Early and fair COVID-19 outcome risk assessment using robust feature selection

Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 18981 - 13
Main Authors Giuste, Felipe O., He, Lawrence, Lais, Peter, Shi, Wenqi, Zhu, Yuanda, Hornback, Andrew, Tsai, Chiche, Isgut, Monica, Anderson, Blake, Wang, May D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-36175-4

Cover

Abstract Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.
AbstractList Abstract Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.
Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.
Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.
ArticleNumber 18981
Author Wang, May D.
Tsai, Chiche
Anderson, Blake
Giuste, Felipe O.
He, Lawrence
Isgut, Monica
Lais, Peter
Hornback, Andrew
Zhu, Yuanda
Shi, Wenqi
Author_xml – sequence: 1
  givenname: Felipe O.
  orcidid: 0000-0002-8355-3705
  surname: Giuste
  fullname: Giuste, Felipe O.
  organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
– sequence: 2
  givenname: Lawrence
  surname: He
  fullname: He, Lawrence
  organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
– sequence: 3
  givenname: Peter
  surname: Lais
  fullname: Lais, Peter
  organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
– sequence: 4
  givenname: Wenqi
  surname: Shi
  fullname: Shi, Wenqi
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology
– sequence: 5
  givenname: Yuanda
  surname: Zhu
  fullname: Zhu, Yuanda
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology
– sequence: 6
  givenname: Andrew
  surname: Hornback
  fullname: Hornback, Andrew
  organization: School of Computer Science and Engineering, Georgia Institute of Technology
– sequence: 7
  givenname: Chiche
  surname: Tsai
  fullname: Tsai, Chiche
  organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
– sequence: 8
  givenname: Monica
  surname: Isgut
  fullname: Isgut, Monica
  organization: School of Biology, Georgia Institute of Technology
– sequence: 9
  givenname: Blake
  surname: Anderson
  fullname: Anderson, Blake
  organization: Department of Medicine, Emory University
– sequence: 10
  givenname: May D.
  surname: Wang
  fullname: Wang, May D.
  email: maywang@gatech.edu
  organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
BookMark eNp9UU1v1DAUtFARLaV_gJMlLlxS_B37hNBSykoVvQBXy3GeFy9JXOwEqf8eb1MB7aGWLD89z8wbe16ioylNgNBrSs4p4fpdEVQa3RDGG65oKxvxDJ0wImTDOGNH_9XH6KyUPalLMiOoeYGOeWtY3fIEfblwebjFbupxcDHjzfX37ceGGpyW2acRcI7lJ3alQCkjTDNeSpx2OKduKTMO4OYlAy4wgJ9jml6h58ENBc7uz1P07dPF183n5ur6crv5cNV4SfXcON474FwoaqCWAlSAVmsO4HXLQlCd1xp6CcH1LQUifQudFl6QoBSpzFO0XXX75Pb2JsfR5VubXLR3jZR31uU5-gGs9JIbUkfIjgllqFHKBcZMT1otmeyq1vtV62bpRuh9fWV2wwPRhzdT_GF36belRDFhGK0Kb-8Vcvq1QJntGIuHYXATpKVYprXiTAuiKvTNI-g-LXmqf3VASaWJMm1FsRXlcyolQ_jrhhJ7iN-u8dsav72L34pK0o9IPs7ukEp1HYenqXylljpn2kH-5-oJ1h8DUMQQ
CitedBy_id crossref_primary_10_1186_s12911_024_02674_1
crossref_primary_10_1007_s41060_024_00526_9
crossref_primary_10_1093_jamia_ocaf016
crossref_primary_10_1186_s12883_024_03638_8
Cites_doi 10.2196/24207
10.1038/s42256-020-0180-7
10.1007/s11739-020-02475-0
10.1016/S2589-7500(20)30217-X
10.1038/s41598-021-92146-7
10.1001/jama.2020.8598
10.1371/journal.pone.0269017
10.1038/s41598-020-75767-2
10.1377/hlthaff.2020.00598
10.1038/s41467-020-18684-2
10.2196/24018
10.2147/JHL.S270175
10.1038/s41746-022-00602-z
10.1097/00041552-200403000-00004
10.1007/s10916-020-01597-4
10.1038/s42256-020-00254-2
10.1038/s41598-021-83967-7
10.1007/s12603-020-1389-1
10.2196/20259
10.1002/emp2.12205
10.1111/1468-0009.12505
10.1001/jama.2020.6548
10.1371/journal.pone.0243262
10.1038/s42256-020-00253-3
10.2196/25442
10.2196/23128
10.1038/s41467-020-17280-8
10.1016/S2213-2600(21)00171-5
10.1038/s41379-020-00700-x
10.1038/s41746-021-00383-x
10.1038/s41467-020-18297-9
10.3390/e19110631
10.1016/S2214-109X(21)00448-4
10.1038/s42256-020-00252-4
10.1001/jama.2020.26443
10.1023/A:1010933404324
10.1093/ije/dyaa171
10.1056/NEJMoa2107934
10.1007/978-3-642-41136-6_5
10.1038/s41598-020-78505-w
10.1093/jamia/ocaa217
10.1093/jamia/ocab100
10.1007/BF00994018
10.1109/RBME.2022.3185953
10.1017/S0950268820001727
10.3389/fpubh.2022.880999
10.1111/biom.13632
10.1007/s12559-020-09812-7
10.1101/2022.01.13.22268948
10.1183/13993003.01104-2020
10.1038/s41598-021-99269-x
10.1109/BHI50953.2021.9508512
10.3390/diagnostics12112700
10.1136/bmjhci-2020-100312
10.1145/2939672.2939785
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-36175-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_5c53904e65b24691966af229d078525b
PMC10624921
10_1038_s41598_023_36175_4
GrantInformation_xml – fundername: Georgia Tech Wallace H. Coulter Distinguished Faculty Fellowship (M. D. Wang) Georgia Tech Petit Institute Faculty Fellowship (M. D. Wang)
– fundername: Microsoft Research
  funderid: 100006112
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:23:32 EDT 2025
Thu Aug 21 18:36:24 EDT 2025
Thu Sep 04 21:02:40 EDT 2025
Wed Aug 13 05:16:13 EDT 2025
Tue Jul 01 03:57:47 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Fri Feb 21 02:39:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8355-3705
OpenAccessLink https://www.proquest.com/docview/2885680697?pq-origsite=%requestingapplication%
PMID 37923795
PQID 2885680697
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5c53904e65b24691966af229d078525b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10624921
proquest_miscellaneous_2886328406
proquest_journals_2885680697
crossref_primary_10_1038_s41598_023_36175_4
crossref_citationtrail_10_1038_s41598_023_36175_4
springer_journals_10_1038_s41598_023_36175_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-03
PublicationDateYYYYMMDD 2023-11-03
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References van der Maaten, Hinton (CR51) 2008; 9
Bertsimas (CR7) 2020; 15
Kvålseth (CR52) 2017; 19
Zhu (CR32) 2020; 1
CR35
CR34
Gao (CR15) 2020; 11
Cortes, Vapnik (CR48) 1995; 20
Booth, Abels, McCaffrey (CR27) 2021; 34
Hooper, Nápoles, Pérez-Stable (CR39) 2020; 323
Yancy (CR40) 2020; 323
Chunara (CR37) 2021; 28
CR6
An (CR23) 2020; 10
CR5
Quanjel (CR11) 2021; 3
CR46
Yan (CR8) 2020; 2
Tsai (CR43) 2022; 5
CR45
CR44
Liang (CR31) 2020; 11
Lee (CR20) 2022; 12
Brinati (CR36) 2020; 44
Ko (CR28) 2020; 22
Silverberg, Wexler, Blum, Schwartz, Iaina (CR56) 2004; 13
Vaid (CR22) 2020; 22
Assaf (CR18) 2020; 15
Barda (CR14) 2020; 11
Pan (CR21) 2020; 22
Breiman (CR49) 2001; 45
Estiri (CR53) 2021; 4
CR17
CR59
Agusti, Torres, Faner (CR3) 2021; 9
CR13
Clark-Boucher (CR58) 2022; 17
CR12
Lopez, Hart, Katz (CR4) 2021; 325
CR50
Patel (CR30) 2021; 11
Yadaw (CR19) 2020; 2
Sottile (CR54) 2021; 28
Azar (CR41) 2020; 39
Barish, Bolourani, Lau, Shah, Zanos (CR10) 2021; 3
Kar (CR16) 2021; 11
Hu (CR24) 2020; 49
Gupta (CR2) 2021; 385
Schapire, Schölkopf, Luo, Vovk (CR47) 2013
Mishra (CR38) 2021; 13
CR26
Dupuis (CR9) 2021; 3
CR25
Gue (CR29) 2020; 10
Abdulaal (CR33) 2020; 22
Vaid (CR55) 2021; 9
Reis (CR1) 2022; 10
Berger, De Jesus, Assoumou, Greenhalgh (CR42) 2021; 99
Bianchetti (CR57) 2020; 24
JY Lee (36175_CR20) 2022; 12
KM Azar (36175_CR41) 2020; 39
36175_CR35
L Lopez 3rd (36175_CR4) 2021; 325
D Bertsimas (36175_CR7) 2020; 15
D Silverberg (36175_CR56) 2004; 13
36175_CR34
A Bianchetti (36175_CR57) 2020; 24
D Assaf (36175_CR18) 2020; 15
D Brinati (36175_CR36) 2020; 44
P Pan (36175_CR21) 2020; 22
R Chunara (36175_CR37) 2021; 28
C Hu (36175_CR24) 2020; 49
JS Zhu (36175_CR32) 2020; 1
S Kar (36175_CR16) 2021; 11
TC Tsai (36175_CR43) 2022; 5
A Abdulaal (36175_CR33) 2020; 22
Z Berger (36175_CR42) 2021; 99
36175_CR25
36175_CR26
PD Sottile (36175_CR54) 2021; 28
YX Gue (36175_CR29) 2020; 10
H Estiri (36175_CR53) 2021; 4
M Barish (36175_CR10) 2021; 3
H Ko (36175_CR28) 2020; 22
A Vaid (36175_CR22) 2020; 22
V Mishra (36175_CR38) 2021; 13
W Liang (36175_CR31) 2020; 11
36175_CR17
D Patel (36175_CR30) 2021; 11
Y Gao (36175_CR15) 2020; 11
36175_CR13
C An (36175_CR23) 2020; 10
AL Booth (36175_CR27) 2021; 34
36175_CR59
36175_CR12
A Gupta (36175_CR2) 2021; 385
36175_CR6
MJ Quanjel (36175_CR11) 2021; 3
AS Yadaw (36175_CR19) 2020; 2
G Reis (36175_CR1) 2022; 10
MW Hooper (36175_CR39) 2020; 323
RE Schapire (36175_CR47) 2013
36175_CR5
C Dupuis (36175_CR9) 2021; 3
D Clark-Boucher (36175_CR58) 2022; 17
C Cortes (36175_CR48) 1995; 20
L Breiman (36175_CR49) 2001; 45
TO Kvålseth (36175_CR52) 2017; 19
36175_CR46
36175_CR44
36175_CR45
36175_CR50
CW Yancy (36175_CR40) 2020; 323
L van der Maaten (36175_CR51) 2008; 9
L Yan (36175_CR8) 2020; 2
N Barda (36175_CR14) 2020; 11
A Agusti (36175_CR3) 2021; 9
A Vaid (36175_CR55) 2021; 9
References_xml – ident: CR45
– volume: 9
  year: 2021
  ident: CR55
  article-title: Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach
  publication-title: JMIR Med. Inform.
  doi: 10.2196/24207
– volume: 2
  start-page: 283
  year: 2020
  end-page: 288
  ident: CR8
  article-title: An interpretable mortality prediction model for COVID-19 patients
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0180-7
– volume: 15
  start-page: 1435
  year: 2020
  end-page: 1443
  ident: CR18
  article-title: Utilization of machine-learning models to accurately predict the risk for critical COVID-19
  publication-title: Intern. Emerg. Med.
  doi: 10.1007/s11739-020-02475-0
– volume: 2
  start-page: e516
  year: 2020
  end-page: e525
  ident: CR19
  article-title: Clinical features of COVID-19 mortality: Development and validation of a clinical prediction model
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30217-X
– volume: 11
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR16
  article-title: Multivariable mortality risk prediction using machine learning for covid-19 patients at admission (aicovid)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92146-7
– volume: 323
  start-page: 2466
  year: 2020
  end-page: 2467
  ident: CR39
  article-title: COVID-19 and racial/ethnic disparities
  publication-title: JAMA
  doi: 10.1001/jama.2020.8598
– volume: 17
  year: 2022
  ident: CR58
  article-title: Assessing the added value of linking electronic health records to improve the prediction of self-reported COVID-19 testing and diagnosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0269017
– ident: CR12
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR23
  article-title: Machine learning prediction for mortality of patients diagnosed with COVID-19: A nationwide Korean cohort study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75767-2
– volume: 39
  start-page: 1253
  year: 2020
  end-page: 1262
  ident: CR41
  article-title: Disparities in outcomes among COVID-19 patients in a large health care system in California: Study estimates the COVID-19 infection fatality rate at the us county level
  publication-title: Health Affairs
  doi: 10.1377/hlthaff.2020.00598
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR15
  article-title: Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18684-2
– ident: CR35
– volume: 22
  year: 2020
  ident: CR22
  article-title: Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: Model development and validation
  publication-title: J. Med. Internet Res.
  doi: 10.2196/24018
– volume: 13
  start-page: 19
  year: 2021
  ident: CR38
  article-title: Health inequalities during COVID-19 and their effects on morbidity and mortality
  publication-title: J. Healthc. Leadersh.
  doi: 10.2147/JHL.S270175
– volume: 5
  start-page: 1
  year: 2022
  end-page: 6
  ident: CR43
  article-title: Algorithmic fairness in pandemic forecasting: Lessons from COVID-19
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00602-z
– ident: CR25
– ident: CR46
– volume: 13
  start-page: 163
  year: 2004
  end-page: 170
  ident: CR56
  article-title: The association between congestive heart failure and chronic renal disease
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/00041552-200403000-00004
– volume: 44
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR36
  article-title: Detection of COVID-19 infection from routine blood exams with machine learning: A feasibility study
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01597-4
– ident: CR50
– volume: 3
  start-page: 25
  year: 2021
  end-page: 27
  ident: CR10
  article-title: External validation demonstrates limited clinical utility of the interpretable mortality prediction model for patients with COVID-19
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00254-2
– volume: 11
  start-page: 1
  year: 2021
  end-page: 7
  ident: CR30
  article-title: Machine learning based predictors for COVID-19 disease severity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83967-7
– volume: 24
  start-page: 560
  year: 2020
  end-page: 562
  ident: CR57
  article-title: Clinical presentation of COVID-19 in dementia patients
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-020-1389-1
– volume: 22
  year: 2020
  ident: CR33
  article-title: Prognostic modeling of COVID-19 using artificial intelligence in the United Kingdom: Model development and validation
  publication-title: J. Med. Internet Res.
  doi: 10.2196/20259
– ident: CR5
– ident: CR26
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR51
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 1364
  year: 2020
  end-page: 1373
  ident: CR32
  article-title: Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients
  publication-title: J. Am. Coll. Emerg. Physicians Open
  doi: 10.1002/emp2.12205
– volume: 99
  start-page: 519
  year: 2021
  ident: CR42
  article-title: Long COVID and health inequities: The role of primary care
  publication-title: Milbank Q.
  doi: 10.1111/1468-0009.12505
– volume: 323
  start-page: 1891
  year: 2020
  end-page: 1892
  ident: CR40
  article-title: COVID-19 and African Americans
  publication-title: JAMA
  doi: 10.1001/jama.2020.6548
– volume: 15
  year: 2020
  ident: CR7
  article-title: Covid-19 mortality risk assessment: An international multi-center study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0243262
– volume: 3
  start-page: 23
  year: 2021
  end-page: 24
  ident: CR11
  article-title: Replication of a mortality prediction model in Dutch patients with COVID-19
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00253-3
– volume: 22
  year: 2020
  ident: CR28
  article-title: An artificial intelligence model to predict the mortality of COVID-19 patients at hospital admission time using routine blood samples: Development and validation of an ensemble model
  publication-title: J. Med. Internet Res.
  doi: 10.2196/25442
– volume: 22
  year: 2020
  ident: CR21
  article-title: Prognostic assessment of COVID-19 in the intensive care unit by machine learning methods: Model development and validation
  publication-title: J. Med. Internet Res.
  doi: 10.2196/23128
– volume: 11
  start-page: 1
  year: 2020
  end-page: 7
  ident: CR31
  article-title: Early triage of critically ill COVID-19 patients using deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17280-8
– volume: 9
  start-page: 682
  year: 2021
  end-page: 683
  ident: CR3
  article-title: Early treatment with inhaled budesonide to prevent clinical deterioration in patients with COVID-19
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(21)00171-5
– ident: CR6
– volume: 34
  start-page: 522
  year: 2021
  end-page: 531
  ident: CR27
  article-title: Development of a prognostic model for mortality in COVID-19 infection using machine learning
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-020-00700-x
– volume: 4
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR53
  article-title: Predicting COVID-19 mortality with electronic medical records
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-021-00383-x
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR14
  article-title: Developing a COVID-19 mortality risk prediction model when individual-level data are not available
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18297-9
– volume: 19
  start-page: 631
  year: 2017
  ident: CR52
  article-title: On normalized mutual information: Measure derivations and properties
  publication-title: Entropy
  doi: 10.3390/e19110631
– volume: 10
  start-page: e42
  year: 2022
  end-page: e51
  ident: CR1
  article-title: Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(21)00448-4
– volume: 3
  start-page: 20
  year: 2021
  end-page: 22
  ident: CR9
  article-title: Limited applicability of a COVID-19 specific mortality prediction rule to the intensive care setting
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00252-4
– ident: CR44
– volume: 325
  start-page: 719
  year: 2021
  end-page: 720
  ident: CR4
  article-title: Racial and ethnic health disparities related to COVID-19
  publication-title: JAMA
  doi: 10.1001/jama.2020.26443
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR49
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 49
  start-page: 1918
  year: 2020
  end-page: 1929
  ident: CR24
  article-title: Early prediction of mortality risk among patients with severe COVID-19, using machine learning
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyaa171
– volume: 385
  start-page: 1941
  year: 2021
  end-page: 1950
  ident: CR2
  article-title: Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2107934
– ident: CR17
– ident: CR13
– start-page: 37
  year: 2013
  end-page: 52
  ident: CR47
  article-title: Explaining AdaBoost
  publication-title: Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik
  doi: 10.1007/978-3-642-41136-6_5
– volume: 10
  start-page: 1
  year: 2020
  end-page: 8
  ident: CR29
  article-title: Development of a novel risk score to predict mortality in patients admitted to hospital with COVID-19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78505-w
– ident: CR34
– volume: 28
  start-page: 33
  year: 2021
  end-page: 41
  ident: CR37
  article-title: Telemedicine and healthcare disparities: a cohort study in a large healthcare system in New York City during COVID-19
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocaa217
– volume: 28
  start-page: 2354
  year: 2021
  end-page: 2365
  ident: CR54
  article-title: Real-time electronic health record mortality prediction during the COVID-19 pandemic: A prospective cohort study
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocab100
– ident: CR59
– volume: 12
  start-page: 1
  year: 2022
  end-page: 8
  ident: CR20
  article-title: A risk scoring system to predict progression to severe pneumonia in patients with COVID-19
  publication-title: Sci. Rep.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR48
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: 36175_CR34
  doi: 10.1109/RBME.2022.3185953
– volume: 11
  start-page: 1
  year: 2020
  ident: 36175_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18684-2
– volume: 325
  start-page: 719
  year: 2021
  ident: 36175_CR4
  publication-title: JAMA
  doi: 10.1001/jama.2020.26443
– volume: 49
  start-page: 1918
  year: 2020
  ident: 36175_CR24
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyaa171
– volume: 323
  start-page: 1891
  year: 2020
  ident: 36175_CR40
  publication-title: JAMA
  doi: 10.1001/jama.2020.6548
– volume: 2
  start-page: e516
  year: 2020
  ident: 36175_CR19
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30217-X
– volume: 11
  start-page: 1
  year: 2021
  ident: 36175_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83967-7
– volume: 24
  start-page: 560
  year: 2020
  ident: 36175_CR57
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-020-1389-1
– ident: 36175_CR26
  doi: 10.1017/S0950268820001727
– volume: 385
  start-page: 1941
  year: 2021
  ident: 36175_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2107934
– start-page: 37
  volume-title: Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik
  year: 2013
  ident: 36175_CR47
  doi: 10.1007/978-3-642-41136-6_5
– volume: 20
  start-page: 273
  year: 1995
  ident: 36175_CR48
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 3
  start-page: 20
  year: 2021
  ident: 36175_CR9
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00252-4
– ident: 36175_CR13
  doi: 10.3389/fpubh.2022.880999
– volume: 11
  start-page: 1
  year: 2020
  ident: 36175_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17280-8
– volume: 10
  start-page: 1
  year: 2020
  ident: 36175_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75767-2
– ident: 36175_CR45
  doi: 10.1111/biom.13632
– volume: 9
  start-page: 2579
  year: 2008
  ident: 36175_CR51
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 1
  year: 2022
  ident: 36175_CR43
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00602-z
– ident: 36175_CR46
– ident: 36175_CR17
  doi: 10.1007/s12559-020-09812-7
– volume: 39
  start-page: 1253
  year: 2020
  ident: 36175_CR41
  publication-title: Health Affairs
  doi: 10.1377/hlthaff.2020.00598
– volume: 19
  start-page: 631
  year: 2017
  ident: 36175_CR52
  publication-title: Entropy
  doi: 10.3390/e19110631
– ident: 36175_CR44
  doi: 10.1101/2022.01.13.22268948
– volume: 17
  year: 2022
  ident: 36175_CR58
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0269017
– volume: 15
  start-page: 1435
  year: 2020
  ident: 36175_CR18
  publication-title: Intern. Emerg. Med.
  doi: 10.1007/s11739-020-02475-0
– volume: 22
  year: 2020
  ident: 36175_CR22
  publication-title: J. Med. Internet Res.
  doi: 10.2196/24018
– ident: 36175_CR5
– volume: 22
  year: 2020
  ident: 36175_CR21
  publication-title: J. Med. Internet Res.
  doi: 10.2196/23128
– volume: 34
  start-page: 522
  year: 2021
  ident: 36175_CR27
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-020-00700-x
– volume: 9
  year: 2021
  ident: 36175_CR55
  publication-title: JMIR Med. Inform.
  doi: 10.2196/24207
– volume: 99
  start-page: 519
  year: 2021
  ident: 36175_CR42
  publication-title: Milbank Q.
  doi: 10.1111/1468-0009.12505
– volume: 15
  year: 2020
  ident: 36175_CR7
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0243262
– volume: 323
  start-page: 2466
  year: 2020
  ident: 36175_CR39
  publication-title: JAMA
  doi: 10.1001/jama.2020.8598
– volume: 28
  start-page: 2354
  year: 2021
  ident: 36175_CR54
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocab100
– volume: 3
  start-page: 25
  year: 2021
  ident: 36175_CR10
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00254-2
– volume: 9
  start-page: 682
  year: 2021
  ident: 36175_CR3
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(21)00171-5
– volume: 2
  start-page: 283
  year: 2020
  ident: 36175_CR8
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0180-7
– volume: 10
  start-page: e42
  year: 2022
  ident: 36175_CR1
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(21)00448-4
– ident: 36175_CR25
  doi: 10.1183/13993003.01104-2020
– volume: 11
  start-page: 1
  year: 2020
  ident: 36175_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18297-9
– volume: 13
  start-page: 163
  year: 2004
  ident: 36175_CR56
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/00041552-200403000-00004
– volume: 4
  start-page: 1
  year: 2021
  ident: 36175_CR53
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-021-00383-x
– volume: 10
  start-page: 1
  year: 2020
  ident: 36175_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78505-w
– volume: 12
  start-page: 1
  year: 2022
  ident: 36175_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99269-x
– volume: 13
  start-page: 19
  year: 2021
  ident: 36175_CR38
  publication-title: J. Healthc. Leadersh.
  doi: 10.2147/JHL.S270175
– volume: 45
  start-page: 5
  year: 2001
  ident: 36175_CR49
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 36175_CR59
– ident: 36175_CR6
  doi: 10.1109/BHI50953.2021.9508512
– volume: 44
  start-page: 1
  year: 2020
  ident: 36175_CR36
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01597-4
– ident: 36175_CR12
  doi: 10.3390/diagnostics12112700
– volume: 3
  start-page: 23
  year: 2021
  ident: 36175_CR11
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00253-3
– volume: 11
  start-page: 1
  year: 2021
  ident: 36175_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92146-7
– ident: 36175_CR35
  doi: 10.1136/bmjhci-2020-100312
– volume: 22
  year: 2020
  ident: 36175_CR28
  publication-title: J. Med. Internet Res.
  doi: 10.2196/25442
– volume: 1
  start-page: 1364
  year: 2020
  ident: 36175_CR32
  publication-title: J. Am. Coll. Emerg. Physicians Open
  doi: 10.1002/emp2.12205
– ident: 36175_CR50
  doi: 10.1145/2939672.2939785
– volume: 22
  year: 2020
  ident: 36175_CR33
  publication-title: J. Med. Internet Res.
  doi: 10.2196/20259
– volume: 28
  start-page: 33
  year: 2021
  ident: 36175_CR37
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocaa217
SSID ssj0000529419
Score 2.4646094
Snippet Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe...
Abstract Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18981
SubjectTerms 631/114/1305
631/114/2413
692/499
692/53/2423
Automation
COVID-19
Dementia disorders
Demography
Humanities and Social Sciences
Learning algorithms
Machine learning
multidisciplinary
Patients
Precision medicine
Preventable deaths
Risk assessment
Science
Science (multidisciplinary)
Ventilators
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VlZB6QTyKCLTISNxKVMfvHEuhKki0F4p6s5x4AkgoW3WzB_49Yye7bSpRLr1Fie3Y488ZT2b8DcA73WphopKlMIEMFCuQ1pw0ZdCVDZ2JTczBmF_PzOmF-nKpL2-l-koxYSM98Ci4Q2qMzHKFRjeCTDkCjAmdEHUk3aaFbtLXl9f8ljE1snqLWlX1dEqGS3e4JE2VTpMJWUrS2rpUM02UCftnu8y7MZJ3HKVZ_5w8gcfTxpEdjR1-ClvYP4NHYyrJP8_hLDMVs9BHllw07Pj8--ePZVWzxWogUCFLMeQsbHg4WQp4_8GuF81qObAOM78nW-asODRVu3Bx8unb8Wk55UooW125oQwyBpRSkT2EdEny6pCsW4nYOiu6zjStcxg1diHaCrluLTZOtYp3xnCq-QK2-0WPL4Epq6LgLsTakoqzGEQlW5OyaNrAqa0CqrXcfDsRiad8Fr99dmhL50dZe5K1z7L2qoCDTZ2rkUbj3tIf0nRsSiYK7HyDgOEnYPj_AaOAvfVk-mldLr1wThvHTW0LeLt5TCsquUlCj4tVLmMkaW1uCnAzEMw6NH_S__qZubnJwk4cjFUB79d4uXn7v0f86iFG_Bp2RMJ3-ukt92B7uF7hPm2ZhuZNXh1_AViiDjg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxVMECjISN7Dq-J0TgkJVkCgXivZmObbTIqGkbLKH_nvGXm-qVKK3KHESP8aeGc_4-xB6K71kKghOmHLgoGgWYc5xRZystetUaENOxvx-qk7OxLeVXJUNt7GkVe7WxLxQh8GnPfJDZoxUhqpGf7j8SxJrVIquFgqNu-heDZZIom7QKz3vsaQolqibclaGcnM4gr5KZ8oYJxx0tyRioY8ybP_C1ryZKXkjXJq10PFDtF_MR_xxO96P0J3YP0b3t4SSV0_QacYrxq4POAVq8NGPX18_k7rBw2aCZkacMsmxm9E4cUp7P8frod2ME-5iRvnEY-bGgQF7is6Ov_w8OiGFMYF4WZuJOB5c5FyAVxThUkTVRfBxeYzeaNZ1qvXGxCBj54KuI5Vex9YIL2inFIU3n6G9fujjc4SFFoFR40KjQdHp6FjNvUpcmtpR-FaF6l2_WV_gxBOrxR-bw9rc2G1fW-hrm_vaigq9m9-53IJp3Fr6UxqOuWQCws43hvW5LfPKgqzxhkJDZcvA04f1RLmOsSaA6SOZbCt0sBtMW2bnaK9lqUJv5scwr1KwxPVx2OQyioPupqpCZiEEiwotn_S_LzJCN_jZCYmxrtD7nbxc__3_LX5xe2VfogeJ7D6fhOQHaG9ab-IrMImm9nWW-3_H8geC
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrZC4IMpDBEplJG4Q4fid41JalZUoByjqzXJipyChBO1mD_33HXuToFRQiVsUP2KPxx5PZuYbgDeylkx5wXOmHCoomgXcc1zlThbaNcpXPjljfj5XZxdidSkv94CNsTDJaT9BWqZjevQOe79BQRODwRjPOQpdmYt7sB97ZQvYXy5XX1fTn5VouxJFOUTIUG7-0ngmhRJY_-yGeds_8paRNMme00fwcLg0kuVumAewF9rHcH-XRvL6CZwnlGLiWk-ieYYcf_n-6WNelKTb9ji9QKL_OHETBieJzu5XZN1V201PmpAIQTYpIw4u01O4OD35dnyWD3kS8loWps8d9y5wLlAXCvgogmoCarY8hNpo1jSqqo0JXobGeV0EKmsdKiNqQRulKLZ8Bou2a8NzIEILz6hxvtQo3nRwrOC1ihk0taPYVwbFSDdbDyDiMZfFL5uM2dzYHa0t0tomWluRwdupze8dhMadtT_E5ZhqRvjr9KJbX9mBHSxyGC8pTlRWDPV7PEWUaxgrPV54JJNVBofjYtphT24sM0YqQ1WpM3g9FeNuiiYS14Zum-oojhKbqgzMjAlmA5qXtD9_JFxu1K4j_mKRwbuRX_58_d8zfvF_1V_Cg5jyPsVD8kNY9OtteIUXo746GnbCDX2HBpk
  priority: 102
  providerName: Springer Nature
Title Early and fair COVID-19 outcome risk assessment using robust feature selection
URI https://link.springer.com/article/10.1038/s41598-023-36175-4
https://www.proquest.com/docview/2885680697
https://www.proquest.com/docview/2886328406
https://pubmed.ncbi.nlm.nih.gov/PMC10624921
https://doaj.org/article/5c53904e65b24691966af229d078525b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8ROr5xLBN622-e6DyN56x7ngKurKvoW0TU_haHW3C95_7yRtV3qc4lNLk7TNZKYz05n8BuCZKASVJWcxlRYdFEUdyhyTsRWpspUs8zIkY75fyLMln6_Eag-Gckc9ATfXuna-ntRyffHy18_LNyjwr7st4_rVBpWQ3yhGWcxQIYuY78NhiBf5VL7e3O-wvmnGQ60PD8IeozFB-300199mpKsCpP_IDr2aRXkllBo01OltuNWblmTa8cId2HP1XbjRFZu8vAeLgGVMbF0SH8Qhsw9f372N04w02xbZzhGfZU7sDqmT-JT4c7Ju8u2mJZULCKBkE-rm4GLeh-XpyZfZWdxXU4gLkeo2tqy0jjGOHpPDU-5k5dD_Zc4VWtGqknmhtSuFq2ypUpeIQrlc84InlZQJjnwAB3VTu4dAuOIlTbQtM4VKUDlLU1ZIX2dT2QTvFUE60M0UPdS4r3hxYULIm2nT0dogrU2gteERPN-N-dEBbfyz97Ffjl1PD5IdLjTrc9PLnEE-ZFmCExU55TLDb420FaVZiWaRoCKP4GhYTDMwnqFaC6kTmakInu6aUeZ8IMXWrtmGPpKhXk9kBHrEBKMXGrfU378F9G70wT1KYxrBi4Ff_jz97zN-9B9v8xhuUs--_q83O4KDdr11T9BmavMJ7KuVmsDhdDr_PMfj8cni4ye8OpOzSfgPMQmi8hv3tBRU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IJ4iUMBIcIKoiV9xDhWiL-3SdkGoRb25TuwUJJSU3axQ_xy_jbE3SbWV6K23KHFe4xnP0_MBvBWloNJyFlNp0EHJqEOZYzI2Is1MJW1hQzHm0VSOT_jnU3G6Bn_7vTC-rLJfE8NCbZvSx8g3qVJCqkTm2ceL37FHjfLZ1R5Cw3TQCnYrtBjrNnYcuMs_6MLNtya7ON_vKN3fO94Zxx3KQFziyDY2zBrHGEdPwuEhd7Jy6Bcy50qV0aqSRamUs8JVxmapS0SZuULxkieVlInzAVFUAevcB1BGsL69N_36bYjy-DwaT_Nut07C1OYcNabf1UZZzNB6EDFf0YgBOGDF2r1eq3ktYRv04P4DuN8ZsOTTkuMewpqrH8GdJaTl5WOYho7JxNSW-FQR2fnyfbIbpzlpFi0S2hFfy07M0A-U-ML7czJrisW8JZULfUbJPKDzIMs8gZNboeZTGNVN7Z4B4Rm3NFHG5hmq2swZmrJSejTPzCT4rAjSnm667Bqae1yNXzok1pnSS1prpLUOtNY8gvfDPRfLdh43jt720zGM9K24w4lmdq47ydbI7SxP8EdFQbnMcUWTpqI0t2h8CSqKCDb6ydTd-jDXV9wcwZvhMkq2T9eY2jWLMEYytB4SGYFaYYKVD1q9Uv_8EXqEo6fve0GmEXzo-eXq7f__4-c3f-xruDs-PjrUh5PpwQu4Rz0X-xA724BRO1u4l2igtcWrTgoInN224P0DUpNNNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuiKcIFDASnCDaxO8cKkS7XXUpLBWiqDfXiZ2ChJKyyQr1L_KrGHuTVKlEb72tNs5uMp7xzHjG34fQa15wIiyjMREGEhRJHNgcFbHhqTSlsLkNzZifF-LgmH084Scb6G9_Fsa3VfZrYliobV34PfIJUYoLlYhMTsquLeJoOnt__jv2DFK-0trTaZiOZsHuBLix7pDHobv4A-lcszOfwty_IWS2_23vIO4YB-ICRraxodY4ShlkFQ4-MidKBzkida5QkpSlyAulnOWuNFamLuGFdLliBUtKIRLnN0fBHWxJ8PqQCG7t7i-Ovg47Pr6mxtKsO7mTUDVpwHv6E26ExhQiCR6zkXcMJAKjyPdq3-aV4m3wibN76G4XzOIPa-27jzZc9QDdWtNbXjxEi4CejE1lsS8b4b0v3-fTOM1wvWpB6A77vnZsBmxQ7Jvwz_CyzldNi0sXMEdxE5h6QH0eoeMbkeZjtFnVlXuCMJPMkkQZm0lwu9IZktJCeGZPaRL4rQilvdx00YGbe46NXzoU2anSa1lrkLUOstYsQm-He87X0B7Xjt710zGM9LDc4Yt6eaY7K9eg-TRL4EV5TpjIYHUTpiQksxCIccLzCG33k6m7taLRl5odoVfDZbByX7oxlatXYYygEEkkIkJqpASjBxpfqX7-CHjhkPV7XMg0Qu96fbn89_-_8dPrH_Ylug0GqD_NF4fP0B3ildjvttNttNkuV-45xGpt_qIzAoxOb9ru_gELElF6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+and+fair+COVID-19+outcome+risk+assessment+using+robust+feature+selection&rft.jtitle=Scientific+reports&rft.au=Giuste%2C+Felipe+O&rft.au=He%2C+Lawrence&rft.au=Lais%2C+Peter&rft.au=Shi%2C+Wenqi&rft.date=2023-11-03&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=18981&rft_id=info:doi/10.1038%2Fs41598-023-36175-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon