Staging of colorectal cancer using lipid biomarkers and machine learning

Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently need...

Full description

Saved in:
Bibliographic Details
Published inMetabolomics Vol. 19; no. 10; p. 84
Main Authors Krishnan, Sanduru Thamarai, Winkler, David, Creek, Darren, Anderson, Dovile, Kirana, Chandra, Maddern, Guy J, Fenix, Kevin, Hauben, Ehud, Rudd, David, Voelcker, Nicolas Hans
Format Journal Article
LanguageEnglish
Published New York Springer US 20.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-3890
1573-3882
1573-3890
DOI10.1007/s11306-023-02049-z

Cover

Abstract Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes. Objectives The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM). Methods High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group. Results Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts. Conclusion Our findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention.
AbstractList Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes.INTRODUCTIONColorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes.The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM).OBJECTIVESThe aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM).High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient's preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group.METHODSHigh-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient's preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group.Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.RESULTSBayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.Our findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention.CONCLUSIONOur findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention.
IntroductionColorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes.ObjectivesThe aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM).MethodsHigh-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group.ResultsBayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts.ConclusionOur findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention.
Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark characteristics of malignant progression and metastasis of CRC. Validated diagnostic and prognostic biomarkers are urgently needed to define molecular heterogeneous CRC clinical stages and subtypes, as liver dominant metastasis has poor survival outcomes. Objectives The aim of this study was to integrate lipid changes, concentrations of chemokines, such as platelet factor 4 and interleukin 8, and gene marker status measured in plasma samples, with clinical features from patients at different CRC stages or who had progressed to stage-IV colorectal liver metastasis (CLM). Methods High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) was used to determine the levels of candidate lipid biomarkers in each CRC patient’s preoperative plasma samples and combined with chemokine, gene and clinical data. Machine learning models were then trained using known clinical outcomes to select biomarker combinations that best classify CRC stage and group. Results Bayesian neural net and multilinear regression-machine learning identified candidate biomarkers that classify CRC (stages I-III), CLM patients and control subjects (cancer-free or patients with polyps/diverticulitis), showing that integrating specific lipid signatures and chemokines (platelet factor-4 and interluken-8; IL-8) can improve prognostic accuracy. Gene marker status could contribute to disease prediction, but requires ubiquitous testing in clinical cohorts. Conclusion Our findings demonstrate that correlating multiple disease related features with lipid changes could improve CRC prognosis. The identified signatures could be used as reference biomarkers to predict CRC prognosis and classify stages, and monitor therapeutic intervention.
ArticleNumber 84
Author Creek, Darren
Kirana, Chandra
Krishnan, Sanduru Thamarai
Rudd, David
Maddern, Guy J
Voelcker, Nicolas Hans
Winkler, David
Fenix, Kevin
Hauben, Ehud
Anderson, Dovile
Author_xml – sequence: 1
  givenname: Sanduru Thamarai
  surname: Krishnan
  fullname: Krishnan, Sanduru Thamarai
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Department of Chemistry, University of Reading, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility
– sequence: 2
  givenname: David
  surname: Winkler
  fullname: Winkler, David
  organization: Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, School of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, School of Pharmacy, University of Nottingham
– sequence: 3
  givenname: Darren
  surname: Creek
  fullname: Creek, Darren
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University
– sequence: 4
  givenname: Dovile
  surname: Anderson
  fullname: Anderson, Dovile
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University
– sequence: 5
  givenname: Chandra
  surname: Kirana
  fullname: Kirana, Chandra
  organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital
– sequence: 6
  givenname: Guy J
  surname: Maddern
  fullname: Maddern, Guy J
  organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital
– sequence: 7
  givenname: Kevin
  surname: Fenix
  fullname: Fenix, Kevin
  organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital
– sequence: 8
  givenname: Ehud
  surname: Hauben
  fullname: Hauben, Ehud
  organization: Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital
– sequence: 9
  givenname: David
  surname: Rudd
  fullname: Rudd, David
  email: david.rudd@monash.edu
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility
– sequence: 10
  givenname: Nicolas Hans
  surname: Voelcker
  fullname: Voelcker, Nicolas Hans
  email: nicolas.voelcker@monash.edu
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Commonwealth Scientific and Industrial Research Organization (CSIRO)
BookMark eNqNkM1L5TAUxcOgMH79A7MquJlNx3y1TVcyiI6CMIvRdbhNb5_RvOSZtIr-9aa-B44uxEVI4J5z7slvl2z54JGQH4z-YpQ2R4kxQeuScpEPlW35_I3ssKoRpVAt3frv_Z3spnRLqZRtQ3fI-b8RFtYvijAUJrgQ0YzgCgPeYCymNI-cXdm-6GxYQrzDmArwfbEEc2M9Fg4h-qzaJ9sDuIQHm3uPXJ-dXp2cl5d__1yc_L4sTcXUWAIaKbjo6x55o4SR1dBXErGjXPF-MANVoDoGEppBmZoLpYZOqgYMIFddK_aIWOdOfgVPj-CcXkWbmz1pRvUMQ69h6AxDv8LQz9l1vHatpm6JvUE_RnhzBrD6_cTbG70IDzmwYqxm896fm4QY7idMo17aZNA58BimpLmqGyZbTussPfwgvQ1T9JnKrKqrSsmGZRVfq0wMKUUcvvYP9cFk7AijDXNr6z63bsClvMcvML61-sT1AjvHuQg
CitedBy_id crossref_primary_10_4251_wjgo_v16_i5_1995
crossref_primary_10_1007_s00424_024_02960_x
crossref_primary_10_3390_medicina60081204
crossref_primary_10_3390_biomedicines13020359
crossref_primary_10_1080_17474124_2024_2393180
crossref_primary_10_3390_ijms25147722
crossref_primary_10_3390_life15020320
crossref_primary_10_1038_s41598_025_94496_y
Cites_doi 10.1128/AAC.02656-17
10.1016/j.nutres.2020.01.001
10.1186/s13578-019-0361-4
10.1245/s10434-015-5014-1
10.1007/s11306-012-0439-z
10.1002/qsar.200810202
10.1093/bioinformatics/bts069
10.1186/s13046-016-0328-9
10.1093/jnci/djab190
10.2119/molmed.2010.00115
10.1016/j.talanta.2006.10.011
10.1021/acs.jmedchem.5b01439
10.1021/acs.analchem.1c03249
10.1016/j.tranon.2021.101174
10.1016/S0021-9258(18)64849-5
10.1200/PO.19.00274
10.1016/j.bbamem.2017.04.027
10.1016/j.bbrc.2018.11.149
10.1002/qsar.200810173
10.1111/ajco.12761
10.6004/jnccn.2011.0137
10.1021/pr400337b
10.1097/01.sla.0000217629.94941.cf
10.1007/s10719-008-9206-9
10.3945/ajcn.113.065714
10.1016/j.ijsu.2015.11.065
10.1007/s11010-005-3557-3
10.1371/journal.pone.0244332
10.1021/jm980697n
10.2217/fon-2020-0356
10.1145/3336191.3371783
10.1007/978-1-60327-101-1_3
10.1016/j.mcpro.2021.100083
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11306-023-02049-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1573-3890
ExternalDocumentID 10.1007/s11306-023-02049-z
PMC10511619
10_1007_s11306_023_02049_z
GrantInformation_xml – fundername: Commonwealth Scientific and Industrial Research Organisation (CSIRO)
– fundername: ;
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67N
67Z
6NX
7X7
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
LMP
M4Y
M7P
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OAM
P2P
PF0
PQQKQ
PROAC
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z82
Z83
Z87
ZMTXR
ZOVNA
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
-Y2
2P1
2VQ
AANXM
AARHV
ABQSL
ABULA
ADHKG
ADTOC
AEBTG
AEKMD
AFGCZ
AGJBK
AGQPQ
AHSBF
AJBLW
BDATZ
CAG
COF
EJD
EN4
FINBP
FSGXE
H13
N2Q
O9-
S1Z
UNPAY
ID FETCH-LOGICAL-c518t-aec4323d6de2783c45fd54eeb0282dfcf08a8b1a4a7f8c62388fb487acae28b93
IEDL.DBID 7X7
ISSN 1573-3890
1573-3882
IngestDate Wed Aug 20 00:00:31 EDT 2025
Tue Sep 30 17:12:52 EDT 2025
Fri Sep 05 13:44:19 EDT 2025
Fri Jul 25 12:25:39 EDT 2025
Wed Oct 01 02:40:52 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 21 02:41:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Lipidomics
Biomarker
Cancer Subtypes
Metastatic colorectal cancer classification
Multi-omics
Machine learning
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-aec4323d6de2783c45fd54eeb0282dfcf08a8b1a4a7f8c62388fb487acae28b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s11306-023-02049-z
PQID 2866558471
PQPubID 326279
ParticipantIDs unpaywall_primary_10_1007_s11306_023_02049_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10511619
proquest_miscellaneous_2867149206
proquest_journals_2866558471
crossref_primary_10_1007_s11306_023_02049_z
crossref_citationtrail_10_1007_s11306_023_02049_z
springer_journals_10_1007_s11306_023_02049_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-20
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-20
  day: 20
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle Metabolomics
PublicationTitleAbbrev Metabolomics
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Stanimirova, Daszykowski, Walczak (CR33) 2007; 72
Deng, Yang, Zeng, Xiao, Li, Luan (CR10) 2021; 93
Becerra, Probst, Tejani, Aquina, González, Hensley, Noyes, Monson, Fleming (CR2) 2016; 23
Dobrzyńska, Szachowicz-Petelska, Sulkowski, Figaszewski (CR11) 2005; 276
Folch, Lees, Sloane Stanley (CR13) 1957; 226
Malan, Smuts, Baumgartner, Ricci (CR24) 2020; 75
Febbo, Ladanyi, Aldape, De Marzo, Hammond, Hayes, Iafrate, Kelley, Marcucci, Ogino (CR12) 2011; 9
Zhao, Bi, Kou, Shi, Piao (CR38) 2016; 35
Meyer, Gruba, Kim, Meyer, Koseoglu, Dalluge, Haynes (CR26) 2017; 1859
Sun, Pastor, Du, Powell, Zhang, Bodmer, Wu, Zheng, Sha (CR34) 2021; 16
Creek, Jankevics, Burgess, Breitling, Barrett (CR9) 2012; 28
Health, Welfare (CR17) 2018; 14
Kuo, Chan, Chang, Fan, Hung, Hung, Chen, Yu, Chang, Chan (CR21) 2011; 17
CR31
CR30
Manfredi, Lepage, Hatem, Coatmeur, Faivre, Bouvier (CR25) 2006; 244
Notarnicola, Altomare, Correale, Ruggieri, D’Attoma, Mastrosimini, Guerra, Caruso (CR27) 2005; 68
Burden, Winkler (CR6) 2009; 28
Paschos, Bird (CR28) 2008; 12
Prochownik, Fan, Li (CR29) 2020; 77
Koveitypour, Panahi, Vakilian, Peymani, Forootan, Esfahani, Ghaedi (CR20) 2019; 9
Li, Guo, Song, Deng, Cong, Li, Zhao, Liu, Xiao, Xu (CR23) 2013; 9
Formica, Sera, Cremolini, Riondino, Morelli, Arkenau, Roselli (CR14) 2022; 114
Xi, Xu (CR36) 2021; 14
CR3
Zhao, Bi, Kou, Shi, Piao (CR37) 2016; 35
Tan, Qiu, Zou, Chen, Xie, Cheng, Dong, Zhao, Feng, Hu (CR35) 2013; 12
Chatterjee, Hou, Bandaru, Pezhouh, Mannan, Sharma (CR8) 2019; 508
Byberg, Kilander, Warensjö Lemming, Michaëlsson, Vessby (CR7) 2014; 99
Gutierrez, Price, Lanman, Nagy, Shah, Mathura, Mulcahy, Norden, Goldberg (CR15) 2019; 3
Aurelio, Scullino, Pitman, Sexton, Oliver, Davies, Rebello, Furic, Creek, Pitson (CR1) 2016; 59
Burden, Winkler (CR4) 2009; 28
Han, Zhu, Creek, Lin, Anderson, Shen, Tsuji, Gutu, Moskowitz, Velkov (CR16) 2018; 62
Kirana, Smith, Ngo, Trochsler, Hewett, Stubbs, Hardingham, Maddern, Hauben (CR18) 2020; 16
Lalosevic, Stankovic, Stojkovic, Markovic, Dimitrijevic, Lalosevic, Petrovic, Brankovic, Markovic, Krivokapic (CR22) 2017; 20
Kolmakova, Rajesh, Zang, Pili, Chatterjee (CR19) 2009; 26
Burden, Winkler (CR5) 1999; 42
Sørensen, Karlsson, Pommergaard, Burcharth, Rosenberg (CR32) 2016; 25
A Kolmakova (2049_CR19) 2009; 26
L Malan (2049_CR24) 2020; 75
S Li (2049_CR23) 2013; 9
S Manfredi (2049_CR25) 2006; 244
ML Han (2049_CR16) 2018; 62
MS Lalosevic (2049_CR22) 2017; 20
C Kirana (2049_CR18) 2020; 16
CG Sørensen (2049_CR32) 2016; 25
Q Sun (2049_CR34) 2021; 16
J Deng (2049_CR10) 2021; 93
J Folch (2049_CR13) 1957; 226
AI Health (2049_CR17) 2018; 14
AZ Becerra (2049_CR2) 2016; 23
I Dobrzyńska (2049_CR11) 2005; 276
AF Meyer (2049_CR26) 2017; 1859
2049_CR3
PG Febbo (2049_CR12) 2011; 9
B Tan (2049_CR35) 2013; 12
Y Xi (2049_CR36) 2021; 14
L Zhao (2049_CR37) 2016; 35
YB Kuo (2049_CR21) 2011; 17
FR Burden (2049_CR6) 2009; 28
SB Chatterjee (2049_CR8) 2019; 508
M Notarnicola (2049_CR27) 2005; 68
K Paschos (2049_CR28) 2008; 12
FR Burden (2049_CR4) 2009; 28
ME Gutierrez (2049_CR15) 2019; 3
EV Prochownik (2049_CR29) 2020; 77
2049_CR30
2049_CR31
L Zhao (2049_CR38) 2016; 35
V Formica (2049_CR14) 2022; 114
DJ Creek (2049_CR9) 2012; 28
FR Burden (2049_CR5) 1999; 42
I Stanimirova (2049_CR33) 2007; 72
Z Koveitypour (2049_CR20) 2019; 9
L Aurelio (2049_CR1) 2016; 59
L Byberg (2049_CR7) 2014; 99
References_xml – volume: 62
  start-page: e02656
  year: 2018
  end-page: e02617
  ident: CR16
  article-title: Alterations of metabolic and lipid profiles in polymyxin-resistant Pseudomonas aeruginosa
  publication-title: Antimicrobial Agents and Chemotherapy
  doi: 10.1128/AAC.02656-17
– volume: 75
  start-page: 67
  year: 2020
  end-page: 76
  ident: CR24
  article-title: Missing data imputation via the expectation-maximization algorithm can improve principal component analysis aimed at deriving biomarker profiles and dietary patterns
  publication-title: Nutrition Research
  doi: 10.1016/j.nutres.2020.01.001
– volume: 9
  start-page: 97
  year: 2019
  ident: CR20
  article-title: Signaling pathways involved in colorectal cancer progression
  publication-title: Cell & Bioscience
  doi: 10.1186/s13578-019-0361-4
– ident: CR30
– volume: 23
  start-page: 1554
  year: 2016
  end-page: 1561
  ident: CR2
  article-title: Evaluating the prognostic role of elevated preoperative carcinoembryonic antigen levels in colon cancer patients: Results from the national cancer database
  publication-title: Annals of Surgical Oncology
  doi: 10.1245/s10434-015-5014-1
– volume: 9
  start-page: 202
  year: 2013
  end-page: 212
  ident: CR23
  article-title: Plasma choline-containing phospholipids: Potential biomarkers for colorectal cancer progression
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0439-z
– volume: 28
  start-page: 1092
  year: 2009
  end-page: 1097
  ident: CR6
  article-title: An optimal self-pruning neural network and nonlinear descriptor selection in QSAR
  publication-title: QSAR & Combinatorial Science
  doi: 10.1002/qsar.200810202
– volume: 28
  start-page: 1048
  year: 2012
  end-page: 1049
  ident: CR9
  article-title: IDEOM: An Excel interface for analysis of LC–MS-based metabolomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts069
– volume: 35
  start-page: 54
  year: 2016
  ident: CR37
  article-title: Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients
  publication-title: Journal of Experimental & Clinical Cancer Research
  doi: 10.1186/s13046-016-0328-9
– volume: 12
  start-page: 132
  year: 2008
  ident: CR28
  article-title: Current diagnostic and therapeutic approaches for colorectal cancer liver metastasis
  publication-title: Hippokratia
– volume: 114
  start-page: 517
  year: 2022
  end-page: 527
  ident: CR14
  article-title: KRAS and BRAF mutations in stage II and III Colon cancer: A systematic review and Meta-analysis
  publication-title: JNCI: Journal of the National Cancer Institute
  doi: 10.1093/jnci/djab190
– volume: 17
  start-page: 41
  year: 2011
  end-page: 47
  ident: CR21
  article-title: Identification of phospholipid scramblase 1 as a biomarker and determination of its prognostic value for colorectal cancer
  publication-title: Molecular Medicine
  doi: 10.2119/molmed.2010.00115
– volume: 20
  start-page: 41
  year: 2017
  end-page: 45
  ident: CR22
  article-title: Can preoperative CEA and CA19-9 serum concentrations suggest metastatic disease in colorectal cancer patients?
  publication-title: Hellenic Journal of Nuclear Medicine
– volume: 72
  start-page: 172
  year: 2007
  end-page: 178
  ident: CR33
  article-title: Dealing with missing values and outliers in principal component analysis
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.10.011
– volume: 35
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR38
  article-title: Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients
  publication-title: Journal of Experimental & Clinical Cancer Research
  doi: 10.1186/s13046-016-0328-9
– volume: 68
  start-page: 371
  year: 2005
  end-page: 374
  ident: CR27
  article-title: Serum lipid profile in colorectal cancer patients with and without synchronous distant metastases
  publication-title: Oncology (Williston Park, N.Y.)
– volume: 59
  start-page: 965
  year: 2016
  end-page: 984
  ident: CR1
  article-title: From sphingosine kinase to dihydroceramide desaturase: A structure–activity relationship (SAR) study of the enzyme inhibitory and anticancer activity of 4-((4-(4-chlorophenyl) thiazol-2-yl) amino) phenol (SKI-II)
  publication-title: Journal of Medicinal Chemistry
  doi: 10.1021/acs.jmedchem.5b01439
– volume: 93
  start-page: 13089
  year: 2021
  end-page: 13098
  ident: CR10
  article-title: Discovery of potential lipid biomarkers for human colorectal Cancer by In-Capillary extraction Nanoelectrospray Ionization Mass Spectrometry
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.1c03249
– volume: 14
  start-page: 101174
  year: 2021
  ident: CR36
  article-title: Global colorectal cancer burden in 2020 and projections to 2040
  publication-title: Translational Oncology
  doi: 10.1016/j.tranon.2021.101174
– volume: 226
  start-page: 497
  year: 1957
  end-page: 509
  ident: CR13
  article-title: A simple method for the isolation and purification of total lipids from animal tissues
  publication-title: J biol Chem
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 3
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR15
  article-title: Genomic profiling for KRAS, NRAS, BRAF, microsatellite instability, and mismatch repair deficiency among patients with metastatic colon cancer
  publication-title: JCO Precision Oncology
  doi: 10.1200/PO.19.00274
– volume: 1859
  start-page: 1381
  year: 2017
  end-page: 1387
  ident: CR26
  article-title: Stereochemistry-and concentration-dependent effects of phosphatidylserine enrichment on platelet function
  publication-title: Biochimica et Biophysica Acta (BBA)-Biomembranes
  doi: 10.1016/j.bbamem.2017.04.027
– ident: CR3
– volume: 77
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR29
  article-title: Dynamic regulation of ME1 phosphorylation and Acetylation affects lipid metabolism and colorectal tumorigenesis
  publication-title: Molecular Cell
– ident: CR31
– volume: 508
  start-page: 380
  year: 2019
  end-page: 386
  ident: CR8
  article-title: Lactosylceramide synthase β-1, 4-GalT-V: A novel target for the diagnosis and therapy of human colorectal cancer
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2018.11.149
– volume: 28
  start-page: 645
  year: 2009
  end-page: 653
  ident: CR4
  article-title: Optimal sparse descriptor selection for QSAR using bayesian methods
  publication-title: QSAR & Combinatorial Science
  doi: 10.1002/qsar.200810173
– volume: 14
  start-page: 5
  year: 2018
  end-page: 15
  ident: CR17
  article-title: Cancer in Australia: Actual incidence data from 1982 to 2013 and mortality data from 1982 to 2014 with projections to 2017
  publication-title: Asia-Pacific Journal of Clinical Oncology
  doi: 10.1111/ajco.12761
– volume: 9
  start-page: S
  year: 2011
  end-page: 1
  ident: CR12
  article-title: NCCN Task Force report: Evaluating the clinical utility of tumor markers in oncology
  publication-title: Journal of the National Comprehensive Cancer Network
  doi: 10.6004/jnccn.2011.0137
– volume: 12
  start-page: 3000
  year: 2013
  end-page: 3009
  ident: CR35
  article-title: Metabonomics identifies serum metabolite markers of colorectal cancer
  publication-title: Journal of Proteome Research
  doi: 10.1021/pr400337b
– volume: 244
  start-page: 254
  year: 2006
  ident: CR25
  article-title: Epidemiology and management of liver metastases from colorectal cancer
  publication-title: Annals of Surgery
  doi: 10.1097/01.sla.0000217629.94941.cf
– volume: 26
  start-page: 547
  year: 2009
  end-page: 558
  ident: CR19
  article-title: VEGF recruits lactosylceramide to induce endothelial cell adhesion molecule expression and angiogenesis in vitro and in vivo
  publication-title: Glycoconjugate Journal
  doi: 10.1007/s10719-008-9206-9
– volume: 99
  start-page: 551
  year: 2014
  end-page: 558
  ident: CR7
  article-title: Cancer death is related to high palmitoleic acid in serum and to polymorphisms in the SCD-1 gene in healthy swedish men
  publication-title: The American Journal of Clinical Nutrition
  doi: 10.3945/ajcn.113.065714
– volume: 25
  start-page: 134
  year: 2016
  end-page: 144
  ident: CR32
  article-title: The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence–A systematic review
  publication-title: International Journal of Surgery
  doi: 10.1016/j.ijsu.2015.11.065
– volume: 276
  start-page: 113
  year: 2005
  end-page: 119
  ident: CR11
  article-title: Changes in electric charge and phospholipids composition in human colorectal cancer cells
  publication-title: Molecular and Cellular Biochemistry
  doi: 10.1007/s11010-005-3557-3
– volume: 16
  start-page: e0244332
  year: 2021
  ident: CR34
  article-title: A novel xenonucleic acid-mediated molecular clamping technology for early colorectal cancer screening
  publication-title: Plos One
  doi: 10.1371/journal.pone.0244332
– volume: 42
  start-page: 3183
  year: 1999
  end-page: 3187
  ident: CR5
  article-title: Robust QSAR models using bayesian regularized neural networks
  publication-title: Journal of Medicinal Chemistry
  doi: 10.1021/jm980697n
– volume: 16
  start-page: 2499
  year: 2020
  end-page: 2509
  ident: CR18
  article-title: High preoperative levels of circulating SFRP5 predict better prognosis in colorectal cancer patients
  publication-title: Future Oncology
  doi: 10.2217/fon-2020-0356
– volume: 226
  start-page: 497
  year: 1957
  ident: 2049_CR13
  publication-title: J biol Chem
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 99
  start-page: 551
  year: 2014
  ident: 2049_CR7
  publication-title: The American Journal of Clinical Nutrition
  doi: 10.3945/ajcn.113.065714
– volume: 23
  start-page: 1554
  year: 2016
  ident: 2049_CR2
  publication-title: Annals of Surgical Oncology
  doi: 10.1245/s10434-015-5014-1
– volume: 62
  start-page: e02656
  year: 2018
  ident: 2049_CR16
  publication-title: Antimicrobial Agents and Chemotherapy
  doi: 10.1128/AAC.02656-17
– volume: 1859
  start-page: 1381
  year: 2017
  ident: 2049_CR26
  publication-title: Biochimica et Biophysica Acta (BBA)-Biomembranes
  doi: 10.1016/j.bbamem.2017.04.027
– volume: 93
  start-page: 13089
  year: 2021
  ident: 2049_CR10
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.1c03249
– volume: 59
  start-page: 965
  year: 2016
  ident: 2049_CR1
  publication-title: Journal of Medicinal Chemistry
  doi: 10.1021/acs.jmedchem.5b01439
– volume: 42
  start-page: 3183
  year: 1999
  ident: 2049_CR5
  publication-title: Journal of Medicinal Chemistry
  doi: 10.1021/jm980697n
– volume: 68
  start-page: 371
  year: 2005
  ident: 2049_CR27
  publication-title: Oncology (Williston Park, N.Y.)
– volume: 14
  start-page: 5
  year: 2018
  ident: 2049_CR17
  publication-title: Asia-Pacific Journal of Clinical Oncology
  doi: 10.1111/ajco.12761
– volume: 276
  start-page: 113
  year: 2005
  ident: 2049_CR11
  publication-title: Molecular and Cellular Biochemistry
  doi: 10.1007/s11010-005-3557-3
– volume: 28
  start-page: 1048
  year: 2012
  ident: 2049_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts069
– volume: 17
  start-page: 41
  year: 2011
  ident: 2049_CR21
  publication-title: Molecular Medicine
  doi: 10.2119/molmed.2010.00115
– volume: 28
  start-page: 645
  year: 2009
  ident: 2049_CR4
  publication-title: QSAR & Combinatorial Science
  doi: 10.1002/qsar.200810173
– volume: 114
  start-page: 517
  year: 2022
  ident: 2049_CR14
  publication-title: JNCI: Journal of the National Cancer Institute
  doi: 10.1093/jnci/djab190
– volume: 3
  start-page: 1
  year: 2019
  ident: 2049_CR15
  publication-title: JCO Precision Oncology
  doi: 10.1200/PO.19.00274
– volume: 75
  start-page: 67
  year: 2020
  ident: 2049_CR24
  publication-title: Nutrition Research
  doi: 10.1016/j.nutres.2020.01.001
– volume: 35
  start-page: 1
  year: 2016
  ident: 2049_CR38
  publication-title: Journal of Experimental & Clinical Cancer Research
  doi: 10.1186/s13046-016-0328-9
– volume: 14
  start-page: 101174
  year: 2021
  ident: 2049_CR36
  publication-title: Translational Oncology
  doi: 10.1016/j.tranon.2021.101174
– volume: 9
  start-page: 97
  year: 2019
  ident: 2049_CR20
  publication-title: Cell & Bioscience
  doi: 10.1186/s13578-019-0361-4
– volume: 35
  start-page: 54
  year: 2016
  ident: 2049_CR37
  publication-title: Journal of Experimental & Clinical Cancer Research
  doi: 10.1186/s13046-016-0328-9
– volume: 20
  start-page: 41
  year: 2017
  ident: 2049_CR22
  publication-title: Hellenic Journal of Nuclear Medicine
– volume: 508
  start-page: 380
  year: 2019
  ident: 2049_CR8
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2018.11.149
– ident: 2049_CR30
  doi: 10.1145/3336191.3371783
– ident: 2049_CR3
  doi: 10.1007/978-1-60327-101-1_3
– volume: 16
  start-page: 2499
  year: 2020
  ident: 2049_CR18
  publication-title: Future Oncology
  doi: 10.2217/fon-2020-0356
– volume: 72
  start-page: 172
  year: 2007
  ident: 2049_CR33
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.10.011
– volume: 9
  start-page: 202
  year: 2013
  ident: 2049_CR23
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0439-z
– ident: 2049_CR31
  doi: 10.1016/j.mcpro.2021.100083
– volume: 9
  start-page: S
  year: 2011
  ident: 2049_CR12
  publication-title: Journal of the National Comprehensive Cancer Network
  doi: 10.6004/jnccn.2011.0137
– volume: 12
  start-page: 132
  year: 2008
  ident: 2049_CR28
  publication-title: Hippokratia
– volume: 16
  start-page: e0244332
  year: 2021
  ident: 2049_CR34
  publication-title: Plos One
  doi: 10.1371/journal.pone.0244332
– volume: 244
  start-page: 254
  year: 2006
  ident: 2049_CR25
  publication-title: Annals of Surgery
  doi: 10.1097/01.sla.0000217629.94941.cf
– volume: 77
  start-page: 1
  year: 2020
  ident: 2049_CR29
  publication-title: Molecular Cell
– volume: 28
  start-page: 1092
  year: 2009
  ident: 2049_CR6
  publication-title: QSAR & Combinatorial Science
  doi: 10.1002/qsar.200810202
– volume: 25
  start-page: 134
  year: 2016
  ident: 2049_CR32
  publication-title: International Journal of Surgery
  doi: 10.1016/j.ijsu.2015.11.065
– volume: 12
  start-page: 3000
  year: 2013
  ident: 2049_CR35
  publication-title: Journal of Proteome Research
  doi: 10.1021/pr400337b
– volume: 26
  start-page: 547
  year: 2009
  ident: 2049_CR19
  publication-title: Glycoconjugate Journal
  doi: 10.1007/s10719-008-9206-9
SSID ssj0044970
Score 2.4160953
Snippet Introduction Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are...
IntroductionColorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are...
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Alteration in lipid metabolism and chemokine expression are considered hallmark...
SourceID unpaywall
pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 84
SubjectTerms Bayesian analysis
Biochemistry
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cancer
Cell Biology
Chemokines
Colorectal cancer
Colorectal carcinoma
Developmental Biology
Interleukin 8
Learning algorithms
Life Sciences
Lipid metabolism
Lipids
Liquid chromatography
Liver
Machine learning
Mass spectroscopy
Mathematical models
Medical prognosis
Metastases
Metastasis
Molecular Medicine
Original
Original Article
Platelet factor 4
Platelets
Polyps
Prognosis
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSD-MRolRXEiwaTzSbZHKVYiqAnC97CZh-10KalD6T-endimtoiRa_ZbDaZ2cc3mZlvAK6pYkz5OnIx6dFlQlE3ial0acQ14yoJfIOJws8vUavNnt7Ct5ImB3NhVvz392PfbrIYJoveRotm3c9N2ArtNQzfa0SN-a7LWBJ7ZVLM7_2WD54FmlyNhawcoruwPc2HYvYher0fZ05zH_ZKsEgevrV7ABs6P4Sjh9wayv0ZuSFF-GbxX_wIWhY2YsEhMjAEmahxJ7N9JWp1RDC8vUN63WFXEcy4x6Cc0ZiIXJF-EU6pSVk_onMM7ebja6PllmUSXBn6fOIKLVlAAxUpjWUzJAuNCpnWGZpTykjjccEzXzARGy4t3OHcZNZOEVJoyrMkOIFaPsj1KRBPBoaF2ijPGKYyT1jrUgoWxirytKeEA_5chqksOcSxlEUvXbAfo9xTK_e0kHv66cBt1Wf4zaCx9u76XDVpuZrGKUVSPvTn-g5cVc12HaBzQ-R6MC3uia21R73IAb6k0mpUZNJebsm77wWjtgWZvoW-iQN3c-0vRl_3snfVDPnDt5397-nnsEOL-ZvYrawOtcloqi8sAppkl8XU_wKca_-f
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPwwG0gAgMZCfHC3CWOkziPFTBVSEw8UGk8RY4vW0XnVl0qtP56fNwkpROaQLxFsnOxc-x8J-c73wF4yzTnOjE5xaRHyqVmtCyYoiwXhgtdponFROEvp_l4wj-fZWd78LHLhQls9y4kuclpQJUm1xwvtD3eJr75rRfJsxiD9BiXroe--Q7s5xhmGsD-5PTr6HuQSi1SmopQM6o9LuM2d-bPF9r9Pm1B503KZB83vQ93V24hr3_K2ey3T9PJQzDdoDaMlB_DVVMP1fqG3uP_jvoRPGixKxltjO0x7Bn3BA5Gzvvtl9fkHQls0vCb_gDGHsVi_SMytwSFsXFj9ecqNLIlQbb9OZlNF1NNUAAAOULLKyKdJpeB3WlIW87i_ClMTj59-zCmbdUGqrJENFQaxVOW6lwbrOKheGZ1xo2p0bvTVtlYSFEnksvCCuXRlxC29m6TVNIwUZfpMxi4uTPPgcQqtTwzVsfWcl3H0ju7SvKs0HlsYi0jSLp3ValW0hwra8yqrRgzTlnlp6wKU1atI3jfn7PYCHrc2vuwM4GqXdxXFUONQAwvJxG86Zv9ssRYi3Rmvgp9Cu98sjiPQOyYTn9XFPbebXHTiyDw7TFv4pF4GcFRZxTbu9_2sEe9Jf7F2F78W_eXcI8F0yv9znoIg2a5Mq88IGvq1-16-wV3IS5U
  priority: 102
  providerName: Unpaywall
Title Staging of colorectal cancer using lipid biomarkers and machine learning
URI https://link.springer.com/article/10.1007/s11306-023-02049-z
https://www.proquest.com/docview/2866558471
https://www.proquest.com/docview/2867149206
https://pubmed.ncbi.nlm.nih.gov/PMC10511619
https://link.springer.com/content/pdf/10.1007/s11306-023-02049-z.pdf
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-3890
  dateEnd: 20241004
  omitProxy: true
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: ABDBF
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: AFBBN
  dateStart: 20050301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: AGYKE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: U2A
  dateStart: 20050302
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgewAeEDDQAmMyEuKFWSSOkzhPKC0tFYhqQlTqniLHH6NSl5Z-CG1_PXdumlIeKl4SKY6V5O5y_p3vi5C33AhhIpsyTHpkQhnO8oxrxlNphTR5HDlMFP42TAcj8WWcjJsNt2UTVrnViV5Rm5nGPfIPHAuzoU8v-jj_xbBrFHpXmxYa98lxBFAFpTobtwaXELlvFhclWcxigJJN0swmdQ6UN4bfohcTUDK721-Ydmjz31jJ1mH6iDxY13N1-1tNp3-tSf0n5HEDJmmx4f5Tcs_Wz8hJUYMhfXNL31Ef3un3zU_IAGAlNiSiM0exUjVqOpirkesLiuHv13Q6mU8MxYx8DNpZLKmqDb3x4ZaWNv0lrp-TUb_3oztgTRsFppNIrpiyWsQ8Nqmx2FZDi8SZRFhbobllnHahVLKKlFCZkxrgkJSuAjtGaWW5rPL4BTmqZ7U9JTTUsROJdSZ0TpgqVGB9aiWSzKShDY0KSLSlYambGuPY6mJa7qojI91LoHvp6V7eBeR9O2e-qbBx8O6zLWvK5m9bljvZCMibdhj-E3R-qNrO1v6eDKxBHqYBkXssbZ-Klbb3R-rJT19xG0BoBNA4D8jFlvu7px962YtWQv7j214e_rZX5CH38pqDajsjR6vF2r4GRLSqzr3Yn5PjovOp08fz56uvPTh3esPL7zDaTbtwHPECro2Gl8XVH_EUEH0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VA4IKAgAgWMBFxoROI4iXNAqAKqLX2cWmlvwfGjXWmbXfahavuj-I3MeJMsy2HFpWfHSjwej7_JzHwD8I4bIUxss5CKHkOhDA-LnOuQZ9IKaYokdlQofHqW9S7Ej37a34LfbS0MpVW2NtEbajPS9I_8EydiNorpxV_Gv0LqGkXR1baFxlItju3iBl226eejb7i_7zk__H7-tRc2XQVCncZyFiqrRcITkxlLXSa0SJ1JhbUVeR_GaRdJJatYCZU7qREdSOkqhPVKK8tlReRLaPLviSQSxNWf9zsHT4jCN6eL0zwJcRpvinSWpXp4WVC6L0VNEZWHt-sX4Qrd_pub2QVoH8DOvB6rxY0aDv-6Aw8fwcMGvLKDpbY9hi1bP4Hdgxod9-sF-8B8Oqn_T78LPYSx1ACJjRwjZmyyrDhXk5ZNGKXbX7LhYDwwjBgAKEloMmWqNuzap3da1vSzuHwKF3ci4GewXY9q-xxYpBMnUutM5JwwVaTQ29VKpLnJIhsZFUDcyrDUDac5tdYYlis2ZpJ7iXIvvdzL2wA-dnPGS0aPjU_vtVtTNqd7Wq50MYC33TCeSwq2qNqO5v6ZHL1PHmUByLUt7d5KzN7rI_XgyjN8I-iNEYoXAey3u796-6aP3e805D_W9mLz2t7ATu_89KQ8OTo7fgn3udfdAs3qHmzPJnP7CtHYrHrtjwCDn3d95v4ATO5G_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxqICCGlpgkYALtWqv1_b6gFBFiVIKFQcq5WbW-yiRUifkoSr9afw6Zja2QzhEXHq2V7ZnZ2a_8cx8A_CaGyFMZNOAmh4DoQwP8ozrgKfSCmnyOHLUKPz1PO1diM_9pL8Fv5teGCqrbHyid9RmpOkf-REnYjbK6UVHri6L-HbS_TD-FdAEKcq0NuM0lipyZhfXGL5N35-e4F6_4bz76fvHXlBPGAh0EslZoKwWMY9NaixNnNAicSYR1pYUiRinXSiVLCMlVOakRqQgpSsR4iutLJclETGh-7-TxSKmcrKs3wZ7QuR-UF2UZHGAy3jdsLNs28ODg0p_KYOKCD24WT8UV0j33zrNNln7AO7Nq7FaXKvh8K_zsPsQdmogy46XmvcItmz1GHaPKwzirxbsLfOlpf6f_S70ENLSMCQ2coxYssnL4lpNGjdhVHp_yYaD8cAwYgOggqHJlKnKsCtf6mlZPdvi8glc3IqAn8J2NarsHrBQx04k1pnQOWHKUGHkq5VIMpOGNjSqA1Ejw0LX_OY0ZmNYrJiZSe4Fyr3wci9uOvCuXTNesntsvPug2ZqitvRpsdLLDrxqL6ONUuJFVXY09_dkGInyMO2AXNvS9qnE8r1-pRr89GzfCIAjhOV5Bw6b3V89fdPLHrYa8h_f9mzzt72Eu2htxZfT87N9uM-96uboYQ9gezaZ2-cIzGblC28BDH7ctsn9AYxNSzg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPwwG0gAgMZCfHC3CWOkziPFTBVSEw8UGk8RY4vW0XnVl0qtP56fNwkpROaQLxFsnOxc-x8J-c73wF4yzTnOjE5xaRHyqVmtCyYoiwXhgtdponFROEvp_l4wj-fZWd78LHLhQls9y4kuclpQJUm1xwvtD3eJr75rRfJsxiD9BiXroe--Q7s5xhmGsD-5PTr6HuQSi1SmopQM6o9LuM2d-bPF9r9Pm1B503KZB83vQ93V24hr3_K2ey3T9PJQzDdoDaMlB_DVVMP1fqG3uP_jvoRPGixKxltjO0x7Bn3BA5Gzvvtl9fkHQls0vCb_gDGHsVi_SMytwSFsXFj9ecqNLIlQbb9OZlNF1NNUAAAOULLKyKdJpeB3WlIW87i_ClMTj59-zCmbdUGqrJENFQaxVOW6lwbrOKheGZ1xo2p0bvTVtlYSFEnksvCCuXRlxC29m6TVNIwUZfpMxi4uTPPgcQqtTwzVsfWcl3H0ju7SvKs0HlsYi0jSLp3ValW0hwra8yqrRgzTlnlp6wKU1atI3jfn7PYCHrc2vuwM4GqXdxXFUONQAwvJxG86Zv9ssRYi3Rmvgp9Cu98sjiPQOyYTn9XFPbebXHTiyDw7TFv4pF4GcFRZxTbu9_2sEe9Jf7F2F78W_eXcI8F0yv9znoIg2a5Mq88IGvq1-16-wV3IS5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staging+of+colorectal+cancer+using+lipid+biomarkers+and+machine+learning&rft.jtitle=Metabolomics&rft.au=Krishnan%2C+Sanduru+Thamarai&rft.au=Winkler%2C+David&rft.au=Creek%2C+Darren&rft.au=Anderson%2C+Dovile&rft.date=2023-09-20&rft.issn=1573-3890&rft.eissn=1573-3890&rft.volume=19&rft.issue=10&rft_id=info:doi/10.1007%2Fs11306-023-02049-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11306_023_02049_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3890&client=summon