Molecular Recognition between Carbon Dioxide and Biodegradable Hydrogel Models: A Density Functional Theory (DFT) Investigation
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrol...
Saved in:
Published in | Gels Vol. 10; no. 6; p. 386 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.06.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2310-2861 2310-2861 |
DOI | 10.3390/gels10060386 |
Cover
Abstract | In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions. |
---|---|
AbstractList | In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO
) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO
was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO
, with binding energies ranging from -4.5 to -6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO
capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions. In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions. In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO[sub.2]) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO[sub.2] was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO[sub.2], with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO[sub.2] capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions. In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from -4.5 to -6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from -4.5 to -6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions. In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO 2 ) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO 2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO 2 , with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO 2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions. |
Audience | Academic |
Author | García-Freites, Samira Sanjuan, Marco Márquez, Edgar Mendez-Lopez, Maximiliano Carrascal-Hernandez, Domingo Cesar Insuasty, Daniel |
AuthorAffiliation | 2 Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; samira.garcia@promigas.com (S.G.-F.); marco.sanjuan@promigas.com (M.S.) 1 Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; domingoh@uninorte.com (D.C.C.-H.); maximilianom@uninorte.edu.co (M.M.-L.); insuastyd@uninorte.edu.co (D.I.) |
AuthorAffiliation_xml | – name: 2 Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; samira.garcia@promigas.com (S.G.-F.); marco.sanjuan@promigas.com (M.S.) – name: 1 Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; domingoh@uninorte.com (D.C.C.-H.); maximilianom@uninorte.edu.co (M.M.-L.); insuastyd@uninorte.edu.co (D.I.) |
Author_xml | – sequence: 1 givenname: Domingo Cesar surname: Carrascal-Hernandez fullname: Carrascal-Hernandez, Domingo Cesar – sequence: 2 givenname: Maximiliano orcidid: 0000-0002-8919-2066 surname: Mendez-Lopez fullname: Mendez-Lopez, Maximiliano – sequence: 3 givenname: Daniel orcidid: 0000-0001-9662-9505 surname: Insuasty fullname: Insuasty, Daniel – sequence: 4 givenname: Samira surname: García-Freites fullname: García-Freites, Samira – sequence: 5 givenname: Marco surname: Sanjuan fullname: Sanjuan, Marco – sequence: 6 givenname: Edgar orcidid: 0000-0002-7503-1528 surname: Márquez fullname: Márquez, Edgar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38920932$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhleoiJbSG2dkiUuRSPHHer3LBYWE0EqtkFA4W157duvIsYu9W8iJv47TtCitkA-2x-888-F5WRz44KEoXhN8xliDP_TgEsG4wqyunhVHlBE8oXVFDvbOh8VJSiuMMRGccUJeFIesbihuGD0q_lwFB3p0KqLvoEPv7WCDRy0MvwA8mqnY5uvcht_WAFLeoM82GOijMqp1gM43JoacBbrKVpc-oimag0922KDF6PUWphxaXkOIG3Q6XyzfoQt_C2mwvdo-viqed8olOLnfj4sfiy_L2fnk8tvXi9n0cqI5qYeJ1pxigsuuLrlhnDLGhBKaN7TihDYl5SUlWcm1aQXjquVYGKIVZqrUuFPsuLjYcU1QK3kT7VrFjQzKyjtDiL1UcbDagWTGsKqqRIV5V_K6VJSUtalp05A2Rykz69OOdTO2azAa_BCVewR9_OLttezDrSSEYioEyYTTe0IMP8fcDbm2SYNzykMYk2RY0FwVo02Wvn0iXYUx5qbuVIxWgm1TOtupepUrsL4LObDOy8Da6jwznc32qWgaVvNaiOzwZr-Gf8k_TEYW0J1Ax5BShE5qO9x9WSZbJwmW2wmU-xOYnd4_cXrg_lf-F0HJ2gs |
CitedBy_id | crossref_primary_10_3390_molecules30030563 crossref_primary_10_3390_gels10090574 crossref_primary_10_1016_j_mtcomm_2024_110748 |
Cites_doi | 10.1016/j.petrol.2022.110167 10.1021/acs.jcim.2c00601 10.1021/ar040152p 10.1007/s00214-021-02797-y 10.1016/j.apenergy.2019.113941 10.1002/tcr.202100300 10.1038/ncomms3647 10.1073/pnas.1115347109 10.1021/acsomega.2c05070 10.1038/s41598-023-34360-z 10.1021/acs.jcim.1c00203 10.1016/j.fuel.2023.127776 10.1021/jacs.2c06793 10.1515/cppm-2013-0044 10.1021/acs.jctc.5b00343 10.1038/s42949-023-00084-2 10.1007/s11356-023-27749-w 10.3390/pr11020605 10.3390/polym13193256 10.1063/5.0131507 10.1016/j.mtchem.2023.101715 10.1002/1521-3757(20010504)113:9<1764::AID-ANGE17640>3.0.CO;2-Y 10.1007/s12539-016-0186-3 10.1007/s43538-022-00073-6 10.1039/b801948g 10.1016/j.cej.2016.12.129 10.1021/acs.jctc.3c00495 10.1039/c2cs35162e 10.1038/srep00309 10.1039/C3EE42350F 10.1021/jp5024235 10.1016/j.egypro.2014.11.642 10.1007/s00289-016-1772-6 10.1016/j.eng.2020.07.005 10.1038/s41598-022-20189-5 10.1039/D1RA04876G 10.1016/j.chemphys.2016.07.006 10.1016/j.ijggc.2019.01.004 10.1039/C9NR05089B 10.1021/acs.jpcc.6b10187 10.1016/j.rser.2023.113342 10.1039/D2RA05805G 10.1007/s11224-013-0292-3 10.1007/978-3-031-53407-2 10.1088/1361-648X/aa7c3a |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/gels10060386 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (via ProQuest) Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2310-2861 |
ExternalDocumentID | oai_doaj_org_article_3dd36667605f4584a2148d82991b4214 PMC11202771 A799385877 38920932 10_3390_gels10060386 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Promigas grantid: green-Gas project P.2.0.001-2022 by Promigas – fundername: Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P. – fundername: green-Gas grantid: P.2.0.001-2022 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c518t-cc520104f845d3523337a7c592651294254215185cdb735ab507d1ca03a4c0fa3 |
IEDL.DBID | DOA |
ISSN | 2310-2861 |
IngestDate | Wed Aug 27 01:29:46 EDT 2025 Thu Aug 21 18:33:00 EDT 2025 Fri Sep 05 05:52:27 EDT 2025 Fri Jul 25 12:06:04 EDT 2025 Tue Jun 10 21:08:25 EDT 2025 Thu Jan 02 22:29:24 EST 2025 Tue Jul 01 01:47:14 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | CO2-capture carbon dioxide DFT frontier molecular orbitals green-hydrogen |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-cc520104f845d3523337a7c592651294254215185cdb735ab507d1ca03a4c0fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7503-1528 0000-0002-8919-2066 0000-0001-9662-9505 |
OpenAccessLink | https://doaj.org/article/3dd36667605f4584a2148d82991b4214 |
PMID | 38920932 |
PQID | 3072326734 |
PQPubID | 2055409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3dd36667605f4584a2148d82991b4214 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11202771 proquest_miscellaneous_3072294329 proquest_journals_3072326734 gale_infotracacademiconefile_A799385877 pubmed_primary_38920932 crossref_citationtrail_10_3390_gels10060386 crossref_primary_10_3390_gels10060386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240605 |
PublicationDateYYYYMMDD | 2024-06-05 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240605 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Gels |
PublicationTitleAlternate | Gels |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Makkar (ref_25) 2021; 11 Ren (ref_3) 2023; 30 Wang (ref_10) 2017; 314 (ref_6) 2020; 6 Zagni (ref_20) 2023; 33 Yang (ref_30) 2001; 113 Akkus (ref_37) 2022; 62 Ouyang (ref_44) 2015; 11 Luqman (ref_1) 2023; 3 Li (ref_21) 2008; 10 Yan (ref_32) 2012; 2 ref_17 Szulczewski (ref_7) 2012; 109 Torkzadeh (ref_18) 2022; 12 Ahmadi (ref_15) 2023; 13 Rashid (ref_42) 2014; 9 Ariga (ref_29) 2012; 41 (ref_12) 2014; 63 Goeminne (ref_24) 2023; 19 Farmanzadeh (ref_35) 2014; 25 Yu (ref_13) 2023; 8 Eberhardt (ref_43) 2021; 61 Fiedler (ref_31) 2005; 38 Shawon (ref_33) 2018; 10 Li (ref_38) 2013; 4 Abanades (ref_8) 2014; 7 ref_41 Yu (ref_9) 2019; 11 Vogel (ref_26) 2022; 144 ref_40 Mantripragada (ref_11) 2019; 82 Haskopoulos (ref_27) 2016; 475 Wu (ref_14) 2020; 257 Furusho (ref_34) 2017; 74 Hensley (ref_39) 2017; 121 Miliordos (ref_45) 2014; 118 Stankovic (ref_16) 2022; 12 Seeman (ref_36) 2022; 22 Dziejarski (ref_4) 2023; 342 Sharma (ref_23) 2022; 211 Shivanna (ref_2) 2022; 88 Beil (ref_28) 2021; 140 ref_5 Foong (ref_22) 2023; 181 Scivetti (ref_19) 2017; 29 |
References_xml | – volume: 211 start-page: 110167 year: 2022 ident: ref_23 article-title: Enhanced Oil Recovery and CO2 Sequestration Potential of Bi-Polymer Polyvinylpyrrolidone-Polyvinyl Alcohol publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.110167 – volume: 62 start-page: 4095 year: 2022 ident: ref_37 article-title: Accurate Binding Free Energy Method from End-State MD Simulations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00601 – volume: 38 start-page: 349 year: 2005 ident: ref_31 article-title: Selective Molecular Recognition, C−H Bond Activation, and Catalysis in Nanoscale Reaction Vessels publication-title: Acc. Chem. Res. doi: 10.1021/ar040152p – volume: 140 start-page: 120 year: 2021 ident: ref_28 article-title: Ab Initio Electrical Properties of CO2: Polarizabilities, Hyperpolarizabilities, and Multipole Moments publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-021-02797-y – volume: 257 start-page: 113941 year: 2020 ident: ref_14 article-title: Solvent-Based Post-Combustion CO2 Capture for Power Plants: A Critical Review and Perspective on Dynamic Modelling, System Identification, Process Control and Flexible Operation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113941 – volume: 22 start-page: e202100300 year: 2022 ident: ref_36 article-title: Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward-Hoffmann Rules. Part II. A Sleeping Beauty in Chemistry †** publication-title: Chem. Rec. doi: 10.1002/tcr.202100300 – volume: 4 start-page: 2647 year: 2013 ident: ref_38 article-title: A Solid–Solid Phase Transition in Carbon Dioxide at High Pressures and Intermediate Temperatures publication-title: Nat. Commun. doi: 10.1038/ncomms3647 – volume: 109 start-page: 5185 year: 2012 ident: ref_7 article-title: Lifetime of Carbon Capture and Storage as a Climate-Change Mitigation Technology publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1115347109 – volume: 8 start-page: 11643 year: 2023 ident: ref_13 article-title: Trends in Research and Development for CO 2 Capture and Sequestration publication-title: ACS Omega doi: 10.1021/acsomega.2c05070 – volume: 13 start-page: 7150 year: 2023 ident: ref_15 article-title: Lithium Hydroxide as a High Capacity Adsorbent for CO2 Capture: Experimental, Modeling and DFT Simulation publication-title: Sci. Rep. doi: 10.1038/s41598-023-34360-z – volume: 61 start-page: 3891 year: 2021 ident: ref_43 article-title: AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00203 – volume: 342 start-page: 127776 year: 2023 ident: ref_4 article-title: Current Status of Carbon Capture, Utilization, and Storage Technologies in the Global Economy: A Survey of Technical Assessment publication-title: Fuel doi: 10.1016/j.fuel.2023.127776 – volume: 144 start-page: 21080 year: 2022 ident: ref_26 article-title: Charging of Dielectric Surfaces in Contact with Aqueous Electrolytes—The Influence of CO2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06793 – volume: 9 start-page: 105 year: 2014 ident: ref_42 article-title: Temperature Peak Analysis and Its Effect on Absorption Column for CO2 Capture Process at Different Operating Conditions publication-title: Chem. Prod. Process Model. doi: 10.1515/cppm-2013-0044 – volume: 11 start-page: 5132 year: 2015 ident: ref_44 article-title: Many-Body Basis Set Superposition Effect publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00343 – volume: 3 start-page: 6 year: 2023 ident: ref_1 article-title: On the Impact of Urbanisation on CO2 Emissions publication-title: Npj Urban Sustain. doi: 10.1038/s42949-023-00084-2 – volume: 30 start-page: 76437 year: 2023 ident: ref_3 article-title: Research Progress and Perspectives on Carbon Capture, Utilization, and Storage (CCUS) Technologies in China and the USA: A Bibliometric Analysis publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-27749-w – ident: ref_5 doi: 10.3390/pr11020605 – ident: ref_41 doi: 10.3390/polym13193256 – ident: ref_17 doi: 10.1063/5.0131507 – volume: 33 start-page: 101715 year: 2023 ident: ref_20 article-title: HEMA-Based Macro and Microporous Materials for CO2 Capture publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2023.101715 – volume: 113 start-page: 1764 year: 2001 ident: ref_30 article-title: Computer-Guided Design in Molecular Recognition: Design and Synthesis of a Glucopyranose Receptor publication-title: Angew. Chem. doi: 10.1002/1521-3757(20010504)113:9<1764::AID-ANGE17640>3.0.CO;2-Y – volume: 10 start-page: 525 year: 2018 ident: ref_33 article-title: Molecular Recognition of Azelaic Acid and Related Molecules with DNA Polymerase I Investigated by Molecular Modeling Calculations publication-title: Interdiscip. Sci. doi: 10.1007/s12539-016-0186-3 – volume: 88 start-page: 160 year: 2022 ident: ref_2 article-title: Climate Change and Its Impact on Biodiversity and Human Welfare publication-title: Proc. Indian Natl. Sci. Acad. doi: 10.1007/s43538-022-00073-6 – volume: 10 start-page: 879 year: 2008 ident: ref_21 article-title: Absorption of CO2 by Ionic Liquid/Polyethylene Glycol Mixture and the Thermodynamic Parameters publication-title: Green Chem. doi: 10.1039/b801948g – volume: 314 start-page: 123 year: 2017 ident: ref_10 article-title: Reaction Kinetics of Carbon Dioxide Absorption in Aqueous Solutions of Piperazine, N-(2-Aminoethyl) Ethanolamine and Their Blends publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.129 – volume: 19 start-page: 6313 year: 2023 ident: ref_24 article-title: DFT-Quality Adsorption Simulations in Metal—Organic Frameworks Enabled by Machine Learning Potentials publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00495 – volume: 41 start-page: 5800 year: 2012 ident: ref_29 article-title: Molecular Recognition: From Solution Science to Nano/Materials Technology publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35162e – volume: 2 start-page: 309 year: 2012 ident: ref_32 article-title: Specificity Quantification of Biomolecular Recognition and Its Implication for Drug Discovery publication-title: Sci. Rep. doi: 10.1038/srep00309 – volume: 7 start-page: 130 year: 2014 ident: ref_8 article-title: Carbon Capture and Storage Update publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42350F – volume: 118 start-page: 7568 year: 2014 ident: ref_45 article-title: Benchmark Theoretical Study of the π–π Binding Energy in the Benzene Dimer publication-title: J. Phys. Chem. A doi: 10.1021/jp5024235 – volume: 63 start-page: 6106 year: 2014 ident: ref_12 article-title: Start-up of World’s First Commercial Post-Combustion Coal Fired CCS Project: Contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.642 – volume: 74 start-page: 1207 year: 2017 ident: ref_34 article-title: Reversible Capture and Release of Carbon Dioxide by Binary System of Polyamidine and Polyethylene Glycol publication-title: Polym. Bull. doi: 10.1007/s00289-016-1772-6 – volume: 6 start-page: 958 year: 2020 ident: ref_6 article-title: Global CO2 Emissions Level Off in 2019, with a Drop Predicted in 2020 publication-title: Engineering doi: 10.1016/j.eng.2020.07.005 – volume: 12 start-page: 15992 year: 2022 ident: ref_16 article-title: Experimental and Theoretical Study of the Effect of Different Functionalities of Graphene Oxide/Polymer Composites on Selective CO2 Capture publication-title: Sci. Rep. doi: 10.1038/s41598-022-20189-5 – volume: 11 start-page: 27897 year: 2021 ident: ref_25 article-title: A Review on the Use of DFT for the Prediction of the Properties of Nanomaterials publication-title: RSC Adv. doi: 10.1039/D1RA04876G – volume: 475 start-page: 90 year: 2016 ident: ref_27 article-title: Carbon Dioxide Interacting with Rare Gases: Insights from High-Level Ab Initio Calculations of Polarizability and Hyperpolarizability Effects publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2016.07.006 – volume: 82 start-page: 59 year: 2019 ident: ref_11 article-title: Boundary Dam or Petra Nova—Which Is a Better Model for CCS Energy Supply? publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2019.01.004 – volume: 11 start-page: 17137 year: 2019 ident: ref_9 article-title: Review of Liquid Nano-Absorbents for Enhanced CO2 Capture publication-title: Nanoscale doi: 10.1039/C9NR05089B – volume: 121 start-page: 4937 year: 2017 ident: ref_39 article-title: DFT-Based Method for More Accurate Adsorption Energies: An Adaptive Sum of Energies from RPBE and VdW Density Functionals publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10187 – volume: 181 start-page: 113342 year: 2023 ident: ref_22 article-title: Sustainable CO2 Capture via Adsorption by Chitosan-Based Functional Biomaterial: A Review on Recent Advances, Challenges, and Future Directions publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113342 – volume: 12 start-page: 35418 year: 2022 ident: ref_18 article-title: DFT and COSMO-RS Studies on Dicationic Ionic Liquids (DILs) as Potential Candidates for CO 2 Capture: The Effects of Alkyl Side Chain Length and Symmetry in Cations publication-title: RSC Adv. doi: 10.1039/D2RA05805G – volume: 25 start-page: 293 year: 2014 ident: ref_35 article-title: DFT Studies of Functionalized Zigzag and Armchair Boron Nitride Nanotubes as Nanovectors for Drug Delivery of Collagen Amino Acids publication-title: Struct. Chem. doi: 10.1007/s11224-013-0292-3 – ident: ref_40 doi: 10.1007/978-3-031-53407-2 – volume: 29 start-page: 355002 year: 2017 ident: ref_19 article-title: Frontier Molecular Orbitals of a Single Molecule Adsorbed on Thin Insulating Films Supported by a Metal Substrate: Electron and Hole Attachment Energies publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aa7c3a |
SSID | ssj0001753511 |
Score | 2.295606 |
Snippet | In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 386 |
SubjectTerms | Air pollution Atmospheric carbon dioxide Carbon dioxide Carbon sequestration Chitosan Climate change CO2-capture Deforestation Density functional theory Density functionals Design optimization DFT Electrons Emissions Extreme weather frontier molecular orbitals Global warming green-hydrogen Greenhouse gases Hydrogels Polyethylene glycol Polyvinylpyrrolidone |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucChonymFGQkECAUNYnt2OFSbbuEFVI5oFbqLXLspKxUJe3uVmpP_HVmEmebFYJjEh_szIzn2TPzBuCdNnjsSVUUmthkoUhLQTZnwqjMrI4yrXlFEd3jH-nsVHw_k2f-wm3p0yqHPbHbqF1r6Y58H3URnX-quDi4vAqpaxRFV30LjfvwIE5Qk6hSPP92d8eCWBwBRZ_vzvF0v3-ODicmDhJOxdMjT9QR9v-9LY_80mbO5MgJ5Y9h26NHNunFvQP3quYJPBpxCj6F38dDw1v2c0gOahvm87HYkVmU-DidtzdzVzHTOHY4bx1RRjiqomKzW7docQGMuqRdLL-wCZtSkvvqluXoA_urQ9aX9LOP0_zkExtxdbTNMzjNv54czULfZSG0Mtar0FpJEXFRayEdwjHOuTLKyixJCQygTQuCBVpaVyouTYkI0sXWRNwIG9WGP4etpm2ql8ASbV0tbGajqhIKxV0lqCPKOSdrXcYugM_DHy-spyCnThgXBR5FSD7FWD4BvF-PvuypN_4x7pCEtx5DhNndi3ZxXnj7K7hzPKV83kjWFBo2CZ4DnUZnHJe4PhHABxJ9QWaNU7LGVyfgwoggq5goBHJaaqUC2Bu0o_D2vizutDOAt-vPaKkUfjFN1V73Y_B_8iQL4EWvTOs5I2xMIoTSAegNNdtY1OaXZv6rYwNHwExx-Hj3__N6BQ9xnOiy3OQebK0W19VrxFOr8k1nNH8AhCIfkA priority: 102 providerName: ProQuest |
Title | Molecular Recognition between Carbon Dioxide and Biodegradable Hydrogel Models: A Density Functional Theory (DFT) Investigation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38920932 https://www.proquest.com/docview/3072326734 https://www.proquest.com/docview/3072294329 https://pubmed.ncbi.nlm.nih.gov/PMC11202771 https://doaj.org/article/3dd36667605f4584a2148d82991b4214 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2310-2861 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001753511 issn: 2310-2861 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2310-2861 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001753511 issn: 2310-2861 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2310-2861 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001753511 issn: 2310-2861 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2310-2861 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001753511 issn: 2310-2861 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2310-2861 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001753511 issn: 2310-2861 databaseCode: BENPR dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2310-2861 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001753511 issn: 2310-2861 databaseCode: 8FG dateStart: 20150901 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEB70fNEH8bfVc4mgqEi5tkma1Lfd26uLcIccd3BvJU1SXTha2dsD78l_3Zmmu3QR8cXHtqEkmZnMl8zkG4A32uC2J1dJbFJTxCKvBdmciZO6sDoptOaeIrrHJ_niXHy5kBejUl-UExbogcPEHXDneE6JmIlsKKZnMgTwTuMqmtYi60tYZ-jGRpup_nQFUThCiZDpznFff_ANXU1K7COcrk2PfFBP1f_ngjzySLvZkiP3Uz6A-wNuZNPQ34dwy7eP4N6ITfAx_DrelLplp5u0oK5lQyYWOzSrGh_ny-7n0nlmWsdmy84RWYSj-1NsceNWHQ6AUX20y6tPbMrmlN6-vmEler9waMjCZX72fl6efWAjlo6ufQLn5dHZ4SIe6ivEVqZ6HVsrKRYuGi2kQyDGOVdGWVlkOcEAtGZBgEBL62rFpakRO7rUmoQbYZPG8Kew13atfw4s09Y1whY28V4oFLTPUDuUc042uk5dBB83M17ZgXycamBcVrgJIflUY_lE8Hbb-kcg3fhLuxkJb9uGqLL7F6hA1aBA1b8UKIJ3JPqKDBq7ZM1wLwEHRtRY1VQhhNNSKxXB_kY7qsHSrypcIxGU5orjj15vP6ONUuDFtL67Dm1wPnlWRPAsKNO2zwgYswRBdAR6R812BrX7pV1-73nAESpTBD598T-m4SXcxb-JPgtO7sPeenXtXyHeWtcTuK3LzxO4Mzs6-Xo66Q3tNxAYKIc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA8IL4JDDASE6ApWhLbiTMJoW6ldGzdA-qkvQXHTkalKRltJ-gT_xF_4-7y0aVC8LbHJk5l--78O_vOvwN4ozRue8LIc7WvY1eEqSCb066XxkZ5sVI8o4ju6CgcHosvJ_JkDf60d2EorbJdE6uF2paGzsi3URcR_MOIi4_nP1yqGkXR1baERq0WB9niJ27ZZh_2-yjfzSAYfBrvDd2mqoBrpK_mrjGSIsAiV0JadD8455GOjIyDkMAPdVgQDCppbBpxqVP0mKxvtMe1MF6uOf7vDbgp8Dvi6leDz1dnOuj7owNT59dzHnvbpwhwPnGecLqs3UG-qkDA3zDQwcHVHM0O6A3uwd3GW2W9Wr3uw1pWPIA7HQ7Dh_B71BbYZV_bZKSyYE3-F9vT0xR_9iflr4nNmC4s252UligqLN3aYsOFnZY4AEZV2c5mO6zH-pRUP1-wAWJufVTJagoB9q4_GL9nHW6QsngEx9cy_49hvSiL7CmwQBmbCxMbL8tEhOqVBaiTkbVW5ir1rQNb7YwnpqE8p8obZwlufUg-SVc-DmwuW5_XVB__aLdLwlu2IYLu6kE5PU0ae0-4tTyk_GFP5hSK1gHuO61C8PdTHJ9w4C2JPqFlBLtkdHMbAgdGhFxJL0LHUUkVRQ5stNqRNOvLLLmyBgdeL1_jykDhHl1k5UXdBueTB7EDT2plWvYZ3dTAQ9fdAbWiZiuDWn1TTL5X7OPooFPc33_2_369glvD8egwOdw_OngOt_EbUWXYyQ1Yn08vshfoy83Tl5UBMfh23RZ7Cc2YWbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLxxKbBIVIAqK7Z3ba-RKpQ0jVJKo6pqpd7MetduI1V2SVJBTvw_fhUzfqSOENx6TDyJdj2z89iZ-QbgnVQY9gShYytXRbYIEkFnTtlOEmnpRFLylDK6h-NgdCq-nPlna_C76YWhsspGJ5aK2hSa7si7KIto_IOQi25Wl0UcDYafr77bNEGKMq3NOA1Vj1kwOyXcWN3kcZAufmA4N9vZHyDvtzxvuHeyO7LriQO2Rsq5rbVP2WGRSeEbdE0456EKtR95ARlGlG9BJlL62iQh91WC3pRxtXK4EtrJFMf_vQPrIfWLdmC9vzc-Or658cHIAN2bqvqe88jpnqP5cwkRhVMrd8suluMD_jYSLSu5WsHZMonDh_Cg9mVZrxK-R7CW5o_hfgvh8An8OmzG77LjplSpyFldHcZ21TTBj4NJ8XNiUqZyw_qTwhCAhaGeLjZamGmBG2A0s-1y9on12IBK7ucLNkSLXF1ksgpggH0YDE8-shZySJE_hdNb4cAz6ORFnr4A5kltMqEj7aSpCFH4Ug8lNjTG-JlMXGPBdvPGY10DotNcjssYAyPiT9zmjwVbS-qrCgjkH3R9Yt6ShuC7yy-K6Xlca4OYG8MDqi52_IwS1crDqNRIdA3cBPcnLHhPrI9JyeCStKp7JXBjBNcV90J0K6Uvw9CCzUY64lr7zOKbs2LB2-Vj1BuUDFJ5WlxXNPg-uRdZ8LwSpuWa0Yn1HHTsLZArYrayqdUn-eSixCZH952qAtyN_6_rDdzF0xt_3R8fvIR7-BNRlt_5m9CZT6_TV-jozZPX9Qli8O22D-0fRbpkig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Recognition+between+Carbon+Dioxide+and+Biodegradable+Hydrogel+Models%3A+A+Density+Functional+Theory+%28DFT%29+Investigation&rft.jtitle=Gels&rft.au=Carrascal-Hernandez%2C+Domingo+Cesar&rft.au=Mendez-Lopez%2C+Maximiliano&rft.au=Insuasty%2C+Daniel&rft.au=Garc%C3%ADa-Freites%2C+Samira&rft.date=2024-06-05&rft.eissn=2310-2861&rft.volume=10&rft.issue=6&rft_id=info:doi/10.3390%2Fgels10060386&rft_id=info%3Apmid%2F38920932&rft.externalDocID=38920932 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2310-2861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2310-2861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2310-2861&client=summon |