Molecular Recognition between Carbon Dioxide and Biodegradable Hydrogel Models: A Density Functional Theory (DFT) Investigation

In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrol...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 10; no. 6; p. 386
Main Authors Carrascal-Hernandez, Domingo Cesar, Mendez-Lopez, Maximiliano, Insuasty, Daniel, García-Freites, Samira, Sanjuan, Marco, Márquez, Edgar
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.06.2024
MDPI
Subjects
Online AccessGet full text
ISSN2310-2861
2310-2861
DOI10.3390/gels10060386

Cover

Abstract In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.
AbstractList In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO ) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO , with binding energies ranging from -4.5 to -6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO[sub.2]) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO[sub.2] was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO[sub.2], with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO[sub.2] capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from -4.5 to -6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from -4.5 to -6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO 2 ) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO 2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO 2 , with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO 2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.
Audience Academic
Author García-Freites, Samira
Sanjuan, Marco
Márquez, Edgar
Mendez-Lopez, Maximiliano
Carrascal-Hernandez, Domingo Cesar
Insuasty, Daniel
AuthorAffiliation 2 Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; samira.garcia@promigas.com (S.G.-F.); marco.sanjuan@promigas.com (M.S.)
1 Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; domingoh@uninorte.com (D.C.C.-H.); maximilianom@uninorte.edu.co (M.M.-L.); insuastyd@uninorte.edu.co (D.I.)
AuthorAffiliation_xml – name: 2 Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; samira.garcia@promigas.com (S.G.-F.); marco.sanjuan@promigas.com (M.S.)
– name: 1 Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; domingoh@uninorte.com (D.C.C.-H.); maximilianom@uninorte.edu.co (M.M.-L.); insuastyd@uninorte.edu.co (D.I.)
Author_xml – sequence: 1
  givenname: Domingo Cesar
  surname: Carrascal-Hernandez
  fullname: Carrascal-Hernandez, Domingo Cesar
– sequence: 2
  givenname: Maximiliano
  orcidid: 0000-0002-8919-2066
  surname: Mendez-Lopez
  fullname: Mendez-Lopez, Maximiliano
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0001-9662-9505
  surname: Insuasty
  fullname: Insuasty, Daniel
– sequence: 4
  givenname: Samira
  surname: García-Freites
  fullname: García-Freites, Samira
– sequence: 5
  givenname: Marco
  surname: Sanjuan
  fullname: Sanjuan, Marco
– sequence: 6
  givenname: Edgar
  orcidid: 0000-0002-7503-1528
  surname: Márquez
  fullname: Márquez, Edgar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38920932$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiJbSG2dkiUuRSPHHer3LBYWE0EqtkFA4W157duvIsYu9W8iJv47TtCitkA-2x-888-F5WRz44KEoXhN8xliDP_TgEsG4wqyunhVHlBE8oXVFDvbOh8VJSiuMMRGccUJeFIesbihuGD0q_lwFB3p0KqLvoEPv7WCDRy0MvwA8mqnY5uvcht_WAFLeoM82GOijMqp1gM43JoacBbrKVpc-oimag0922KDF6PUWphxaXkOIG3Q6XyzfoQt_C2mwvdo-viqed8olOLnfj4sfiy_L2fnk8tvXi9n0cqI5qYeJ1pxigsuuLrlhnDLGhBKaN7TihDYl5SUlWcm1aQXjquVYGKIVZqrUuFPsuLjYcU1QK3kT7VrFjQzKyjtDiL1UcbDagWTGsKqqRIV5V_K6VJSUtalp05A2Rykz69OOdTO2azAa_BCVewR9_OLttezDrSSEYioEyYTTe0IMP8fcDbm2SYNzykMYk2RY0FwVo02Wvn0iXYUx5qbuVIxWgm1TOtupepUrsL4LObDOy8Da6jwznc32qWgaVvNaiOzwZr-Gf8k_TEYW0J1Ax5BShE5qO9x9WSZbJwmW2wmU-xOYnd4_cXrg_lf-F0HJ2gs
CitedBy_id crossref_primary_10_3390_molecules30030563
crossref_primary_10_3390_gels10090574
crossref_primary_10_1016_j_mtcomm_2024_110748
Cites_doi 10.1016/j.petrol.2022.110167
10.1021/acs.jcim.2c00601
10.1021/ar040152p
10.1007/s00214-021-02797-y
10.1016/j.apenergy.2019.113941
10.1002/tcr.202100300
10.1038/ncomms3647
10.1073/pnas.1115347109
10.1021/acsomega.2c05070
10.1038/s41598-023-34360-z
10.1021/acs.jcim.1c00203
10.1016/j.fuel.2023.127776
10.1021/jacs.2c06793
10.1515/cppm-2013-0044
10.1021/acs.jctc.5b00343
10.1038/s42949-023-00084-2
10.1007/s11356-023-27749-w
10.3390/pr11020605
10.3390/polym13193256
10.1063/5.0131507
10.1016/j.mtchem.2023.101715
10.1002/1521-3757(20010504)113:9<1764::AID-ANGE17640>3.0.CO;2-Y
10.1007/s12539-016-0186-3
10.1007/s43538-022-00073-6
10.1039/b801948g
10.1016/j.cej.2016.12.129
10.1021/acs.jctc.3c00495
10.1039/c2cs35162e
10.1038/srep00309
10.1039/C3EE42350F
10.1021/jp5024235
10.1016/j.egypro.2014.11.642
10.1007/s00289-016-1772-6
10.1016/j.eng.2020.07.005
10.1038/s41598-022-20189-5
10.1039/D1RA04876G
10.1016/j.chemphys.2016.07.006
10.1016/j.ijggc.2019.01.004
10.1039/C9NR05089B
10.1021/acs.jpcc.6b10187
10.1016/j.rser.2023.113342
10.1039/D2RA05805G
10.1007/s11224-013-0292-3
10.1007/978-3-031-53407-2
10.1088/1361-648X/aa7c3a
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/gels10060386
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (via ProQuest)
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2310-2861
ExternalDocumentID oai_doaj_org_article_3dd36667605f4584a2148d82991b4214
PMC11202771
A799385877
38920932
10_3390_gels10060386
Genre Journal Article
GrantInformation_xml – fundername: Promigas
  grantid: green-Gas project P.2.0.001-2022 by Promigas
– fundername: Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P.
– fundername: green-Gas
  grantid: P.2.0.001-2022
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-cc520104f845d3523337a7c592651294254215185cdb735ab507d1ca03a4c0fa3
IEDL.DBID DOA
ISSN 2310-2861
IngestDate Wed Aug 27 01:29:46 EDT 2025
Thu Aug 21 18:33:00 EDT 2025
Fri Sep 05 05:52:27 EDT 2025
Fri Jul 25 12:06:04 EDT 2025
Tue Jun 10 21:08:25 EDT 2025
Thu Jan 02 22:29:24 EST 2025
Tue Jul 01 01:47:14 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CO2-capture
carbon dioxide
DFT
frontier molecular orbitals
green-hydrogen
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-cc520104f845d3523337a7c592651294254215185cdb735ab507d1ca03a4c0fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7503-1528
0000-0002-8919-2066
0000-0001-9662-9505
OpenAccessLink https://doaj.org/article/3dd36667605f4584a2148d82991b4214
PMID 38920932
PQID 3072326734
PQPubID 2055409
ParticipantIDs doaj_primary_oai_doaj_org_article_3dd36667605f4584a2148d82991b4214
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11202771
proquest_miscellaneous_3072294329
proquest_journals_3072326734
gale_infotracacademiconefile_A799385877
pubmed_primary_38920932
crossref_citationtrail_10_3390_gels10060386
crossref_primary_10_3390_gels10060386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240605
PublicationDateYYYYMMDD 2024-06-05
PublicationDate_xml – month: 6
  year: 2024
  text: 20240605
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Gels
PublicationTitleAlternate Gels
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Makkar (ref_25) 2021; 11
Ren (ref_3) 2023; 30
Wang (ref_10) 2017; 314
(ref_6) 2020; 6
Zagni (ref_20) 2023; 33
Yang (ref_30) 2001; 113
Akkus (ref_37) 2022; 62
Ouyang (ref_44) 2015; 11
Luqman (ref_1) 2023; 3
Li (ref_21) 2008; 10
Yan (ref_32) 2012; 2
ref_17
Szulczewski (ref_7) 2012; 109
Torkzadeh (ref_18) 2022; 12
Ahmadi (ref_15) 2023; 13
Rashid (ref_42) 2014; 9
Ariga (ref_29) 2012; 41
(ref_12) 2014; 63
Goeminne (ref_24) 2023; 19
Farmanzadeh (ref_35) 2014; 25
Yu (ref_13) 2023; 8
Eberhardt (ref_43) 2021; 61
Fiedler (ref_31) 2005; 38
Shawon (ref_33) 2018; 10
Li (ref_38) 2013; 4
Abanades (ref_8) 2014; 7
ref_41
Yu (ref_9) 2019; 11
Vogel (ref_26) 2022; 144
ref_40
Mantripragada (ref_11) 2019; 82
Haskopoulos (ref_27) 2016; 475
Wu (ref_14) 2020; 257
Furusho (ref_34) 2017; 74
Hensley (ref_39) 2017; 121
Miliordos (ref_45) 2014; 118
Stankovic (ref_16) 2022; 12
Seeman (ref_36) 2022; 22
Dziejarski (ref_4) 2023; 342
Sharma (ref_23) 2022; 211
Shivanna (ref_2) 2022; 88
Beil (ref_28) 2021; 140
ref_5
Foong (ref_22) 2023; 181
Scivetti (ref_19) 2017; 29
References_xml – volume: 211
  start-page: 110167
  year: 2022
  ident: ref_23
  article-title: Enhanced Oil Recovery and CO2 Sequestration Potential of Bi-Polymer Polyvinylpyrrolidone-Polyvinyl Alcohol
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110167
– volume: 62
  start-page: 4095
  year: 2022
  ident: ref_37
  article-title: Accurate Binding Free Energy Method from End-State MD Simulations
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c00601
– volume: 38
  start-page: 349
  year: 2005
  ident: ref_31
  article-title: Selective Molecular Recognition, C−H Bond Activation, and Catalysis in Nanoscale Reaction Vessels
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040152p
– volume: 140
  start-page: 120
  year: 2021
  ident: ref_28
  article-title: Ab Initio Electrical Properties of CO2: Polarizabilities, Hyperpolarizabilities, and Multipole Moments
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-021-02797-y
– volume: 257
  start-page: 113941
  year: 2020
  ident: ref_14
  article-title: Solvent-Based Post-Combustion CO2 Capture for Power Plants: A Critical Review and Perspective on Dynamic Modelling, System Identification, Process Control and Flexible Operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113941
– volume: 22
  start-page: e202100300
  year: 2022
  ident: ref_36
  article-title: Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward-Hoffmann Rules. Part II. A Sleeping Beauty in Chemistry †**
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202100300
– volume: 4
  start-page: 2647
  year: 2013
  ident: ref_38
  article-title: A Solid–Solid Phase Transition in Carbon Dioxide at High Pressures and Intermediate Temperatures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3647
– volume: 109
  start-page: 5185
  year: 2012
  ident: ref_7
  article-title: Lifetime of Carbon Capture and Storage as a Climate-Change Mitigation Technology
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1115347109
– volume: 8
  start-page: 11643
  year: 2023
  ident: ref_13
  article-title: Trends in Research and Development for CO 2 Capture and Sequestration
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05070
– volume: 13
  start-page: 7150
  year: 2023
  ident: ref_15
  article-title: Lithium Hydroxide as a High Capacity Adsorbent for CO2 Capture: Experimental, Modeling and DFT Simulation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34360-z
– volume: 61
  start-page: 3891
  year: 2021
  ident: ref_43
  article-title: AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00203
– volume: 342
  start-page: 127776
  year: 2023
  ident: ref_4
  article-title: Current Status of Carbon Capture, Utilization, and Storage Technologies in the Global Economy: A Survey of Technical Assessment
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.127776
– volume: 144
  start-page: 21080
  year: 2022
  ident: ref_26
  article-title: Charging of Dielectric Surfaces in Contact with Aqueous Electrolytes—The Influence of CO2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06793
– volume: 9
  start-page: 105
  year: 2014
  ident: ref_42
  article-title: Temperature Peak Analysis and Its Effect on Absorption Column for CO2 Capture Process at Different Operating Conditions
  publication-title: Chem. Prod. Process Model.
  doi: 10.1515/cppm-2013-0044
– volume: 11
  start-page: 5132
  year: 2015
  ident: ref_44
  article-title: Many-Body Basis Set Superposition Effect
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00343
– volume: 3
  start-page: 6
  year: 2023
  ident: ref_1
  article-title: On the Impact of Urbanisation on CO2 Emissions
  publication-title: Npj Urban Sustain.
  doi: 10.1038/s42949-023-00084-2
– volume: 30
  start-page: 76437
  year: 2023
  ident: ref_3
  article-title: Research Progress and Perspectives on Carbon Capture, Utilization, and Storage (CCUS) Technologies in China and the USA: A Bibliometric Analysis
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-27749-w
– ident: ref_5
  doi: 10.3390/pr11020605
– ident: ref_41
  doi: 10.3390/polym13193256
– ident: ref_17
  doi: 10.1063/5.0131507
– volume: 33
  start-page: 101715
  year: 2023
  ident: ref_20
  article-title: HEMA-Based Macro and Microporous Materials for CO2 Capture
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2023.101715
– volume: 113
  start-page: 1764
  year: 2001
  ident: ref_30
  article-title: Computer-Guided Design in Molecular Recognition: Design and Synthesis of a Glucopyranose Receptor
  publication-title: Angew. Chem.
  doi: 10.1002/1521-3757(20010504)113:9<1764::AID-ANGE17640>3.0.CO;2-Y
– volume: 10
  start-page: 525
  year: 2018
  ident: ref_33
  article-title: Molecular Recognition of Azelaic Acid and Related Molecules with DNA Polymerase I Investigated by Molecular Modeling Calculations
  publication-title: Interdiscip. Sci.
  doi: 10.1007/s12539-016-0186-3
– volume: 88
  start-page: 160
  year: 2022
  ident: ref_2
  article-title: Climate Change and Its Impact on Biodiversity and Human Welfare
  publication-title: Proc. Indian Natl. Sci. Acad.
  doi: 10.1007/s43538-022-00073-6
– volume: 10
  start-page: 879
  year: 2008
  ident: ref_21
  article-title: Absorption of CO2 by Ionic Liquid/Polyethylene Glycol Mixture and the Thermodynamic Parameters
  publication-title: Green Chem.
  doi: 10.1039/b801948g
– volume: 314
  start-page: 123
  year: 2017
  ident: ref_10
  article-title: Reaction Kinetics of Carbon Dioxide Absorption in Aqueous Solutions of Piperazine, N-(2-Aminoethyl) Ethanolamine and Their Blends
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.129
– volume: 19
  start-page: 6313
  year: 2023
  ident: ref_24
  article-title: DFT-Quality Adsorption Simulations in Metal—Organic Frameworks Enabled by Machine Learning Potentials
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00495
– volume: 41
  start-page: 5800
  year: 2012
  ident: ref_29
  article-title: Molecular Recognition: From Solution Science to Nano/Materials Technology
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35162e
– volume: 2
  start-page: 309
  year: 2012
  ident: ref_32
  article-title: Specificity Quantification of Biomolecular Recognition and Its Implication for Drug Discovery
  publication-title: Sci. Rep.
  doi: 10.1038/srep00309
– volume: 7
  start-page: 130
  year: 2014
  ident: ref_8
  article-title: Carbon Capture and Storage Update
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42350F
– volume: 118
  start-page: 7568
  year: 2014
  ident: ref_45
  article-title: Benchmark Theoretical Study of the π–π Binding Energy in the Benzene Dimer
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp5024235
– volume: 63
  start-page: 6106
  year: 2014
  ident: ref_12
  article-title: Start-up of World’s First Commercial Post-Combustion Coal Fired CCS Project: Contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.642
– volume: 74
  start-page: 1207
  year: 2017
  ident: ref_34
  article-title: Reversible Capture and Release of Carbon Dioxide by Binary System of Polyamidine and Polyethylene Glycol
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-016-1772-6
– volume: 6
  start-page: 958
  year: 2020
  ident: ref_6
  article-title: Global CO2 Emissions Level Off in 2019, with a Drop Predicted in 2020
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.07.005
– volume: 12
  start-page: 15992
  year: 2022
  ident: ref_16
  article-title: Experimental and Theoretical Study of the Effect of Different Functionalities of Graphene Oxide/Polymer Composites on Selective CO2 Capture
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-20189-5
– volume: 11
  start-page: 27897
  year: 2021
  ident: ref_25
  article-title: A Review on the Use of DFT for the Prediction of the Properties of Nanomaterials
  publication-title: RSC Adv.
  doi: 10.1039/D1RA04876G
– volume: 475
  start-page: 90
  year: 2016
  ident: ref_27
  article-title: Carbon Dioxide Interacting with Rare Gases: Insights from High-Level Ab Initio Calculations of Polarizability and Hyperpolarizability Effects
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2016.07.006
– volume: 82
  start-page: 59
  year: 2019
  ident: ref_11
  article-title: Boundary Dam or Petra Nova—Which Is a Better Model for CCS Energy Supply?
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2019.01.004
– volume: 11
  start-page: 17137
  year: 2019
  ident: ref_9
  article-title: Review of Liquid Nano-Absorbents for Enhanced CO2 Capture
  publication-title: Nanoscale
  doi: 10.1039/C9NR05089B
– volume: 121
  start-page: 4937
  year: 2017
  ident: ref_39
  article-title: DFT-Based Method for More Accurate Adsorption Energies: An Adaptive Sum of Energies from RPBE and VdW Density Functionals
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10187
– volume: 181
  start-page: 113342
  year: 2023
  ident: ref_22
  article-title: Sustainable CO2 Capture via Adsorption by Chitosan-Based Functional Biomaterial: A Review on Recent Advances, Challenges, and Future Directions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113342
– volume: 12
  start-page: 35418
  year: 2022
  ident: ref_18
  article-title: DFT and COSMO-RS Studies on Dicationic Ionic Liquids (DILs) as Potential Candidates for CO 2 Capture: The Effects of Alkyl Side Chain Length and Symmetry in Cations
  publication-title: RSC Adv.
  doi: 10.1039/D2RA05805G
– volume: 25
  start-page: 293
  year: 2014
  ident: ref_35
  article-title: DFT Studies of Functionalized Zigzag and Armchair Boron Nitride Nanotubes as Nanovectors for Drug Delivery of Collagen Amino Acids
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-013-0292-3
– ident: ref_40
  doi: 10.1007/978-3-031-53407-2
– volume: 29
  start-page: 355002
  year: 2017
  ident: ref_19
  article-title: Frontier Molecular Orbitals of a Single Molecule Adsorbed on Thin Insulating Films Supported by a Metal Substrate: Electron and Hole Attachment Energies
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aa7c3a
SSID ssj0001753511
Score 2.295606
Snippet In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 386
SubjectTerms Air pollution
Atmospheric carbon dioxide
Carbon dioxide
Carbon sequestration
Chitosan
Climate change
CO2-capture
Deforestation
Density functional theory
Density functionals
Design optimization
DFT
Electrons
Emissions
Extreme weather
frontier molecular orbitals
Global warming
green-hydrogen
Greenhouse gases
Hydrogels
Polyethylene glycol
Polyvinylpyrrolidone
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucChonymFGQkECAUNYnt2OFSbbuEFVI5oFbqLXLspKxUJe3uVmpP_HVmEmebFYJjEh_szIzn2TPzBuCdNnjsSVUUmthkoUhLQTZnwqjMrI4yrXlFEd3jH-nsVHw_k2f-wm3p0yqHPbHbqF1r6Y58H3URnX-quDi4vAqpaxRFV30LjfvwIE5Qk6hSPP92d8eCWBwBRZ_vzvF0v3-ODicmDhJOxdMjT9QR9v-9LY_80mbO5MgJ5Y9h26NHNunFvQP3quYJPBpxCj6F38dDw1v2c0gOahvm87HYkVmU-DidtzdzVzHTOHY4bx1RRjiqomKzW7docQGMuqRdLL-wCZtSkvvqluXoA_urQ9aX9LOP0_zkExtxdbTNMzjNv54czULfZSG0Mtar0FpJEXFRayEdwjHOuTLKyixJCQygTQuCBVpaVyouTYkI0sXWRNwIG9WGP4etpm2ql8ASbV0tbGajqhIKxV0lqCPKOSdrXcYugM_DHy-spyCnThgXBR5FSD7FWD4BvF-PvuypN_4x7pCEtx5DhNndi3ZxXnj7K7hzPKV83kjWFBo2CZ4DnUZnHJe4PhHABxJ9QWaNU7LGVyfgwoggq5goBHJaaqUC2Bu0o_D2vizutDOAt-vPaKkUfjFN1V73Y_B_8iQL4EWvTOs5I2xMIoTSAegNNdtY1OaXZv6rYwNHwExx-Hj3__N6BQ9xnOiy3OQebK0W19VrxFOr8k1nNH8AhCIfkA
  priority: 102
  providerName: ProQuest
Title Molecular Recognition between Carbon Dioxide and Biodegradable Hydrogel Models: A Density Functional Theory (DFT) Investigation
URI https://www.ncbi.nlm.nih.gov/pubmed/38920932
https://www.proquest.com/docview/3072326734
https://www.proquest.com/docview/3072294329
https://pubmed.ncbi.nlm.nih.gov/PMC11202771
https://doaj.org/article/3dd36667605f4584a2148d82991b4214
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2310-2861
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001753511
  issn: 2310-2861
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2310-2861
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001753511
  issn: 2310-2861
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2310-2861
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001753511
  issn: 2310-2861
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2310-2861
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001753511
  issn: 2310-2861
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2310-2861
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001753511
  issn: 2310-2861
  databaseCode: BENPR
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2310-2861
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001753511
  issn: 2310-2861
  databaseCode: 8FG
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEB70fNEH8bfVc4mgqEi5tkma1Lfd26uLcIccd3BvJU1SXTha2dsD78l_3Zmmu3QR8cXHtqEkmZnMl8zkG4A32uC2J1dJbFJTxCKvBdmciZO6sDoptOaeIrrHJ_niXHy5kBejUl-UExbogcPEHXDneE6JmIlsKKZnMgTwTuMqmtYi60tYZ-jGRpup_nQFUThCiZDpznFff_ANXU1K7COcrk2PfFBP1f_ngjzySLvZkiP3Uz6A-wNuZNPQ34dwy7eP4N6ITfAx_DrelLplp5u0oK5lQyYWOzSrGh_ny-7n0nlmWsdmy84RWYSj-1NsceNWHQ6AUX20y6tPbMrmlN6-vmEler9waMjCZX72fl6efWAjlo6ufQLn5dHZ4SIe6ivEVqZ6HVsrKRYuGi2kQyDGOVdGWVlkOcEAtGZBgEBL62rFpakRO7rUmoQbYZPG8Kew13atfw4s09Y1whY28V4oFLTPUDuUc042uk5dBB83M17ZgXycamBcVrgJIflUY_lE8Hbb-kcg3fhLuxkJb9uGqLL7F6hA1aBA1b8UKIJ3JPqKDBq7ZM1wLwEHRtRY1VQhhNNSKxXB_kY7qsHSrypcIxGU5orjj15vP6ONUuDFtL67Dm1wPnlWRPAsKNO2zwgYswRBdAR6R812BrX7pV1-73nAESpTBD598T-m4SXcxb-JPgtO7sPeenXtXyHeWtcTuK3LzxO4Mzs6-Xo66Q3tNxAYKIc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA8IL4JDDASE6ApWhLbiTMJoW6ldGzdA-qkvQXHTkalKRltJ-gT_xF_4-7y0aVC8LbHJk5l--78O_vOvwN4ozRue8LIc7WvY1eEqSCb066XxkZ5sVI8o4ju6CgcHosvJ_JkDf60d2EorbJdE6uF2paGzsi3URcR_MOIi4_nP1yqGkXR1baERq0WB9niJ27ZZh_2-yjfzSAYfBrvDd2mqoBrpK_mrjGSIsAiV0JadD8455GOjIyDkMAPdVgQDCppbBpxqVP0mKxvtMe1MF6uOf7vDbgp8Dvi6leDz1dnOuj7owNT59dzHnvbpwhwPnGecLqs3UG-qkDA3zDQwcHVHM0O6A3uwd3GW2W9Wr3uw1pWPIA7HQ7Dh_B71BbYZV_bZKSyYE3-F9vT0xR_9iflr4nNmC4s252UligqLN3aYsOFnZY4AEZV2c5mO6zH-pRUP1-wAWJufVTJagoB9q4_GL9nHW6QsngEx9cy_49hvSiL7CmwQBmbCxMbL8tEhOqVBaiTkbVW5ir1rQNb7YwnpqE8p8obZwlufUg-SVc-DmwuW5_XVB__aLdLwlu2IYLu6kE5PU0ae0-4tTyk_GFP5hSK1gHuO61C8PdTHJ9w4C2JPqFlBLtkdHMbAgdGhFxJL0LHUUkVRQ5stNqRNOvLLLmyBgdeL1_jykDhHl1k5UXdBueTB7EDT2plWvYZ3dTAQ9fdAbWiZiuDWn1TTL5X7OPooFPc33_2_369glvD8egwOdw_OngOt_EbUWXYyQ1Yn08vshfoy83Tl5UBMfh23RZ7Cc2YWbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLxxKbBIVIAqK7Z3ba-RKpQ0jVJKo6pqpd7MetduI1V2SVJBTvw_fhUzfqSOENx6TDyJdj2z89iZ-QbgnVQY9gShYytXRbYIEkFnTtlOEmnpRFLylDK6h-NgdCq-nPlna_C76YWhsspGJ5aK2hSa7si7KIto_IOQi25Wl0UcDYafr77bNEGKMq3NOA1Vj1kwOyXcWN3kcZAufmA4N9vZHyDvtzxvuHeyO7LriQO2Rsq5rbVP2WGRSeEbdE0456EKtR95ARlGlG9BJlL62iQh91WC3pRxtXK4EtrJFMf_vQPrIfWLdmC9vzc-Or658cHIAN2bqvqe88jpnqP5cwkRhVMrd8suluMD_jYSLSu5WsHZMonDh_Cg9mVZrxK-R7CW5o_hfgvh8An8OmzG77LjplSpyFldHcZ21TTBj4NJ8XNiUqZyw_qTwhCAhaGeLjZamGmBG2A0s-1y9on12IBK7ucLNkSLXF1ksgpggH0YDE8-shZySJE_hdNb4cAz6ORFnr4A5kltMqEj7aSpCFH4Ug8lNjTG-JlMXGPBdvPGY10DotNcjssYAyPiT9zmjwVbS-qrCgjkH3R9Yt6ShuC7yy-K6Xlca4OYG8MDqi52_IwS1crDqNRIdA3cBPcnLHhPrI9JyeCStKp7JXBjBNcV90J0K6Uvw9CCzUY64lr7zOKbs2LB2-Vj1BuUDFJ5WlxXNPg-uRdZ8LwSpuWa0Yn1HHTsLZArYrayqdUn-eSixCZH952qAtyN_6_rDdzF0xt_3R8fvIR7-BNRlt_5m9CZT6_TV-jozZPX9Qli8O22D-0fRbpkig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Recognition+between+Carbon+Dioxide+and+Biodegradable+Hydrogel+Models%3A+A+Density+Functional+Theory+%28DFT%29+Investigation&rft.jtitle=Gels&rft.au=Carrascal-Hernandez%2C+Domingo+Cesar&rft.au=Mendez-Lopez%2C+Maximiliano&rft.au=Insuasty%2C+Daniel&rft.au=Garc%C3%ADa-Freites%2C+Samira&rft.date=2024-06-05&rft.eissn=2310-2861&rft.volume=10&rft.issue=6&rft_id=info:doi/10.3390%2Fgels10060386&rft_id=info%3Apmid%2F38920932&rft.externalDocID=38920932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2310-2861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2310-2861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2310-2861&client=summon