Early and fair COVID-19 outcome risk assessment using robust feature selection
Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 18981 - 13 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-36175-4 |
Cover
Abstract | Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards. |
---|---|
AbstractList | Abstract Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards. Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards. Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards.Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe complications is vital to prevent death and ventilator use. Predicting COVID-19 clinical outcomes using machine learning may provide a fast and data-driven solution for optimizing patient care by estimating the need for early treatment. In addition, it is essential to accurately predict risk across demographic groups, particularly those underrepresented in existing models. Unfortunately, there is a lack of studies demonstrating the equitable performance of machine learning models across patient demographics. To overcome this existing limitation, we generate a robust machine learning model to predict patient-specific risk of death or ventilator use in COVID-19 positive patients using features available at the time of diagnosis. We establish the value of our solution across patient demographics, including gender and race. In addition, we improve clinical trust in our automated predictions by generating interpretable patient clustering, patient-level clinical feature importance, and global clinical feature importance within our large real-world COVID-19 positive patient dataset. We achieved 89.38% area under receiver operating curve (AUROC) performance for severe outcomes prediction and our robust feature ranking approach identified the presence of dementia as a key indicator for worse patient outcomes. We also demonstrated that our deep-learning clustering approach outperforms traditional clustering in separating patients by severity of outcome based on mutual information performance. Finally, we developed an application for automated and fair patient risk assessment with minimal manual data entry using existing data exchange standards. |
ArticleNumber | 18981 |
Author | Wang, May D. Tsai, Chiche Anderson, Blake Giuste, Felipe O. He, Lawrence Isgut, Monica Lais, Peter Hornback, Andrew Zhu, Yuanda Shi, Wenqi |
Author_xml | – sequence: 1 givenname: Felipe O. orcidid: 0000-0002-8355-3705 surname: Giuste fullname: Giuste, Felipe O. organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University – sequence: 2 givenname: Lawrence surname: He fullname: He, Lawrence organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University – sequence: 3 givenname: Peter surname: Lais fullname: Lais, Peter organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University – sequence: 4 givenname: Wenqi surname: Shi fullname: Shi, Wenqi organization: School of Electrical and Computer Engineering, Georgia Institute of Technology – sequence: 5 givenname: Yuanda surname: Zhu fullname: Zhu, Yuanda organization: School of Electrical and Computer Engineering, Georgia Institute of Technology – sequence: 6 givenname: Andrew surname: Hornback fullname: Hornback, Andrew organization: School of Computer Science and Engineering, Georgia Institute of Technology – sequence: 7 givenname: Chiche surname: Tsai fullname: Tsai, Chiche organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University – sequence: 8 givenname: Monica surname: Isgut fullname: Isgut, Monica organization: School of Biology, Georgia Institute of Technology – sequence: 9 givenname: Blake surname: Anderson fullname: Anderson, Blake organization: Department of Medicine, Emory University – sequence: 10 givenname: May D. surname: Wang fullname: Wang, May D. email: maywang@gatech.edu organization: The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University |
BookMark | eNp9UU1v1DAUtFARLaV_gJMlLlxS_B37hNBSykoVvQBXy3GeFy9JXOwEqf8eb1MB7aGWLD89z8wbe16ioylNgNBrSs4p4fpdEVQa3RDGG65oKxvxDJ0wImTDOGNH_9XH6KyUPalLMiOoeYGOeWtY3fIEfblwebjFbupxcDHjzfX37ceGGpyW2acRcI7lJ3alQCkjTDNeSpx2OKduKTMO4OYlAy4wgJ9jml6h58ENBc7uz1P07dPF183n5ur6crv5cNV4SfXcON474FwoaqCWAlSAVmsO4HXLQlCd1xp6CcH1LQUifQudFl6QoBSpzFO0XXX75Pb2JsfR5VubXLR3jZR31uU5-gGs9JIbUkfIjgllqFHKBcZMT1otmeyq1vtV62bpRuh9fWV2wwPRhzdT_GF36belRDFhGK0Kb-8Vcvq1QJntGIuHYXATpKVYprXiTAuiKvTNI-g-LXmqf3VASaWJMm1FsRXlcyolQ_jrhhJ7iN-u8dsav72L34pK0o9IPs7ukEp1HYenqXylljpn2kH-5-oJ1h8DUMQQ |
CitedBy_id | crossref_primary_10_1186_s12911_024_02674_1 crossref_primary_10_1007_s41060_024_00526_9 crossref_primary_10_1093_jamia_ocaf016 crossref_primary_10_1186_s12883_024_03638_8 |
Cites_doi | 10.2196/24207 10.1038/s42256-020-0180-7 10.1007/s11739-020-02475-0 10.1016/S2589-7500(20)30217-X 10.1038/s41598-021-92146-7 10.1001/jama.2020.8598 10.1371/journal.pone.0269017 10.1038/s41598-020-75767-2 10.1377/hlthaff.2020.00598 10.1038/s41467-020-18684-2 10.2196/24018 10.2147/JHL.S270175 10.1038/s41746-022-00602-z 10.1097/00041552-200403000-00004 10.1007/s10916-020-01597-4 10.1038/s42256-020-00254-2 10.1038/s41598-021-83967-7 10.1007/s12603-020-1389-1 10.2196/20259 10.1002/emp2.12205 10.1111/1468-0009.12505 10.1001/jama.2020.6548 10.1371/journal.pone.0243262 10.1038/s42256-020-00253-3 10.2196/25442 10.2196/23128 10.1038/s41467-020-17280-8 10.1016/S2213-2600(21)00171-5 10.1038/s41379-020-00700-x 10.1038/s41746-021-00383-x 10.1038/s41467-020-18297-9 10.3390/e19110631 10.1016/S2214-109X(21)00448-4 10.1038/s42256-020-00252-4 10.1001/jama.2020.26443 10.1023/A:1010933404324 10.1093/ije/dyaa171 10.1056/NEJMoa2107934 10.1007/978-3-642-41136-6_5 10.1038/s41598-020-78505-w 10.1093/jamia/ocaa217 10.1093/jamia/ocab100 10.1007/BF00994018 10.1109/RBME.2022.3185953 10.1017/S0950268820001727 10.3389/fpubh.2022.880999 10.1111/biom.13632 10.1007/s12559-020-09812-7 10.1101/2022.01.13.22268948 10.1183/13993003.01104-2020 10.1038/s41598-021-99269-x 10.1109/BHI50953.2021.9508512 10.3390/diagnostics12112700 10.1136/bmjhci-2020-100312 10.1145/2939672.2939785 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-36175-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_5c53904e65b24691966af229d078525b PMC10624921 10_1038_s41598_023_36175_4 |
GrantInformation_xml | – fundername: Georgia Tech Wallace H. Coulter Distinguished Faculty Fellowship (M. D. Wang) Georgia Tech Petit Institute Faculty Fellowship (M. D. Wang) – fundername: Microsoft Research funderid: 100006112 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:23:32 EDT 2025 Thu Aug 21 18:36:24 EDT 2025 Thu Sep 04 21:02:40 EDT 2025 Wed Aug 13 05:16:13 EDT 2025 Tue Jul 01 03:57:47 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-a3dae334619e3da4e6fe7883eec872ff6bc88ed5efad71e05c7eb84c40f660e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8355-3705 |
OpenAccessLink | https://www.proquest.com/docview/2885680697?pq-origsite=%requestingapplication% |
PMID | 37923795 |
PQID | 2885680697 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c53904e65b24691966af229d078525b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10624921 proquest_miscellaneous_2886328406 proquest_journals_2885680697 crossref_primary_10_1038_s41598_023_36175_4 crossref_citationtrail_10_1038_s41598_023_36175_4 springer_journals_10_1038_s41598_023_36175_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-03 |
PublicationDateYYYYMMDD | 2023-11-03 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | van der Maaten, Hinton (CR51) 2008; 9 Bertsimas (CR7) 2020; 15 Kvålseth (CR52) 2017; 19 Zhu (CR32) 2020; 1 CR35 CR34 Gao (CR15) 2020; 11 Cortes, Vapnik (CR48) 1995; 20 Booth, Abels, McCaffrey (CR27) 2021; 34 Hooper, Nápoles, Pérez-Stable (CR39) 2020; 323 Yancy (CR40) 2020; 323 Chunara (CR37) 2021; 28 CR6 An (CR23) 2020; 10 CR5 Quanjel (CR11) 2021; 3 CR46 Yan (CR8) 2020; 2 Tsai (CR43) 2022; 5 CR45 CR44 Liang (CR31) 2020; 11 Lee (CR20) 2022; 12 Brinati (CR36) 2020; 44 Ko (CR28) 2020; 22 Silverberg, Wexler, Blum, Schwartz, Iaina (CR56) 2004; 13 Vaid (CR22) 2020; 22 Assaf (CR18) 2020; 15 Barda (CR14) 2020; 11 Pan (CR21) 2020; 22 Breiman (CR49) 2001; 45 Estiri (CR53) 2021; 4 CR17 CR59 Agusti, Torres, Faner (CR3) 2021; 9 CR13 Clark-Boucher (CR58) 2022; 17 CR12 Lopez, Hart, Katz (CR4) 2021; 325 CR50 Patel (CR30) 2021; 11 Yadaw (CR19) 2020; 2 Sottile (CR54) 2021; 28 Azar (CR41) 2020; 39 Barish, Bolourani, Lau, Shah, Zanos (CR10) 2021; 3 Kar (CR16) 2021; 11 Hu (CR24) 2020; 49 Gupta (CR2) 2021; 385 Schapire, Schölkopf, Luo, Vovk (CR47) 2013 Mishra (CR38) 2021; 13 CR26 Dupuis (CR9) 2021; 3 CR25 Gue (CR29) 2020; 10 Abdulaal (CR33) 2020; 22 Vaid (CR55) 2021; 9 Reis (CR1) 2022; 10 Berger, De Jesus, Assoumou, Greenhalgh (CR42) 2021; 99 Bianchetti (CR57) 2020; 24 JY Lee (36175_CR20) 2022; 12 KM Azar (36175_CR41) 2020; 39 36175_CR35 L Lopez 3rd (36175_CR4) 2021; 325 D Bertsimas (36175_CR7) 2020; 15 D Silverberg (36175_CR56) 2004; 13 36175_CR34 A Bianchetti (36175_CR57) 2020; 24 D Assaf (36175_CR18) 2020; 15 D Brinati (36175_CR36) 2020; 44 P Pan (36175_CR21) 2020; 22 R Chunara (36175_CR37) 2021; 28 C Hu (36175_CR24) 2020; 49 JS Zhu (36175_CR32) 2020; 1 S Kar (36175_CR16) 2021; 11 TC Tsai (36175_CR43) 2022; 5 A Abdulaal (36175_CR33) 2020; 22 Z Berger (36175_CR42) 2021; 99 36175_CR25 36175_CR26 PD Sottile (36175_CR54) 2021; 28 YX Gue (36175_CR29) 2020; 10 H Estiri (36175_CR53) 2021; 4 M Barish (36175_CR10) 2021; 3 H Ko (36175_CR28) 2020; 22 A Vaid (36175_CR22) 2020; 22 V Mishra (36175_CR38) 2021; 13 W Liang (36175_CR31) 2020; 11 36175_CR17 D Patel (36175_CR30) 2021; 11 Y Gao (36175_CR15) 2020; 11 36175_CR13 C An (36175_CR23) 2020; 10 AL Booth (36175_CR27) 2021; 34 36175_CR59 36175_CR12 A Gupta (36175_CR2) 2021; 385 36175_CR6 MJ Quanjel (36175_CR11) 2021; 3 AS Yadaw (36175_CR19) 2020; 2 G Reis (36175_CR1) 2022; 10 MW Hooper (36175_CR39) 2020; 323 RE Schapire (36175_CR47) 2013 36175_CR5 C Dupuis (36175_CR9) 2021; 3 D Clark-Boucher (36175_CR58) 2022; 17 C Cortes (36175_CR48) 1995; 20 L Breiman (36175_CR49) 2001; 45 TO Kvålseth (36175_CR52) 2017; 19 36175_CR46 36175_CR44 36175_CR45 36175_CR50 CW Yancy (36175_CR40) 2020; 323 L van der Maaten (36175_CR51) 2008; 9 L Yan (36175_CR8) 2020; 2 N Barda (36175_CR14) 2020; 11 A Agusti (36175_CR3) 2021; 9 A Vaid (36175_CR55) 2021; 9 |
References_xml | – ident: CR45 – volume: 9 year: 2021 ident: CR55 article-title: Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach publication-title: JMIR Med. Inform. doi: 10.2196/24207 – volume: 2 start-page: 283 year: 2020 end-page: 288 ident: CR8 article-title: An interpretable mortality prediction model for COVID-19 patients publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0180-7 – volume: 15 start-page: 1435 year: 2020 end-page: 1443 ident: CR18 article-title: Utilization of machine-learning models to accurately predict the risk for critical COVID-19 publication-title: Intern. Emerg. Med. doi: 10.1007/s11739-020-02475-0 – volume: 2 start-page: e516 year: 2020 end-page: e525 ident: CR19 article-title: Clinical features of COVID-19 mortality: Development and validation of a clinical prediction model publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30217-X – volume: 11 start-page: 1 year: 2021 end-page: 11 ident: CR16 article-title: Multivariable mortality risk prediction using machine learning for covid-19 patients at admission (aicovid) publication-title: Sci. Rep. doi: 10.1038/s41598-021-92146-7 – volume: 323 start-page: 2466 year: 2020 end-page: 2467 ident: CR39 article-title: COVID-19 and racial/ethnic disparities publication-title: JAMA doi: 10.1001/jama.2020.8598 – volume: 17 year: 2022 ident: CR58 article-title: Assessing the added value of linking electronic health records to improve the prediction of self-reported COVID-19 testing and diagnosis publication-title: PLoS One doi: 10.1371/journal.pone.0269017 – ident: CR12 – volume: 10 start-page: 1 year: 2020 end-page: 11 ident: CR23 article-title: Machine learning prediction for mortality of patients diagnosed with COVID-19: A nationwide Korean cohort study publication-title: Sci. Rep. doi: 10.1038/s41598-020-75767-2 – volume: 39 start-page: 1253 year: 2020 end-page: 1262 ident: CR41 article-title: Disparities in outcomes among COVID-19 patients in a large health care system in California: Study estimates the COVID-19 infection fatality rate at the us county level publication-title: Health Affairs doi: 10.1377/hlthaff.2020.00598 – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: CR15 article-title: Machine learning based early warning system enables accurate mortality risk prediction for COVID-19 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18684-2 – ident: CR35 – volume: 22 year: 2020 ident: CR22 article-title: Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: Model development and validation publication-title: J. Med. Internet Res. doi: 10.2196/24018 – volume: 13 start-page: 19 year: 2021 ident: CR38 article-title: Health inequalities during COVID-19 and their effects on morbidity and mortality publication-title: J. Healthc. Leadersh. doi: 10.2147/JHL.S270175 – volume: 5 start-page: 1 year: 2022 end-page: 6 ident: CR43 article-title: Algorithmic fairness in pandemic forecasting: Lessons from COVID-19 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00602-z – ident: CR25 – ident: CR46 – volume: 13 start-page: 163 year: 2004 end-page: 170 ident: CR56 article-title: The association between congestive heart failure and chronic renal disease publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/00041552-200403000-00004 – volume: 44 start-page: 1 year: 2020 end-page: 12 ident: CR36 article-title: Detection of COVID-19 infection from routine blood exams with machine learning: A feasibility study publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01597-4 – ident: CR50 – volume: 3 start-page: 25 year: 2021 end-page: 27 ident: CR10 article-title: External validation demonstrates limited clinical utility of the interpretable mortality prediction model for patients with COVID-19 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00254-2 – volume: 11 start-page: 1 year: 2021 end-page: 7 ident: CR30 article-title: Machine learning based predictors for COVID-19 disease severity publication-title: Sci. Rep. doi: 10.1038/s41598-021-83967-7 – volume: 24 start-page: 560 year: 2020 end-page: 562 ident: CR57 article-title: Clinical presentation of COVID-19 in dementia patients publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-020-1389-1 – volume: 22 year: 2020 ident: CR33 article-title: Prognostic modeling of COVID-19 using artificial intelligence in the United Kingdom: Model development and validation publication-title: J. Med. Internet Res. doi: 10.2196/20259 – ident: CR5 – ident: CR26 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR51 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 1364 year: 2020 end-page: 1373 ident: CR32 article-title: Deep-learning artificial intelligence analysis of clinical variables predicts mortality in COVID-19 patients publication-title: J. Am. Coll. Emerg. Physicians Open doi: 10.1002/emp2.12205 – volume: 99 start-page: 519 year: 2021 ident: CR42 article-title: Long COVID and health inequities: The role of primary care publication-title: Milbank Q. doi: 10.1111/1468-0009.12505 – volume: 323 start-page: 1891 year: 2020 end-page: 1892 ident: CR40 article-title: COVID-19 and African Americans publication-title: JAMA doi: 10.1001/jama.2020.6548 – volume: 15 year: 2020 ident: CR7 article-title: Covid-19 mortality risk assessment: An international multi-center study publication-title: PLoS One doi: 10.1371/journal.pone.0243262 – volume: 3 start-page: 23 year: 2021 end-page: 24 ident: CR11 article-title: Replication of a mortality prediction model in Dutch patients with COVID-19 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00253-3 – volume: 22 year: 2020 ident: CR28 article-title: An artificial intelligence model to predict the mortality of COVID-19 patients at hospital admission time using routine blood samples: Development and validation of an ensemble model publication-title: J. Med. Internet Res. doi: 10.2196/25442 – volume: 22 year: 2020 ident: CR21 article-title: Prognostic assessment of COVID-19 in the intensive care unit by machine learning methods: Model development and validation publication-title: J. Med. Internet Res. doi: 10.2196/23128 – volume: 11 start-page: 1 year: 2020 end-page: 7 ident: CR31 article-title: Early triage of critically ill COVID-19 patients using deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-020-17280-8 – volume: 9 start-page: 682 year: 2021 end-page: 683 ident: CR3 article-title: Early treatment with inhaled budesonide to prevent clinical deterioration in patients with COVID-19 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(21)00171-5 – ident: CR6 – volume: 34 start-page: 522 year: 2021 end-page: 531 ident: CR27 article-title: Development of a prognostic model for mortality in COVID-19 infection using machine learning publication-title: Mod. Pathol. doi: 10.1038/s41379-020-00700-x – volume: 4 start-page: 1 year: 2021 end-page: 10 ident: CR53 article-title: Predicting COVID-19 mortality with electronic medical records publication-title: NPJ Digit. Med. doi: 10.1038/s41746-021-00383-x – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: CR14 article-title: Developing a COVID-19 mortality risk prediction model when individual-level data are not available publication-title: Nat. Commun. doi: 10.1038/s41467-020-18297-9 – volume: 19 start-page: 631 year: 2017 ident: CR52 article-title: On normalized mutual information: Measure derivations and properties publication-title: Entropy doi: 10.3390/e19110631 – volume: 10 start-page: e42 year: 2022 end-page: e51 ident: CR1 article-title: Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(21)00448-4 – volume: 3 start-page: 20 year: 2021 end-page: 22 ident: CR9 article-title: Limited applicability of a COVID-19 specific mortality prediction rule to the intensive care setting publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00252-4 – ident: CR44 – volume: 325 start-page: 719 year: 2021 end-page: 720 ident: CR4 article-title: Racial and ethnic health disparities related to COVID-19 publication-title: JAMA doi: 10.1001/jama.2020.26443 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR49 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 49 start-page: 1918 year: 2020 end-page: 1929 ident: CR24 article-title: Early prediction of mortality risk among patients with severe COVID-19, using machine learning publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyaa171 – volume: 385 start-page: 1941 year: 2021 end-page: 1950 ident: CR2 article-title: Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2107934 – ident: CR17 – ident: CR13 – start-page: 37 year: 2013 end-page: 52 ident: CR47 article-title: Explaining AdaBoost publication-title: Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik doi: 10.1007/978-3-642-41136-6_5 – volume: 10 start-page: 1 year: 2020 end-page: 8 ident: CR29 article-title: Development of a novel risk score to predict mortality in patients admitted to hospital with COVID-19 publication-title: Sci. Rep. doi: 10.1038/s41598-020-78505-w – ident: CR34 – volume: 28 start-page: 33 year: 2021 end-page: 41 ident: CR37 article-title: Telemedicine and healthcare disparities: a cohort study in a large healthcare system in New York City during COVID-19 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa217 – volume: 28 start-page: 2354 year: 2021 end-page: 2365 ident: CR54 article-title: Real-time electronic health record mortality prediction during the COVID-19 pandemic: A prospective cohort study publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocab100 – ident: CR59 – volume: 12 start-page: 1 year: 2022 end-page: 8 ident: CR20 article-title: A risk scoring system to predict progression to severe pneumonia in patients with COVID-19 publication-title: Sci. Rep. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR48 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: 36175_CR34 doi: 10.1109/RBME.2022.3185953 – volume: 11 start-page: 1 year: 2020 ident: 36175_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18684-2 – volume: 325 start-page: 719 year: 2021 ident: 36175_CR4 publication-title: JAMA doi: 10.1001/jama.2020.26443 – volume: 49 start-page: 1918 year: 2020 ident: 36175_CR24 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyaa171 – volume: 323 start-page: 1891 year: 2020 ident: 36175_CR40 publication-title: JAMA doi: 10.1001/jama.2020.6548 – volume: 2 start-page: e516 year: 2020 ident: 36175_CR19 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30217-X – volume: 11 start-page: 1 year: 2021 ident: 36175_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-021-83967-7 – volume: 24 start-page: 560 year: 2020 ident: 36175_CR57 publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-020-1389-1 – ident: 36175_CR26 doi: 10.1017/S0950268820001727 – volume: 385 start-page: 1941 year: 2021 ident: 36175_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2107934 – start-page: 37 volume-title: Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik year: 2013 ident: 36175_CR47 doi: 10.1007/978-3-642-41136-6_5 – volume: 20 start-page: 273 year: 1995 ident: 36175_CR48 publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 3 start-page: 20 year: 2021 ident: 36175_CR9 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00252-4 – ident: 36175_CR13 doi: 10.3389/fpubh.2022.880999 – volume: 11 start-page: 1 year: 2020 ident: 36175_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17280-8 – volume: 10 start-page: 1 year: 2020 ident: 36175_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-020-75767-2 – ident: 36175_CR45 doi: 10.1111/biom.13632 – volume: 9 start-page: 2579 year: 2008 ident: 36175_CR51 publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 1 year: 2022 ident: 36175_CR43 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00602-z – ident: 36175_CR46 – ident: 36175_CR17 doi: 10.1007/s12559-020-09812-7 – volume: 39 start-page: 1253 year: 2020 ident: 36175_CR41 publication-title: Health Affairs doi: 10.1377/hlthaff.2020.00598 – volume: 19 start-page: 631 year: 2017 ident: 36175_CR52 publication-title: Entropy doi: 10.3390/e19110631 – ident: 36175_CR44 doi: 10.1101/2022.01.13.22268948 – volume: 17 year: 2022 ident: 36175_CR58 publication-title: PLoS One doi: 10.1371/journal.pone.0269017 – volume: 15 start-page: 1435 year: 2020 ident: 36175_CR18 publication-title: Intern. Emerg. Med. doi: 10.1007/s11739-020-02475-0 – volume: 22 year: 2020 ident: 36175_CR22 publication-title: J. Med. Internet Res. doi: 10.2196/24018 – ident: 36175_CR5 – volume: 22 year: 2020 ident: 36175_CR21 publication-title: J. Med. Internet Res. doi: 10.2196/23128 – volume: 34 start-page: 522 year: 2021 ident: 36175_CR27 publication-title: Mod. Pathol. doi: 10.1038/s41379-020-00700-x – volume: 9 year: 2021 ident: 36175_CR55 publication-title: JMIR Med. Inform. doi: 10.2196/24207 – volume: 99 start-page: 519 year: 2021 ident: 36175_CR42 publication-title: Milbank Q. doi: 10.1111/1468-0009.12505 – volume: 15 year: 2020 ident: 36175_CR7 publication-title: PLoS One doi: 10.1371/journal.pone.0243262 – volume: 323 start-page: 2466 year: 2020 ident: 36175_CR39 publication-title: JAMA doi: 10.1001/jama.2020.8598 – volume: 28 start-page: 2354 year: 2021 ident: 36175_CR54 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocab100 – volume: 3 start-page: 25 year: 2021 ident: 36175_CR10 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00254-2 – volume: 9 start-page: 682 year: 2021 ident: 36175_CR3 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(21)00171-5 – volume: 2 start-page: 283 year: 2020 ident: 36175_CR8 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0180-7 – volume: 10 start-page: e42 year: 2022 ident: 36175_CR1 publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(21)00448-4 – ident: 36175_CR25 doi: 10.1183/13993003.01104-2020 – volume: 11 start-page: 1 year: 2020 ident: 36175_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18297-9 – volume: 13 start-page: 163 year: 2004 ident: 36175_CR56 publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/00041552-200403000-00004 – volume: 4 start-page: 1 year: 2021 ident: 36175_CR53 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-021-00383-x – volume: 10 start-page: 1 year: 2020 ident: 36175_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-020-78505-w – volume: 12 start-page: 1 year: 2022 ident: 36175_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-021-99269-x – volume: 13 start-page: 19 year: 2021 ident: 36175_CR38 publication-title: J. Healthc. Leadersh. doi: 10.2147/JHL.S270175 – volume: 45 start-page: 5 year: 2001 ident: 36175_CR49 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: 36175_CR59 – ident: 36175_CR6 doi: 10.1109/BHI50953.2021.9508512 – volume: 44 start-page: 1 year: 2020 ident: 36175_CR36 publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01597-4 – ident: 36175_CR12 doi: 10.3390/diagnostics12112700 – volume: 3 start-page: 23 year: 2021 ident: 36175_CR11 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00253-3 – volume: 11 start-page: 1 year: 2021 ident: 36175_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-021-92146-7 – ident: 36175_CR35 doi: 10.1136/bmjhci-2020-100312 – volume: 22 year: 2020 ident: 36175_CR28 publication-title: J. Med. Internet Res. doi: 10.2196/25442 – volume: 1 start-page: 1364 year: 2020 ident: 36175_CR32 publication-title: J. Am. Coll. Emerg. Physicians Open doi: 10.1002/emp2.12205 – ident: 36175_CR50 doi: 10.1145/2939672.2939785 – volume: 22 year: 2020 ident: 36175_CR33 publication-title: J. Med. Internet Res. doi: 10.2196/20259 – volume: 28 start-page: 33 year: 2021 ident: 36175_CR37 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa217 |
SSID | ssj0000529419 |
Score | 2.4646094 |
Snippet | Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of severe... Abstract Personalized medicine plays an important role in treatment optimization for COVID-19 patient management. Early treatment in patients at high risk of... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18981 |
SubjectTerms | 631/114/1305 631/114/2413 692/499 692/53/2423 Automation COVID-19 Dementia disorders Demography Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Patients Precision medicine Preventable deaths Risk assessment Science Science (multidisciplinary) Ventilators |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VlZB6QTyKCLTISNxKVMfvHEuhKki0F4p6s5x4AkgoW3WzB_49Yye7bSpRLr1Fie3Y488ZT2b8DcA73WphopKlMIEMFCuQ1pw0ZdCVDZ2JTczBmF_PzOmF-nKpL2-l-koxYSM98Ci4Q2qMzHKFRjeCTDkCjAmdEHUk3aaFbtLXl9f8ljE1snqLWlX1dEqGS3e4JE2VTpMJWUrS2rpUM02UCftnu8y7MZJ3HKVZ_5w8gcfTxpEdjR1-ClvYP4NHYyrJP8_hLDMVs9BHllw07Pj8--ePZVWzxWogUCFLMeQsbHg4WQp4_8GuF81qObAOM78nW-asODRVu3Bx8unb8Wk55UooW125oQwyBpRSkT2EdEny6pCsW4nYOiu6zjStcxg1diHaCrluLTZOtYp3xnCq-QK2-0WPL4Epq6LgLsTakoqzGEQlW5OyaNrAqa0CqrXcfDsRiad8Fr99dmhL50dZe5K1z7L2qoCDTZ2rkUbj3tIf0nRsSiYK7HyDgOEnYPj_AaOAvfVk-mldLr1wThvHTW0LeLt5TCsquUlCj4tVLmMkaW1uCnAzEMw6NH_S__qZubnJwk4cjFUB79d4uXn7v0f86iFG_Bp2RMJ3-ukt92B7uF7hPm2ZhuZNXh1_AViiDjg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxVMECjISN7Dq-J0TgkJVkCgXivZmObbTIqGkbLKH_nvGXm-qVKK3KHESP8aeGc_4-xB6K71kKghOmHLgoGgWYc5xRZystetUaENOxvx-qk7OxLeVXJUNt7GkVe7WxLxQh8GnPfJDZoxUhqpGf7j8SxJrVIquFgqNu-heDZZIom7QKz3vsaQolqibclaGcnM4gr5KZ8oYJxx0tyRioY8ybP_C1ryZKXkjXJq10PFDtF_MR_xxO96P0J3YP0b3t4SSV0_QacYrxq4POAVq8NGPX18_k7rBw2aCZkacMsmxm9E4cUp7P8frod2ME-5iRvnEY-bGgQF7is6Ov_w8OiGFMYF4WZuJOB5c5FyAVxThUkTVRfBxeYzeaNZ1qvXGxCBj54KuI5Vex9YIL2inFIU3n6G9fujjc4SFFoFR40KjQdHp6FjNvUpcmtpR-FaF6l2_WV_gxBOrxR-bw9rc2G1fW-hrm_vaigq9m9-53IJp3Fr6UxqOuWQCws43hvW5LfPKgqzxhkJDZcvA04f1RLmOsSaA6SOZbCt0sBtMW2bnaK9lqUJv5scwr1KwxPVx2OQyioPupqpCZiEEiwotn_S_LzJCN_jZCYmxrtD7nbxc__3_LX5xe2VfogeJ7D6fhOQHaG9ab-IrMImm9nWW-3_H8geC priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrZC4IMpDBEplJG4Q4fid41JalZUoByjqzXJipyChBO1mD_33HXuToFRQiVsUP2KPxx5PZuYbgDeylkx5wXOmHCoomgXcc1zlThbaNcpXPjljfj5XZxdidSkv94CNsTDJaT9BWqZjevQOe79BQRODwRjPOQpdmYt7sB97ZQvYXy5XX1fTn5VouxJFOUTIUG7-0ngmhRJY_-yGeds_8paRNMme00fwcLg0kuVumAewF9rHcH-XRvL6CZwnlGLiWk-ieYYcf_n-6WNelKTb9ji9QKL_OHETBieJzu5XZN1V201PmpAIQTYpIw4u01O4OD35dnyWD3kS8loWps8d9y5wLlAXCvgogmoCarY8hNpo1jSqqo0JXobGeV0EKmsdKiNqQRulKLZ8Bou2a8NzIEILz6hxvtQo3nRwrOC1ihk0taPYVwbFSDdbDyDiMZfFL5uM2dzYHa0t0tomWluRwdupze8dhMadtT_E5ZhqRvjr9KJbX9mBHSxyGC8pTlRWDPV7PEWUaxgrPV54JJNVBofjYtphT24sM0YqQ1WpM3g9FeNuiiYS14Zum-oojhKbqgzMjAlmA5qXtD9_JFxu1K4j_mKRwbuRX_58_d8zfvF_1V_Cg5jyPsVD8kNY9OtteIUXo746GnbCDX2HBpk priority: 102 providerName: Springer Nature |
Title | Early and fair COVID-19 outcome risk assessment using robust feature selection |
URI | https://link.springer.com/article/10.1038/s41598-023-36175-4 https://www.proquest.com/docview/2885680697 https://www.proquest.com/docview/2886328406 https://pubmed.ncbi.nlm.nih.gov/PMC10624921 https://doaj.org/article/5c53904e65b24691966af229d078525b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8ROr5xLBN622-e6DyN56x7ngKurKvoW0TU_haHW3C95_7yRtV3qc4lNLk7TNZKYz05n8BuCZKASVJWcxlRYdFEUdyhyTsRWpspUs8zIkY75fyLMln6_Eag-Gckc9ATfXuna-ntRyffHy18_LNyjwr7st4_rVBpWQ3yhGWcxQIYuY78NhiBf5VL7e3O-wvmnGQ60PD8IeozFB-300199mpKsCpP_IDr2aRXkllBo01OltuNWblmTa8cId2HP1XbjRFZu8vAeLgGVMbF0SH8Qhsw9f372N04w02xbZzhGfZU7sDqmT-JT4c7Ju8u2mJZULCKBkE-rm4GLeh-XpyZfZWdxXU4gLkeo2tqy0jjGOHpPDU-5k5dD_Zc4VWtGqknmhtSuFq2ypUpeIQrlc84InlZQJjnwAB3VTu4dAuOIlTbQtM4VKUDlLU1ZIX2dT2QTvFUE60M0UPdS4r3hxYULIm2nT0dogrU2gteERPN-N-dEBbfyz97Ffjl1PD5IdLjTrc9PLnEE-ZFmCExU55TLDb420FaVZiWaRoCKP4GhYTDMwnqFaC6kTmakInu6aUeZ8IMXWrtmGPpKhXk9kBHrEBKMXGrfU378F9G70wT1KYxrBi4Ff_jz97zN-9B9v8xhuUs--_q83O4KDdr11T9BmavMJ7KuVmsDhdDr_PMfj8cni4ye8OpOzSfgPMQmi8hv3tBRU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IJ4iUMBIcIKoiV9xDhWiL-3SdkGoRb25TuwUJJSU3axQ_xy_jbE3SbWV6K23KHFe4xnP0_MBvBWloNJyFlNp0EHJqEOZYzI2Is1MJW1hQzHm0VSOT_jnU3G6Bn_7vTC-rLJfE8NCbZvSx8g3qVJCqkTm2ceL37FHjfLZ1R5Cw3TQCnYrtBjrNnYcuMs_6MLNtya7ON_vKN3fO94Zxx3KQFziyDY2zBrHGEdPwuEhd7Jy6Bcy50qV0aqSRamUs8JVxmapS0SZuULxkieVlInzAVFUAevcB1BGsL69N_36bYjy-DwaT_Nut07C1OYcNabf1UZZzNB6EDFf0YgBOGDF2r1eq3ktYRv04P4DuN8ZsOTTkuMewpqrH8GdJaTl5WOYho7JxNSW-FQR2fnyfbIbpzlpFi0S2hFfy07M0A-U-ML7czJrisW8JZULfUbJPKDzIMs8gZNboeZTGNVN7Z4B4Rm3NFHG5hmq2swZmrJSejTPzCT4rAjSnm667Bqae1yNXzok1pnSS1prpLUOtNY8gvfDPRfLdh43jt720zGM9K24w4lmdq47ydbI7SxP8EdFQbnMcUWTpqI0t2h8CSqKCDb6ydTd-jDXV9wcwZvhMkq2T9eY2jWLMEYytB4SGYFaYYKVD1q9Uv_8EXqEo6fve0GmEXzo-eXq7f__4-c3f-xruDs-PjrUh5PpwQu4Rz0X-xA724BRO1u4l2igtcWrTgoInN224P0DUpNNNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuiKcIFDASnCDaxO8cKkS7XXUpLBWiqDfXiZ2ChJKyyQr1L_KrGHuTVKlEb72tNs5uMp7xzHjG34fQa15wIiyjMREGEhRJHNgcFbHhqTSlsLkNzZifF-LgmH084Scb6G9_Fsa3VfZrYliobV34PfIJUYoLlYhMTsquLeJoOnt__jv2DFK-0trTaZiOZsHuBLix7pDHobv4A-lcszOfwty_IWS2_23vIO4YB-ICRraxodY4ShlkFQ4-MidKBzkida5QkpSlyAulnOWuNFamLuGFdLliBUtKIRLnN0fBHWxJ8PqQCG7t7i-Ovg47Pr6mxtKsO7mTUDVpwHv6E26ExhQiCR6zkXcMJAKjyPdq3-aV4m3wibN76G4XzOIPa-27jzZc9QDdWtNbXjxEi4CejE1lsS8b4b0v3-fTOM1wvWpB6A77vnZsBmxQ7Jvwz_CyzldNi0sXMEdxE5h6QH0eoeMbkeZjtFnVlXuCMJPMkkQZm0lwu9IZktJCeGZPaRL4rQilvdx00YGbe46NXzoU2anSa1lrkLUOstYsQm-He87X0B7Xjt710zGM9LDc4Yt6eaY7K9eg-TRL4EV5TpjIYHUTpiQksxCIccLzCG33k6m7taLRl5odoVfDZbByX7oxlatXYYygEEkkIkJqpASjBxpfqX7-CHjhkPV7XMg0Qu96fbn89_-_8dPrH_Ylug0GqD_NF4fP0B3ildjvttNttNkuV-45xGpt_qIzAoxOb9ru_gELElF6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+and+fair+COVID-19+outcome+risk+assessment+using+robust+feature+selection&rft.jtitle=Scientific+reports&rft.au=Giuste%2C+Felipe+O&rft.au=He%2C+Lawrence&rft.au=Lais%2C+Peter&rft.au=Shi%2C+Wenqi&rft.date=2023-11-03&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=18981&rft_id=info:doi/10.1038%2Fs41598-023-36175-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |