Differentiation of relapsing-remitting and secondary progressive multiple sclerosis: a magnetic resonance spectroscopy study based on machine learning

ABSTRACT Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this s...

Full description

Saved in:
Bibliographic Details
Published inArquivos de neuro-psiquiatria Vol. 78; no. 12; pp. 789 - 796
Main Authors Ekşi, Ziya, Çakiroğlu, Murat, Öz, Cemil, Aralaşmak, Ayse, Karadeli, Hasan Hüseyin, Özcan, Muhammed Emin
Format Journal Article
LanguageEnglish
Published Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil Thieme Revinter Publicações Ltda 01.12.2020
Arquivos de Neuro-Psiquiatria
Academia Brasileira de Neurologia - ABNEURO
Thieme Revinter Publicações
Subjects
Online AccessGet full text
ISSN0004-282X
1678-4227
1678-4227
DOI10.1590/0004-282X20200094

Cover

Abstract ABSTRACT Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. Objective: This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. Methods: MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. Results: RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. Conclusions: A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
AbstractList ABSTRACT Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. Objective: This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. Methods: MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. Results: RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. Conclusions: A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
ABSTRACT Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. Objective: This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. Methods: MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. Results: RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. Conclusions: A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process.INTRODUCTIONMagnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process.This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods.OBJECTIVEThis study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods.MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm.METHODSMR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm.RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity.RESULTSRRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity.A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.CONCLUSIONSA combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. Objective: This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. Methods: MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. Results: RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. Conclusions: A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.
ABSTRACT Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study would contribute to the process. Objective: This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using MR spectroscopy and machine learning methods. Methods: MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support Vector Machine algorithm. Results: RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. Conclusions: A combined analysis of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types. RESUMO Introdução: A ressonância magnética é a ferramenta mais importante para o diagnóstico e acompanhamento na EM. A transição da EM recorrente-remitente (EMRR) para a EM progressiva secundária (EMPS) é clinicamente difícil e seria importante desenvolver a proposta apresentada neste estudo a fim de contribuir com o processo. Objetivo: o objetivo deste estudo foi garantir a classificação automática de grupo controle saudável, EMRR e EMPS usando a RM com espectroscopia e métodos de aprendizado de máquina. Métodos: Os exames de RM com espectroscopia foram realizados em um total de 91 amostras com grupo controle saudável (n=30), EMRR (n=36) e EMPS (n=25). Em primeiro lugar, os metabólitos da RM com espectroscopia foram identificados usando técnicas de processamento de sinal. Em segundo lugar, a extração de recursos foi realizada a partir do MRS Spectra. O NAA foi determinado como o metabólito mais significativo na diferenciação dos tipos de MS. Por fim, as classificações binárias (Healthy Control Group-RRMS e RRMS-SPMS) foram realizadas de acordo com as características obtidas por meio do algoritmo Support Vector Machine. Resultados: Os casos de EMRR e do grupo de controle saudável foram diferenciados entre si com 85% de acerto, 90,91% de sensibilidade e 77,78% de especificidade, respectivamente. A EMRR e a EMPS foram classificadas com 83,33% de acurácia, 81,81% de sensibilidade e 85,71% de especificidade, respectivamente. Conclusões: Uma análise combinada de RM com espectroscopia e abordagem de diagnóstico auxiliado por computador pode ser útil como uma técnica de imagem complementar na determinação dos tipos de EM.
Abstract_FL RESUMO Introdução: A ressonância magnética é a ferramenta mais importante para o diagnóstico e acompanhamento na EM. A transição da EM recorrente-remitente (EMRR) para a EM progressiva secundária (EMPS) é clinicamente difícil e seria importante desenvolver a proposta apresentada neste estudo a fim de contribuir com o processo. Objetivo: o objetivo deste estudo foi garantir a classificação automática de grupo controle saudável, EMRR e EMPS usando a RM com espectroscopia e métodos de aprendizado de máquina. Métodos: Os exames de RM com espectroscopia foram realizados em um total de 91 amostras com grupo controle saudável (n=30), EMRR (n=36) e EMPS (n=25). Em primeiro lugar, os metabólitos da RM com espectroscopia foram identificados usando técnicas de processamento de sinal. Em segundo lugar, a extração de recursos foi realizada a partir do MRS Spectra. O NAA foi determinado como o metabólito mais significativo na diferenciação dos tipos de MS. Por fim, as classificações binárias ( Healthy Control Group -RRMS e RRMS-SPMS) foram realizadas de acordo com as características obtidas por meio do algoritmo Support Vector Machine . Resultados: Os casos de EMRR e do grupo de controle saudável foram diferenciados entre si com 85% de acerto, 90,91% de sensibilidade e 77,78% de especificidade, respectivamente. A EMRR e a EMPS foram classificadas com 83,33% de acurácia, 81,81% de sensibilidade e 85,71% de especificidade, respectivamente. Conclusões: Uma análise combinada de RM com espectroscopia e abordagem de diagnóstico auxiliado por computador pode ser útil como uma técnica de imagem complementar na determinação dos tipos de EM.
Author ÖZCAN, Muhammed Emin
ÇAKIROĞLU, Murat
ARALAŞMAK, Ayse
ÖZ, Cemil
KARADELİ, Hasan Hüseyin
EKŞİ, Ziya
AuthorAffiliation Istanbul Medeniyet University
Memorial Bahçelievler Hospital
Yeni Yüzyil University
Sakarya University
AuthorAffiliation_xml – name: Istanbul Medeniyet University
– name: Sakarya University
– name: Memorial Bahçelievler Hospital
– name: Yeni Yüzyil University
Author_xml – sequence: 1
  givenname: Ziya
  surname: Ekşi
  fullname: Ekşi, Ziya
– sequence: 2
  givenname: Murat
  surname: Çakiroğlu
  fullname: Çakiroğlu, Murat
– sequence: 3
  givenname: Cemil
  surname: Öz
  fullname: Öz, Cemil
– sequence: 4
  givenname: Ayse
  surname: Aralaşmak
  fullname: Aralaşmak, Ayse
– sequence: 5
  givenname: Hasan
  surname: Karadeli
  middlename: Hüseyin
  fullname: Karadeli, Hasan Hüseyin
– sequence: 6
  givenname: Muhammed
  surname: Özcan
  middlename: Emin
  fullname: Özcan, Muhammed Emin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33331515$$D View this record in MEDLINE/PubMed
BookMark eNqNUk2PFCEU7Jg17uzqD_BiSLx4mRW66aHxZtavTTbxoCbeyGv69SwTGlqgV-eP-HtltmfGZA5GDvACVQVFvYvizHmHRfGc0StWS_qaUsqXZVN-L2mZa8kfFQu2Es2Sl6U4KxbH8_PiIsYNpSWXUjwpzqs8WM3qRfH7nel7DOiSgWS8I74nAS2M0bj1MuBgUsoVAdeRiNq7DsKWjMGvA8Zo7pEMk01mtEiithh8NPENATLA2mEyOotF78DpfD6iThmg_bglMU3dlrQQsSP51gH0nXFILEJw-b6nxeMebMRn-_Wy-Pbh_dfrT8vbzx9vrt_eLnXNmrSUdQWS87JpBEIj6lVbNdkh67FeMRQ9qzvZSs0BEEXdU6pl3UvIjptKdLCqLoubWbfzsFFjMEO2pzwY9bDhw1pByDYsqq7jQlIUVSNWnDFokYNuaY9tx6Dsm6xVzlqTG2H7E6w9CjKqdoGpXSAqB_LrEFgmXc2kqA1arzZ-Ci47Vl8O2H24LE-ikZnwaibkDH5MGJMaTNRoLTj0U1QlF1RSJsQO-vIEelTPKC5LKiuRUS_2qKkdsDu--dAjGSBmgM7hxYC90iY9NEsKYOw_zbET5v98CJ056c7ggH-ffEo5Nn31B6oV7XI
CitedBy_id crossref_primary_10_3390_sclerosis2030009
crossref_primary_10_1016_j_nicl_2022_103065
crossref_primary_10_1098_rsos_241052
crossref_primary_10_1016_j_heliyon_2024_e30521
Cites_doi 10.1371/journal.pcbi.1000173
10.1002/mrm.26837
10.1007/s10334-008-0146-y
10.1212/WNL.0000000000000560
10.1016/j.jns.2005.03.018
10.1212/WNL.0b013e31827b1a8c
10.1191/1352458504ms1035oa
10.1002/mrm.1910140104
10.3389/fnins.2017.00398
10.1016/j.patcog.2015.03.009
10.1023/A:1009715923555
10.1016/j.ejrad.2013.08.037
10.1002/mrm.27166
10.1191/1352458502ms802oa
10.3174/ajnr.A1738
10.1002/ana.22366
10.1007/s10334-010-0241-8
10.1007/s11548-012-0808-0
10.1001/archneur.62.6.865
10.1016/S0074-7742(07)79015-3
10.1016/S1474-4422(14)70231-5
10.1002/mrm.22579
10.1016/j.nic.2008.08.002
10.1016/j.artmed.2007.02.002
10.1016/j.mri.2010.11.006
10.1590/2446-4740.00617
10.1016/j.ejrnm.2011.12.009
10.1016/j.neuroimage.2013.05.125
ContentType Journal Article
Copyright Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon.
Copyright Arquivos de Neuro-Psiquiatria Dec 2020
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon.
– notice: Copyright Arquivos de Neuro-Psiquiatria Dec 2020
– notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID 0U6
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
GPN
ADTOC
UNPAY
DOA
DOI 10.1590/0004-282X20200094
DatabaseName Thieme Connect Journals Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
SciELO
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Genetics Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: 0U6
  name: Thieme Connect Journals Open Access
  url: http://open.thieme.com
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Diferenciação de esclerose múltipla recorrente-remitente e progressiva secundária: um estudo de ressonância magnética com espectroscopia baseado em aprendizado de máquina
DocumentTitle_FL Diferenciação de esclerose múltipla recorrente-remitente e progressiva secundária: um estudo de ressonância magnética com espectroscopia baseado em aprendizado de máquina
EISSN 1678-4227
EndPage 796
ExternalDocumentID oai_doaj_org_article_dd4790e73876411abe4acb0febd1a2f8
10.1590/0004-282x20200094
S0004_282X2020001200789
33331515
10_1590_0004_282x20200094
10_1590_0004_282X20200094
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
0R~
0U6
23N
2WC
53G
5GY
5VS
6J9
ABIVO
ABXHO
ADBBV
AENEX
AHRAW
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
BAWUL
BCNDV
C1A
CS3
DIK
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
IPNFZ
KQ8
KWQ
M~E
OK1
P2P
PGMZT
RIG
RNS
RPM
RSC
RTC
SCD
XSB
AAFWJ
AAYXX
AFPKN
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
GPN
ADTOC
UNPAY
ID FETCH-LOGICAL-c518t-953a9442887ea8756b389971fe561e7f15d9b9c4aaee75f00c95f9affe837da63
IEDL.DBID UNPAY
ISSN 0004-282X
1678-4227
IngestDate Fri Oct 03 12:34:44 EDT 2025
Tue Aug 19 18:47:45 EDT 2025
Tue Sep 16 20:57:07 EDT 2025
Wed Oct 01 14:46:29 EDT 2025
Mon Jun 30 05:48:58 EDT 2025
Thu Jan 02 22:58:19 EST 2025
Tue Jul 01 02:04:53 EDT 2025
Thu Apr 24 23:13:40 EDT 2025
Sun Nov 24 15:00:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Multiple Sclerosis
Esclerose Múltipla Recidivante-Remitente
Esclerose Múltipla Crônica Progressiva
Ressonância Magnética com espectroscopia
Multiple Sclerosis, Relapsing-Remitting
Multiple Sclerosis, Chronic Progressive
Magnetic Resonance Spectroscopy
Aprendizado de Máquina
Esclerose Múltipla
Machine Learning
Language English
License CC BY-NC-ND 4.0
http://creativecommons.org/licenses/by/4.0
This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-953a9442887ea8756b389971fe561e7f15d9b9c4aaee75f00c95f9affe837da63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7672-5505
0000-0002-0470-8247
0000-0001-8670-0873
0000-0001-9742-6021
0000-0002-3220-6391
0000-0001-8654-855X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.scielo.br/j/anp/a/dqQnpfS4fRqtWVgcHwLGbrs/?lang=en&format=pdf
PMID 33331515
PQID 2474920937
PQPubID 2049055
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_dd4790e73876411abe4acb0febd1a2f8
unpaywall_primary_10_1590_0004_282x20200094
scielo_journals_S0004_282X2020001200789
proquest_miscellaneous_2470901779
proquest_journals_2474920937
pubmed_primary_33331515
crossref_citationtrail_10_1590_0004_282x20200094
crossref_primary_10_1590_0004_282x20200094
thieme_journals_10_1590_0004_282X20200094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
PublicationPlace_xml – name: Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
– name: Brazil
– name: Sao Paulo
PublicationTitle Arquivos de neuro-psiquiatria
PublicationTitleAlternate Arq Neuropsiquiatr
PublicationYear 2020
Publisher Thieme Revinter Publicações Ltda
Arquivos de Neuro-Psiquiatria
Academia Brasileira de Neurologia - ABNEURO
Thieme Revinter Publicações
Publisher_xml – name: Thieme Revinter Publicações Ltda
– name: Arquivos de Neuro-Psiquiatria
– name: Academia Brasileira de Neurologia - ABNEURO
– name: Thieme Revinter Publicações
References Kirov II (ref9) 2013; 80
Hsu CW (ref28)
Wong TT (ref30) 2013; 48
Sajja BR (ref4) 2009; 19
Georgiadis P (ref34) 2011; 29
De Stefano N (ref6) 2005; 233
Vieira BH (ref16) 2017; 33
García-Gómez JM (ref26) 2011; 3
Pan JW (ref12) 2002; 8
Gill SK (ref24) 2013
Ge Y (ref7) 2006; 27
Ion-Mărgineanu A (ref19) 2017; 11
Olliverre N (ref17) 2018; 11037
Zarinabad N (ref23) 2018; 79
Freedman MS (ref2) 2005; 62
Lublin FD (ref1) 2014; 83
Achtnichts L (ref14) 2013; 82
Burges CJC (ref27) 1998; 2
Gurbani SS (ref18) 2018; 80
Fuster-Garcia E (ref25) 2011; 24
De Stefano NJ (ref31) 2007; 17
Feinstein A (ref36) 2015; 14
Polman CH (ref20) 2011; 69
Tsolaki E (ref33) 2013; 8
Lugue FA (ref3) 2007; 79
Vingara LK (ref8) 2013; 82
Saindane AM (ref5) 2002; 23
Abd El-Rahman HM (ref11) 2012; 43
Ben-Hur A (ref29) 2008; 4
Luts J (ref35) 2007; 40
Wilson M (ref21) 2011; 65
Narayana PA (ref13) 2004; 10
Marliani AF (ref15) 2010; 31
Klose U (ref22) 1990; 14
Aboul-Enein F (ref10) 2012; 3
García-Gómez JM (ref32) 2009; 22
Georgiadis, P; Kostopoulos, S; Cavouras, D; Glotsos, D; Kalatzis, I; Sifaki, K 2011; 29
Ion-Mărgineanu, A; Kocevar, G; Stamile, C; Sima, DM; Durand-Dubief, F; Van Huffel, S 2017; 11
De Stefano, N; Bartolozzi, ML; Guidi, L; Stromillo, ML; Federico, A 2005; 233
Lublin, FD; Reingold, SC; Cohen, JA; Cutter, GR; Sørensen, PS; Thompson, AJ 2014; 83
Aboul-Enein, F 2012; 3
Wong, TT 2013; 48
Vingara, LK; Yu, HJ; Wagshul, ME; Serafin, D; Christodoulou, C; Pelczer, I 2013; 82
Klose, U 1990; 14
Feinstein, A; Freeman, J; Lo, AC 2015; 14
Wilson, M; Reynolds, G; Kauppinen, RA; Arvanitis, TN; Peet, AC 2011; 65
Freedman, MS; Thompson, EJ; Deisenhammer, F; Giovannoni, G; Grimsley, G; Keir, G 2005; 62
García-Gómez, JM; Hayat, M 2011; 3
Fuster-Garcia, E; Navarro, C; Vicente, J; Tortajada, S; García-Gómez, JM; Sáez, C 2011; 24
Vieira, BH; Dos Santos, AC; Salmon, CEG 2017; 33
Luts, J; Heerschap, A; Suykens, JA; Van Huffel, S 2007; 40
Zarinabad, N; Abernethy, LJ; Avula, S; Davies, NP; Rodriguez Gutierrez, D; Jaspan, T 2018; 79
Lugue, FA; Jaffe, SL 2007; 79
Pan, JW; Coyle, PK; Bashir, K; Whitaker, JN; Krupp, LB; Hetherington, HP 2002; 8
De Stefano, NJ; Filippi, M 2007; 17
Burges, CJC 1998; 2
Ge, Y 2006; 27
Marliani, AF; Clementi, V; Albini Riccioli, L; Agati, R; Carpenzano, M; Salvi, F 2010; 31
Narayana, PA; Wolinsky, JS; Rao, SB; He, R; Mehta, M 2004; 10
Olliverre, N; Yang, G; Slabauhg, G; Reyes-Aldasoro, CC; Alonso, E 2018; 11037
Achtnichts, L; Gonen, O; Rigotti, DJ; Babb, JS; Naegelin, Y; Penner, IK 2013; 82
Hsu, CW; Chang, CC; Lin, CJ
Kirov, II; Tal, A; Babb, JS; Herbert, J; Gonen, O 2013; 80
Abd El-Rahman, HM; Hasan, DI; Selim, HA; Lotfi, SM; Elsayed, WM 2012; 43
Saindane, AM; Cha, S; Law, M; Xue, X; Knopp, EA; Zagzag, D 2002; 23
Gurbani, SS; Schreibmann, E; Maudsley, AA; Cordova, JS; Soher, BJ; Poptani, H 2018; 80
Ben-Hur, A; Ong, CS; Sonnenburg, S; Schölkopf, B; Rätsch, G 2008; 4
García-Gómez, JM; Luts, J; Julià-Sapé, M; Krooshof, P; Tortajada, S; Robledo, JV 2009; 22
Tsolaki, E; Svolos, P; Kousi, E; Kapsalaki, E; Fountas, K; Theodorou, K 2013; 8
Gill, SK 2013
Sajja, BR; Wolinsky, JS; Narayana, PA 2009; 19
Polman, CH; Reingold, SC; Banwell, B; Clanet, M; Cohen, JA; Filippi, M 2011; 69
References_xml – volume: 3
  start-page: 47
  year: 2012
  ident: ref10
  article-title: MR spectroscopy in multiple sclerosis - a new piece of the puzzle or just a new puzzle. Magnetic Resonance Spectroscopy
  publication-title: InTech
– volume: 4
  start-page: 1
  issue: 10
  year: 2008
  ident: ref29
  article-title: Support Vector Machines and Kernels for Computational Biology
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000173
– volume: 79
  start-page: 2359
  issue: 4
  year: 2018
  ident: ref23
  article-title: Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T 1 H-MR spectroscopy-A multi-center study
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26837
– volume: 22
  start-page: 5
  issue: 1
  year: 2009
  ident: ref32
  article-title: Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
  publication-title: MAGMA
  doi: 10.1007/s10334-008-0146-y
– volume: 83
  start-page: 278
  issue: 3
  year: 2014
  ident: ref1
  article-title: Defining the clinical course of multiple sclerosis: the 2013 revisions
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000560
– volume: 233
  start-page: 203
  issue: 1-2
  year: 2005
  ident: ref6
  article-title: Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2005.03.018
– volume: 27
  start-page: 1165
  issue: 6
  year: 2006
  ident: ref7
  article-title: Multiple sclerosis: the role of MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 80
  start-page: 39
  issue: 1
  year: 2013
  ident: ref9
  article-title: Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31827b1a8c
– volume: 10
  start-page: 73
  issue: 3
  year: 2004
  ident: ref13
  article-title: Multicentre proton magnetic resonance spectroscopy imaging of primary progressive multiple sclerosis
  publication-title: Mult Scler
  doi: 10.1191/1352458504ms1035oa
– volume: 14
  start-page: 26
  issue: 1
  year: 1990
  ident: ref22
  article-title: In vivo proton spectroscopy in presence of eddy currents
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910140104
– volume: 11
  start-page: 398
  year: 2017
  ident: ref19
  article-title: achine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00398
– volume: 48
  start-page: 2839
  issue: 9
  year: 2013
  ident: ref30
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.03.009
– volume: 2
  start-page: 121
  year: 1998
  ident: ref27
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009715923555
– volume: 82
  start-page: 848
  issue: 12
  year: 2013
  ident: ref14
  article-title: Global N-acetylaspartate concentration in benign and non-benign multiple sclerosis patients of long disease duration
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2013.08.037
– volume: 80
  start-page: 1765
  issue: 5
  year: 2018
  ident: ref18
  article-title: A convolutional neural network to filter artifacts in spectroscopic MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27166
– volume: 23
  start-page: 1378
  issue: 8
  year: 2002
  ident: ref5
  article-title: Proton MR spectroscopy of tumefactive demyelinating lesions
  publication-title: AJNR Am J Neuroradiol
– volume: 8
  start-page: 200
  issue: 3
  year: 2002
  ident: ref12
  article-title: Metabolic differences between multiple sclerosis subtypes measured by quantitative MR spectroscopy
  publication-title: Mult Scler
  doi: 10.1191/1352458502ms802oa
– volume: 31
  start-page: 180
  issue: 1
  year: 2010
  ident: ref15
  article-title: Quantitative cervical spinal cord 3T Proton MR spectroscopy in Multiple Sclerosis
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A1738
– volume: 69
  start-page: 292
  issue: 2
  year: 2011
  ident: ref20
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann Neurol
  doi: 10.1002/ana.22366
– volume: 24
  start-page: 35
  issue: 1
  year: 2011
  ident: ref25
  article-title: Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra
  publication-title: MAGMA
  doi: 10.1007/s10334-010-0241-8
– volume: 17
  start-page: 31
  year: 2007
  ident: ref31
  article-title: MR spectroscopy in multiple sclerosis
  publication-title: J Neurol Sci
– volume: 8
  start-page: 751
  issue: 5
  year: 2013
  ident: ref33
  article-title: Automated differentiation of glioblastomas from intracranial metastases using 3T MR spectroscopic and perfusion data
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-012-0808-0
– volume: 62
  start-page: 865
  issue: 6
  year: 2005
  ident: ref2
  article-title: Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement
  publication-title: Arch Neurol
  doi: 10.1001/archneur.62.6.865
– volume: 79
  start-page: 341
  year: 2007
  ident: ref3
  article-title: Cerebrospinal fluid analysis in multiple sclerosis
  publication-title: Int Rev Neurobiol
  doi: 10.1016/S0074-7742(07)79015-3
– volume: 14
  start-page: 194
  issue: 2
  year: 2015
  ident: ref36
  article-title: Treatment of progressive multiple sclerosis: what works, what does not, and what is needed
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70231-5
– volume: 65
  start-page: 1
  issue: 1
  year: 2011
  ident: ref21
  article-title: A constrained least-squares approach to the automated quantitation of in vivo ¹H magnetic resonance spectroscopy data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22579
– volume: 19
  start-page: 45
  issue: 1
  year: 2009
  ident: ref4
  article-title: Proton magnetic resonance spectroscopy in multiple sclerosis
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2008.08.002
– ident: ref28
– volume: 40
  start-page: 87
  issue: 2
  year: 2007
  ident: ref35
  article-title: A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.02.002
– volume: 29
  start-page: 525
  issue: 4
  year: 2011
  ident: ref34
  article-title: Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2010.11.006
– volume: 11037
  start-page: 130
  year: 2018
  ident: ref17
  article-title: Generating magnetic resonance spectroscopy imaging data of brain tumours from linear, non-linear and deep learning models
  publication-title: Springer, Cham
– volume: 33
  start-page: 185
  issue: 3
  year: 2017
  ident: ref16
  article-title: Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings
  publication-title: Res Biomed Eng
  doi: 10.1590/2446-4740.00617
– volume: 3
  start-page: 5
  volume-title: Brain tumor classification using magnetic resonance spectroscopy
  year: 2011
  ident: ref26
– volume: 43
  start-page: 257
  issue: 2
  year: 2012
  ident: ref11
  article-title: Clinical use of H1MR spectroscopy in assessment of relapsing remitting and secondary progressive multiple sclerosis
  publication-title: Egypt J Radiol Nucl Med
  doi: 10.1016/j.ejrnm.2011.12.009
– year: 2013
  ident: ref24
– volume: 82
  start-page: 586
  year: 2013
  ident: ref8
  article-title: Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.125
– volume: 17
  start-page: 31
  year: 2007
  end-page: 35
  article-title: MR spectroscopy in multiple sclerosis
  publication-title: J Neurol Sci
– volume: 80
  start-page: 39
  issue: 1
  year: 2013
  end-page: 46
  article-title: Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS
  publication-title: Neurology
– volume: 4
  start-page: 1
  issue: 10
  year: 2008
  end-page: 10
  article-title: Support Vector Machines and Kernels for Computational Biology
  publication-title: PLoS Comput Biol
– volume: 24
  start-page: 35
  issue: 1
  year: 2011
  end-page: 42
  article-title: Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra
  publication-title: MAGMA
– volume: 79
  start-page: 341
  year: 2007
  end-page: 356
  article-title: Cerebrospinal fluid analysis in multiple sclerosis
  publication-title: Int Rev Neurobiol
– volume: 14
  start-page: 194
  issue: 2
  year: 2015
  end-page: 207
  article-title: Treatment of progressive multiple sclerosis: what works, what does not, and what is needed
  publication-title: Lancet Neurol
– volume: 82
  start-page: 586
  year: 2013
  end-page: 594
  article-title: Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis
  publication-title: Neuroimage
– volume: 40
  start-page: 87
  issue: 2
  year: 2007
  end-page: 102
  article-title: A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection
  publication-title: Artif Intell Med
– volume: 31
  start-page: 180
  issue: 1
  year: 2010
  end-page: 184
  article-title: Quantitative cervical spinal cord 3T Proton MR spectroscopy in Multiple Sclerosis
  publication-title: Am J Neuroradiol
– publication-title: A practical guide to support vector classification
– volume: 22
  start-page: 5
  issue: 1
  year: 2009
  end-page: 18
  article-title: Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
  publication-title: MAGMA
– volume: 3
  start-page: 47
  year: 2012
  end-page: 72
  article-title: MR spectroscopy in multiple sclerosis - a new piece of the puzzle or just a new puzzle. Magnetic Resonance Spectroscopy
  publication-title: InTech
– volume: 11037
  start-page: 130
  year: 2018
  end-page: 138
  article-title: Generating magnetic resonance spectroscopy imaging data of brain tumours from linear, non-linear and deep learning models
  publication-title: Springer, Cham
– volume: 10
  start-page: 73
  issue: 3
  year: 2004
  end-page: 78
  article-title: Multicentre proton magnetic resonance spectroscopy imaging of primary progressive multiple sclerosis
  publication-title: Mult Scler
– volume: 79
  start-page: 2359
  issue: 4
  year: 2018
  end-page: 2366
  article-title: Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T 1 H-MR spectroscopy-A multi-center study
  publication-title: Magn Reson Med
– volume: 8
  start-page: 200
  issue: 3
  year: 2002
  end-page: 206
  article-title: Metabolic differences between multiple sclerosis subtypes measured by quantitative MR spectroscopy
  publication-title: Mult Scler
– volume: 82
  start-page: 848
  issue: 12
  year: 2013
  end-page: 852
  article-title: Global N-acetylaspartate concentration in benign and non-benign multiple sclerosis patients of long disease duration
  publication-title: Eur J Radiol
– volume: 69
  start-page: 292
  issue: 2
  year: 2011
  end-page: 302
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann Neurol
– volume: 11
  start-page: 398
  year: 2017
  end-page: 398
  article-title: achine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
  publication-title: Front Neurosci
– year: 2013
  publication-title: Isingle voxel proton magnetic resonance spectroscopy of childhood brain tumours
– volume: 65
  start-page: 1
  issue: 1
  year: 2011
  end-page: 12
  article-title: A constrained least-squares approach to the automated quantitation of in vivo ¹H magnetic resonance spectroscopy data
  publication-title: Magn Reson Med
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Discov
– volume: 19
  start-page: 45
  issue: 1
  year: 2009
  end-page: 58
  article-title: Proton magnetic resonance spectroscopy in multiple sclerosis
  publication-title: Neuroimaging Clin N Am
– volume: 33
  start-page: 185
  issue: 3
  year: 2017
  end-page: 194
  article-title: Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings
  publication-title: Res Biomed Eng
– volume: 23
  start-page: 1378
  issue: 8
  year: 2002
  end-page: 1386
  article-title: Proton MR spectroscopy of tumefactive demyelinating lesions
  publication-title: AJNR Am J Neuroradiol
– volume: 80
  start-page: 1765
  issue: 5
  year: 2018
  end-page: 1775
  article-title: A convolutional neural network to filter artifacts in spectroscopic MRI
  publication-title: Magn Reson Med
– volume: 29
  start-page: 525
  issue: 4
  year: 2011
  end-page: 535
  article-title: Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition
  publication-title: Magn Reson Imaging
– volume: 27
  start-page: 1165
  issue: 6
  year: 2006
  end-page: 1176
  article-title: Multiple sclerosis: the role of MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 8
  start-page: 751
  issue: 5
  year: 2013
  end-page: 761
  article-title: Automated differentiation of glioblastomas from intracranial metastases using 3T MR spectroscopic and perfusion data
  publication-title: Int J Comput Assist Radiol Surg
– volume: 48
  start-page: 2839
  issue: 9
  year: 2013
  end-page: 2846
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recognit
– volume: 83
  start-page: 278
  issue: 3
  year: 2014
  end-page: 286
  article-title: Defining the clinical course of multiple sclerosis: the 2013 revisions
  publication-title: Neurology
– volume: 14
  start-page: 26
  issue: 1
  year: 1990
  end-page: 30
  article-title: In vivo proton spectroscopy in presence of eddy currents
  publication-title: Magn Reson Med
– volume: 3
  start-page: 5
  year: 2011
  end-page: 19
  publication-title: Tumors of the central nervous system
– volume: 43
  start-page: 257
  issue: 2
  year: 2012
  end-page: 264
  article-title: Clinical use of H1MR spectroscopy in assessment of relapsing remitting and secondary progressive multiple sclerosis
  publication-title: Egypt J Radiol Nucl Med
– volume: 62
  start-page: 865
  issue: 6
  year: 2005
  end-page: 870
  article-title: Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement
  publication-title: Arch Neurol
– volume: 233
  start-page: 203
  issue: 1-2
  year: 2005
  end-page: 208
  article-title: Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis
  publication-title: J Neurol Sci
SSID ssj0024997
Score 2.2531173
Snippet ABSTRACT Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination...
ABSTRACT Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination...
Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of relapsing-remitting...
Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination of...
SourceID doaj
unpaywall
scielo
proquest
pubmed
crossref
thieme
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 789
SubjectTerms Diagnosis
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Metabolites
Multiple Sclerosis
Multiple Sclerosis, Chronic Progressive
Multiple Sclerosis, Chronic Progressive - diagnostic imaging
Multiple Sclerosis, Relapsing-Remitting
Multiple Sclerosis, Relapsing-Remitting - diagnostic imaging
N-Acetylaspartate
NEUROSCIENCES
PSYCHIATRY
Signal processing
Spectrum analysis
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHuCEeJPVgoyEhABFxIkTx9x4rVZIywVW6i0ax5OlUptWbQr0j_B7mXGStiDEXuipah3HY4_jbzIz3wjx1KmiNL52cZmBj3WTuthBY2NMc19ADi4LJVnOPxVnF_rjJJ8clPrimLCeHrifuFfea2MTNBltW60UONRQu6RB5xWkTUjzTUo7GlMjy561ZvBh5jbhdAUdk3Hxg0z9EEz32ykUyPr_hjCZPpR22GxBX7qvU5zTE_vGpl3C9jvMZgfn0OktcXMAkPJNP_Db4hq2d8T188FFflf8fD-UPOn6SZeLRnLCypJfCsQrnE9DpLOE1ss1W8MeVlsZwrQ4IvYbyjHGUK7pBjT86fq1BDmHy5YTHqkzRu-kKzJkaTIb5mK5lYGnVvKh6CXddR6CNFEOVSku74mL0w9f3p3FQ_GFuM5V2bFbF6wm46Q0CGTUFI6Z-IxqkBAXmkbl3jpbawBEkzdJUtu8sUASksnrocjui6N20eJDIQk0cZ4mIRuDusbaFqq2vlSAqSpsg5FIxsWo6oGZnAtkzCq2UGj92EOuq8P1i8SL3SXLnpbjX43f8grvGjKjdviB9Kwa9Ky6Ss8icTLqRzVs83WVaqNtmhDEi8ST3d-0QdnrAi0uNqFNQqDLGBuJB71e7UaS0YcRZSSe9Yq27_rzKMakF0PxS-WS-njea-K-5Z9yT_Zyv9wp69WzdPw_ZulEHHWrDT4ioNa5x2FP_gKrazlo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Thieme Connect Journals Open Access
  dbid: 0U6
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dj9MwDI_gkIAXxDeFAwUJCQGq1HRp0_DG1-mEdLzApL1VTuMek7Zu2scd-0f4e7HTbIPTCcSeqtVzm9pe7Nr-WYgXTpWV8Y1LqwH4VLe5Sx20NsW88CUU4AZhJMvJl_J4qD-PitEeZ_tCBr-wGbca6JQCgxGF6aEQ7qq4lnMUQsqbDcs9sJ61PUBmJI8pzEtZ_LEJBaz-yxxMRg8lA5vM6GD1fYxT-sO-se7msDmHyeS3bejotrgV_Uf5rhf4HXEFu7vi-knMkN8TPz_GiSer_pnLWSu5X2XO7wTSBU7HodBZQuflkoNhD4uNDFVaXBB7hnJbYiiXdAG6_fHyrQQ5hdOO-x2JGTvvpCoyNGkyGOZsvpEBplbynuglXXUaajRRxqEUp_fF8OjTtw_HaZy9kDaFqlac1QWrKTapDALFNKVjID6jWiSHC02rCm-dbTQAoinaLGts0VqgFVLE66EcPBAH3azDR0KSz8RtmuTYGNQNNrZUjfWVAsxVaVtMRLYVRt1EYHKejzGpOUAh-XGCXNckvx9b-SXi9e4n8x6V42_E71nCO0IG1A5fkJbV0T5r77WxGZoB7Q5aKXCooXFZi84ryNsqEYdb_aijlS_rXBtt84w8vEQ8350m--SkC3Q4WweajHwuY2wiHvZ6tbuTAX3YoUzEy17R9qy_bpcRdVbxO-WKeLzqNXFPeXHdo_263-yU9d9P6fF_cH4ibvJhX9VzKA5WizU-Jd9s5Z4Fm_wFs1MrBw
  priority: 102
  providerName: Thieme
Title Differentiation of relapsing-remitting and secondary progressive multiple sclerosis: a magnetic resonance spectroscopy study based on machine learning
URI http://dx.doi.org/10.1590/0004-282X20200094
https://www.ncbi.nlm.nih.gov/pubmed/33331515
https://www.proquest.com/docview/2474920937
https://www.proquest.com/docview/2470901779
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2020001200789&lng=en&tlng=en
https://www.scielo.br/j/anp/a/dqQnpfS4fRqtWVgcHwLGbrs/?lang=en&format=pdf
https://doaj.org/article/dd4790e73876411abe4acb0febd1a2f8
UnpaywallVersion publishedVersion
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1678-4227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024997
  issn: 0004-282X
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1678-4227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024997
  issn: 0004-282X
  databaseCode: KQ8
  dateStart: 19430601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1678-4227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024997
  issn: 0004-282X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1678-4227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024997
  issn: 0004-282X
  databaseCode: DIK
  dateStart: 19430101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1678-4227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024997
  issn: 0004-282X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdYJ8En3o-gURkJgQCledR5GGlC47FViE3AKIRPkR3bpaNNsiRllD-Ev5dzHu2YEAiJfqiq5uLknMv5d77zzwjd444fBiLhZjhkwiTK5SZniprS9YTPPMaH9ZYs-wf-aExeRV7UUgqVbVml9v2zbMAL68hiaW4xSxy_TXN1SNS74-rjh0kyOnm9x4vSeqon9bZler8BeNu5UBto0_cAlvfQ5vjgzc6nBv4SE0KLSAdf4JxN4rpBm-H0qG11x7-5tluX2v0yRtVU_r_Dn5pctL5T-FF9nso5-PMLizRnyxM2m50apXYvoaNOv6Y45ctgUfFB8v0M9eN_6YDL6GKLZfFOY3xX0DmZXkXn99ts_TX040W7-0rVPH-cKazXzuR6fsIs5HxaF11jlgpc6sBcsGKJ64oxXZz7VeKu3BGXcAHoq2n5BDM8Z5NUr72ExnQgAWaL6wWjmpgzy5e4pszFenwWGK46r-tFJW43yJhcR-Pdl--fj8x2Hwgz8Zyw0hlmRgnESWEgGcRXPtekgIGjJIA_GSjHE5TThDAmZeAp206opygDDSH6Fswf3kC9NEvlLYQBv-klowCyAkkSmVDfSagIHSZdx6dKGsjunnyctCTpeq-OWayDJTAWnawn8WljMdCj1Sl5wxDyJ-Fn2pxWgprcu_4jKyZx6ytiIUhAbRkMYaQijsO4JCzhtpJcOMxVoYG2OmOMW49Txi4JCHVtQJsGurs6DL5CJ4BYKrNFLWMD_gsCaqCbjRGv7mQIHw1uDfSgMb9104edGlGjhqPnt0No42Fj9mvJs3pHa70fr96Mv_fS7X-S3kK9qljIOwAOK95HG_bY79dTK_C9Fzn91hH8BIf1ZGQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGkBg8IL4JDDASEoIpWpw4ccwbX1OBdTywSX2LHPvSVWqTqk2B_iP8vdzlowU0gehTlV4dO3eW73K_-x1jz3KRpMrZ3E8j43xZhLmfm0L7EMYuMbHJo6Yly_AkGZzJj6N4tMM-97UwBKuszycwA98S0sPWBLWYt-yny0PonvDy8LyeTdv-PTqgcgTpY_AwwlC-ActdYpdjGQXU0iA4S7bke1q3JJqdeJfmvHCI3w6qhs__IieUGEZxE04r_NLO-xrbW5Vzs_5mptNfjqqjG-x652Py161R3GQ7UN5iV4ZdFv02-_Gu64pSt3rhVcGppmVO7w38BcwmDRiam9LxJQXMzizWvEFyEWj2K_AehsiXeAOc_mT5ihs-M-OSaiJxMHLw0Zx4U8hJhJnVfM0bKltO56bjeNdZg-ME3jWuGN9hZ0fvT98O_K4_g29jkdaU-TVaYvySKjAY9yQ5kfUpUQA6ZaAKETudayuNAVBxEQRWx4U2uEKMip1Jortst6xKuM84-lVUyonOjwJpwepEWO1SYSAUiS7AY0GvjMx25OXUQ2OaURCD-qMkusxQf997_Xns5eYv85a542_Cb0jDG0Ei3W4uVItx1u3hzDmpdAAqwhNECmFykMbmQQG5EyYsUo_t9_aR9XaahVJJHQboBXrs6eZn3MOUmDElVKtGJkC_TCntsXutXW1mEuGHnE6PPW8NbTv0l34Znc0Keu-c4hgvWkvcSv657tF23QcbY_33U3rwHyM_YXuD0-Fxdvzh5NNDdpUutyigfbZbL1bwCH25On_c7M-ffV88bw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tj5QwEG7OMzn1g_Fd9NSamBi94AFbKPWbem7Ol7sYdZP9Rlo6rJvsAtll1f0j_l5nKOyquWjkE4FSWmaaPsPMPMPYIxMmqbS58dOBtr4oIuMbXSgfotgmOtZm0JZkOTlNjkfi7Tge77CPfS4MhVU2X6YwBz-nSI-8oVCL2rGfLg-h-8LLw9oWrnyPCigbQfhoO4zRkm9j5Z7h3XPsfCzQ5kIdD0bJln9PKcej2T3SeTrP7Oa3vaql9D8LhxLJKK7DWYUnbuiX2IVVWev1Nz2b_bJbDa-wyx3M5C-cXlxlO1BeY3snnSP9Ovtx1BVGaZxoeFVwSmup6deBv4D5tI2H5rq0fEk2s9WLNW-DuShu9ivwPhKRL_EFOPzp8jnXfK4nJaVFYmeE8VGjeJvLSZyZVb3mLZstp63TcnzrvA3lBN7VrpjcYKPh68-vjv2uRIOfx2HakPNXK4EmTCpBo-mTGOLrk2EBiMtAFmFslVG50BpAxkUQ5CoulMYZomFsdTK4yXbLqoTbjCO0omxOxD8SRA65SsJc2TTUEIWJKsBjQS-MLO_4y6mMxiwjOwblR350kaH8vvfy89jTzSO1I-_4W-OXJOFNQ-Ldbi9Ui0nWLePMWiFVAHKAm4gIQ21A6NwEBRgb6qhIPbbf60fWq2oWCSlUFCAQ9NjDzW1cxuSb0SVUq7ZNgNBMSuWxW06vNiMZ4EG402OPnaJtu_7UT6PT2ZB-PafYxxOniduWf857vJ33wUZZ__2V7vxHzw_Y3oejYfb-zem7u-wiXXVxQPtst1ms4B6iucbcb5fnTztNPQs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELegk-AT70fQQEZCIEBpHnXiGGlC4zEqxCZgdJRPkR3bpaNNsiRllD-Ev5dzHu2YEAiJfooax8k5l_PvfOffIXRPeGFEZSLsaMClTbQvbME1s5UfyJAHXAzqkiy7e-FwRF6Pg3FLKVS2aZXG9s-yviicQ4enucMdefQuzfU-0e-Pqo8Hk2R4_OaVKErnqVnU21Lp_QbgbeVSn0UbYQCwvIc2Rntvtz818JfY4FqMjfMFxtkmvk_bCGfAXKc7_813_TrV7pc5qqby_x3-NOSi9ZPCQfV5quZgz88v0pwvj_lsdmKW2rmIDjv5muSUL_1FJfrJ91PUj_9lAC6hCy2WxduN8l1GZ1R6BZ3bbaP1V9GPF231lap5_zjT2Oydyc36hF2o-bROusY8lbg0jrnkxRLXGWMmOferwl26Iy7hBjBW0_IJ5njOJ6nZewmdGUcC1BbXG0YNMWeWL3FNmYvN_Cwx3HVe54sq3BbImFxDo52XH54P7bYOhJ0EXlSZCDNnBPykiCoO_lUoDCkg9bQC8Keo9gLJBEsI50rRQLtuwgLNOEgI3rfk4eA66qVZqm4iDPjNbBkFkEUVSVTCQi9hMvK48r2QaWUht3vzcdKSpJtaHbPYOEugLCZYT-KTymKhR6tL8oYh5E-Nnxl1WjU05N71H1kxiVtbEUtJKHMVHcBMRTyPC0V4IlythPS4ryMLbXbKGLcWp4x9QgnzXUCbFrq7Og22wgSAeKqyRd3GBfxHKbPQjUaJV08ygJ8BtxZ60Kjfuuv9ToxxI4Zn1rcj6ONho_brlqflHq_lfrz6Mv4-Srf-qfUm6lXFQt0GcFiJO-1n_xObWWGi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+of+relapsing-remitting+and+secondary+progressive+multiple+sclerosis%3A+a+magnetic+resonance+spectroscopy+study+based+on+machine+learning&rft.jtitle=Arquivos+de+neuro-psiquiatria&rft.au=Ziya+EK%C5%9E%C4%B0&rft.au=Murat+%C3%87AKIRO%C4%9ELU&rft.au=Cemil+%C3%96Z&rft.au=Ayse+ARALA%C5%9EMAK&rft.pub=Thieme+Revinter+Publica%C3%A7%C3%B5es&rft.eissn=1678-4227&rft_id=info:doi/10.1590%2F0004-282x20200094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd4790e73876411abe4acb0febd1a2f8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-282X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-282X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-282X&client=summon