Staging of colorectal cancer using lipid biomarkers and machine learning
Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently need...
Saved in:
Published in | Metabolomics Vol. 19; no. 10; p. 84 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
20.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-3890 1573-3882 1573-3890 |
DOI | 10.1007/s11306-023-02049-z |
Cover
Abstract | Introduction
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes.
Objectives
The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM).
Methods
High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group.
Results
Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.
Conclusion
Our findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention. |
---|---|
AbstractList | Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes.INTRODUCTIONColorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes.The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM).OBJECTIVESThe aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM).High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient's preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group.METHODSHigh-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient's preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group.Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.RESULTSBayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.Our findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention.CONCLUSIONOur findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention. IntroductionColorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes.ObjectivesThe aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM).MethodsHigh-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group.ResultsBayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.ConclusionOur findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention. Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes. Objectives The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM). Methods High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group. Results Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts. Conclusion Our findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention. |
ArticleNumber | 84 |
Author | Creek, Darren Kirana, Chandra Krishnan, Sanduru Thamarai Rudd, David Maddern, Guy J Voelcker, Nicolas Hans Winkler, David Fenix, Kevin Hauben, Ehud Anderson, Dovile |
Author_xml | – sequence: 1 givenname: Sanduru Thamarai surname: Krishnan fullname: Krishnan, Sanduru Thamarai organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Department of Chemistry, University of Reading, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility – sequence: 2 givenname: David surname: Winkler fullname: Winkler, David organization: Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, School of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, School of Pharmacy, University of Nottingham – sequence: 3 givenname: Darren surname: Creek fullname: Creek, Darren organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University – sequence: 4 givenname: Dovile surname: Anderson fullname: Anderson, Dovile organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University – sequence: 5 givenname: Chandra surname: Kirana fullname: Kirana, Chandra organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital – sequence: 6 givenname: Guy J surname: Maddern fullname: Maddern, Guy J organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital – sequence: 7 givenname: Kevin surname: Fenix fullname: Fenix, Kevin organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital – sequence: 8 givenname: Ehud surname: Hauben fullname: Hauben, Ehud organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital – sequence: 9 givenname: David surname: Rudd fullname: Rudd, David email: david.rudd@monash.edu organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility – sequence: 10 givenname: Nicolas Hans surname: Voelcker fullname: Voelcker, Nicolas Hans email: nicolas.voelcker@monash.edu organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Commonwealth Scientific and Industrial Research Organization (CSIRO) |
BookMark | eNqNkM1L5TAUxcOgMH79A7MquJlNx3y1TVcyiI6CMIvRdbhNb5_RvOSZtIr-9aa-B44uxEVI4J5z7slvl2z54JGQH4z-YpQ2R4kxQeuScpEPlW35_I3ssKoRpVAt3frv_Z3spnRLqZRtQ3fI-b8RFtYvijAUJrgQ0YzgCgPeYCymNI-cXdm-6GxYQrzDmArwfbEEc2M9Fg4h-qzaJ9sDuIQHm3uPXJ-dXp2cl5d__1yc_L4sTcXUWAIaKbjo6x55o4SR1dBXErGjXPF-MANVoDoGEppBmZoLpYZOqgYMIFddK_aIWOdOfgVPj-CcXkWbmz1pRvUMQ69h6AxDv8LQz9l1vHatpm6JvUE_RnhzBrD6_cTbG70IDzmwYqxm896fm4QY7idMo17aZNA58BimpLmqGyZbTussPfwgvQ1T9JnKrKqrSsmGZRVfq0wMKUUcvvYP9cFk7AijDXNr6z63bsClvMcvML61-sT1AjvHuQg |
CitedBy_id | crossref_primary_10_4251_wjgo_v16_i5_1995 crossref_primary_10_1007_s00424_024_02960_x crossref_primary_10_3390_medicina60081204 crossref_primary_10_3390_biomedicines13020359 crossref_primary_10_1080_17474124_2024_2393180 crossref_primary_10_3390_ijms25147722 crossref_primary_10_3390_life15020320 crossref_primary_10_1038_s41598_025_94496_y |
Cites_doi | 10.1128/AAC.02656-17 10.1016/j.nutres.2020.01.001 10.1186/s13578-019-0361-4 10.1245/s10434-015-5014-1 10.1007/s11306-012-0439-z 10.1002/qsar.200810202 10.1093/bioinformatics/bts069 10.1186/s13046-016-0328-9 10.1093/jnci/djab190 10.2119/molmed.2010.00115 10.1016/j.talanta.2006.10.011 10.1021/acs.jmedchem.5b01439 10.1021/acs.analchem.1c03249 10.1016/j.tranon.2021.101174 10.1016/S0021-9258(18)64849-5 10.1200/PO.19.00274 10.1016/j.bbamem.2017.04.027 10.1016/j.bbrc.2018.11.149 10.1002/qsar.200810173 10.1111/ajco.12761 10.6004/jnccn.2011.0137 10.1021/pr400337b 10.1097/01.sla.0000217629.94941.cf 10.1007/s10719-008-9206-9 10.3945/ajcn.113.065714 10.1016/j.ijsu.2015.11.065 10.1007/s11010-005-3557-3 10.1371/journal.pone.0244332 10.1021/jm980697n 10.2217/fon-2020-0356 10.1145/3336191.3371783 10.1007/978-1-60327-101-1_3 10.1016/j.mcpro.2021.100083 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
DOI | 10.1007/s11306-023-02049-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1573-3890 |
ExternalDocumentID | 10.1007/s11306-023-02049-z PMC10511619 10_1007_s11306_023_02049_z |
GrantInformation_xml | – fundername: Commonwealth Scientific and Industrial Research Organisation (CSIRO) – fundername: ; |
GroupedDBID | --- -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67N 67Z 6NX 7X7 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BENPR BGNMA BHPHI BPHCQ BSONS BVXVI C6C CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI ESBYG ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM LMP M4Y M7P MA- NB0 NPVJJ NQJWS NU0 O93 O9I O9J OAM P2P PF0 PQQKQ PROAC PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z82 Z83 Z87 ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PUEGO 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM -Y2 2P1 2VQ AANXM AARHV ABQSL ABULA ADHKG ADTOC AEBTG AEKMD AFGCZ AGJBK AGQPQ AHSBF AJBLW BDATZ CAG COF EJD EN4 FINBP FSGXE H13 N2Q O9- S1Z UNPAY |
ID | FETCH-LOGICAL-c518t-aec4323d6de2783c45fd54eeb0282dfcf08a8b1a4a7f8c62388fb487acae28b93 |
IEDL.DBID | 7X7 |
ISSN | 1573-3890 1573-3882 |
IngestDate | Wed Aug 20 00:00:31 EDT 2025 Tue Sep 30 17:12:52 EDT 2025 Fri Sep 05 13:44:19 EDT 2025 Fri Jul 25 12:25:39 EDT 2025 Wed Oct 01 02:40:52 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Fri Feb 21 02:41:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Lipidomics Biomarker Cancer Subtypes Metastatic colorectal cancer classification Multi-omics Machine learning |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-aec4323d6de2783c45fd54eeb0282dfcf08a8b1a4a7f8c62388fb487acae28b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s11306-023-02049-z |
PQID | 2866558471 |
PQPubID | 326279 |
ParticipantIDs | unpaywall_primary_10_1007_s11306_023_02049_z pubmedcentral_primary_oai_pubmedcentral_nih_gov_10511619 proquest_miscellaneous_2867149206 proquest_journals_2866558471 crossref_primary_10_1007_s11306_023_02049_z crossref_citationtrail_10_1007_s11306_023_02049_z springer_journals_10_1007_s11306_023_02049_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-20 |
PublicationDateYYYYMMDD | 2023-09-20 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationTitle | Metabolomics |
PublicationTitleAbbrev | Metabolomics |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Stanimirova, Daszykowski, Walczak (CR33) 2007; 72 Deng, Yang, Zeng, Xiao, Li, Luan (CR10) 2021; 93 Becerra, Probst, Tejani, Aquina, González, Hensley, Noyes, Monson, Fleming (CR2) 2016; 23 Dobrzyńska, Szachowicz-Petelska, Sulkowski, Figaszewski (CR11) 2005; 276 Folch, Lees, Sloane Stanley (CR13) 1957; 226 Malan, Smuts, Baumgartner, Ricci (CR24) 2020; 75 Febbo, Ladanyi, Aldape, De Marzo, Hammond, Hayes, Iafrate, Kelley, Marcucci, Ogino (CR12) 2011; 9 Zhao, Bi, Kou, Shi, Piao (CR38) 2016; 35 Meyer, Gruba, Kim, Meyer, Koseoglu, Dalluge, Haynes (CR26) 2017; 1859 Sun, Pastor, Du, Powell, Zhang, Bodmer, Wu, Zheng, Sha (CR34) 2021; 16 Creek, Jankevics, Burgess, Breitling, Barrett (CR9) 2012; 28 Health, Welfare (CR17) 2018; 14 Kuo, Chan, Chang, Fan, Hung, Hung, Chen, Yu, Chang, Chan (CR21) 2011; 17 CR31 CR30 Manfredi, Lepage, Hatem, Coatmeur, Faivre, Bouvier (CR25) 2006; 244 Notarnicola, Altomare, Correale, Ruggieri, D’Attoma, Mastrosimini, Guerra, Caruso (CR27) 2005; 68 Burden, Winkler (CR6) 2009; 28 Paschos, Bird (CR28) 2008; 12 Prochownik, Fan, Li (CR29) 2020; 77 Koveitypour, Panahi, Vakilian, Peymani, Forootan, Esfahani, Ghaedi (CR20) 2019; 9 Li, Guo, Song, Deng, Cong, Li, Zhao, Liu, Xiao, Xu (CR23) 2013; 9 Formica, Sera, Cremolini, Riondino, Morelli, Arkenau, Roselli (CR14) 2022; 114 Xi, Xu (CR36) 2021; 14 CR3 Zhao, Bi, Kou, Shi, Piao (CR37) 2016; 35 Tan, Qiu, Zou, Chen, Xie, Cheng, Dong, Zhao, Feng, Hu (CR35) 2013; 12 Chatterjee, Hou, Bandaru, Pezhouh, Mannan, Sharma (CR8) 2019; 508 Byberg, Kilander, Warensjö Lemming, Michaëlsson, Vessby (CR7) 2014; 99 Gutierrez, Price, Lanman, Nagy, Shah, Mathura, Mulcahy, Norden, Goldberg (CR15) 2019; 3 Aurelio, Scullino, Pitman, Sexton, Oliver, Davies, Rebello, Furic, Creek, Pitson (CR1) 2016; 59 Burden, Winkler (CR4) 2009; 28 Han, Zhu, Creek, Lin, Anderson, Shen, Tsuji, Gutu, Moskowitz, Velkov (CR16) 2018; 62 Kirana, Smith, Ngo, Trochsler, Hewett, Stubbs, Hardingham, Maddern, Hauben (CR18) 2020; 16 Lalosevic, Stankovic, Stojkovic, Markovic, Dimitrijevic, Lalosevic, Petrovic, Brankovic, Markovic, Krivokapic (CR22) 2017; 20 Kolmakova, Rajesh, Zang, Pili, Chatterjee (CR19) 2009; 26 Burden, Winkler (CR5) 1999; 42 Sørensen, Karlsson, Pommergaard, Burcharth, Rosenberg (CR32) 2016; 25 A Kolmakova (2049_CR19) 2009; 26 L Malan (2049_CR24) 2020; 75 S Li (2049_CR23) 2013; 9 S Manfredi (2049_CR25) 2006; 244 ML Han (2049_CR16) 2018; 62 MS Lalosevic (2049_CR22) 2017; 20 C Kirana (2049_CR18) 2020; 16 CG Sørensen (2049_CR32) 2016; 25 Q Sun (2049_CR34) 2021; 16 J Deng (2049_CR10) 2021; 93 J Folch (2049_CR13) 1957; 226 AI Health (2049_CR17) 2018; 14 AZ Becerra (2049_CR2) 2016; 23 I Dobrzyńska (2049_CR11) 2005; 276 AF Meyer (2049_CR26) 2017; 1859 2049_CR3 PG Febbo (2049_CR12) 2011; 9 B Tan (2049_CR35) 2013; 12 Y Xi (2049_CR36) 2021; 14 L Zhao (2049_CR37) 2016; 35 YB Kuo (2049_CR21) 2011; 17 FR Burden (2049_CR6) 2009; 28 SB Chatterjee (2049_CR8) 2019; 508 M Notarnicola (2049_CR27) 2005; 68 K Paschos (2049_CR28) 2008; 12 FR Burden (2049_CR4) 2009; 28 ME Gutierrez (2049_CR15) 2019; 3 EV Prochownik (2049_CR29) 2020; 77 2049_CR30 2049_CR31 L Zhao (2049_CR38) 2016; 35 V Formica (2049_CR14) 2022; 114 DJ Creek (2049_CR9) 2012; 28 FR Burden (2049_CR5) 1999; 42 I Stanimirova (2049_CR33) 2007; 72 Z Koveitypour (2049_CR20) 2019; 9 L Aurelio (2049_CR1) 2016; 59 L Byberg (2049_CR7) 2014; 99 |
References_xml | – volume: 62 start-page: e02656 year: 2018 end-page: e02617 ident: CR16 article-title: Alterations of metabolic and lipid profiles in polymyxin-resistant Pseudomonas aeruginosa publication-title: Antimicrobial Agents and Chemotherapy doi: 10.1128/AAC.02656-17 – volume: 75 start-page: 67 year: 2020 end-page: 76 ident: CR24 article-title: Missing data imputation via the expectation-maximization algorithm can improve principal component analysis aimed at deriving biomarker profiles and dietary patterns publication-title: Nutrition Research doi: 10.1016/j.nutres.2020.01.001 – volume: 9 start-page: 97 year: 2019 ident: CR20 article-title: Signaling pathways involved in colorectal cancer progression publication-title: Cell & Bioscience doi: 10.1186/s13578-019-0361-4 – ident: CR30 – volume: 23 start-page: 1554 year: 2016 end-page: 1561 ident: CR2 article-title: Evaluating the prognostic role of elevated preoperative carcinoembryonic antigen levels in colon cancer patients: Results from the national cancer database publication-title: Annals of Surgical Oncology doi: 10.1245/s10434-015-5014-1 – volume: 9 start-page: 202 year: 2013 end-page: 212 ident: CR23 article-title: Plasma choline-containing phospholipids: Potential biomarkers for colorectal cancer progression publication-title: Metabolomics doi: 10.1007/s11306-012-0439-z – volume: 28 start-page: 1092 year: 2009 end-page: 1097 ident: CR6 article-title: An optimal self-pruning neural network and nonlinear descriptor selection in QSAR publication-title: QSAR & Combinatorial Science doi: 10.1002/qsar.200810202 – volume: 28 start-page: 1048 year: 2012 end-page: 1049 ident: CR9 article-title: IDEOM: An Excel interface for analysis of LC–MS-based metabolomics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts069 – volume: 35 start-page: 54 year: 2016 ident: CR37 article-title: Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients publication-title: Journal of Experimental & Clinical Cancer Research doi: 10.1186/s13046-016-0328-9 – volume: 12 start-page: 132 year: 2008 ident: CR28 article-title: Current diagnostic and therapeutic approaches for colorectal cancer liver metastasis publication-title: Hippokratia – volume: 114 start-page: 517 year: 2022 end-page: 527 ident: CR14 article-title: KRAS and BRAF mutations in stage II and III Colon cancer: A systematic review and Meta-analysis publication-title: JNCI: Journal of the National Cancer Institute doi: 10.1093/jnci/djab190 – volume: 17 start-page: 41 year: 2011 end-page: 47 ident: CR21 article-title: Identification of phospholipid scramblase 1 as a biomarker and determination of its prognostic value for colorectal cancer publication-title: Molecular Medicine doi: 10.2119/molmed.2010.00115 – volume: 20 start-page: 41 year: 2017 end-page: 45 ident: CR22 article-title: Can preoperative CEA and CA19-9 serum concentrations suggest metastatic disease in colorectal cancer patients? publication-title: Hellenic Journal of Nuclear Medicine – volume: 72 start-page: 172 year: 2007 end-page: 178 ident: CR33 article-title: Dealing with missing values and outliers in principal component analysis publication-title: Talanta doi: 10.1016/j.talanta.2006.10.011 – volume: 35 start-page: 1 year: 2016 end-page: 12 ident: CR38 article-title: Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients publication-title: Journal of Experimental & Clinical Cancer Research doi: 10.1186/s13046-016-0328-9 – volume: 68 start-page: 371 year: 2005 end-page: 374 ident: CR27 article-title: Serum lipid profile in colorectal cancer patients with and without synchronous distant metastases publication-title: Oncology (Williston Park, N.Y.) – volume: 59 start-page: 965 year: 2016 end-page: 984 ident: CR1 article-title: From sphingosine kinase to dihydroceramide desaturase: A structure–activity relationship (SAR) study of the enzyme inhibitory and anticancer activity of 4-((4-(4-chlorophenyl) thiazol-2-yl) amino) phenol (SKI-II) publication-title: Journal of Medicinal Chemistry doi: 10.1021/acs.jmedchem.5b01439 – volume: 93 start-page: 13089 year: 2021 end-page: 13098 ident: CR10 article-title: Discovery of potential lipid biomarkers for human colorectal Cancer by In-Capillary extraction Nanoelectrospray Ionization Mass Spectrometry publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.1c03249 – volume: 14 start-page: 101174 year: 2021 ident: CR36 article-title: Global colorectal cancer burden in 2020 and projections to 2040 publication-title: Translational Oncology doi: 10.1016/j.tranon.2021.101174 – volume: 226 start-page: 497 year: 1957 end-page: 509 ident: CR13 article-title: A simple method for the isolation and purification of total lipids from animal tissues publication-title: J biol Chem doi: 10.1016/S0021-9258(18)64849-5 – volume: 3 start-page: 1 year: 2019 end-page: 9 ident: CR15 article-title: Genomic profiling for KRAS, NRAS, BRAF, microsatellite instability, and mismatch repair deficiency among patients with metastatic colon cancer publication-title: JCO Precision Oncology doi: 10.1200/PO.19.00274 – volume: 1859 start-page: 1381 year: 2017 end-page: 1387 ident: CR26 article-title: Stereochemistry-and concentration-dependent effects of phosphatidylserine enrichment on platelet function publication-title: Biochimica et Biophysica Acta (BBA)-Biomembranes doi: 10.1016/j.bbamem.2017.04.027 – ident: CR3 – volume: 77 start-page: 1 year: 2020 end-page: 12 ident: CR29 article-title: Dynamic regulation of ME1 phosphorylation and Acetylation affects lipid metabolism and colorectal tumorigenesis publication-title: Molecular Cell – ident: CR31 – volume: 508 start-page: 380 year: 2019 end-page: 386 ident: CR8 article-title: Lactosylceramide synthase β-1, 4-GalT-V: A novel target for the diagnosis and therapy of human colorectal cancer publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2018.11.149 – volume: 28 start-page: 645 year: 2009 end-page: 653 ident: CR4 article-title: Optimal sparse descriptor selection for QSAR using bayesian methods publication-title: QSAR & Combinatorial Science doi: 10.1002/qsar.200810173 – volume: 14 start-page: 5 year: 2018 end-page: 15 ident: CR17 article-title: Cancer in Australia: Actual incidence data from 1982 to 2013 and mortality data from 1982 to 2014 with projections to 2017 publication-title: Asia-Pacific Journal of Clinical Oncology doi: 10.1111/ajco.12761 – volume: 9 start-page: S year: 2011 end-page: 1 ident: CR12 article-title: NCCN Task Force report: Evaluating the clinical utility of tumor markers in oncology publication-title: Journal of the National Comprehensive Cancer Network doi: 10.6004/jnccn.2011.0137 – volume: 12 start-page: 3000 year: 2013 end-page: 3009 ident: CR35 article-title: Metabonomics identifies serum metabolite markers of colorectal cancer publication-title: Journal of Proteome Research doi: 10.1021/pr400337b – volume: 244 start-page: 254 year: 2006 ident: CR25 article-title: Epidemiology and management of liver metastases from colorectal cancer publication-title: Annals of Surgery doi: 10.1097/01.sla.0000217629.94941.cf – volume: 26 start-page: 547 year: 2009 end-page: 558 ident: CR19 article-title: VEGF recruits lactosylceramide to induce endothelial cell adhesion molecule expression and angiogenesis in vitro and in vivo publication-title: Glycoconjugate Journal doi: 10.1007/s10719-008-9206-9 – volume: 99 start-page: 551 year: 2014 end-page: 558 ident: CR7 article-title: Cancer death is related to high palmitoleic acid in serum and to polymorphisms in the SCD-1 gene in healthy swedish men publication-title: The American Journal of Clinical Nutrition doi: 10.3945/ajcn.113.065714 – volume: 25 start-page: 134 year: 2016 end-page: 144 ident: CR32 article-title: The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence–A systematic review publication-title: International Journal of Surgery doi: 10.1016/j.ijsu.2015.11.065 – volume: 276 start-page: 113 year: 2005 end-page: 119 ident: CR11 article-title: Changes in electric charge and phospholipids composition in human colorectal cancer cells publication-title: Molecular and Cellular Biochemistry doi: 10.1007/s11010-005-3557-3 – volume: 16 start-page: e0244332 year: 2021 ident: CR34 article-title: A novel xenonucleic acid-mediated molecular clamping technology for early colorectal cancer screening publication-title: Plos One doi: 10.1371/journal.pone.0244332 – volume: 42 start-page: 3183 year: 1999 end-page: 3187 ident: CR5 article-title: Robust QSAR models using bayesian regularized neural networks publication-title: Journal of Medicinal Chemistry doi: 10.1021/jm980697n – volume: 16 start-page: 2499 year: 2020 end-page: 2509 ident: CR18 article-title: High preoperative levels of circulating SFRP5 predict better prognosis in colorectal cancer patients publication-title: Future Oncology doi: 10.2217/fon-2020-0356 – volume: 226 start-page: 497 year: 1957 ident: 2049_CR13 publication-title: J biol Chem doi: 10.1016/S0021-9258(18)64849-5 – volume: 99 start-page: 551 year: 2014 ident: 2049_CR7 publication-title: The American Journal of Clinical Nutrition doi: 10.3945/ajcn.113.065714 – volume: 23 start-page: 1554 year: 2016 ident: 2049_CR2 publication-title: Annals of Surgical Oncology doi: 10.1245/s10434-015-5014-1 – volume: 62 start-page: e02656 year: 2018 ident: 2049_CR16 publication-title: Antimicrobial Agents and Chemotherapy doi: 10.1128/AAC.02656-17 – volume: 1859 start-page: 1381 year: 2017 ident: 2049_CR26 publication-title: Biochimica et Biophysica Acta (BBA)-Biomembranes doi: 10.1016/j.bbamem.2017.04.027 – volume: 93 start-page: 13089 year: 2021 ident: 2049_CR10 publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.1c03249 – volume: 59 start-page: 965 year: 2016 ident: 2049_CR1 publication-title: Journal of Medicinal Chemistry doi: 10.1021/acs.jmedchem.5b01439 – volume: 42 start-page: 3183 year: 1999 ident: 2049_CR5 publication-title: Journal of Medicinal Chemistry doi: 10.1021/jm980697n – volume: 68 start-page: 371 year: 2005 ident: 2049_CR27 publication-title: Oncology (Williston Park, N.Y.) – volume: 14 start-page: 5 year: 2018 ident: 2049_CR17 publication-title: Asia-Pacific Journal of Clinical Oncology doi: 10.1111/ajco.12761 – volume: 276 start-page: 113 year: 2005 ident: 2049_CR11 publication-title: Molecular and Cellular Biochemistry doi: 10.1007/s11010-005-3557-3 – volume: 28 start-page: 1048 year: 2012 ident: 2049_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts069 – volume: 17 start-page: 41 year: 2011 ident: 2049_CR21 publication-title: Molecular Medicine doi: 10.2119/molmed.2010.00115 – volume: 28 start-page: 645 year: 2009 ident: 2049_CR4 publication-title: QSAR & Combinatorial Science doi: 10.1002/qsar.200810173 – volume: 114 start-page: 517 year: 2022 ident: 2049_CR14 publication-title: JNCI: Journal of the National Cancer Institute doi: 10.1093/jnci/djab190 – volume: 3 start-page: 1 year: 2019 ident: 2049_CR15 publication-title: JCO Precision Oncology doi: 10.1200/PO.19.00274 – volume: 75 start-page: 67 year: 2020 ident: 2049_CR24 publication-title: Nutrition Research doi: 10.1016/j.nutres.2020.01.001 – volume: 35 start-page: 1 year: 2016 ident: 2049_CR38 publication-title: Journal of Experimental & Clinical Cancer Research doi: 10.1186/s13046-016-0328-9 – volume: 14 start-page: 101174 year: 2021 ident: 2049_CR36 publication-title: Translational Oncology doi: 10.1016/j.tranon.2021.101174 – volume: 9 start-page: 97 year: 2019 ident: 2049_CR20 publication-title: Cell & Bioscience doi: 10.1186/s13578-019-0361-4 – volume: 35 start-page: 54 year: 2016 ident: 2049_CR37 publication-title: Journal of Experimental & Clinical Cancer Research doi: 10.1186/s13046-016-0328-9 – volume: 20 start-page: 41 year: 2017 ident: 2049_CR22 publication-title: Hellenic Journal of Nuclear Medicine – volume: 508 start-page: 380 year: 2019 ident: 2049_CR8 publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2018.11.149 – ident: 2049_CR30 doi: 10.1145/3336191.3371783 – ident: 2049_CR3 doi: 10.1007/978-1-60327-101-1_3 – volume: 16 start-page: 2499 year: 2020 ident: 2049_CR18 publication-title: Future Oncology doi: 10.2217/fon-2020-0356 – volume: 72 start-page: 172 year: 2007 ident: 2049_CR33 publication-title: Talanta doi: 10.1016/j.talanta.2006.10.011 – volume: 9 start-page: 202 year: 2013 ident: 2049_CR23 publication-title: Metabolomics doi: 10.1007/s11306-012-0439-z – ident: 2049_CR31 doi: 10.1016/j.mcpro.2021.100083 – volume: 9 start-page: S year: 2011 ident: 2049_CR12 publication-title: Journal of the National Comprehensive Cancer Network doi: 10.6004/jnccn.2011.0137 – volume: 12 start-page: 132 year: 2008 ident: 2049_CR28 publication-title: Hippokratia – volume: 16 start-page: e0244332 year: 2021 ident: 2049_CR34 publication-title: Plos One doi: 10.1371/journal.pone.0244332 – volume: 244 start-page: 254 year: 2006 ident: 2049_CR25 publication-title: Annals of Surgery doi: 10.1097/01.sla.0000217629.94941.cf – volume: 77 start-page: 1 year: 2020 ident: 2049_CR29 publication-title: Molecular Cell – volume: 28 start-page: 1092 year: 2009 ident: 2049_CR6 publication-title: QSAR & Combinatorial Science doi: 10.1002/qsar.200810202 – volume: 25 start-page: 134 year: 2016 ident: 2049_CR32 publication-title: International Journal of Surgery doi: 10.1016/j.ijsu.2015.11.065 – volume: 12 start-page: 3000 year: 2013 ident: 2049_CR35 publication-title: Journal of Proteome Research doi: 10.1021/pr400337b – volume: 26 start-page: 547 year: 2009 ident: 2049_CR19 publication-title: Glycoconjugate Journal doi: 10.1007/s10719-008-9206-9 |
SSID | ssj0044970 |
Score | 2.4160953 |
Snippet | Introduction
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are... IntroductionColorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are... Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark... |
SourceID | unpaywall pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 84 |
SubjectTerms | Bayesian analysis Biochemistry Biomarkers Biomedical and Life Sciences Biomedicine Cancer Cell Biology Chemokines Colorectal cancer Colorectal carcinoma Developmental Biology Interleukin 8 Learning algorithms Life Sciences Lipid metabolism Lipids Liquid chromatography Liver Machine learning Mass spectroscopy Mathematical models Medical prognosis Metastases Metastasis Molecular Medicine Original Original Article Platelet factor 4 Platelets Polyps Prognosis |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSD-MRolRXEiwaTzSbZHKVYiqAnC97CZh-10KalD6T-endimtoiRa_ZbDaZ2cc3mZlvAK6pYkz5OnIx6dFlQlE3ial0acQ14yoJfIOJws8vUavNnt7Ct5ImB3NhVvz392PfbrIYJoveRotm3c9N2ArtNQzfa0SN-a7LWBJ7ZVLM7_2WD54FmlyNhawcoruwPc2HYvYher0fZ05zH_ZKsEgevrV7ABs6P4Sjh9wayv0ZuSFF-GbxX_wIWhY2YsEhMjAEmahxJ7N9JWp1RDC8vUN63WFXEcy4x6Cc0ZiIXJF-EU6pSVk_onMM7ebja6PllmUSXBn6fOIKLVlAAxUpjWUzJAuNCpnWGZpTykjjccEzXzARGy4t3OHcZNZOEVJoyrMkOIFaPsj1KRBPBoaF2ijPGKYyT1jrUgoWxirytKeEA_5chqksOcSxlEUvXbAfo9xTK_e0kHv66cBt1Wf4zaCx9u76XDVpuZrGKUVSPvTn-g5cVc12HaBzQ-R6MC3uia21R73IAb6k0mpUZNJebsm77wWjtgWZvoW-iQN3c-0vRl_3snfVDPnDt5397-nnsEOL-ZvYrawOtcloqi8sAppkl8XU_wKca_-f priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPwwG0gAgMZCfHC3CWOkziPFTBVSEw8UGk8RY4vW0XnVl0qtP56fNwkpROaQLxFsnOxc-x8J-c73wF4yzTnOjE5xaRHyqVmtCyYoiwXhgtdponFROEvp_l4wj-fZWd78LHLhQls9y4kuclpQJUm1xwvtD3eJr75rRfJsxiD9BiXroe--Q7s5xhmGsD-5PTr6HuQSi1SmopQM6o9LuM2d-bPF9r9Pm1B503KZB83vQ93V24hr3_K2ey3T9PJQzDdoDaMlB_DVVMP1fqG3uP_jvoRPGixKxltjO0x7Bn3BA5Gzvvtl9fkHQls0vCb_gDGHsVi_SMytwSFsXFj9ecqNLIlQbb9OZlNF1NNUAAAOULLKyKdJpeB3WlIW87i_ClMTj59-zCmbdUGqrJENFQaxVOW6lwbrOKheGZ1xo2p0bvTVtlYSFEnksvCCuXRlxC29m6TVNIwUZfpMxi4uTPPgcQqtTwzVsfWcl3H0ju7SvKs0HlsYi0jSLp3ValW0hwra8yqrRgzTlnlp6wKU1atI3jfn7PYCHrc2vuwM4GqXdxXFUONQAwvJxG86Zv9ssRYi3Rmvgp9Cu98sjiPQOyYTn9XFPbebXHTiyDw7TFv4pF4GcFRZxTbu9_2sEe9Jf7F2F78W_eXcI8F0yv9znoIg2a5Mq88IGvq1-16-wV3IS5U priority: 102 providerName: Unpaywall |
Title | Staging of colorectal cancer using lipid biomarkers and machine learning |
URI | https://link.springer.com/article/10.1007/s11306-023-02049-z https://www.proquest.com/docview/2866558471 https://www.proquest.com/docview/2867149206 https://pubmed.ncbi.nlm.nih.gov/PMC10511619 https://link.springer.com/content/pdf/10.1007/s11306-023-02049-z.pdf |
UnpaywallVersion | publishedVersion |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-3890 dateEnd: 20241004 omitProxy: true ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: ABDBF dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-3890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: AFBBN dateStart: 20050301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-3890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: AGYKE dateStart: 20050101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-3890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: U2A dateStart: 20050302 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgewAeEDDQAmMyEuKFWSSOkzhPKC0tFYhqQlTqniLHH6NSl5Z-CG1_PXdumlIeKl4SKY6V5O5y_p3vi5C33AhhIpsyTHpkQhnO8oxrxlNphTR5HDlMFP42TAcj8WWcjJsNt2UTVrnViV5Rm5nGPfIPHAuzoU8v-jj_xbBrFHpXmxYa98lxBFAFpTobtwaXELlvFhclWcxigJJN0swmdQ6UN4bfohcTUDK721-Ydmjz31jJ1mH6iDxY13N1-1tNp3-tSf0n5HEDJmmx4f5Tcs_Wz8hJUYMhfXNL31Ef3un3zU_IAGAlNiSiM0exUjVqOpirkesLiuHv13Q6mU8MxYx8DNpZLKmqDb3x4ZaWNv0lrp-TUb_3oztgTRsFppNIrpiyWsQ8Nqmx2FZDi8SZRFhbobllnHahVLKKlFCZkxrgkJSuAjtGaWW5rPL4BTmqZ7U9JTTUsROJdSZ0TpgqVGB9aiWSzKShDY0KSLSlYambGuPY6mJa7qojI91LoHvp6V7eBeR9O2e-qbBx8O6zLWvK5m9bljvZCMibdhj-E3R-qNrO1v6eDKxBHqYBkXssbZ-Klbb3R-rJT19xG0BoBNA4D8jFlvu7px962YtWQv7j214e_rZX5CH38pqDajsjR6vF2r4GRLSqzr3Yn5PjovOp08fz56uvPTh3esPL7zDaTbtwHPECro2Gl8XVH_EUEH0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VA4IKAgAgWMBFxoROI4iXNAqAKqLX2cWmlvwfGjXWmbXfahavuj-I3MeJMsy2HFpWfHSjwej7_JzHwD8I4bIUxss5CKHkOhDA-LnOuQZ9IKaYokdlQofHqW9S7Ej37a34LfbS0MpVW2NtEbajPS9I_8EydiNorpxV_Gv0LqGkXR1baFxlItju3iBl226eejb7i_7zk__H7-tRc2XQVCncZyFiqrRcITkxlLXSa0SJ1JhbUVeR_GaRdJJatYCZU7qREdSOkqhPVKK8tlReRLaPLviSQSxNWf9zsHT4jCN6eL0zwJcRpvinSWpXp4WVC6L0VNEZWHt-sX4Qrd_pub2QVoH8DOvB6rxY0aDv-6Aw8fwcMGvLKDpbY9hi1bP4Hdgxod9-sF-8B8Oqn_T78LPYSx1ACJjRwjZmyyrDhXk5ZNGKXbX7LhYDwwjBgAKEloMmWqNuzap3da1vSzuHwKF3ci4GewXY9q-xxYpBMnUutM5JwwVaTQ29VKpLnJIhsZFUDcyrDUDac5tdYYlis2ZpJ7iXIvvdzL2wA-dnPGS0aPjU_vtVtTNqd7Wq50MYC33TCeSwq2qNqO5v6ZHL1PHmUByLUt7d5KzN7rI_XgyjN8I-iNEYoXAey3u796-6aP3e805D_W9mLz2t7ATu_89KQ8OTo7fgn3udfdAs3qHmzPJnP7CtHYrHrtjwCDn3d95v4ATO5G_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxqICCGlpgkYALtWqv1_b6gFBFiVIKFQcq5WbW-yiRUifkoSr9afw6Zja2QzhEXHq2V7ZnZ2a_8cx8A_CaGyFMZNOAmh4DoQwP8ozrgKfSCmnyOHLUKPz1PO1diM_9pL8Fv5teGCqrbHyid9RmpOkf-REnYjbK6UVHri6L-HbS_TD-FdAEKcq0NuM0lipyZhfXGL5N35-e4F6_4bz76fvHXlBPGAh0EslZoKwWMY9NaixNnNAicSYR1pYUiRinXSiVLCMlVOakRqQgpSsR4iutLJclETGh-7-TxSKmcrKs3wZ7QuR-UF2UZHGAy3jdsLNs28ODg0p_KYOKCD24WT8UV0j33zrNNln7AO7Nq7FaXKvh8K_zsPsQdmogy46XmvcItmz1GHaPKwzirxbsLfOlpf6f_S70ENLSMCQ2coxYssnL4lpNGjdhVHp_yYaD8cAwYgOggqHJlKnKsCtf6mlZPdvi8glc3IqAn8J2NarsHrBQx04k1pnQOWHKUGHkq5VIMpOGNjSqA1Ejw0LX_OY0ZmNYrJiZSe4Fyr3wci9uOvCuXTNesntsvPug2ZqitvRpsdLLDrxqL6ONUuJFVXY09_dkGInyMO2AXNvS9qnE8r1-pRr89GzfCIAjhOV5Bw6b3V89fdPLHrYa8h_f9mzzt72Eu2htxZfT87N9uM-96uboYQ9gezaZ2-cIzGblC28BDH7ctsn9AYxNSzg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPwwG0gAgMZCfHC3CWOkziPFTBVSEw8UGk8RY4vW0XnVl0qtP56fNwkpROaQLxFsnOxc-x8J-c73wF4yzTnOjE5xaRHyqVmtCyYoiwXhgtdponFROEvp_l4wj-fZWd78LHLhQls9y4kuclpQJUm1xwvtD3eJr75rRfJsxiD9BiXroe--Q7s5xhmGsD-5PTr6HuQSi1SmopQM6o9LuM2d-bPF9r9Pm1B503KZB83vQ93V24hr3_K2ey3T9PJQzDdoDaMlB_DVVMP1fqG3uP_jvoRPGixKxltjO0x7Bn3BA5Gzvvtl9fkHQls0vCb_gDGHsVi_SMytwSFsXFj9ecqNLIlQbb9OZlNF1NNUAAAOULLKyKdJpeB3WlIW87i_ClMTj59-zCmbdUGqrJENFQaxVOW6lwbrOKheGZ1xo2p0bvTVtlYSFEnksvCCuXRlxC29m6TVNIwUZfpMxi4uTPPgcQqtTwzVsfWcl3H0ju7SvKs0HlsYi0jSLp3ValW0hwra8yqrRgzTlnlp6wKU1atI3jfn7PYCHrc2vuwM4GqXdxXFUONQAwvJxG86Zv9ssRYi3Rmvgp9Cu98sjiPQOyYTn9XFPbebXHTiyDw7TFv4pF4GcFRZxTbu9_2sEe9Jf7F2F78W_eXcI8F0yv9znoIg2a5Mq88IGvq1-16-wV3IS5U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staging+of+colorectal+cancer+using+lipid+biomarkers+and+machine+learning&rft.jtitle=Metabolomics&rft.au=Krishnan%2C+Sanduru+Thamarai&rft.au=Winkler%2C+David&rft.au=Creek%2C+Darren&rft.au=Anderson%2C+Dovile&rft.date=2023-09-20&rft.issn=1573-3890&rft.eissn=1573-3890&rft.volume=19&rft.issue=10&rft_id=info:doi/10.1007%2Fs11306-023-02049-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11306_023_02049_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3890&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3890&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3890&client=summon |