Mining multi-center heterogeneous medical data with distributed synthetic learning
Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5510 - 16 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-40687-y |
Cover
Abstract | Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.
Here the authors present Distributed Synthetic Learning, a system that addresses data privacy, isolated data islands, and heterogeneity concerns in healthcare analytics by learning to generate state-of-the-art synthetic data for downstream tasks. |
---|---|
AbstractList | Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%. Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%. Here the authors present Distributed Synthetic Learning, a system that addresses data privacy, isolated data islands, and heterogeneity concerns in healthcare analytics by learning to generate state-of-the-art synthetic data for downstream tasks. Abstract Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%. Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%. Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%.Here the authors present Distributed Synthetic Learning, a system that addresses data privacy, isolated data islands, and heterogeneity concerns in healthcare analytics by learning to generate state-of-the-art synthetic data for downstream tasks. |
ArticleNumber | 5510 |
Author | Zhou, Mu He, Xiaoxiao Al’Aref, Subhi Chang, Qi Yan, Zhennan Zhang, Han Baskaran, Lohendran Zhang, Shaoting Qu, Hui Li, Hongsheng Metaxas, Dimitris N. |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0003-2146-785X surname: Chang fullname: Chang, Qi organization: Department of Computer Science, Rutgers University – sequence: 2 givenname: Zhennan orcidid: 0000-0001-7128-1696 surname: Yan fullname: Yan, Zhennan organization: SenseBrain Research – sequence: 3 givenname: Mu surname: Zhou fullname: Zhou, Mu organization: SenseBrain Research, Shanghai Artificial Intelligence Laboratory – sequence: 4 givenname: Hui surname: Qu fullname: Qu, Hui organization: Department of Computer Science, Rutgers University – sequence: 5 givenname: Xiaoxiao surname: He fullname: He, Xiaoxiao organization: Department of Computer Science, Rutgers University – sequence: 6 givenname: Han surname: Zhang fullname: Zhang, Han organization: Department of Computer Science, Rutgers University – sequence: 7 givenname: Lohendran surname: Baskaran fullname: Baskaran, Lohendran organization: Department of Cardiovascular Medicine, National Heart Centre Singapore, and Duke-National University Of Singapore – sequence: 8 givenname: Subhi surname: Al’Aref fullname: Al’Aref, Subhi organization: Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences – sequence: 9 givenname: Hongsheng surname: Li fullname: Li, Hongsheng email: hsli@ee.cuhk.edu.hk organization: Chinese University of Hong Kong, Centre for Perceptual and Interactive Intelligence (CPII) – sequence: 10 givenname: Shaoting surname: Zhang fullname: Zhang, Shaoting email: zhangshaoting@pjlab.org.cn organization: Shanghai Artificial Intelligence Laboratory, Centre for Perceptual and Interactive Intelligence (CPII), SenseTime – sequence: 11 givenname: Dimitris N. orcidid: 0000-0001-7142-7640 surname: Metaxas fullname: Metaxas, Dimitris N. email: dnm@cs.rutgers.edu organization: Department of Computer Science, Rutgers University |
BookMark | eNp9kk1v1DAQhi1UREvpH-AUiQuXFH_Fdk4IVUArFSEhOFuOM971KmsX2wHtv8fZFEF7qA9jy37fxzOjeYlOQgyA0GuCLwlm6l3mhAvZYspajoWS7eEZOqOYk5ZIyk7-O5-ii5x3uC7WE8X5C3TKpJA9o90Z-vbFBx82zX6eim8thAKp2UKNcQMB4pybPYzemqkZTTHNb1-2zehzSX6YC4xNPoRS9d42E5i0sF6h585MGS7u93P049PH71fX7e3XzzdXH25b2xFVWpCWEkm4MkoRygbGXTcwDMIAxpKOlmPMKathsIxYx50hnIrBdow5jhU7Rzcrd4xmp--S35t00NF4fbyIaaNNqolNoGU3gBDOMeIGrkamjDPSqIqznKh-rKz3K-tuHmq9Sx-SmR5AH74Ev9Wb-EsTzBXvcV8Jb-8JKf6cIRe999nCNJljFzVVgtFeCt5V6ZtH0l2cU6i9WlS0VoyZqCq1qmyKOSdw2vpiio9LAn6qP-tlEPQ6CLoOgj4Ogj5UK31k_VvIkya2mnIVhw2kf1k94foD9QvHJg |
CitedBy_id | crossref_primary_10_1038_s41551_025_01365_0 crossref_primary_10_1109_TMI_2024_3493195 crossref_primary_10_1016_j_patcog_2024_110424 crossref_primary_10_1016_j_neurot_2025_e00553 crossref_primary_10_1016_j_neucom_2025_129731 crossref_primary_10_31083_j_rcm2505181 crossref_primary_10_1007_s11749_024_00939_5 crossref_primary_10_1038_s41467_024_51749_0 crossref_primary_10_3390_biomedicines12081753 |
Cites_doi | 10.1038/s42256-020-0173-6 10.1016/j.media.2021.101992 10.1038/s41746-021-00507-3 10.1109/TMI.2017.2677499 10.2174/1874431101408010020 10.1145/2347736.2347755 10.1109/TMI.2014.2377694 10.1038/sdata.2017.117 10.1016/j.ijmedinf.2019.02.011 10.1186/s13073-021-00968-x 10.2501/IJMR-2017-050 10.1038/s41591-021-01506-3 10.1016/j.media.2009.06.003 10.1016/j.jacr.2017.12.028 10.1038/s41573-019-0024-5 10.1109/38.946629 10.1093/jamia/ocx125 10.1038/nrg3920 10.1001/jama.2018.1150 10.3389/fcvm.2020.00025 10.1016/j.media.2016.02.006 10.1038/s41467-022-35295-1 10.1148/radiol.10091808 10.1016/j.image.2016.05.020 10.1056/NEJMc1908881 10.1038/s41597-023-02125-y 10.1016/j.nicl.2021.102811 10.1561/0400000042 10.1109/TPAMI.2022.3225418 10.1093/bioinformatics/btaa437 10.1016/j.compmedimag.2022.102049 10.1056/NEJMlim035027 10.1038/s41467-022-33407-5 10.1145/1961189.1961199 10.1016/j.neunet.2019.01.012 10.1109/TMI.2020.3002244 10.1109/TPAMI.2018.2869576 10.1016/j.neucom.2018.09.013 10.1038/s41597-023-02016-2 10.1038/nmeth.4549 10.1007/978-3-319-24574-4_28 10.1109/SP.2017.41 10.1109/CVPR46437.2021.00107 10.1007/978-3-030-58583-9_11 10.1109/TMI.2021.3053008 10.1007/978-3-319-46475-6_43 10.1145/3219819.3219963 10.1587/transfun.2020EAP1114 10.1109/CVPR.2016.90 10.1109/CVPR.2009.5206848 10.1007/978-981-15-9735-0_5 10.1007/978-3-030-32239-7_42 10.1049/cit2.12028 10.1109/CVPR42600.2020.00813 10.1007/978-3-031-16437-8_19 10.1007/978-3-319-46487-9_43 10.1007/978-3-030-63076-8_2 10.1109/CVPR42600.2020.01387 10.1016/j.neucom.2023.126282 10.1109/CVPR46437.2021.01001 10.1093/neuonc/nov225.24 10.1109/CVPR.2018.00963 10.1109/CVPR.2017.632 10.1038/s41597-023-02460-0 10.1109/CVPR46437.2021.00089 10.1109/IPDPS.2019.00095 10.1561/2200000083 10.5281/zenodo.8111579 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2023 The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-40687-y |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_75be66ff31fb48d38afa7a8426c4189d PMC10484909 10_1038_s41467_023_40687_y |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 1747778; 1849238; 2212301 funderid: https://doi.org/10.13039/100000001 – fundername: ; grantid: 1747778; 1849238; 2212301 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c518t-e7c217148a88123b34f5b30e6ae0072dc400423004bc31cf4fa1426bc533f4083 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Thu Aug 21 18:36:36 EDT 2025 Fri Sep 05 08:36:58 EDT 2025 Wed Aug 13 08:05:32 EDT 2025 Tue Jul 01 02:10:34 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-e7c217148a88123b34f5b30e6ae0072dc400423004bc31cf4fa1426bc533f4083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2146-785X 0000-0001-7142-7640 0000-0001-7128-1696 |
OpenAccessLink | https://www.proquest.com/docview/2862004036?pq-origsite=%requestingapplication% |
PMID | 37679325 |
PQID | 2862004036 |
PQPubID | 546298 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_75be66ff31fb48d38afa7a8426c4189d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10484909 proquest_miscellaneous_2863297645 proquest_journals_2862004036 crossref_citationtrail_10_1038_s41467_023_40687_y crossref_primary_10_1038_s41467_023_40687_y springer_journals_10_1038_s41467_023_40687_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-07 |
PublicationDateYYYYMMDD | 2023-09-07 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Vcelak, Kryl, Kratochvil, Kleckova (CR49) 2019; 126 Libbrecht, Noble (CR3) 2015; 16 CR39 Gharleghi (CR67) 2022; 97 CR36 CR35 CR79 CR34 CR78 Annas (CR14) 2003; 348 CR33 CR32 CR76 CR30 CR74 (CR13) 2003; 52 CR71 Zhuang, Shen (CR64) 2016; 31 CR70 Yang (CR54) 2021; 70 Vogt (CR2) 2018; 15 Li, Sahu, Talwalkar, Smith (CR47) 2020; 37 Reinhard, Adhikhmin, Gooch, Shirley (CR77) 2001; 21 Schaap (CR69) 2009; 13 Gharleghi (CR68) 2023; 10 CR48 CR46 CR45 CR88 CR87 DuMont Schütte (CR18) 2021; 4 CR42 CR86 Luo, Zhuang (CR66) 2023; 45 CR85 CR84 CR82 CR81 CR80 Mo (CR24) 2021; 32 Papanicolas, Woskie, Jha (CR10) 2018; 319 Menze (CR72) 2015; 34 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR83) 2014; 15 Brown, Marotta (CR43) 2018; 25 CR15 CR59 Kumar (CR75) 2017; 36 Vamathevan (CR4) 2019; 18 CR58 Ribaric, Ariyaeeinia, Pavesic (CR17) 2016; 47 CR12 CR56 CR11 Schwarz (CR51) 2019; 381 CR55 Paszke (CR91) 2019; 32 CR53 Frid-Adar (CR21) 2018; 321 CR52 Zhuang (CR65) 2018; 41 Bakas (CR73) 2017; 4 CR50 CR92 Goddard (CR16) 2017; 59 CR90 Parisi, Kemker, Part, Kanan, Wermter (CR31) 2019; 113 Qu (CR89) 2020; 39 (CR9) 2011; 258 Dayan (CR57) 2021; 27 CR29 Tran (CR6) 2021; 13 CR27 CR26 Domingos (CR1) 2012; 55 Salimans (CR40) 2016; 29 Giger (CR7) 2018; 15 Yan (CR37) 2022; 13 Ellingson (CR44) 2015; 17 CR23 Viana-Ferreira, Ribeiro, Costa (CR25) 2014; 8 Pati (CR28) 2022; 13 CR20 Chen (CR22) 2020; 7 CR63 Dwork, Roth (CR41) 2014; 9 CR62 CR61 CR60 Chang, Lin (CR38) 2011; 2 Ding (CR19) 2023; 10 Wang, Zhou, Arnold (CR5) 2020; 36 Mukherjee (CR8) 2020; 2 S Bakas (40687_CR73) 2017; 4 KA Tran (40687_CR6) 2021; 13 40687_CR30 M Schaap (40687_CR69) 2009; 13 40687_CR74 40687_CR33 P Vcelak (40687_CR49) 2019; 126 40687_CR32 40687_CR76 40687_CR35 40687_CR79 I Papanicolas (40687_CR10) 2018; 319 40687_CR34 40687_CR78 40687_CR36 40687_CR39 D Yang (40687_CR54) 2021; 70 Team, N. L. S. T. R. (40687_CR9) 2011; 258 X Luo (40687_CR66) 2023; 45 E Reinhard (40687_CR77) 2001; 21 GI Parisi (40687_CR31) 2019; 113 J Vamathevan (40687_CR4) 2019; 18 BH Menze (40687_CR72) 2015; 34 40687_CR71 C Dwork (40687_CR41) 2014; 9 40687_CR70 40687_CR84 40687_CR42 40687_CR86 40687_CR85 T Salimans (40687_CR40) 2016; 29 40687_CR88 40687_CR87 40687_CR46 40687_CR45 40687_CR48 T Li (40687_CR47) 2020; 37 P Mukherjee (40687_CR8) 2020; 2 R Gharleghi (40687_CR67) 2022; 97 40687_CR80 N Srivastava (40687_CR83) 2014; 15 ML Giger (40687_CR7) 2018; 15 MW Libbrecht (40687_CR3) 2015; 16 AD Brown (40687_CR43) 2018; 25 40687_CR82 40687_CR81 40687_CR50 CG Schwarz (40687_CR51) 2019; 381 A Paszke (40687_CR91) 2019; 32 40687_CR53 40687_CR52 40687_CR11 40687_CR55 40687_CR12 A DuMont Schütte (40687_CR18) 2021; 4 40687_CR56 40687_CR15 40687_CR59 S Ribaric (40687_CR17) 2016; 47 40687_CR58 X Zhuang (40687_CR64) 2016; 31 M Goddard (40687_CR16) 2017; 59 C Viana-Ferreira (40687_CR25) 2014; 8 S Pati (40687_CR28) 2022; 13 40687_CR90 H Qu (40687_CR89) 2020; 39 40687_CR92 Z Wang (40687_CR5) 2020; 36 BM Ellingson (40687_CR44) 2015; 17 40687_CR62 40687_CR61 N Vogt (40687_CR2) 2018; 15 40687_CR20 40687_CR63 C-C Chang (40687_CR38) 2011; 2 C Yan (40687_CR37) 2022; 13 I Dayan (40687_CR57) 2021; 27 GJ Annas (40687_CR14) 2003; 348 40687_CR23 40687_CR26 N Kumar (40687_CR75) 2017; 36 40687_CR27 X Zhuang (40687_CR65) 2018; 41 R Gharleghi (40687_CR68) 2023; 10 40687_CR29 M Frid-Adar (40687_CR21) 2018; 321 for Disease Control, C., Prevention. (40687_CR13) 2003; 52 PM Domingos (40687_CR1) 2012; 55 C Chen (40687_CR22) 2020; 7 K Mo (40687_CR24) 2021; 32 40687_CR60 K Ding (40687_CR19) 2023; 10 |
References_xml | – ident: CR45 – ident: CR70 – volume: 2 start-page: 274 year: 2020 end-page: 282 ident: CR8 article-title: A shallow convolutional neural network predicts prognosis of lung cancer patients in multi-institutional computed tomography image datasets publication-title: Nat. Mach. Intelligence doi: 10.1038/s42256-020-0173-6 – volume: 70 start-page: 101992 year: 2021 ident: CR54 article-title: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101992 – ident: CR74 – ident: CR39 – ident: CR87 – volume: 4 start-page: 1 year: 2021 end-page: 14 ident: CR18 article-title: Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation publication-title: NPJ Digital Med. doi: 10.1038/s41746-021-00507-3 – ident: CR12 – volume: 36 start-page: 1550 year: 2017 end-page: 1560 ident: CR75 article-title: A dataset and a technique for generalized nuclear segmentation for computational pathology publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2677499 – volume: 8 start-page: 20 year: 2014 ident: CR25 article-title: A framework for integration of heterogeneous medical imaging networks publication-title: Open Med. Inf. J. doi: 10.2174/1874431101408010020 – volume: 55 start-page: 78 year: 2012 end-page: 87 ident: CR1 article-title: A few useful things to know about machine learning publication-title: Commun. ACM doi: 10.1145/2347736.2347755 – ident: CR35 – ident: CR29 – ident: CR61 – ident: CR80 – ident: CR58 – ident: CR84 – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: CR72 article-title: The multimodal brain tumor image segmentation benchmark (brats) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 4 year: 2017 ident: CR73 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – ident: CR42 – ident: CR46 – volume: 126 start-page: 128 year: 2019 end-page: 137 ident: CR49 article-title: Identification and classification of DICOM files with burned-in text content publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2019.02.011 – ident: CR71 – volume: 13 start-page: 1 year: 2021 end-page: 17 ident: CR6 article-title: Deep learning in cancer diagnosis, prognosis and treatment selection publication-title: Genome Med. doi: 10.1186/s13073-021-00968-x – volume: 59 start-page: 703 year: 2017 end-page: 705 ident: CR16 article-title: The EU general data protection regulation (GDPR): European regulation that has a global impact publication-title: Int. J. Market Res. doi: 10.2501/IJMR-2017-050 – ident: CR92 – ident: CR15 – ident: CR88 – ident: CR50 – volume: 27 start-page: 1735 year: 2021 end-page: 1743 ident: CR57 article-title: Federated learning for predicting clinical outcomes in patients with covid-19 publication-title: Nat. Med. doi: 10.1038/s41591-021-01506-3 – ident: CR11 – ident: CR32 – ident: CR60 – ident: CR36 – ident: CR78 – ident: CR85 – ident: CR81 – volume: 13 start-page: 701 year: 2009 end-page: 714 ident: CR69 article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.06.003 – volume: 15 start-page: 512 year: 2018 end-page: 520 ident: CR7 article-title: Machine learning in medical imaging publication-title: J. Am. College Radiol. doi: 10.1016/j.jacr.2017.12.028 – ident: CR26 – volume: 18 start-page: 463 year: 2019 end-page: 477 ident: CR4 article-title: Applications of machine learning in drug discovery and development publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0024-5 – volume: 21 start-page: 34 year: 2001 end-page: 41 ident: CR77 article-title: Color transfer between images publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.946629 – volume: 25 start-page: 568 year: 2018 end-page: 571 ident: CR43 article-title: Using machine learning for sequence-level automated MRI protocol selection in neuroradiology publication-title: J. Am. Med. Inf. Assoc. doi: 10.1093/jamia/ocx125 – volume: 17 start-page: 1188 year: 2015 end-page: 1198 ident: CR44 article-title: Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials publication-title: Neuro-oncology – volume: 16 start-page: 321 year: 2015 end-page: 332 ident: CR3 article-title: Machine learning applications in genetics and genomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3920 – volume: 319 start-page: 1024 year: 2018 end-page: 1039 ident: CR10 article-title: Health care spending in the united states and other high-income countries publication-title: JAMA doi: 10.1001/jama.2018.1150 – ident: CR53 – volume: 7 start-page: 25 year: 2020 ident: CR22 article-title: Deep learning for cardiac image segmentation: a review publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00025 – ident: CR30 – volume: 31 start-page: 77 year: 2016 end-page: 87 ident: CR64 article-title: Multi-scale patch and multi-modality atlases for whole heart segmentation of mri publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.02.006 – ident: CR33 – ident: CR82 – volume: 13 year: 2022 ident: CR37 article-title: A multifaceted benchmarking of synthetic electronic health record generation models publication-title: Nat. Commun. doi: 10.1038/s41467-022-35295-1 – volume: 258 start-page: 243 year: 2011 ident: CR9 article-title: The national lung screening trial: overview and study design publication-title: Radiology doi: 10.1148/radiol.10091808 – volume: 47 start-page: 131 year: 2016 end-page: 151 ident: CR17 article-title: De-identification for privacy protection in multimedia content: a survey publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.05.020 – ident: CR79 – volume: 32 start-page: 8026 year: 2019 end-page: 8037 ident: CR91 article-title: Pytorch: an imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – ident: CR56 – ident: CR86 – volume: 381 start-page: 1684 year: 2019 end-page: 1686 ident: CR51 article-title: Identification of anonymous MRI research participants with face-recognition software publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc1908881 – ident: CR63 – ident: CR27 – volume: 10 year: 2023 ident: CR19 article-title: A large-scale synthetic pathological dataset for deep learning-enabled segmentation of breast cancer publication-title: Sci. Data doi: 10.1038/s41597-023-02125-y – ident: CR23 – volume: 32 start-page: 102811 year: 2021 ident: CR24 article-title: Sex/gender differences in the human autistic brains: a systematic review of 20 years of neuroimaging research publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2021.102811 – volume: 9 start-page: 211 year: 2014 end-page: 407 ident: CR41 article-title: The algorithmic foundations of differential privacy publication-title: Found. Trends Theor. Comput. Sci. doi: 10.1561/0400000042 – volume: 45 start-page: 9206 year: 2023 end-page: 9224 ident: CR66 article-title: -metric: an N-dimensional information-theoretic framework for groupwise registration and deep combined computing publication-title: IEEE Tran. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3225418 – volume: 36 start-page: i525 year: 2020 end-page: i533 ident: CR5 article-title: Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa437 – ident: CR48 – volume: 97 start-page: 102049 year: 2022 ident: CR67 article-title: Automated segmentation of normal and diseased coronary arteries - the ASOCA challenge publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2022.102049 – ident: CR90 – volume: 348 start-page: 1486 year: 2003 end-page: 1490 ident: CR14 article-title: HIPAA regulations-a new era of medical-record privacy? publication-title: N. Engl. J. Med. doi: 10.1056/NEJMlim035027 – ident: CR52 – volume: 13 start-page: 1 year: 2022 end-page: 17 ident: CR28 article-title: Federated learning enables big data for rare cancer boundary detection publication-title: Nat. Commun. doi: 10.1038/s41467-022-33407-5 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR83 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 37 start-page: 50 year: 2020 end-page: 60 ident: CR47 article-title: Federated learning: challenges, methods, and future directions publication-title: IEEE Signal Process. Magazine – ident: CR34 – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: CR38 article-title: Libsvm: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 113 start-page: 54 year: 2019 end-page: 71 ident: CR31 article-title: Continual lifelong learning with neural networks: a review publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.012 – volume: 29 start-page: 2234 year: 2016 end-page: 2242 ident: CR40 article-title: Improved techniques for training GANs publication-title: Adv. Neural Inf. Process. Syst. – ident: CR55 – volume: 39 start-page: 3655 year: 2020 end-page: 3666 ident: CR89 article-title: Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3002244 – volume: 41 start-page: 2933 year: 2018 end-page: 2946 ident: CR65 article-title: Multivariate mixture model for myocardial segmentation combining multi-source images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2869576 – volume: 321 start-page: 321 year: 2018 end-page: 331 ident: CR21 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – ident: CR59 – volume: 10 year: 2023 ident: CR68 article-title: Annotated computed tomography coronary angiogram images and associated data of normal and diseased arteries publication-title: Sci. Data doi: 10.1038/s41597-023-02016-2 – ident: CR76 – volume: 52 start-page: 1 year: 2003 end-page: 17 ident: CR13 article-title: HIPAA privacy rule and public health. guidance from CDC and the US department of health and human services publication-title: Morb Mortal. Weekly Rep. – ident: CR62 – volume: 15 start-page: 33 year: 2018 end-page: 33 ident: CR2 article-title: Machine learning in neuroscience publication-title: Nat. Methods doi: 10.1038/nmeth.4549 – ident: CR20 – volume: 55 start-page: 78 year: 2012 ident: 40687_CR1 publication-title: Commun. ACM doi: 10.1145/2347736.2347755 – volume: 113 start-page: 54 year: 2019 ident: 40687_CR31 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.012 – ident: 40687_CR88 doi: 10.1007/978-3-319-24574-4_28 – ident: 40687_CR39 doi: 10.1109/SP.2017.41 – ident: 40687_CR56 doi: 10.1109/CVPR46437.2021.00107 – ident: 40687_CR35 doi: 10.1007/978-3-030-58583-9_11 – ident: 40687_CR85 – volume: 15 start-page: 1929 year: 2014 ident: 40687_CR83 publication-title: J. Mach. Learn. Res. – ident: 40687_CR62 – ident: 40687_CR70 doi: 10.1109/TMI.2021.3053008 – ident: 40687_CR84 doi: 10.1007/978-3-319-46475-6_43 – ident: 40687_CR33 – ident: 40687_CR81 – volume: 2 start-page: 1 year: 2011 ident: 40687_CR38 publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – ident: 40687_CR53 doi: 10.1145/3219819.3219963 – ident: 40687_CR46 doi: 10.1587/transfun.2020EAP1114 – ident: 40687_CR78 doi: 10.1109/CVPR.2016.90 – volume: 13 start-page: 1 year: 2021 ident: 40687_CR6 publication-title: Genome Med. doi: 10.1186/s13073-021-00968-x – ident: 40687_CR11 doi: 10.1109/CVPR.2009.5206848 – ident: 40687_CR27 – ident: 40687_CR71 – volume: 126 start-page: 128 year: 2019 ident: 40687_CR49 publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2019.02.011 – ident: 40687_CR20 doi: 10.1007/978-981-15-9735-0_5 – ident: 40687_CR79 – volume: 36 start-page: i525 year: 2020 ident: 40687_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa437 – volume: 7 start-page: 25 year: 2020 ident: 40687_CR22 publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00025 – volume: 29 start-page: 2234 year: 2016 ident: 40687_CR40 publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 1 year: 2022 ident: 40687_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33407-5 – volume: 34 start-page: 1993 year: 2015 ident: 40687_CR72 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – ident: 40687_CR76 doi: 10.1007/978-3-030-32239-7_42 – volume: 47 start-page: 131 year: 2016 ident: 40687_CR17 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.05.020 – volume: 31 start-page: 77 year: 2016 ident: 40687_CR64 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.02.006 – volume: 25 start-page: 568 year: 2018 ident: 40687_CR43 publication-title: J. Am. Med. Inf. Assoc. doi: 10.1093/jamia/ocx125 – ident: 40687_CR36 doi: 10.1049/cit2.12028 – volume: 45 start-page: 9206 year: 2023 ident: 40687_CR66 publication-title: IEEE Tran. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3225418 – ident: 40687_CR87 doi: 10.1109/CVPR42600.2020.00813 – ident: 40687_CR34 – ident: 40687_CR82 – ident: 40687_CR55 doi: 10.1007/978-3-031-16437-8_19 – volume: 348 start-page: 1486 year: 2003 ident: 40687_CR14 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMlim035027 – volume: 381 start-page: 1684 year: 2019 ident: 40687_CR51 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc1908881 – volume: 10 year: 2023 ident: 40687_CR68 publication-title: Sci. Data doi: 10.1038/s41597-023-02016-2 – volume: 13 start-page: 701 year: 2009 ident: 40687_CR69 publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.06.003 – ident: 40687_CR80 doi: 10.1007/978-3-319-46487-9_43 – volume: 39 start-page: 3655 year: 2020 ident: 40687_CR89 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3002244 – volume: 8 start-page: 20 year: 2014 ident: 40687_CR25 publication-title: Open Med. Inf. J. doi: 10.2174/1874431101408010020 – volume: 2 start-page: 274 year: 2020 ident: 40687_CR8 publication-title: Nat. Mach. Intelligence doi: 10.1038/s42256-020-0173-6 – ident: 40687_CR50 doi: 10.1007/978-3-030-63076-8_2 – volume: 321 start-page: 321 year: 2018 ident: 40687_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – volume: 15 start-page: 33 year: 2018 ident: 40687_CR2 publication-title: Nat. Methods doi: 10.1038/nmeth.4549 – volume: 27 start-page: 1735 year: 2021 ident: 40687_CR57 publication-title: Nat. Med. doi: 10.1038/s41591-021-01506-3 – ident: 40687_CR12 – ident: 40687_CR30 doi: 10.1109/CVPR42600.2020.01387 – ident: 40687_CR60 – volume: 32 start-page: 102811 year: 2021 ident: 40687_CR24 publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2021.102811 – volume: 18 start-page: 463 year: 2019 ident: 40687_CR4 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0024-5 – ident: 40687_CR23 doi: 10.1016/j.neucom.2023.126282 – ident: 40687_CR58 doi: 10.1109/CVPR46437.2021.01001 – volume: 17 start-page: 1188 year: 2015 ident: 40687_CR44 publication-title: Neuro-oncology doi: 10.1093/neuonc/nov225.24 – volume: 4 start-page: 1 year: 2021 ident: 40687_CR18 publication-title: NPJ Digital Med. doi: 10.1038/s41746-021-00507-3 – ident: 40687_CR86 doi: 10.1109/CVPR.2018.00963 – ident: 40687_CR29 – ident: 40687_CR48 – volume: 15 start-page: 512 year: 2018 ident: 40687_CR7 publication-title: J. Am. College Radiol. doi: 10.1016/j.jacr.2017.12.028 – volume: 10 year: 2023 ident: 40687_CR19 publication-title: Sci. Data doi: 10.1038/s41597-023-02125-y – ident: 40687_CR52 doi: 10.1109/CVPR.2017.632 – ident: 40687_CR61 doi: 10.1038/s41597-023-02460-0 – volume: 41 start-page: 2933 year: 2018 ident: 40687_CR65 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2869576 – ident: 40687_CR92 – ident: 40687_CR59 doi: 10.1109/CVPR46437.2021.00089 – ident: 40687_CR45 doi: 10.1109/IPDPS.2019.00095 – volume: 36 start-page: 1550 year: 2017 ident: 40687_CR75 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2677499 – ident: 40687_CR63 – volume: 97 start-page: 102049 year: 2022 ident: 40687_CR67 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2022.102049 – ident: 40687_CR15 – volume: 59 start-page: 703 year: 2017 ident: 40687_CR16 publication-title: Int. J. Market Res. doi: 10.2501/IJMR-2017-050 – ident: 40687_CR26 doi: 10.1561/2200000083 – ident: 40687_CR90 doi: 10.5281/zenodo.8111579 – ident: 40687_CR42 – ident: 40687_CR32 – volume: 258 start-page: 243 year: 2011 ident: 40687_CR9 publication-title: Radiology doi: 10.1148/radiol.10091808 – volume: 21 start-page: 34 year: 2001 ident: 40687_CR77 publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.946629 – volume: 13 year: 2022 ident: 40687_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35295-1 – volume: 319 start-page: 1024 year: 2018 ident: 40687_CR10 publication-title: JAMA doi: 10.1001/jama.2018.1150 – volume: 9 start-page: 211 year: 2014 ident: 40687_CR41 publication-title: Found. Trends Theor. Comput. Sci. doi: 10.1561/0400000042 – ident: 40687_CR74 – volume: 70 start-page: 101992 year: 2021 ident: 40687_CR54 publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101992 – volume: 32 start-page: 8026 year: 2019 ident: 40687_CR91 publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 321 year: 2015 ident: 40687_CR3 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3920 – volume: 52 start-page: 1 year: 2003 ident: 40687_CR13 publication-title: Morb Mortal. Weekly Rep. – volume: 37 start-page: 50 year: 2020 ident: 40687_CR47 publication-title: IEEE Signal Process. Magazine – volume: 4 year: 2017 ident: 40687_CR73 publication-title: Sci. Data doi: 10.1038/sdata.2017.117 |
SSID | ssj0000391844 |
Score | 2.5188143 |
Snippet | Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare... Abstract Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5510 |
SubjectTerms | 631/114/1305 631/114/2164 631/114/2400 692/700/1421 Angiography Brain cancer Brain tumors Computed tomography Datasets Health care Health care facilities Heterogeneity Histopathology Humanities and Social Sciences Image quality Image segmentation Learning Medical imaging multidisciplinary Performance evaluation Privacy Science Science (multidisciplinary) Synthetic data |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn1hfRPCmxbZJ2_SoooiwHsSFvYU8XUGruOth_70zaXfdCurFSyltmjSTyTw6028IOS5sabUGy81WmY1BSpq4SnQSm1Jx7UtmTYAv7t8VNwN-O8yHC6W-MCesgQduCHdW5toVhfcs9ZoLy4TyqlQCFIvhqagsSl9QYwvOVJDBrALXhbd_ySRMnI15kAmgosBlKmBnTTuaKAD2d6zM7zmS3wKlQf9cr5HV1nCk580Lr5MlV2-Q5aaU5HST3PdDpQcaEgRj7M690xHmurwCizjw7-lLE5OhmBRK8fsrtYiaiwWvnKXjaQ22IHRO20ISj1tkcH31cHkTt_USYpOnYhK70mRYz1woAWqbacZ9rlniCuUQINwaHrJg4KANS43nXqVAR23A5PMcbLFt0qtfa7eDCU9WG5dmpXA5h1NdZM7DIAk3QijjIpLOaCdNCyaONS2eZQhqMyEbekugtwz0ltOInMyfeWugNH5tfYFLMm-JMNjhAjCHbJlD_sUcEdmfLahs9-ZYZuDEoexiRUSO5rdhV2GoRIUVwTYsA0uN5xERHUbovFD3Tv00Cvjc4OEKXiVVRE5nPPM1-s8z3v2PGe-RlQx5HENe5T7pTd4_3AGYTRN9GHbIJ4-SFak priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB21VJV6qWhpRVpARuJWIpLYSZwTAsQWIdEDKhI3y59Qqc3S3e1h_31nHO-iIMElihLnyx57nj2T9wAOGtc6YxC5ua5yOY6SNu8KU-S21cKEljsb6YuvfjQXN-Lytr5NC27zlFa5GhPjQO2mltbIjyqE3mRxvDl--JuTahRFV5OExmt4U1ZoSfSn-OT7eo2F2M-lEOlfmYLLo7mIIwM6Kpw4Ndi_liN_FGn7R1jzaabkk3Bp9EKTTXif4CM7Gdr7A7zy_Ud4OwhKLrfg-irqPbCYJpjT7fyM3VPGyxQNxeMsn_0ZIjOMUkMZrcIyR9y5JHvlHZsve0SEeHOW5CTuPsHN5Pzn2UWeVBNyW5dykfvWVqRqLrVE580NF6E2vPCN9kQT7qyIuTC4MZaXNoigS3TTxiLwCwIR2WfY6Ke936a0J2esL6tW-lrgrmkqH_AhhbBSauszKFd1p2yiFCdli98qhra5VEN9K6xvFetbLTP4tr7mYSDUeLH0KTXJuiSRYccD09mdSn1LtbXxTRMCL4MR0nGpg261xI-yopSdy2Bn1aAq9dC5erSnDPbXp7FvUcBExxahMrxCvCbqDOTIEEYvND7T_7qPLN04z5WiK7oMDlc28_j057_4y8sv-xXekeB9zHJrd2BjMfvndxEWLcxetP3_EyUMdg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (Selected full-text) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SlEIvoU_qJikq9Naa2pYsycd0aQiF9FAayE3omRRab9jdHvbfZ0a2tzikhV6MsSTrOZqR9OkbgHcyqOAcWm6ha0KJs6Qvu8pVpVdWuKR48Jm--PyrPLsQXy7byz1oprswGbSfKS3zND2hwz6uRRZp1DC44pEoGNsH8FArXhOMbyEXu30VYjzXQoz3Yyqu70k600GZqn9mX95FR945Is2a5_QJHIwmIzsZCvkU9mL_DB4NTiS3z-HbefbxwDI0sKTfxRW7JpTLEgdHxJU9-zWcxjCCgzLaeWWB-HLJ1VUMbL3t0QrEn7PRhcTVC7g4_fx9cVaOnhJK39Z6U0blG_Jkrq1Ghc0dF6l1vIrSRqIGD15k_As-nOe1TyLZGlWz82jsJYFW2EvY75d9fEVQp-B8rBulYyvw1ckmJsykEl5r62MB9dR2xo804uTN4qfJx9lcm6G9Dba3ye1ttgW836W5GUg0_hn7E3XJLiYRYOcPy9WVGQeEUa2LUqbE6-SEDlzbZJXVWCkvat2FAo6mDjWjVK5Ng8s3mrW4LODtLhjliQ5JbO4RisMbtNFEW4CeDYRZgeYh_Y_rzMyNa1stuqor4MM0Zv7k_vcav_6_6IfwmJzeZ6SbOoL9zep3PEbTaOPeZFm4BbpSCuc priority: 102 providerName: Springer Nature |
Title | Mining multi-center heterogeneous medical data with distributed synthetic learning |
URI | https://link.springer.com/article/10.1038/s41467-023-40687-y https://www.proquest.com/docview/2862004036 https://www.proquest.com/docview/2863297645 https://pubmed.ncbi.nlm.nih.gov/PMC10484909 https://doaj.org/article/75be66ff31fb48d38afa7a8426c4189d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: ADMLS dateStart: 20121101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Nature Journals Online Open Access customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: NAO dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 8FG dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2041-1723 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M48 dateStart: 20101001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: AAJSJ dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: C6C dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_6geCL-InRekTwTaNJdpNsHkSuR89ycEWqB_e2ZL_aQs3p3RXMf-_MJjlJqYIvSUg2u8nszM5vMpMZgDe5KYxSiNxMmZoIV0kdlbGKI11UXLmCGe3TF8_P8tMFny2z5R705Y46Am7uNO2ontRiff3-18_mEwr8x_aXcfFhw724o_ZBayhHoWn24RA1U0pcPu_gvl-ZWYkGDTma05gnEepu1v1Hc3c3A13lU_oPcOjtKMpbrlSvoaYP4UEHLcNxywuPYM_Wj-FeW2yyeQLnc18LIvQhhBF1Z9fhJUXDrJCJ7OpmE35vvTYhhY2G9IU2NJRXl0piWRNumhrRInYedqUmLp7CYnrybXIadRUVIp0lYhvZQqdU8VxUAhU7U4y7TLHY5pWlFOJGcx8ngxulWaIdd1WCKlxpBIWOI1p7Bgf1qrbPKSTKKG2TtBA243io8tQ6HCTmWohK2wCSnnZSd-nGqerFtfRubyZkS2-J9Jae3rIJ4O3unh9tso1_tj6mKdm1pETZ_sRqfSE7uZNFpmyeO8cSp7gwTFSuKiqBL6V5IkoTwFE_obJnPpmimUerG8sDeL27jHJHzpTKzwi1YSliOZ4FIAaMMHig4ZX66tJn8EYbWPAyLgN41_PMn9H__sYv_os-L-F-SsxM3q_iCA626xv7ChHUVo1gv1gWuBXTzyM4HI9nX2e4Pz45-3KOZyf5ZOS_TYy8-PwGIL4ctA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkGChgJThA1iZ3YOSDEq9rSbg-olfZm4leLBEnZbIXyp_iNzDjJVqlEb71EUeLYyXhe9kzmI-RVYYXVGjw3W2Y2Bi1p4jLRSWxExbUXzJpQvnh-WMyO-ddFvtggf8d_YTCtctSJQVHbxuAe-U4GrjdyHCven_2OETUKo6sjhEbPFvuu-wNLtvbd3meY39dZtvvl6NMsHlAFYpOnchU7YTJE_ZaVBOPGNOM-1yxxReWwjLY1POSKwEEblhrPfZWCGdMGHCPPwWOBfm-Qm5wlHGv1i4VY7-lgtXXJ-fBvTsLkTsuDJgLDCAu1AuS5m9i_ABMw8W0vZ2ZeCs8Gq7d7j9wd3FX6oeev-2TD1Q_IrR7AsntIvs0DvgQNaYkxdueW9BQzbBpgTNect_RXHwmimIpKcdeXWqzVizBbztK2q8EDhc7pAF9x8ogcXws9H5PNuqndFqZZWW1cmgnpcg6nusich0ESbqSsjItIOtJOmaGEOSJp_FQhlM6k6umtgN4q0Ft1EXmzfuasL-BxZeuPOCXrllh8O1xolidqkGUlcu2KwnuWes2lZbLylagkfJThqSxtRLbHCVWDRmjVBf9G5OX6NsgyBmiqMCPYhmXgH_I8InLCCJMXmt6pf5yGquCwrpa8TMqIvB155mL0_3_xk6tf9gW5PTuaH6iDvcP9p-ROhpyM4TSxTTZXy3P3DFyylX4e5ICS79cteP8AC51HPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkGChgJThBtEjuxc0AIKKuW0gohKu3NxK8WCZKy2Qrlr_HrmHGSrVKJ3nqJosSxk_G87JnMR8iLwgqrNXhutsxsDFrSxGWik9iIimsvmDWhfPHBYbF7xD8t8sUG-Tv-C4NplaNODIraNgb3yGcZuN7IcayY-SEt4svO_O3p7xgRpDDSOsJp9Cyy77o_sHxr3-ztwFy_zLL5x28fduMBYSA2eSpXsRMmQwRwWUkwdEwz7nPNEldUDktqW8ND3ggctGGp8dxXKZg0bcBJ8hy8F-j3GrkuGGeYTiYWYr2_g5XXJefDfzoJk7OWB60ERhIWbQXIdjexhQEyYOLnXszSvBCqDRZwfofcHlxX-q7ntbtkw9X3yI0ezLK7T74eBKwJGlIUY-zOLekJZts0wKSuOWvprz4qRDEtleIOMLVYtxcht5ylbVeDNwqd0wHK4vgBOboSej4km3VTuy1MubLauDQT0uUcTnWROQ-DJNxIWRkXkXSknTJDOXNE1fipQlidSdXTWwG9VaC36iLyav3MaV_M49LW73FK1i2xEHe40CyP1SDXSuTaFYX3LPWaS8tk5StRSfgow1NZ2ohsjxOqBu3QqnNejsjz9W2QawzWVGFGsA3LwFfkeUTkhBEmLzS9U_84CRXCYY0teZmUEXk98sz56P__4keXv-wzchNETn3eO9x_TG5lyMgYWRPbZHO1PHNPwDtb6adBDCj5ftVy9w9mfkt5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+multi-center+heterogeneous+medical+data+with+distributed+synthetic+learning&rft.jtitle=Nature+communications&rft.au=Chang%2C+Qi&rft.au=Yan%2C+Zhennan&rft.au=Zhou%2C+Mu&rft.au=Qu%2C+Hui&rft.date=2023-09-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40687-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_40687_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |