary_10_1039_D0GC01500H crossref_primary_10_2967_jnumed_118_220483 crossref_primary_10_1039_D1QO01894A crossref_primary_10_1002_ange_201411807 crossref_primary_10_1007_s41981_020_00077_7 crossref_primary_10_1002_anie_202014632 crossref_primary_10_1021_acs_chemrev_6b00834 crossref_primary_10_1039_C8DT00400E crossref_primary_10_1021_acs_orglett_2c03142 crossref_primary_10_1021_acs_orglett_8b00133 crossref_primary_10_1039_D1SC02049H crossref_primary_10_1002_anie_201708197 crossref_primary_10_1038_s41467_022_33821_9 crossref_primary_10_1021_acs_chemrev_1c00416 crossref_primary_10_1016_j_tet_2016_08_018 crossref_primary_10_1002_ange_202014632 crossref_primary_10_1021_acs_orglett_0c03730 crossref_primary_10_1021_jacs_6b09414 crossref_primary_10_1039_D0SC01340D crossref_primary_10_1021_acscatal_8b03498 crossref_primary_10_1002_chem_202300248 crossref_primary_10_1039_C5SC02207J crossref_primary_10_1021_acscentsci_9b00916 crossref_primary_10_1021_acs_orglett_3c03669 crossref_primary_10_1002_ange_201708197 crossref_primary_10_5059_yukigoseikyokaishi_79_910 crossref_primary_10_1039_D4QO01111B crossref_primary_10_1002_ange_202317136 crossref_primary_10_1038_s44160_022_00108_2 crossref_primary_10_1021_acs_orglett_5b00282 crossref_primary_10_1021_acs_inorgchem_3c02531 crossref_primary_10_1002_ange_202104682 crossref_primary_10_1002_cctc_202200156 crossref_primary_10_1039_D1CS00556A crossref_primary_10_1055_s_0040_1705951 crossref_primary_10_1021_acs_joc_1c01253 crossref_primary_10_1002_anie_201603149 crossref_primary_10_1039_D2CC04408K crossref_primary_10_1021_acs_chemrev_1c00311 crossref_primary_10_1246_cl_150138 crossref_primary_10_1002_cctc_201500125 crossref_primary_10_1002_anie_201806966 crossref_primary_10_1002_ange_201807941 crossref_primary_10_1021_acs_jmedchem_0c00483 crossref_primary_10_1021_acs_chemrev_6b00620 crossref_primary_10_1021_acsomega_9b01509 crossref_primary_10_1002_ange_201801280 crossref_primary_10_1021_acscatal_5b02474 crossref_primary_10_1515_pac_2021_0107 crossref_primary_10_1002_anie_201814457 crossref_primary_10_1002_asia_201403072 crossref_primary_10_1002_anie_201902805 crossref_primary_10_1002_ange_201708497 crossref_primary_10_1039_C5CC04527D crossref_primary_10_1021_acsmedchemlett_3c00464 crossref_primary_10_1021_acscatal_0c01495 crossref_primary_10_1002_ange_201806966 crossref_primary_10_1016_j_gresc_2024_05_003 crossref_primary_10_1021_acs_orglett_0c00096 crossref_primary_10_1021_acs_orglett_1c01870 crossref_primary_10_1002_anie_201606323 crossref_primary_10_1002_anie_201801280 crossref_primary_10_1002_ejoc_202200214 crossref_primary_10_1002_ange_201603046 crossref_primary_10_1039_C4QO00078A crossref_primary_10_1002_ange_201710330 crossref_primary_10_1039_D0CC08060H crossref_primary_10_1002_ange_201902805 crossref_primary_10_1038_s44160_024_00676_5 crossref_primary_10_1038_s41570_022_00388_4 crossref_primary_10_1039_D0CC02081H crossref_primary_10_1038_s41929_024_01153_0 crossref_primary_10_1002_chin_201445048 crossref_primary_10_1038_s41586_024_07988_8 crossref_primary_10_1002_adsc_202200206 crossref_primary_10_1007_s11745_015_4050_8 crossref_primary_10_1021_acscatal_2c02345 crossref_primary_10_1021_jacs_8b05753 crossref_primary_10_1021_jacs_6b11533 crossref_primary_10_1016_j_checat_2021_12_010 crossref_primary_10_1002_ange_201606323 crossref_primary_10_1016_j_cclet_2023_109342 crossref_primary_10_1038_s41467_018_07196_9 crossref_primary_10_1002_anie_201603046 crossref_primary_10_1021_jacs_4c07956 crossref_primary_10_1002_anie_202317136 crossref_primary_10_1002_adsc_202300416 crossref_primary_10_1039_C5SC04169D crossref_primary_10_1517_17425255_2015_1020295 crossref_primary_10_1002_ejoc_201901421 crossref_primary_10_1002_anie_202104682 crossref_primary_10_1016_j_checat_2022_100491 crossref_primary_10_1021_acs_orglett_5c00609 crossref_primary_10_1007_s11426_016_0399_5 crossref_primary_10_1002_anie_201807941 crossref_primary_10_1039_C7OB02402A crossref_primary_10_1021_acs_chemrev_2c00797 |
Cites_doi | 10.1002/anie.201206352 10.1055/s-1995-4883 10.1021/jo00046a013 10.1007/s00259-001-0716-y 10.1039/B701177F 10.1021/ja3063716 10.1002/anie.201206566 10.1016/j.molcata.2006.08.042 10.1039/b001624l 10.1021/ol202248x 10.1021/ja00121a028 10.1021/ol4006757 10.1021/ja01634a101 10.1021/ja00174a020 10.1016/S0010-8545(98)00160-X 10.1126/science.1212625 10.1002/anie.201203642 10.1021/cr0782426 10.1021/jm800219f 10.1039/c0ob00066c 10.1021/ja410815u 10.1021/ja211679v 10.1021/ja00029a022 10.1002/ange.201203642 10.1021/op700134j 10.1126/science.1178239 10.1039/b917732a 10.1021/ic00122a021 10.1039/b812100c 10.1126/science.1222327 10.1016/j.molcata.2006.08.064 10.1002/chem.200501216 10.1021/ja407223g 10.1002/ange.201206352 10.1002/ange.201206566 10.1016/j.jfluchem.2010.03.003 10.1039/b701177f |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION 17B 1KM 1KN BLEPL DTL EGQ GNMZZ CGR CUY CVF ECM EIF NPM 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201400420 |
DatabaseName | Istex CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2014 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | MEDLINE - Academic Web of Science CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Economics |
EISSN | 1521-3773 |
EndPage | 4693 |
ExternalDocumentID | 24668727 000334894100034 10_1002_anie_201400420 ANIE201400420 ark_67375_WNG_D7V084KT_5 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NSERC – fundername: MSFHR – fundername: MSFHR; Michael Smith Foundation for Health Research – fundername: NSERC; Natural Sciences and Engineering Research Council of Canada (NSERC) |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI VQA WRC AAYXX CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c5190-5b53d932ccfc9662fe8dc52150b88f493a157686e98fb8a89a2ad5d6bd7acca53 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 238 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000334894100034 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:55:13 EDT 2025 Fri Jul 11 08:30:25 EDT 2025 Mon Jul 21 06:07:32 EDT 2025 Wed Jul 09 16:52:13 EDT 2025 Fri Sep 19 20:10:25 EDT 2025 Tue Jul 01 02:53:28 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Wed Jan 22 16:24:46 EST 2025 Sun Sep 21 06:18:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | EXCITED-STATE ACIDS amino acids REACTIVITY ALDEHYDES MEDICINAL CHEMISTRY ALKENES CH activation tungsten photochemistry polyoxometalates RADICALS PET ALKANES CH activation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c5190-5b53d932ccfc9662fe8dc52150b88f493a157686e98fb8a89a2ad5d6bd7acca53 |
Notes | NSERC ArticleID:ANIE201400420 This work was supported by an NSERC Discovery Grant to R.B., a MSFHR Career Investigator Award to R.B., and NSERC Postgraduate Scholarships for S.D.H., H.F., S.C. MSFHR ark:/67375/WNG-D7V084KT-5 istex:F72B9EDF6F29E838408479F2F2F607EBDAB68448 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7895-497X |
PMID | 24668727 |
PQID | 1519256116 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | webofscience_primary_000334894100034CitationCount wiley_primary_10_1002_anie_201400420_ANIE201400420 crossref_citationtrail_10_1002_anie_201400420 proquest_miscellaneous_1701012957 proquest_miscellaneous_1519256116 crossref_primary_10_1002_anie_201400420 pubmed_primary_24668727 istex_primary_ark_67375_WNG_D7V084KT_5 webofscience_primary_000334894100034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 25, 2014 |
PublicationDateYYYYMMDD | 2014-04-25 |
PublicationDate_xml | – month: 04 year: 2014 text: April 25, 2014 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: WEINHEIM – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | Angew. Chem. Int. Ed. 2012, 51, 10804-10807. D. Dondi, M. Fagnoni, A. Albini, Chem. Eur. J. 2006, 12, 4153-4163. S. Stavber, Z. Planinsek, M. Zupan, J. Org. Chem. 1992, 57, 5334-5337. E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639-642. R. F. Renneke, M. Pasquali, C. L. Hill, J. Am. Chem. Soc. 1990, 112, 6585-6594. L. A. Combs-Walker, C. L. Hill, J. Am. Chem. Soc. 1992, 114, 938-946. T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. 2013, 125, 8372-8423 M. D. Tzirakis, I. N. Lykakis, M. Orfanopoulos, Chem. Soc. Rev. 2009, 38, 2609-2621. I. N. Lykakis, C. Tanielian, R. Seghrouchni, M. Orfanopoulos, J. Mol. Catal. A 2007, 262, 176-184. Y. Amaoka, M. Nagatomo, M. Inoue, Org. Lett. 2013, 15, 2160-2163. D. C. Duncan, T. L. Netzel, C. L. Hill, Inorg. Chem. 1995, 34, 4640-4646. P. Laverman, O. C. Boerman, F. H. M. Corstens, W. J. G. Oyen, Eur. J. Nucl. Med. 2002, 29, 681-690. S. Protti, D. Ravelli, M. Fagnoni, A. Albini, Chem. Commun. 2009, 7351-7353. S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev. 2008, 108, 1501-1516. T. Barker, D. L. Boger, J. Am. Chem. Soc. 2012, 134, 13588-13591. Angew. Chem. Int. Ed. 2012, 51, 10580-10583. R. D. Chambers, M. Parsons, G. Sandford, R. Bowyden, Chem. Commun. 2000, 959-960. B. S. Jaynes, C. L. Hill, J. Am. Chem. Soc. 1995, 117, 4704-4705. W. K. Hagmann, J. Med. Chem. 2008, 51, 4359-4369. C. L. Hill, J. Mol. Catal. A 2007, 262, 2-6. J. Fried, E. F. Sabo, J. Am. Chem. Soc. 1954, 76, 1455-1456. D. Ravelli, M. Zema, M. Mella, M. Fagnoni, A. Albini, Org. Biomol. Chem. 2010, 8, 4158-4164. X.-L. Qui, F.-L. Qing, Eur. J. Org. Chem. 2011, 3261-3278. K. L. Kirk, Org. Process Res. Dev. 2008, 12, 305-321. H. Teare, E. G. Robins, E. Arstad, S. K. Luthra, V. Gouverneur, Chem. Commun. 2007, 2330-2332. Angew. Chem. Int. Ed. 2013, 52, 8214-8264. M.-G. Braun, A. G. Doyle, J. Am. Chem. Soc. 2013, 135, 12990-12993. S. Bloom, C. R. Pitts, D. Curtin Miller, N. Haselton, M. G. Holl, E. Urheim, T. Lectka, Angew. Chem. 2012, 124, 10732-10735 M. Ochiai, A. Yoshimura, M. M. Hoque, T. Okubo, M. Saito, K. Miyamoto, Org. Lett. 2011, 13, 5568-5571. D. O'Hagan, J. Fluorine Chem. 2010, 131, 1071-1081. D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. Garcia-Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661-1664. J.-B. Xia, C. Zhu, C. Chen, J. Am. Chem. Soc. 2013, 135, 17494-17500. W. Liu, X. Huang, M.-J. Cheng, R. J. Nielson, W. A. Goddard III, J. T. Groves, Science 2012, 337, 1322-1325. C. L. Hill, Synlett 1995, 127-132. M. Rueda-Becerril, C. C. Sazepin, J. C. T. Leung, T. Okbinoglu, P. Kennepohl, J.-F. Paquin, G. M. Sammis, J. Am. Chem. Soc. 2012, 134, 4026-4029. C. Tanielian, Coord. Chem. Rev. 1998, 178-180, 1165-1181. J. C. T. Leung, C. Chatalova-Sazepin, J. G. West, M. Rueda-Becerril, J.-F. Paquin, G. M. Sammis, Angew. Chem. 2012, 124, 10962-10965 2011; 334 2006; 12 2011 1995; 34 2007; 262 2013 2013; 125 52 2009 1995; 117 2008; 108 2008; 12 2007 1995 2011; 13 1992; 57 2008; 51 1998; 178–180 2013; 15 2012; 134 2002; 29 2000 1954; 76 1992; 114 2010; 131 2013; 135 2012 2012; 124 51 1990; 112 2012; 337 2009; 38 2009; 325 2010; 8 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_2_2 e_1_2_2_29_2 e_1_2_2_6_3 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 Qui X.‐L. (e_1_2_2_34_2) 2011 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_17_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_13_3 e_1_2_2_14_2 e_1_2_2_35_2 COMBSWALKER, LA (WOS:A1992HB53700022) 1992; 114 Hagmann, WK (WOS:000258289800001) 2008; 51 Liang, T. (000334894100034.22) 2013; 125 Leung, J. C. T. (000334894100034.20) 2012; 124 Kirk, KL (WOS:000254408400026) 2008; 12 Ametamey, SM (WOS:000255871100002) 2008; 108 Bloom, S. (000334894100034.5) 2012; 124 Laverman, P (WOS:000175615000015) 2002; 29 Lykakis, IN (WOS:000244183400025) 2007; 262 Rueda-Becerril, M (WOS:000301550800025) 2012; 134 O'Hagan, D (WOS:000284813500003) 2010; 131 Liang, T (WOS:000322631600013) 2013; 52 Barker, TJ (WOS:000307699000015) 2012; 134 Protti, S (WOS:000272106200024) 2009 Liu, W (WOS:000308705000037) 2012; 337 Chambers, RD (WOS:000087163600035) 2000 Watson, DA (WOS:000270131800037) 2009; 325 Ravelli, D (WOS:000281226300022) 2010; 8 HILL, CL (WOS:A1995QG63100001) 1995 RENNEKE, RF (WOS:A1990DW57100020) 1990; 112 DUNCAN, DC (WOS:A1995RT11300021) 1995; 34 Hill, CL (WOS:000244183400002) 2007; 262 Leung, JCT (WOS:000310076100022) 2012; 51 Bloom, S (WOS:000309745600028) 2012; 51 Lee, E (WOS:000296494700046) 2011; 334 Amaoka, Y (WOS:000318588900023) 2013; 15 Tanielian, C (WOS:000077809500009) 1998; 178 Teare, H (WOS:000247103900014) 2007 JAYNES, BS (WOS:A1995QV14700028) 1995; 117 FRIED, J (WOS:A1954UB49400101) 1954; 76 Braun, MG (WOS:000330163100018) 2013; 135 Ochiai, M (WOS:000295817100040) 2011; 13 Tzirakis, MD (WOS:000269088000010) 2009; 38 STAVBER, S (WOS:A1992JQ22700013) 1992; 57 Xia, JB (WOS:000327413300039) 2013; 135 Qui, X.-L. (000334894100034.28) 2011 Dondi, D (WOS:000237836500021) 2006; 12 |
References_xml | – reference: K. L. Kirk, Org. Process Res. Dev. 2008, 12, 305-321. – reference: T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. 2013, 125, 8372-8423; – reference: C. L. Hill, Synlett 1995, 127-132. – reference: E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639-642. – reference: Angew. Chem. Int. Ed. 2012, 51, 10580-10583. – reference: P. Laverman, O. C. Boerman, F. H. M. Corstens, W. J. G. Oyen, Eur. J. Nucl. Med. 2002, 29, 681-690. – reference: T. Barker, D. L. Boger, J. Am. Chem. Soc. 2012, 134, 13588-13591. – reference: M.-G. Braun, A. G. Doyle, J. Am. Chem. Soc. 2013, 135, 12990-12993. – reference: D. C. Duncan, T. L. Netzel, C. L. Hill, Inorg. Chem. 1995, 34, 4640-4646. – reference: M. Rueda-Becerril, C. C. Sazepin, J. C. T. Leung, T. Okbinoglu, P. Kennepohl, J.-F. Paquin, G. M. Sammis, J. Am. Chem. Soc. 2012, 134, 4026-4029. – reference: C. Tanielian, Coord. Chem. Rev. 1998, 178-180, 1165-1181. – reference: J. Fried, E. F. Sabo, J. Am. Chem. Soc. 1954, 76, 1455-1456. – reference: I. N. Lykakis, C. Tanielian, R. Seghrouchni, M. Orfanopoulos, J. Mol. Catal. A 2007, 262, 176-184. – reference: H. Teare, E. G. Robins, E. Arstad, S. K. Luthra, V. Gouverneur, Chem. Commun. 2007, 2330-2332. – reference: L. A. Combs-Walker, C. L. Hill, J. Am. Chem. Soc. 1992, 114, 938-946. – reference: X.-L. Qui, F.-L. Qing, Eur. J. Org. Chem. 2011, 3261-3278. – reference: J.-B. Xia, C. Zhu, C. Chen, J. Am. Chem. Soc. 2013, 135, 17494-17500. – reference: R. F. Renneke, M. Pasquali, C. L. Hill, J. Am. Chem. Soc. 1990, 112, 6585-6594. – reference: J. C. T. Leung, C. Chatalova-Sazepin, J. G. West, M. Rueda-Becerril, J.-F. Paquin, G. M. Sammis, Angew. Chem. 2012, 124, 10962-10965; – reference: Angew. Chem. Int. Ed. 2013, 52, 8214-8264. – reference: D. O'Hagan, J. Fluorine Chem. 2010, 131, 1071-1081. – reference: D. Ravelli, M. Zema, M. Mella, M. Fagnoni, A. Albini, Org. Biomol. Chem. 2010, 8, 4158-4164. – reference: Angew. Chem. Int. Ed. 2012, 51, 10804-10807. – reference: S. Protti, D. Ravelli, M. Fagnoni, A. Albini, Chem. Commun. 2009, 7351-7353. – reference: S. Bloom, C. R. Pitts, D. Curtin Miller, N. Haselton, M. G. Holl, E. Urheim, T. Lectka, Angew. Chem. 2012, 124, 10732-10735; – reference: W. K. Hagmann, J. Med. Chem. 2008, 51, 4359-4369. – reference: B. S. Jaynes, C. L. Hill, J. Am. Chem. Soc. 1995, 117, 4704-4705. – reference: D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. Garcia-Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661-1664. – reference: M. Ochiai, A. Yoshimura, M. M. Hoque, T. Okubo, M. Saito, K. Miyamoto, Org. Lett. 2011, 13, 5568-5571. – reference: R. D. Chambers, M. Parsons, G. Sandford, R. Bowyden, Chem. Commun. 2000, 959-960. – reference: W. Liu, X. Huang, M.-J. Cheng, R. J. Nielson, W. A. Goddard III, J. T. Groves, Science 2012, 337, 1322-1325. – reference: C. L. Hill, J. Mol. Catal. A 2007, 262, 2-6. – reference: S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev. 2008, 108, 1501-1516. – reference: S. Stavber, Z. Planinsek, M. Zupan, J. Org. Chem. 1992, 57, 5334-5337. – reference: D. Dondi, M. Fagnoni, A. Albini, Chem. Eur. J. 2006, 12, 4153-4163. – reference: Y. Amaoka, M. Nagatomo, M. Inoue, Org. Lett. 2013, 15, 2160-2163. – reference: M. D. Tzirakis, I. N. Lykakis, M. Orfanopoulos, Chem. Soc. Rev. 2009, 38, 2609-2621. – volume: 124 51 start-page: 10732 10580 year: 2012 2012 end-page: 10735 10583 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 117 start-page: 4704 year: 1995 end-page: 4705 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 681 year: 2002 end-page: 690 publication-title: Eur. J. Nucl. Med. – volume: 13 start-page: 5568 year: 2011 end-page: 5571 publication-title: Org. Lett. – volume: 337 start-page: 1322 year: 2012 end-page: 1325 publication-title: Science – volume: 334 start-page: 639 year: 2011 end-page: 642 publication-title: Science – start-page: 7351 year: 2009 end-page: 7353 publication-title: Chem. Commun. – volume: 34 start-page: 4640 year: 1995 end-page: 4646 publication-title: Inorg. Chem. – volume: 124 51 start-page: 10962 10804 year: 2012 2012 end-page: 10965 10807 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 325 start-page: 1661 year: 2009 end-page: 1664 publication-title: Science – volume: 178–180 start-page: 1165 year: 1998 end-page: 1181 publication-title: Coord. Chem. Rev. – volume: 135 start-page: 17494 year: 2013 end-page: 17500 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 4026 year: 2012 end-page: 4029 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 938 year: 1992 end-page: 946 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 305 year: 2008 end-page: 321 publication-title: Org. Process Res. Dev. – start-page: 2330 year: 2007 end-page: 2332 publication-title: Chem. Commun. – volume: 262 start-page: 176 year: 2007 end-page: 184 publication-title: J. Mol. Catal. A – volume: 15 start-page: 2160 year: 2013 end-page: 2163 publication-title: Org. Lett. – volume: 134 start-page: 13588 year: 2012 end-page: 13591 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 5334 year: 1992 end-page: 5337 publication-title: J. Org. Chem. – volume: 131 start-page: 1071 year: 2010 end-page: 1081 publication-title: J. Fluorine Chem. – start-page: 959 year: 2000 end-page: 960 publication-title: Chem. Commun. – volume: 262 start-page: 2 year: 2007 end-page: 6 publication-title: J. Mol. Catal. A – volume: 8 start-page: 4158 year: 2010 end-page: 4164 publication-title: Org. Biomol. Chem. – volume: 38 start-page: 2609 year: 2009 end-page: 2621 publication-title: Chem. Soc. Rev. – volume: 125 52 start-page: 8372 8214 year: 2013 2013 end-page: 8423 8264 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 135 start-page: 12990 year: 2013 end-page: 12993 publication-title: J. Am. Chem. Soc. – start-page: 127 year: 1995 end-page: 132 publication-title: Synlett – volume: 51 start-page: 4359 year: 2008 end-page: 4369 publication-title: J. Med. Chem. – volume: 12 start-page: 4153 year: 2006 end-page: 4163 publication-title: Chem. Eur. J. – volume: 112 start-page: 6585 year: 1990 end-page: 6594 publication-title: J. Am. Chem. Soc. – start-page: 3261 year: 2011 end-page: 3278 publication-title: Eur. J. Org. Chem. – volume: 108 start-page: 1501 year: 2008 end-page: 1516 publication-title: Chem. Rev. – volume: 76 start-page: 1455 year: 1954 end-page: 1456 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_17_3 doi: 10.1002/anie.201206352 – ident: e_1_2_2_21_2 doi: 10.1055/s-1995-4883 – ident: e_1_2_2_33_2 doi: 10.1021/jo00046a013 – ident: e_1_2_2_35_2 doi: 10.1007/s00259-001-0716-y – ident: e_1_2_2_18_2 doi: 10.1039/B701177F – ident: e_1_2_2_30_2 – ident: e_1_2_2_7_2 doi: 10.1021/ja3063716 – ident: e_1_2_2_6_3 doi: 10.1002/anie.201206566 – ident: e_1_2_2_19_2 doi: 10.1016/j.molcata.2006.08.042 – ident: e_1_2_2_15_2 doi: 10.1039/b001624l – ident: e_1_2_2_32_2 doi: 10.1021/ol202248x – ident: e_1_2_2_26_2 doi: 10.1021/ja00121a028 – ident: e_1_2_2_14_2 doi: 10.1021/ol4006757 – ident: e_1_2_2_5_2 doi: 10.1021/ja01634a101 – ident: e_1_2_2_27_2 doi: 10.1021/ja00174a020 – ident: e_1_2_2_22_2 doi: 10.1016/S0010-8545(98)00160-X – ident: e_1_2_2_9_2 doi: 10.1126/science.1212625 – ident: e_1_2_2_13_3 doi: 10.1002/anie.201203642 – ident: e_1_2_2_3_2 doi: 10.1021/cr0782426 – ident: e_1_2_2_1_2 doi: 10.1021/jm800219f – ident: e_1_2_2_31_2 doi: 10.1039/c0ob00066c – ident: e_1_2_2_11_2 doi: 10.1021/ja410815u – ident: e_1_2_2_16_2 doi: 10.1021/ja211679v – start-page: 3261 year: 2011 ident: e_1_2_2_34_2 publication-title: Eur. J. Org. Chem. – ident: e_1_2_2_25_2 doi: 10.1021/ja00029a022 – ident: e_1_2_2_13_2 doi: 10.1002/ange.201203642 – ident: e_1_2_2_2_2 doi: 10.1021/op700134j – ident: e_1_2_2_8_2 doi: 10.1126/science.1178239 – ident: e_1_2_2_23_2 doi: 10.1039/b917732a – ident: e_1_2_2_28_2 doi: 10.1021/ic00122a021 – ident: e_1_2_2_20_2 doi: 10.1039/b812100c – ident: e_1_2_2_12_2 doi: 10.1126/science.1222327 – ident: e_1_2_2_24_2 doi: 10.1016/j.molcata.2006.08.064 – ident: e_1_2_2_29_2 doi: 10.1002/chem.200501216 – ident: e_1_2_2_10_2 doi: 10.1021/ja407223g – ident: e_1_2_2_17_2 doi: 10.1002/ange.201206352 – ident: e_1_2_2_6_2 doi: 10.1002/ange.201206566 – ident: e_1_2_2_4_2 doi: 10.1016/j.jfluchem.2010.03.003 – volume: 337 start-page: 1322 year: 2012 ident: WOS:000308705000037 article-title: Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin publication-title: SCIENCE doi: 10.1126/science.1222327 – start-page: 127 year: 1995 ident: WOS:A1995QG63100001 article-title: INTRODUCTION OF FUNCTIONALITY INTO UNACTIVATED CARBON-HYDROGEN BONDS - CATALYTIC GENERATION AND NONCONVENTIONAL UTILIZATION OF ORGANIC RADICALS publication-title: SYNLETT – volume: 112 start-page: 6585 year: 1990 ident: WOS:A1990DW57100020 article-title: POLYOXOMETALATE SYSTEMS FOR THE CATALYTIC SELECTIVE PRODUCTION OF NONTHERMODYNAMIC ALKENES FROM ALKANES - NATURE OF EXCITED-STATE DEACTIVATION PROCESSES AND CONTROL OF SUBSEQUENT THERMAL-PROCESSES IN POLYOXOMETALATE PHOTOREDOX CHEMISTRY publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 131 start-page: 1071 year: 2010 ident: WOS:000284813500003 article-title: Fluorine in health care Organofluorine containing blockbuster drugs publication-title: JOURNAL OF FLUORINE CHEMISTRY doi: 10.1016/j.jfluchem.2010.03.003 – volume: 51 start-page: 10580 year: 2012 ident: WOS:000309745600028 article-title: A Polycomponent Metal-Catalyzed Aliphatic, Allylic, and Benzylic Fluorination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201203642 – volume: 262 start-page: 2 year: 2007 ident: WOS:000244183400002 article-title: Progress and challenges in polyoxometalate-based catalysis and catalytic materials chemistry publication-title: JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL doi: 10.1016/j.molcata.2006.08.042 – volume: 8 start-page: 4158 year: 2010 ident: WOS:000281226300022 article-title: Benzoyl radicals from (hetero)aromatic aldehydes. Decatungstate photocatalyzed synthesis of substituted aromatic ketones publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c0ob00066c – volume: 51 start-page: 10804 year: 2012 ident: WOS:000310076100022 article-title: Photo-fluorodecarboxylation of 2-Aryloxy and 2-Aryl Carboxylic Acids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201206352 – volume: 15 start-page: 2160 year: 2013 ident: WOS:000318588900023 article-title: Metal-Free Fluorination of C(sp(3))-H Bonds Using a Catalytic N-Oxyl Radical publication-title: ORGANIC LETTERS doi: 10.1021/ol4006757 – volume: 124 start-page: 10962 year: 2012 ident: 000334894100034.20 publication-title: Angew. Chem. – volume: 38 start-page: 2609 year: 2009 ident: WOS:000269088000010 article-title: Decatungstate as an efficient photocatalyst in organic chemistry publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b812100c – volume: 76 start-page: 1455 year: 1954 ident: WOS:A1954UB49400101 article-title: 9-ALPHA-FLUORO DERIVATIVES OF CORTISONE AND HYDROCORTISONE publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 135 start-page: 17494 year: 2013 ident: WOS:000327413300039 article-title: Visible Light-Promoted Metal-Free C-H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja410815u – volume: 134 start-page: 4026 year: 2012 ident: WOS:000301550800025 article-title: Fluorine Transfer to Alkyl Radicals publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja211679v – volume: 124 start-page: 10732 year: 2012 ident: 000334894100034.5 publication-title: Angew. Chem. – volume: 114 start-page: 938 year: 1992 ident: WOS:A1992HB53700022 article-title: USE OF EXCITED-STATE AND GROUND-STATE REDOX PROPERTIES OF POLYOXOMETALATES FOR SELECTIVE TRANSFORMATION OF UNACTIVATED CARBON HYDROGEN CENTERS REMOTE FROM THE FUNCTIONAL-GROUP IN KETONES publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 262 start-page: 176 year: 2007 ident: WOS:000244183400025 article-title: Mechanism of decatungstate photocatalyzed oxygenation of aromatic alcohols Part II. Kinetic isotope effects studies publication-title: JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL doi: 10.1016/j.molcata.2006.08.064 – volume: 29 start-page: 681 year: 2002 ident: WOS:000175615000015 article-title: Fluorinated amino acids for tumour imaging with positron emission tomography publication-title: EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING doi: 10.1007/s00259-001-0716-y – volume: 12 start-page: 305 year: 2008 ident: WOS:000254408400026 article-title: Fluorination in medicinal chemistry: Methods, strategies, and recent developments publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT doi: 10.1021/op700134j – volume: 325 start-page: 1661 year: 2009 ident: WOS:000270131800037 article-title: Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides publication-title: SCIENCE doi: 10.1126/science.1178239 – start-page: 7351 year: 2009 ident: WOS:000272106200024 article-title: Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b917732a – volume: 13 start-page: 5568 year: 2011 ident: WOS:000295817100040 article-title: Oxidation of Primary Aliphatic and Aromatic Aldehydes with Difluoro(aryl)-lambda(3)-bromane publication-title: ORGANIC LETTERS doi: 10.1021/ol202248x – volume: 134 start-page: 13588 year: 2012 ident: WOS:000307699000015 article-title: Fe(III)/NaBH4-Mediated Free Radical Hydrofluorination of Unactivated Alkenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja3063716 – start-page: 2330 year: 2007 ident: WOS:000247103900014 article-title: Synthesis and reactivity of [F-18]-N-fluorobenzenesulfonimide publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b701177f – volume: 34 start-page: 4640 year: 1995 ident: WOS:A1995RT11300021 article-title: EARLY-TIME DYNAMICS AND REACTIVITY OF POLYOXOMETALATE EXCITED-STATES - IDENTIFICATION OF A SHORT-LIVED LMCT EXCITED-STATE AND A REACTIVE LONG-LIVED CHARGE-TRANSFER INTERMEDIATE FOLLOWING PICOSECOND FLASH EXCITATION OF [W10O32](4-) IN ACETONITRILE publication-title: INORGANIC CHEMISTRY – volume: 125 start-page: 8372 year: 2013 ident: 000334894100034.22 publication-title: Angew. Chem – volume: 12 start-page: 4153 year: 2006 ident: WOS:000237836500021 article-title: Tetrabutylammonium decatungstate-photosensitized alkylation of electrophilic alkenes: Convenient functionalization of aliphatic C-H bonds publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200501216 – volume: 334 start-page: 639 year: 2011 ident: WOS:000296494700046 article-title: A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging publication-title: SCIENCE doi: 10.1126/science.1212625 – volume: 135 start-page: 12990 year: 2013 ident: WOS:000330163100018 article-title: Palladium-Catalyzed Allylic C-H Fluorination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja407223g – volume: 117 start-page: 4704 year: 1995 ident: WOS:A1995QV14700028 article-title: RADICAL CARBONYLATION OF ALKANES VIA POLYOXOTUNGSTATE PHOTOCATALYSIS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 51 start-page: 4359 year: 2008 ident: WOS:000258289800001 article-title: The many roles for fluorine in medicinal chemistry publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm800219f – start-page: 959 year: 2000 ident: WOS:000087163600035 article-title: Electrophilic fluorination at saturated sites publication-title: CHEMICAL COMMUNICATIONS – volume: 57 start-page: 5334 year: 1992 ident: WOS:A1992JQ22700013 article-title: REACTIONS OF ALDEHYDES WITH CESIUM FLUOROXYSULFATE publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 108 start-page: 1501 year: 2008 ident: WOS:000255871100002 article-title: Molecular imaging with PET publication-title: CHEMICAL REVIEWS doi: 10.1021/cr0782426 – start-page: 3261 year: 2011 ident: 000334894100034.28 publication-title: Eur. J. Org. Chem. – volume: 52 start-page: 8214 year: 2013 ident: WOS:000322631600013 article-title: Introduction of Fluorine and Fluorine-Containing Functional Groups publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201206566 – volume: 178 start-page: 1165 year: 1998 ident: WOS:000077809500009 article-title: Decatungstate photocatalysis publication-title: COORDINATION CHEMISTRY REVIEWS |
SSID | ssj0028806 |
Score | 2.560007 |
Snippet | Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site‐selective metabolic degradation of drugs and access... Fluorination reactions are essential to modern medicinal chemistry, thus providing a means to block site-selective metabolic degradation of drugs and access... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4690 |
SubjectTerms | Amino acids Blocking Carbon - chemistry Catalysis Chemistry Chemistry, Multidisciplinary CH activation Derivatives Economics Fluorides Fluorination Fluorine - chemistry Fluorine Radioisotopes - chemistry Halogenation Hydrogen - chemistry Light Natural products Photocatalysis photochemistry Physical Sciences polyoxometalates Positron-Emission Tomography Science & Technology Sulfonamides - chemistry Tomography tungsten |
Title | A Convenient Photocatalytic Fluorination of Unactivated CH Bonds |
URI | https://api.istex.fr/ark:/67375/WNG-D7V084KT-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201400420 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000334894100034 https://www.ncbi.nlm.nih.gov/pubmed/24668727 https://www.proquest.com/docview/1519256116 https://www.proquest.com/docview/1701012957 |
Volume | 53 |
WOS | 000334894100034 |
WOSCitedRecordID | wos000334894100034 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQe4AL_9AUqIJUwSlt_Bv7uM12WUCsEOpCb5YdO0JqlVTdLAJehwfhkXgFPMkmdCv-BLdEHivyeJz5bM98g9CuM0oxSl1SFgVLmBIWyrykicVeeuxKpzwcDbyaiemcvTjmxxey-Dt-iOHADVZG-7-GBW7sYv8HaShkYENoFhghgU07pgLI88dvBv4oEoyzSy-iNIEq9D1rY0r217uveaVNUPDHn0HOS95pHdC2HmlyA5l-LF0gysnesrF7xedLNI__M9ib6PoKrsajzr5uoSu-uo2u5n2VuDsoH8V5G7gOeZXx6_d1U7cnQp9Ch3hyuoT4vnby47qM5xWkUXwI8NbF-bcvX6cxVDVe3EXzyeFRPk1WhRmSgkPqObecugD8iqIswnaJlF66IuAAnlopS6aowbCNEV7J0kojlSHGcSesy0ywGE7voY2qrvwWikVwothTwbNMsMyUJjQzyziRtsCpLyOU9BOjixVrORTPONUd3zLRoBo9qCZCTwf5s46v45eST9p5HsTM-QlEuWVcv5s90-PsbSrZyyPNI_S4NwQdlAsXKqby9XKhA1pSATJiLH4jkwGLH1E8i9D9zoqGLxImhAwAMkK7F81qaIcNK2VSMdzyCEUI_41YvlITkBo0ESKtXf1BGXo0e344vG3_S6cH6Bo8w00b4Q_RRnO-9I8CYGvsDtocHYwPJjvt4vwOOHE2bQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2h9qG8cL-Ea5AqeEqbOLZjP65Cly1tVwjtAm9WfImQWm1Qm0XA7_AhfBK_gMfZBLbiJnhMPFbk8Tg-Hs-cAdi2lZQ0z21SG0MTKrnGMi9pojMnXGZrKx26Bo6mfDKnz9-wPpoQc2E6fojB4YYrI_yvcYGjQ3r3O2sopmBjbBZaIfGn9s1wSYe46OXAIEW8eXYJRnmeYB36nrcxJbvr_df2pU1U8Yefgc5z-9M6pA170vgy6H40XSjK8c6y1Tvm0zmix_8a7hW4tEKs8agzsatwwS2uwVbZF4q7DuUoLkPsOqZWxi_eNm0TnEIffYd4fLLEEL8w_3FTx_MFZlK89wjXxuXXz18mMRY2PrsB8_HerJwkq9oMiWGYfc40y63HfsbUxp-YSO2ENR4KsFQLUVOZVxmeZLiTotaiErIilWWWa1tU3mhYfhM2Fs3C3YaY-300czlnRcFpUdWVb6baT6XQJktdHUHSz4wyK-JyrJ9xojrKZaJQNWpQTQRPBvl3HWXHLyUfh4kexKrTYwx0K5h6PX2mnhavUkEPZopF8Ki3BOWVi3cq1cI1yzPlAZP0qDHL-G9kCiTyI5IVEdzqzGj4IqGcC48hI9j-0a6Gdjyz5lRImgUqoQiyvxErV2pCXoM2AhIM6w_KUKPp_t7wdOdfOj2Ercns6FAd7k8P7sJFfI8Xb4Tdg432dOnue_zW6gdhhX4D1nw5GQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVQKwEvlGsJ1yBV8JQ2cWzHflylXbYUVhXqQt8sX4XUKqnabAX8Dh_CJ_ELeJJN6FbcBI-Jx4o8HmeO7ZkzCG1YJQTJc5t4Y0hCBNNQ5iVNdOa4y6y3wsHRwJspm8zIq0N6eCGLv-OHGA7cYGW0_2tY4CfWb_0gDYUMbAjNAiPEYdO-SljwlQCL3g4EUjhYZ5dflOcJlKHvaRtTvLXcf8ktrYKGP_4Mc15yT8uItnVJ4zWk-sF0kShHm_NGb5rPl3ge_2e0N9GNBV6NR52B3UJXXHUbXSv7MnF3UDmKyzZyHRIr4_0PdVO3R0KfQod4fDyHAL929uPax7MK8ijOA761cfnty9dJDGWNz-6i2XjnoJwki8oMiaGQe041zW1AfsZ4E_ZL2DtuTQACNNWceyJylcE-hjnBveaKC4WVpZZpW6hgMjS_h1aqunL3UcyCF81czmhRMFIor0Iz0YRirk2WOh-hpJ8YaRa05VA941h2hMtYgmrkoJoIvRjkTzrCjl9KPm_neRBTp0cQ5lZQ-X76Um4X71JO9g4kjdCz3hBkUC7cqKjK1fMzGeCSCJgxy9hvZAqg8cOCFhFa76xo-CImjPGAICO0cdGshnbYseaEC5K1REIRyv5GrFyoCVgNmgjh1q7-oAw5mu7uDE8P_qXTU3R1f3ssX-9O9x6i6_Aabt0wfYRWmtO5exzAW6OftOvzO_ChN8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convenient+Photocatalytic+Fluorination+of+Unactivated+C-H+Bonds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Halperin%2C+Shira+D.&rft.au=Fan%2C+Hope&rft.au=Chang%2C+Stanley&rft.au=Martin%2C+Rainer+E.&rft.date=2014-04-25&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=18&rft.spage=4690&rft.epage=4693&rft_id=info:doi/10.1002%2Fanie.201400420&rft_id=info%3Apmid%2F24668727&rft.externalDBID=n%2Fa&rft.externalDocID=000334894100034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |