Mining multi-center heterogeneous medical data with distributed synthetic learning

Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5510 - 16
Main Authors Chang, Qi, Yan, Zhennan, Zhou, Mu, Qu, Hui, He, Xiaoxiao, Zhang, Han, Baskaran, Lohendran, Al’Aref, Subhi, Li, Hongsheng, Zhang, Shaoting, Metaxas, Dimitris N.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-40687-y

Cover

Abstract Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%. Here the authors present Distributed Synthetic Learning, a system that addresses data privacy, isolated data islands, and heterogeneity concerns in healthcare analytics by learning to generate state-of-the-art synthetic data for downstream tasks.
AbstractList Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.
Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%. Here the authors present Distributed Synthetic Learning, a system that addresses data privacy, isolated data islands, and heterogeneity concerns in healthcare analytics by learning to generate state-of-the-art synthetic data for downstream tasks.
Abstract Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.
Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.
Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.Here the authors present Distributed Synthetic Learning, a system that addresses data privacy, isolated data islands, and heterogeneity concerns in healthcare analytics by learning to generate state-of-the-art synthetic data for downstream tasks.
ArticleNumber 5510
Author Zhou, Mu
He, Xiaoxiao
Al’Aref, Subhi
Chang, Qi
Yan, Zhennan
Zhang, Han
Baskaran, Lohendran
Zhang, Shaoting
Qu, Hui
Li, Hongsheng
Metaxas, Dimitris N.
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0003-2146-785X
  surname: Chang
  fullname: Chang, Qi
  organization: Department of Computer Science, Rutgers University
– sequence: 2
  givenname: Zhennan
  orcidid: 0000-0001-7128-1696
  surname: Yan
  fullname: Yan, Zhennan
  organization: SenseBrain Research
– sequence: 3
  givenname: Mu
  surname: Zhou
  fullname: Zhou, Mu
  organization: SenseBrain Research, Shanghai Artificial Intelligence Laboratory
– sequence: 4
  givenname: Hui
  surname: Qu
  fullname: Qu, Hui
  organization: Department of Computer Science, Rutgers University
– sequence: 5
  givenname: Xiaoxiao
  surname: He
  fullname: He, Xiaoxiao
  organization: Department of Computer Science, Rutgers University
– sequence: 6
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  organization: Department of Computer Science, Rutgers University
– sequence: 7
  givenname: Lohendran
  surname: Baskaran
  fullname: Baskaran, Lohendran
  organization: Department of Cardiovascular Medicine, National Heart Centre Singapore, and Duke-National University Of Singapore
– sequence: 8
  givenname: Subhi
  surname: Al’Aref
  fullname: Al’Aref, Subhi
  organization: Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences
– sequence: 9
  givenname: Hongsheng
  surname: Li
  fullname: Li, Hongsheng
  email: hsli@ee.cuhk.edu.hk
  organization: Chinese University of Hong Kong, Centre for Perceptual and Interactive Intelligence (CPII)
– sequence: 10
  givenname: Shaoting
  surname: Zhang
  fullname: Zhang, Shaoting
  email: zhangshaoting@pjlab.org.cn
  organization: Shanghai Artificial Intelligence Laboratory, Centre for Perceptual and Interactive Intelligence (CPII), SenseTime
– sequence: 11
  givenname: Dimitris N.
  orcidid: 0000-0001-7142-7640
  surname: Metaxas
  fullname: Metaxas, Dimitris N.
  email: dnm@cs.rutgers.edu
  organization: Department of Computer Science, Rutgers University
BookMark eNp9kk1v1DAQhi1UREvpH-AUiQuXFH_Fdk4IVUArFSEhOFuOM971KmsX2wHtv8fZFEF7qA9jy37fxzOjeYlOQgyA0GuCLwlm6l3mhAvZYspajoWS7eEZOqOYk5ZIyk7-O5-ii5x3uC7WE8X5C3TKpJA9o90Z-vbFBx82zX6eim8thAKp2UKNcQMB4pybPYzemqkZTTHNb1-2zehzSX6YC4xNPoRS9d42E5i0sF6h585MGS7u93P049PH71fX7e3XzzdXH25b2xFVWpCWEkm4MkoRygbGXTcwDMIAxpKOlmPMKathsIxYx50hnIrBdow5jhU7Rzcrd4xmp--S35t00NF4fbyIaaNNqolNoGU3gBDOMeIGrkamjDPSqIqznKh-rKz3K-tuHmq9Sx-SmR5AH74Ev9Wb-EsTzBXvcV8Jb-8JKf6cIRe999nCNJljFzVVgtFeCt5V6ZtH0l2cU6i9WlS0VoyZqCq1qmyKOSdw2vpiio9LAn6qP-tlEPQ6CLoOgj4Ogj5UK31k_VvIkya2mnIVhw2kf1k94foD9QvHJg
CitedBy_id crossref_primary_10_1038_s41551_025_01365_0
crossref_primary_10_1109_TMI_2024_3493195
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_1016_j_neurot_2025_e00553
crossref_primary_10_1016_j_neucom_2025_129731
crossref_primary_10_31083_j_rcm2505181
crossref_primary_10_1007_s11749_024_00939_5
crossref_primary_10_1038_s41467_024_51749_0
crossref_primary_10_3390_biomedicines12081753
Cites_doi 10.1038/s42256-020-0173-6
10.1016/j.media.2021.101992
10.1038/s41746-021-00507-3
10.1109/TMI.2017.2677499
10.2174/1874431101408010020
10.1145/2347736.2347755
10.1109/TMI.2014.2377694
10.1038/sdata.2017.117
10.1016/j.ijmedinf.2019.02.011
10.1186/s13073-021-00968-x
10.2501/IJMR-2017-050
10.1038/s41591-021-01506-3
10.1016/j.media.2009.06.003
10.1016/j.jacr.2017.12.028
10.1038/s41573-019-0024-5
10.1109/38.946629
10.1093/jamia/ocx125
10.1038/nrg3920
10.1001/jama.2018.1150
10.3389/fcvm.2020.00025
10.1016/j.media.2016.02.006
10.1038/s41467-022-35295-1
10.1148/radiol.10091808
10.1016/j.image.2016.05.020
10.1056/NEJMc1908881
10.1038/s41597-023-02125-y
10.1016/j.nicl.2021.102811
10.1561/0400000042
10.1109/TPAMI.2022.3225418
10.1093/bioinformatics/btaa437
10.1016/j.compmedimag.2022.102049
10.1056/NEJMlim035027
10.1038/s41467-022-33407-5
10.1145/1961189.1961199
10.1016/j.neunet.2019.01.012
10.1109/TMI.2020.3002244
10.1109/TPAMI.2018.2869576
10.1016/j.neucom.2018.09.013
10.1038/s41597-023-02016-2
10.1038/nmeth.4549
10.1007/978-3-319-24574-4_28
10.1109/SP.2017.41
10.1109/CVPR46437.2021.00107
10.1007/978-3-030-58583-9_11
10.1109/TMI.2021.3053008
10.1007/978-3-319-46475-6_43
10.1145/3219819.3219963
10.1587/transfun.2020EAP1114
10.1109/CVPR.2016.90
10.1109/CVPR.2009.5206848
10.1007/978-981-15-9735-0_5
10.1007/978-3-030-32239-7_42
10.1049/cit2.12028
10.1109/CVPR42600.2020.00813
10.1007/978-3-031-16437-8_19
10.1007/978-3-319-46487-9_43
10.1007/978-3-030-63076-8_2
10.1109/CVPR42600.2020.01387
10.1016/j.neucom.2023.126282
10.1109/CVPR46437.2021.01001
10.1093/neuonc/nov225.24
10.1109/CVPR.2018.00963
10.1109/CVPR.2017.632
10.1038/s41597-023-02460-0
10.1109/CVPR46437.2021.00089
10.1109/IPDPS.2019.00095
10.1561/2200000083
10.5281/zenodo.8111579
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-40687-y
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 16
ExternalDocumentID oai_doaj_org_article_75be66ff31fb48d38afa7a8426c4189d
PMC10484909
10_1038_s41467_023_40687_y
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 1747778; 1849238; 2212301
  funderid: https://doi.org/10.13039/100000001
– fundername: ;
  grantid: 1747778; 1849238; 2212301
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-e7c217148a88123b34f5b30e6ae0072dc400423004bc31cf4fa1426bc533f4083
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:49 EDT 2025
Thu Aug 21 18:36:36 EDT 2025
Fri Sep 05 08:36:58 EDT 2025
Wed Aug 13 08:05:32 EDT 2025
Tue Jul 01 02:10:34 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-e7c217148a88123b34f5b30e6ae0072dc400423004bc31cf4fa1426bc533f4083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2146-785X
0000-0001-7142-7640
0000-0001-7128-1696
OpenAccessLink https://www.proquest.com/docview/2862004036?pq-origsite=%requestingapplication%
PMID 37679325
PQID 2862004036
PQPubID 546298
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_75be66ff31fb48d38afa7a8426c4189d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10484909
proquest_miscellaneous_2863297645
proquest_journals_2862004036
crossref_citationtrail_10_1038_s41467_023_40687_y
crossref_primary_10_1038_s41467_023_40687_y
springer_journals_10_1038_s41467_023_40687_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-07
PublicationDateYYYYMMDD 2023-09-07
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Vcelak, Kryl, Kratochvil, Kleckova (CR49) 2019; 126
Libbrecht, Noble (CR3) 2015; 16
CR39
Gharleghi (CR67) 2022; 97
CR36
CR35
CR79
CR34
CR78
Annas (CR14) 2003; 348
CR33
CR32
CR76
CR30
CR74
(CR13) 2003; 52
CR71
Zhuang, Shen (CR64) 2016; 31
CR70
Yang (CR54) 2021; 70
Vogt (CR2) 2018; 15
Li, Sahu, Talwalkar, Smith (CR47) 2020; 37
Reinhard, Adhikhmin, Gooch, Shirley (CR77) 2001; 21
Schaap (CR69) 2009; 13
Gharleghi (CR68) 2023; 10
CR48
CR46
CR45
CR88
CR87
DuMont Schütte (CR18) 2021; 4
CR42
CR86
Luo, Zhuang (CR66) 2023; 45
CR85
CR84
CR82
CR81
CR80
Mo (CR24) 2021; 32
Papanicolas, Woskie, Jha (CR10) 2018; 319
Menze (CR72) 2015; 34
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR83) 2014; 15
Brown, Marotta (CR43) 2018; 25
CR15
CR59
Kumar (CR75) 2017; 36
Vamathevan (CR4) 2019; 18
CR58
Ribaric, Ariyaeeinia, Pavesic (CR17) 2016; 47
CR12
CR56
CR11
Schwarz (CR51) 2019; 381
CR55
Paszke (CR91) 2019; 32
CR53
Frid-Adar (CR21) 2018; 321
CR52
Zhuang (CR65) 2018; 41
Bakas (CR73) 2017; 4
CR50
CR92
Goddard (CR16) 2017; 59
CR90
Parisi, Kemker, Part, Kanan, Wermter (CR31) 2019; 113
Qu (CR89) 2020; 39
(CR9) 2011; 258
Dayan (CR57) 2021; 27
CR29
Tran (CR6) 2021; 13
CR27
CR26
Domingos (CR1) 2012; 55
Salimans (CR40) 2016; 29
Giger (CR7) 2018; 15
Yan (CR37) 2022; 13
Ellingson (CR44) 2015; 17
CR23
Viana-Ferreira, Ribeiro, Costa (CR25) 2014; 8
Pati (CR28) 2022; 13
CR20
Chen (CR22) 2020; 7
CR63
Dwork, Roth (CR41) 2014; 9
CR62
CR61
CR60
Chang, Lin (CR38) 2011; 2
Ding (CR19) 2023; 10
Wang, Zhou, Arnold (CR5) 2020; 36
Mukherjee (CR8) 2020; 2
S Bakas (40687_CR73) 2017; 4
KA Tran (40687_CR6) 2021; 13
40687_CR30
M Schaap (40687_CR69) 2009; 13
40687_CR74
40687_CR33
P Vcelak (40687_CR49) 2019; 126
40687_CR32
40687_CR76
40687_CR35
40687_CR79
I Papanicolas (40687_CR10) 2018; 319
40687_CR34
40687_CR78
40687_CR36
40687_CR39
D Yang (40687_CR54) 2021; 70
Team, N. L. S. T. R. (40687_CR9) 2011; 258
X Luo (40687_CR66) 2023; 45
E Reinhard (40687_CR77) 2001; 21
GI Parisi (40687_CR31) 2019; 113
J Vamathevan (40687_CR4) 2019; 18
BH Menze (40687_CR72) 2015; 34
40687_CR71
C Dwork (40687_CR41) 2014; 9
40687_CR70
40687_CR84
40687_CR42
40687_CR86
40687_CR85
T Salimans (40687_CR40) 2016; 29
40687_CR88
40687_CR87
40687_CR46
40687_CR45
40687_CR48
T Li (40687_CR47) 2020; 37
P Mukherjee (40687_CR8) 2020; 2
R Gharleghi (40687_CR67) 2022; 97
40687_CR80
N Srivastava (40687_CR83) 2014; 15
ML Giger (40687_CR7) 2018; 15
MW Libbrecht (40687_CR3) 2015; 16
AD Brown (40687_CR43) 2018; 25
40687_CR82
40687_CR81
40687_CR50
CG Schwarz (40687_CR51) 2019; 381
A Paszke (40687_CR91) 2019; 32
40687_CR53
40687_CR52
40687_CR11
40687_CR55
40687_CR12
A DuMont Schütte (40687_CR18) 2021; 4
40687_CR56
40687_CR15
40687_CR59
S Ribaric (40687_CR17) 2016; 47
40687_CR58
X Zhuang (40687_CR64) 2016; 31
M Goddard (40687_CR16) 2017; 59
C Viana-Ferreira (40687_CR25) 2014; 8
S Pati (40687_CR28) 2022; 13
40687_CR90
H Qu (40687_CR89) 2020; 39
40687_CR92
Z Wang (40687_CR5) 2020; 36
BM Ellingson (40687_CR44) 2015; 17
40687_CR62
40687_CR61
N Vogt (40687_CR2) 2018; 15
40687_CR20
40687_CR63
C-C Chang (40687_CR38) 2011; 2
C Yan (40687_CR37) 2022; 13
I Dayan (40687_CR57) 2021; 27
GJ Annas (40687_CR14) 2003; 348
40687_CR23
40687_CR26
N Kumar (40687_CR75) 2017; 36
40687_CR27
X Zhuang (40687_CR65) 2018; 41
R Gharleghi (40687_CR68) 2023; 10
40687_CR29
M Frid-Adar (40687_CR21) 2018; 321
for Disease Control, C., Prevention. (40687_CR13) 2003; 52
PM Domingos (40687_CR1) 2012; 55
C Chen (40687_CR22) 2020; 7
K Mo (40687_CR24) 2021; 32
40687_CR60
K Ding (40687_CR19) 2023; 10
References_xml – ident: CR45
– ident: CR70
– volume: 2
  start-page: 274
  year: 2020
  end-page: 282
  ident: CR8
  article-title: A shallow convolutional neural network predicts prognosis of lung cancer patients in multi-institutional computed tomography image datasets
  publication-title: Nat. Mach. Intelligence
  doi: 10.1038/s42256-020-0173-6
– volume: 70
  start-page: 101992
  year: 2021
  ident: CR54
  article-title: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.101992
– ident: CR74
– ident: CR39
– ident: CR87
– volume: 4
  start-page: 1
  year: 2021
  end-page: 14
  ident: CR18
  article-title: Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00507-3
– ident: CR12
– volume: 36
  start-page: 1550
  year: 2017
  end-page: 1560
  ident: CR75
  article-title: A dataset and a technique for generalized nuclear segmentation for computational pathology
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2677499
– volume: 8
  start-page: 20
  year: 2014
  ident: CR25
  article-title: A framework for integration of heterogeneous medical imaging networks
  publication-title: Open Med. Inf. J.
  doi: 10.2174/1874431101408010020
– volume: 55
  start-page: 78
  year: 2012
  end-page: 87
  ident: CR1
  article-title: A few useful things to know about machine learning
  publication-title: Commun. ACM
  doi: 10.1145/2347736.2347755
– ident: CR35
– ident: CR29
– ident: CR61
– ident: CR80
– ident: CR58
– ident: CR84
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: CR72
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 4
  year: 2017
  ident: CR73
  article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
– ident: CR42
– ident: CR46
– volume: 126
  start-page: 128
  year: 2019
  end-page: 137
  ident: CR49
  article-title: Identification and classification of DICOM files with burned-in text content
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2019.02.011
– ident: CR71
– volume: 13
  start-page: 1
  year: 2021
  end-page: 17
  ident: CR6
  article-title: Deep learning in cancer diagnosis, prognosis and treatment selection
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00968-x
– volume: 59
  start-page: 703
  year: 2017
  end-page: 705
  ident: CR16
  article-title: The EU general data protection regulation (GDPR): European regulation that has a global impact
  publication-title: Int. J. Market Res.
  doi: 10.2501/IJMR-2017-050
– ident: CR92
– ident: CR15
– ident: CR88
– ident: CR50
– volume: 27
  start-page: 1735
  year: 2021
  end-page: 1743
  ident: CR57
  article-title: Federated learning for predicting clinical outcomes in patients with covid-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01506-3
– ident: CR11
– ident: CR32
– ident: CR60
– ident: CR36
– ident: CR78
– ident: CR85
– ident: CR81
– volume: 13
  start-page: 701
  year: 2009
  end-page: 714
  ident: CR69
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.06.003
– volume: 15
  start-page: 512
  year: 2018
  end-page: 520
  ident: CR7
  article-title: Machine learning in medical imaging
  publication-title: J. Am. College Radiol.
  doi: 10.1016/j.jacr.2017.12.028
– ident: CR26
– volume: 18
  start-page: 463
  year: 2019
  end-page: 477
  ident: CR4
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0024-5
– volume: 21
  start-page: 34
  year: 2001
  end-page: 41
  ident: CR77
  article-title: Color transfer between images
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.946629
– volume: 25
  start-page: 568
  year: 2018
  end-page: 571
  ident: CR43
  article-title: Using machine learning for sequence-level automated MRI protocol selection in neuroradiology
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1093/jamia/ocx125
– volume: 17
  start-page: 1188
  year: 2015
  end-page: 1198
  ident: CR44
  article-title: Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials
  publication-title: Neuro-oncology
– volume: 16
  start-page: 321
  year: 2015
  end-page: 332
  ident: CR3
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3920
– volume: 319
  start-page: 1024
  year: 2018
  end-page: 1039
  ident: CR10
  article-title: Health care spending in the united states and other high-income countries
  publication-title: JAMA
  doi: 10.1001/jama.2018.1150
– ident: CR53
– volume: 7
  start-page: 25
  year: 2020
  ident: CR22
  article-title: Deep learning for cardiac image segmentation: a review
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00025
– ident: CR30
– volume: 31
  start-page: 77
  year: 2016
  end-page: 87
  ident: CR64
  article-title: Multi-scale patch and multi-modality atlases for whole heart segmentation of mri
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.02.006
– ident: CR33
– ident: CR82
– volume: 13
  year: 2022
  ident: CR37
  article-title: A multifaceted benchmarking of synthetic electronic health record generation models
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35295-1
– volume: 258
  start-page: 243
  year: 2011
  ident: CR9
  article-title: The national lung screening trial: overview and study design
  publication-title: Radiology
  doi: 10.1148/radiol.10091808
– volume: 47
  start-page: 131
  year: 2016
  end-page: 151
  ident: CR17
  article-title: De-identification for privacy protection in multimedia content: a survey
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2016.05.020
– ident: CR79
– volume: 32
  start-page: 8026
  year: 2019
  end-page: 8037
  ident: CR91
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR56
– ident: CR86
– volume: 381
  start-page: 1684
  year: 2019
  end-page: 1686
  ident: CR51
  article-title: Identification of anonymous MRI research participants with face-recognition software
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1908881
– ident: CR63
– ident: CR27
– volume: 10
  year: 2023
  ident: CR19
  article-title: A large-scale synthetic pathological dataset for deep learning-enabled segmentation of breast cancer
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02125-y
– ident: CR23
– volume: 32
  start-page: 102811
  year: 2021
  ident: CR24
  article-title: Sex/gender differences in the human autistic brains: a systematic review of 20 years of neuroimaging research
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2021.102811
– volume: 9
  start-page: 211
  year: 2014
  end-page: 407
  ident: CR41
  article-title: The algorithmic foundations of differential privacy
  publication-title: Found. Trends Theor. Comput. Sci.
  doi: 10.1561/0400000042
– volume: 45
  start-page: 9206
  year: 2023
  end-page: 9224
  ident: CR66
  article-title: -metric: an N-dimensional information-theoretic framework for groupwise registration and deep combined computing
  publication-title: IEEE Tran. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3225418
– volume: 36
  start-page: i525
  year: 2020
  end-page: i533
  ident: CR5
  article-title: Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa437
– ident: CR48
– volume: 97
  start-page: 102049
  year: 2022
  ident: CR67
  article-title: Automated segmentation of normal and diseased coronary arteries - the ASOCA challenge
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2022.102049
– ident: CR90
– volume: 348
  start-page: 1486
  year: 2003
  end-page: 1490
  ident: CR14
  article-title: HIPAA regulations-a new era of medical-record privacy?
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMlim035027
– ident: CR52
– volume: 13
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR28
  article-title: Federated learning enables big data for rare cancer boundary detection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33407-5
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR83
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 37
  start-page: 50
  year: 2020
  end-page: 60
  ident: CR47
  article-title: Federated learning: challenges, methods, and future directions
  publication-title: IEEE Signal Process. Magazine
– ident: CR34
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: CR38
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 113
  start-page: 54
  year: 2019
  end-page: 71
  ident: CR31
  article-title: Continual lifelong learning with neural networks: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– volume: 29
  start-page: 2234
  year: 2016
  end-page: 2242
  ident: CR40
  article-title: Improved techniques for training GANs
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR55
– volume: 39
  start-page: 3655
  year: 2020
  end-page: 3666
  ident: CR89
  article-title: Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3002244
– volume: 41
  start-page: 2933
  year: 2018
  end-page: 2946
  ident: CR65
  article-title: Multivariate mixture model for myocardial segmentation combining multi-source images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2869576
– volume: 321
  start-page: 321
  year: 2018
  end-page: 331
  ident: CR21
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– ident: CR59
– volume: 10
  year: 2023
  ident: CR68
  article-title: Annotated computed tomography coronary angiogram images and associated data of normal and diseased arteries
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02016-2
– ident: CR76
– volume: 52
  start-page: 1
  year: 2003
  end-page: 17
  ident: CR13
  article-title: HIPAA privacy rule and public health. guidance from CDC and the US department of health and human services
  publication-title: Morb Mortal. Weekly Rep.
– ident: CR62
– volume: 15
  start-page: 33
  year: 2018
  end-page: 33
  ident: CR2
  article-title: Machine learning in neuroscience
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4549
– ident: CR20
– volume: 55
  start-page: 78
  year: 2012
  ident: 40687_CR1
  publication-title: Commun. ACM
  doi: 10.1145/2347736.2347755
– volume: 113
  start-page: 54
  year: 2019
  ident: 40687_CR31
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– ident: 40687_CR88
  doi: 10.1007/978-3-319-24574-4_28
– ident: 40687_CR39
  doi: 10.1109/SP.2017.41
– ident: 40687_CR56
  doi: 10.1109/CVPR46437.2021.00107
– ident: 40687_CR35
  doi: 10.1007/978-3-030-58583-9_11
– ident: 40687_CR85
– volume: 15
  start-page: 1929
  year: 2014
  ident: 40687_CR83
  publication-title: J. Mach. Learn. Res.
– ident: 40687_CR62
– ident: 40687_CR70
  doi: 10.1109/TMI.2021.3053008
– ident: 40687_CR84
  doi: 10.1007/978-3-319-46475-6_43
– ident: 40687_CR33
– ident: 40687_CR81
– volume: 2
  start-page: 1
  year: 2011
  ident: 40687_CR38
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– ident: 40687_CR53
  doi: 10.1145/3219819.3219963
– ident: 40687_CR46
  doi: 10.1587/transfun.2020EAP1114
– ident: 40687_CR78
  doi: 10.1109/CVPR.2016.90
– volume: 13
  start-page: 1
  year: 2021
  ident: 40687_CR6
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00968-x
– ident: 40687_CR11
  doi: 10.1109/CVPR.2009.5206848
– ident: 40687_CR27
– ident: 40687_CR71
– volume: 126
  start-page: 128
  year: 2019
  ident: 40687_CR49
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2019.02.011
– ident: 40687_CR20
  doi: 10.1007/978-981-15-9735-0_5
– ident: 40687_CR79
– volume: 36
  start-page: i525
  year: 2020
  ident: 40687_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa437
– volume: 7
  start-page: 25
  year: 2020
  ident: 40687_CR22
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00025
– volume: 29
  start-page: 2234
  year: 2016
  ident: 40687_CR40
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 1
  year: 2022
  ident: 40687_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33407-5
– volume: 34
  start-page: 1993
  year: 2015
  ident: 40687_CR72
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– ident: 40687_CR76
  doi: 10.1007/978-3-030-32239-7_42
– volume: 47
  start-page: 131
  year: 2016
  ident: 40687_CR17
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2016.05.020
– volume: 31
  start-page: 77
  year: 2016
  ident: 40687_CR64
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.02.006
– volume: 25
  start-page: 568
  year: 2018
  ident: 40687_CR43
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1093/jamia/ocx125
– ident: 40687_CR36
  doi: 10.1049/cit2.12028
– volume: 45
  start-page: 9206
  year: 2023
  ident: 40687_CR66
  publication-title: IEEE Tran. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3225418
– ident: 40687_CR87
  doi: 10.1109/CVPR42600.2020.00813
– ident: 40687_CR34
– ident: 40687_CR82
– ident: 40687_CR55
  doi: 10.1007/978-3-031-16437-8_19
– volume: 348
  start-page: 1486
  year: 2003
  ident: 40687_CR14
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMlim035027
– volume: 381
  start-page: 1684
  year: 2019
  ident: 40687_CR51
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1908881
– volume: 10
  year: 2023
  ident: 40687_CR68
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02016-2
– volume: 13
  start-page: 701
  year: 2009
  ident: 40687_CR69
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.06.003
– ident: 40687_CR80
  doi: 10.1007/978-3-319-46487-9_43
– volume: 39
  start-page: 3655
  year: 2020
  ident: 40687_CR89
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3002244
– volume: 8
  start-page: 20
  year: 2014
  ident: 40687_CR25
  publication-title: Open Med. Inf. J.
  doi: 10.2174/1874431101408010020
– volume: 2
  start-page: 274
  year: 2020
  ident: 40687_CR8
  publication-title: Nat. Mach. Intelligence
  doi: 10.1038/s42256-020-0173-6
– ident: 40687_CR50
  doi: 10.1007/978-3-030-63076-8_2
– volume: 321
  start-page: 321
  year: 2018
  ident: 40687_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– volume: 15
  start-page: 33
  year: 2018
  ident: 40687_CR2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4549
– volume: 27
  start-page: 1735
  year: 2021
  ident: 40687_CR57
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01506-3
– ident: 40687_CR12
– ident: 40687_CR30
  doi: 10.1109/CVPR42600.2020.01387
– ident: 40687_CR60
– volume: 32
  start-page: 102811
  year: 2021
  ident: 40687_CR24
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2021.102811
– volume: 18
  start-page: 463
  year: 2019
  ident: 40687_CR4
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0024-5
– ident: 40687_CR23
  doi: 10.1016/j.neucom.2023.126282
– ident: 40687_CR58
  doi: 10.1109/CVPR46437.2021.01001
– volume: 17
  start-page: 1188
  year: 2015
  ident: 40687_CR44
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/nov225.24
– volume: 4
  start-page: 1
  year: 2021
  ident: 40687_CR18
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00507-3
– ident: 40687_CR86
  doi: 10.1109/CVPR.2018.00963
– ident: 40687_CR29
– ident: 40687_CR48
– volume: 15
  start-page: 512
  year: 2018
  ident: 40687_CR7
  publication-title: J. Am. College Radiol.
  doi: 10.1016/j.jacr.2017.12.028
– volume: 10
  year: 2023
  ident: 40687_CR19
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02125-y
– ident: 40687_CR52
  doi: 10.1109/CVPR.2017.632
– ident: 40687_CR61
  doi: 10.1038/s41597-023-02460-0
– volume: 41
  start-page: 2933
  year: 2018
  ident: 40687_CR65
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2869576
– ident: 40687_CR92
– ident: 40687_CR59
  doi: 10.1109/CVPR46437.2021.00089
– ident: 40687_CR45
  doi: 10.1109/IPDPS.2019.00095
– volume: 36
  start-page: 1550
  year: 2017
  ident: 40687_CR75
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2677499
– ident: 40687_CR63
– volume: 97
  start-page: 102049
  year: 2022
  ident: 40687_CR67
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2022.102049
– ident: 40687_CR15
– volume: 59
  start-page: 703
  year: 2017
  ident: 40687_CR16
  publication-title: Int. J. Market Res.
  doi: 10.2501/IJMR-2017-050
– ident: 40687_CR26
  doi: 10.1561/2200000083
– ident: 40687_CR90
  doi: 10.5281/zenodo.8111579
– ident: 40687_CR42
– ident: 40687_CR32
– volume: 258
  start-page: 243
  year: 2011
  ident: 40687_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.10091808
– volume: 21
  start-page: 34
  year: 2001
  ident: 40687_CR77
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.946629
– volume: 13
  year: 2022
  ident: 40687_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35295-1
– volume: 319
  start-page: 1024
  year: 2018
  ident: 40687_CR10
  publication-title: JAMA
  doi: 10.1001/jama.2018.1150
– volume: 9
  start-page: 211
  year: 2014
  ident: 40687_CR41
  publication-title: Found. Trends Theor. Comput. Sci.
  doi: 10.1561/0400000042
– ident: 40687_CR74
– volume: 70
  start-page: 101992
  year: 2021
  ident: 40687_CR54
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.101992
– volume: 32
  start-page: 8026
  year: 2019
  ident: 40687_CR91
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 321
  year: 2015
  ident: 40687_CR3
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3920
– volume: 52
  start-page: 1
  year: 2003
  ident: 40687_CR13
  publication-title: Morb Mortal. Weekly Rep.
– volume: 37
  start-page: 50
  year: 2020
  ident: 40687_CR47
  publication-title: IEEE Signal Process. Magazine
– volume: 4
  year: 2017
  ident: 40687_CR73
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
SSID ssj0000391844
Score 2.5188143
Snippet Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare...
Abstract Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5510
SubjectTerms 631/114/1305
631/114/2164
631/114/2400
692/700/1421
Angiography
Brain cancer
Brain tumors
Computed tomography
Datasets
Health care
Health care facilities
Heterogeneity
Histopathology
Humanities and Social Sciences
Image quality
Image segmentation
Learning
Medical imaging
multidisciplinary
Performance evaluation
Privacy
Science
Science (multidisciplinary)
Synthetic data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn1hfRPCmxbZJ2_SoooiwHsSFvYU8XUGruOth_70zaXfdCurFSyltmjSTyTw6028IOS5sabUGy81WmY1BSpq4SnQSm1Jx7UtmTYAv7t8VNwN-O8yHC6W-MCesgQduCHdW5toVhfcs9ZoLy4TyqlQCFIvhqagsSl9QYwvOVJDBrALXhbd_ySRMnI15kAmgosBlKmBnTTuaKAD2d6zM7zmS3wKlQf9cr5HV1nCk580Lr5MlV2-Q5aaU5HST3PdDpQcaEgRj7M690xHmurwCizjw7-lLE5OhmBRK8fsrtYiaiwWvnKXjaQ22IHRO20ISj1tkcH31cHkTt_USYpOnYhK70mRYz1woAWqbacZ9rlniCuUQINwaHrJg4KANS43nXqVAR23A5PMcbLFt0qtfa7eDCU9WG5dmpXA5h1NdZM7DIAk3QijjIpLOaCdNCyaONS2eZQhqMyEbekugtwz0ltOInMyfeWugNH5tfYFLMm-JMNjhAjCHbJlD_sUcEdmfLahs9-ZYZuDEoexiRUSO5rdhV2GoRIUVwTYsA0uN5xERHUbovFD3Tv00Cvjc4OEKXiVVRE5nPPM1-s8z3v2PGe-RlQx5HENe5T7pTd4_3AGYTRN9GHbIJ4-SFak
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB21VJV6qWhpRVpARuJWIpLYSZwTAsQWIdEDKhI3y59Qqc3S3e1h_31nHO-iIMElihLnyx57nj2T9wAOGtc6YxC5ua5yOY6SNu8KU-S21cKEljsb6YuvfjQXN-Lytr5NC27zlFa5GhPjQO2mltbIjyqE3mRxvDl--JuTahRFV5OExmt4U1ZoSfSn-OT7eo2F2M-lEOlfmYLLo7mIIwM6Kpw4Ndi_liN_FGn7R1jzaabkk3Bp9EKTTXif4CM7Gdr7A7zy_Ud4OwhKLrfg-irqPbCYJpjT7fyM3VPGyxQNxeMsn_0ZIjOMUkMZrcIyR9y5JHvlHZsve0SEeHOW5CTuPsHN5Pzn2UWeVBNyW5dykfvWVqRqLrVE580NF6E2vPCN9kQT7qyIuTC4MZaXNoigS3TTxiLwCwIR2WfY6Ke936a0J2esL6tW-lrgrmkqH_AhhbBSauszKFd1p2yiFCdli98qhra5VEN9K6xvFetbLTP4tr7mYSDUeLH0KTXJuiSRYccD09mdSn1LtbXxTRMCL4MR0nGpg261xI-yopSdy2Bn1aAq9dC5erSnDPbXp7FvUcBExxahMrxCvCbqDOTIEEYvND7T_7qPLN04z5WiK7oMDlc28_j057_4y8sv-xXekeB9zHJrd2BjMfvndxEWLcxetP3_EyUMdg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (Selected full-text)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SlEIvoU_qJikq9Naa2pYsycd0aQiF9FAayE3omRRab9jdHvbfZ0a2tzikhV6MsSTrOZqR9OkbgHcyqOAcWm6ha0KJs6Qvu8pVpVdWuKR48Jm--PyrPLsQXy7byz1oprswGbSfKS3zND2hwz6uRRZp1DC44pEoGNsH8FArXhOMbyEXu30VYjzXQoz3Yyqu70k600GZqn9mX95FR945Is2a5_QJHIwmIzsZCvkU9mL_DB4NTiS3z-HbefbxwDI0sKTfxRW7JpTLEgdHxJU9-zWcxjCCgzLaeWWB-HLJ1VUMbL3t0QrEn7PRhcTVC7g4_fx9cVaOnhJK39Z6U0blG_Jkrq1Ghc0dF6l1vIrSRqIGD15k_As-nOe1TyLZGlWz82jsJYFW2EvY75d9fEVQp-B8rBulYyvw1ckmJsykEl5r62MB9dR2xo804uTN4qfJx9lcm6G9Dba3ye1ttgW836W5GUg0_hn7E3XJLiYRYOcPy9WVGQeEUa2LUqbE6-SEDlzbZJXVWCkvat2FAo6mDjWjVK5Ng8s3mrW4LODtLhjliQ5JbO4RisMbtNFEW4CeDYRZgeYh_Y_rzMyNa1stuqor4MM0Zv7k_vcav_6_6IfwmJzeZ6SbOoL9zep3PEbTaOPeZFm4BbpSCuc
  priority: 102
  providerName: Springer Nature
Title Mining multi-center heterogeneous medical data with distributed synthetic learning
URI https://link.springer.com/article/10.1038/s41467-023-40687-y
https://www.proquest.com/docview/2862004036
https://www.proquest.com/docview/2863297645
https://pubmed.ncbi.nlm.nih.gov/PMC10484909
https://doaj.org/article/75be66ff31fb48d38afa7a8426c4189d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: ADMLS
  dateStart: 20121101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Nature Journals Online Open Access
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: NAO
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 8FG
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M48
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: AAJSJ
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: C6C
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_6geCL-InRekTwTaNJdpNsHkSuR89ycEWqB_e2ZL_aQs3p3RXMf-_MJjlJqYIvSUg2u8nszM5vMpMZgDe5KYxSiNxMmZoIV0kdlbGKI11UXLmCGe3TF8_P8tMFny2z5R705Y46Am7uNO2ontRiff3-18_mEwr8x_aXcfFhw724o_ZBayhHoWn24RA1U0pcPu_gvl-ZWYkGDTma05gnEepu1v1Hc3c3A13lU_oPcOjtKMpbrlSvoaYP4UEHLcNxywuPYM_Wj-FeW2yyeQLnc18LIvQhhBF1Z9fhJUXDrJCJ7OpmE35vvTYhhY2G9IU2NJRXl0piWRNumhrRInYedqUmLp7CYnrybXIadRUVIp0lYhvZQqdU8VxUAhU7U4y7TLHY5pWlFOJGcx8ngxulWaIdd1WCKlxpBIWOI1p7Bgf1qrbPKSTKKG2TtBA243io8tQ6HCTmWohK2wCSnnZSd-nGqerFtfRubyZkS2-J9Jae3rIJ4O3unh9tso1_tj6mKdm1pETZ_sRqfSE7uZNFpmyeO8cSp7gwTFSuKiqBL6V5IkoTwFE_obJnPpmimUerG8sDeL27jHJHzpTKzwi1YSliOZ4FIAaMMHig4ZX66tJn8EYbWPAyLgN41_PMn9H__sYv_os-L-F-SsxM3q_iCA626xv7ChHUVo1gv1gWuBXTzyM4HI9nX2e4Pz45-3KOZyf5ZOS_TYy8-PwGIL4ctA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkGChgJThA1iZ3YOSDEq9rSbg-olfZm4leLBEnZbIXyp_iNzDjJVqlEb71EUeLYyXhe9kzmI-RVYYXVGjw3W2Y2Bi1p4jLRSWxExbUXzJpQvnh-WMyO-ddFvtggf8d_YTCtctSJQVHbxuAe-U4GrjdyHCven_2OETUKo6sjhEbPFvuu-wNLtvbd3meY39dZtvvl6NMsHlAFYpOnchU7YTJE_ZaVBOPGNOM-1yxxReWwjLY1POSKwEEblhrPfZWCGdMGHCPPwWOBfm-Qm5wlHGv1i4VY7-lgtXXJ-fBvTsLkTsuDJgLDCAu1AuS5m9i_ABMw8W0vZ2ZeCs8Gq7d7j9wd3FX6oeev-2TD1Q_IrR7AsntIvs0DvgQNaYkxdueW9BQzbBpgTNect_RXHwmimIpKcdeXWqzVizBbztK2q8EDhc7pAF9x8ogcXws9H5PNuqndFqZZWW1cmgnpcg6nusich0ESbqSsjItIOtJOmaGEOSJp_FQhlM6k6umtgN4q0Ft1EXmzfuasL-BxZeuPOCXrllh8O1xolidqkGUlcu2KwnuWes2lZbLylagkfJThqSxtRLbHCVWDRmjVBf9G5OX6NsgyBmiqMCPYhmXgH_I8InLCCJMXmt6pf5yGquCwrpa8TMqIvB155mL0_3_xk6tf9gW5PTuaH6iDvcP9p-ROhpyM4TSxTTZXy3P3DFyylX4e5ICS79cteP8AC51HPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkGChgJThBtEjuxc0AIKKuW0gohKu3NxK8WCZKy2Qrlr_HrmHGSrVKJ3nqJosSxk_G87JnMR8iLwgqrNXhutsxsDFrSxGWik9iIimsvmDWhfPHBYbF7xD8t8sUG-Tv-C4NplaNODIraNgb3yGcZuN7IcayY-SEt4svO_O3p7xgRpDDSOsJp9Cyy77o_sHxr3-ztwFy_zLL5x28fduMBYSA2eSpXsRMmQwRwWUkwdEwz7nPNEldUDktqW8ND3ggctGGp8dxXKZg0bcBJ8hy8F-j3GrkuGGeYTiYWYr2_g5XXJefDfzoJk7OWB60ERhIWbQXIdjexhQEyYOLnXszSvBCqDRZwfofcHlxX-q7ntbtkw9X3yI0ezLK7T74eBKwJGlIUY-zOLekJZts0wKSuOWvprz4qRDEtleIOMLVYtxcht5ylbVeDNwqd0wHK4vgBOboSej4km3VTuy1MubLauDQT0uUcTnWROQ-DJNxIWRkXkXSknTJDOXNE1fipQlidSdXTWwG9VaC36iLyav3MaV_M49LW73FK1i2xEHe40CyP1SDXSuTaFYX3LPWaS8tk5StRSfgow1NZ2ohsjxOqBu3QqnNejsjz9W2QawzWVGFGsA3LwFfkeUTkhBEmLzS9U_84CRXCYY0teZmUEXk98sz56P__4keXv-wzchNETn3eO9x_TG5lyMgYWRPbZHO1PHNPwDtb6adBDCj5ftVy9w9mfkt5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+multi-center+heterogeneous+medical+data+with+distributed+synthetic+learning&rft.jtitle=Nature+communications&rft.au=Chang%2C+Qi&rft.au=Yan%2C+Zhennan&rft.au=Zhou%2C+Mu&rft.au=Qu%2C+Hui&rft.date=2023-09-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40687-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_40687_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon