The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells
Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent t...
Saved in:
Published in | Cell stem cell Vol. 11; no. 1; pp. 110 - 117 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, MA
Elsevier Inc
06.07.2012
Cell Press |
Subjects | |
Online Access | Get full text |
ISSN | 1934-5909 1875-9777 1875-9777 |
DOI | 10.1016/j.stem.2012.02.023 |
Cover
Abstract | Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.
[Display omitted]
► Knockout of Blimp1 has no effect on derivation or maintenance of ESCs or epiSCs ► Blimp1 is not required for reversion of epiSCs to an ESC state ► Blimp1 is required for PGC specification ► Transit through a PGC state is not obligatory for acquisition of pluripotency
Bao et al. demonstrate that the key determinant of primordial germ cells (PGCs) Blimp1 is dispensable for the derivation of embryonic stem cells (ESCs) and epiblast stem cells (epiSCs) and for reprogramming. This suggests that acquisition of pluripotency does not entail an obligatory route through a Blimp1-positive PGC-like state. |
---|---|
AbstractList | Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.
[Display omitted]
► Knockout of Blimp1 has no effect on derivation or maintenance of ESCs or epiSCs ► Blimp1 is not required for reversion of epiSCs to an ESC state ► Blimp1 is required for PGC specification ► Transit through a PGC state is not obligatory for acquisition of pluripotency
Bao et al. demonstrate that the key determinant of primordial germ cells (PGCs) Blimp1 is dispensable for the derivation of embryonic stem cells (ESCs) and epiblast stem cells (epiSCs) and for reprogramming. This suggests that acquisition of pluripotency does not entail an obligatory route through a Blimp1-positive PGC-like state. Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state. Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state. Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state. Bao et al. demonstrate that the key determinant of primordial germ cells (PGCs) Blimp1 is dispensable for the derivation of embryonic stem cells (ESCs) and epiblast stem cells (epiSCs) and for reprogramming. This suggests that acquisition of pluripotency does not entail an obligatory route through a Blimp1-positive PGC-like state. Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state. |
Author | Kim, Shinseog Tang, Fuchou Leitch, Harry G. Li, Xihe Gillich, Astrid Lee, Caroline Nichols, Jennifer Bao, Siqin Zwaka, Thomas Surani, M. Azim |
AuthorAffiliation | 4 College of Life Science, Inner Mongolia University/Mengniu RB CO. Ltd., No. 235 Da Xue Xi Road, Huhhot, Inner Mongolia 010021, China 3 Center for Cell and Gene Therapy, and Departments of Molecular and Cellular Biology and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA 2 Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK 1 Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK |
AuthorAffiliation_xml | – name: 3 Center for Cell and Gene Therapy, and Departments of Molecular and Cellular Biology and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA – name: 1 Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – name: 4 College of Life Science, Inner Mongolia University/Mengniu RB CO. Ltd., No. 235 Da Xue Xi Road, Huhhot, Inner Mongolia 010021, China – name: 2 Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK |
Author_xml | – sequence: 1 givenname: Siqin surname: Bao fullname: Bao, Siqin organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – sequence: 2 givenname: Harry G. surname: Leitch fullname: Leitch, Harry G. organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – sequence: 3 givenname: Astrid surname: Gillich fullname: Gillich, Astrid organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – sequence: 4 givenname: Jennifer surname: Nichols fullname: Nichols, Jennifer organization: Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – sequence: 5 givenname: Fuchou surname: Tang fullname: Tang, Fuchou organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – sequence: 6 givenname: Shinseog surname: Kim fullname: Kim, Shinseog organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – sequence: 7 givenname: Caroline surname: Lee fullname: Lee, Caroline organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK – sequence: 8 givenname: Thomas surname: Zwaka fullname: Zwaka, Thomas organization: Center for Cell and Gene Therapy, and Departments of Molecular and Cellular Biology and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 9 givenname: Xihe surname: Li fullname: Li, Xihe organization: College of Life Science, Inner Mongolia University/Mengniu RB CO. Ltd., No. 235 Da Xue Xi Road, Huhhot, Inner Mongolia 010021, China – sequence: 10 givenname: M. Azim surname: Surani fullname: Surani, M. Azim email: a.surani@gurdon.cam.ac.uk organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26151607$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22770244$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNU7If-AS8kN4I3s-ZzMgERdNVaKCpaL7wK2cwZm2Vmsk0yC_33zXTX-nFR4UACed6XN-ecY3QwhhEQekrJghJav1wvUoZhwQhlCzIXf4COaKNkpZVSB-WuuaikJvoQHae0JkQqStQjdMiYUoQJcYR-XFwCPoU44CX0PX4Hudz9aMeM3_Z-2FB8lvCnkPFXuJp8hBZ3IRYs-q3NPow4dPhLP0W_CRmK6FtJdGuVHqOHne0TPNmfJ-j7h_cXy4_V-efTs-Wb88pJ2uRKSAnMCkclc-BqZaHmAljH6o601FndqFZZrqWlrRZOat6ubAcr2VmiHBH8BL3e-W6m1QCtKymi7c0m-sHGaxOsN3-_jP7S_Axbw7mmdVMXgxd7gxiuJkjZDD658gU7QpiSoYpzKZpa0f-jpalcaKLmWM_-jHWX51frC_B8D9jkbN9FOzqffnM1lbQmqnBsx7kYUorQ3SGUmHkPzNrMe2DmPTBkLl5EzT8i5_PtwEoLfH-_9NVOCmVoWw_RJOdhdNCW8bts2uDvk98AIWvOAw |
CitedBy_id | crossref_primary_10_1155_2013_690415 crossref_primary_10_1002_dvdy_24461 crossref_primary_10_1038_ncb2638 crossref_primary_10_12688_f1000research_16793_1 crossref_primary_10_1038_nprot_2012_157 crossref_primary_10_1017_S0967199413000622 crossref_primary_10_1017_S0967199417000363 crossref_primary_10_1002_mrd_22151 crossref_primary_10_1016_j_gde_2012_06_002 crossref_primary_10_4161_idp_29997 crossref_primary_10_1038_nature16480 crossref_primary_10_1016_j_stem_2014_09_015 crossref_primary_10_1080_15384101_2015_1026485 crossref_primary_10_1007_s00441_014_1804_1 crossref_primary_10_3390_biology2010107 crossref_primary_10_1016_j_stem_2012_06_001 crossref_primary_10_1016_j_tcb_2013_04_004 crossref_primary_10_1038_s41467_022_30325_4 crossref_primary_10_1038_s41392_022_01197_3 crossref_primary_10_1007_s00018_018_2965_y |
Cites_doi | 10.1016/j.stem.2010.01.003 10.1093/bioinformatics/btn224 10.1242/dev.01711 10.1242/dev.050427 10.1038/ng.186 10.1093/nar/gkm1075 10.1371/journal.pone.0003531 10.1242/dev.01586 10.1038/ncb2136 10.1242/dev.038893 10.1242/dev.050831 10.1038/nsmb.2000 10.1038/nature03813 10.1016/j.cub.2011.09.010 10.1242/dev.037747 10.1242/dev.012047 10.1038/nature06968 10.1016/j.stem.2010.06.022 10.2202/1544-6115.1027 10.1038/nature05950 10.1074/jbc.M110.216390 10.1038/nature06714 10.1016/j.cell.2007.02.010 10.1038/nature05972 10.1016/j.stem.2009.04.015 10.1038/nature09531 10.1038/nature08534 10.1101/gad.13.4.424 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. 2015 INIST-CNRS Copyright © 2012 Elsevier Inc. All rights reserved. 2012 ELL & Excerpta Medica. 2012 Elsevier Inc. |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: 2012 ELL & Excerpta Medica. 2012 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.stem.2012.02.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 117 |
ExternalDocumentID | PMC3391686 22770244 26151607 10_1016_j_stem_2012_02_023 S1934590912001166 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0800784 – fundername: Wellcome Trust grantid: RG44593 – fundername: Wellcome Trust grantid: 092096 – fundername: Wellcome Trust grantid: 079249 |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF HZ~ IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION OZT EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c518t-455e2a4c152cec67ae634e2f26f0d1ca987d7a395a1d94c593dbafeb5fa07c043 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Thu Aug 21 18:17:32 EDT 2025 Sun Sep 28 02:46:25 EDT 2025 Sat Sep 27 23:58:22 EDT 2025 Mon Jul 21 05:50:33 EDT 2025 Mon Jul 21 09:10:49 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 Tue Jul 01 01:08:23 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Germinal cell Pluripotent cell Stem cell |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier Inc. All rights reserved. Open Access under CC BY 3.0 license |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-455e2a4c152cec67ae634e2f26f0d1ca987d7a395a1d94c593dbafeb5fa07c043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work Present address: BIOPIC, School of Life Sciences, Peking University, Beijing 100871, China |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590912001166 |
PMID | 22770244 |
PQID | 1024349074 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3391686 proquest_miscellaneous_1733548671 proquest_miscellaneous_1024349074 pubmed_primary_22770244 pascalfrancis_primary_26151607 crossref_primary_10_1016_j_stem_2012_02_023 crossref_citationtrail_10_1016_j_stem_2012_02_023 elsevier_sciencedirect_doi_10_1016_j_stem_2012_02_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-06 |
PublicationDateYYYYMMDD | 2012-07-06 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, MA |
PublicationPlace_xml | – name: Cambridge, MA – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2012 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Hayashi, Surani (bib11) 2009; 136 Surani, Hayashi, Hajkova (bib23) 2007; 128 Chia, Chan, Feng, Lu, Orlov, Moreau, Kumar, Yang, Jiang, Lau (bib3) 2010; 468 Lin, Du, Huber, Kibbe (bib14) 2008; 36 Bao, Tang, Li, Hayashi, Gillich, Lao, Surani (bib1) 2009; 461 Nagy, Gertsenstein, Vintersten, Behringer (bib17) 2003 Nagamatsu, Kosaka, Kawasumi, Kinoshita, Takubo, Akiyama, Sudo, Kobayashi, Oya, Suda (bib16) 2011; 286 Yang, van Oosten, Theunissen, Guo, Silva, Smith (bib27) 2010; 7 Zwaka, Thomson (bib29) 2005; 132 Hanna, Markoulaki, Mitalipova, Cheng, Cassady, Staerk, Carey, Lengner, Foreman, Love (bib10) 2009; 4 Lawson, Dunn, Roelen, Zeinstra, Davis, Wright, Korving, Hogan (bib12) 1999; 13 Ohinata, Payer, O'Carroll, Ancelin, Ono, Sano, Barton, Obukhanych, Nussenzweig, Tarakhovsky (bib20) 2005; 436 Ying, Wray, Nichols, Batlle-Morera, Doble, Woodgett, Cohen, Smith (bib28) 2008; 453 Du, Kibbe, Lin (bib5) 2008; 24 Vincent, Dunn, Sciammas, Shapiro-Shalef, Davis, Calame, Bikoff, Robertson (bib25) 2005; 132 Durcova-Hills, Tang, Doody, Tooze, Surani (bib6) 2008; 3 Leitch, Blair, Mansfield, Ayetey, Humphreys, Nichols, Surani, Smith (bib13) 2010; 137 Yamaji, Seki, Kurimoto, Yabuta, Yuasa, Shigeta, Yamanaka, Ohinata, Saitou (bib26) 2008; 40 Tesar, Chenoweth, Brook, Davies, Evans, Mack, Gardner, McKay (bib24) 2007; 448 Chu, Surani, Jaenisch, Zwaka (bib4) 2011; 21 Greber, Wu, Bernemann, Joo, Han, Ko, Tapia, Sabour, Sterneckert, Tesar, Schöler (bib7) 2010; 6 Han, Greber, Wu, Tapia, Araúzo-Bravo, Ko, Bernemann, Stehling, Schöler (bib9) 2011; 13 Robertson, Charatsi, Joyner, Koonce, Morgan, Islam, Paterson, Lejsek, Arnold, Kallies (bib21) 2007; 134 Brons, Smithers, Trotter, Rugg-Gunn, Sun, Chuva de Sousa Lopes, Howlett, Clarkson, Ahrlund-Richter, Pedersen, Vallier (bib2) 2007; 448 Hajkova, Ancelin, Waldmann, Lacoste, Lange, Cesari, Lee, Almouzni, Schneider, Surani (bib8) 2008; 452 Nichols, Smith (bib18) 2011; 138 Nichols, Silva, Roode, Smith (bib19) 2009; 136 Ma, Swigut, Valouev, Rada-Iglesias, Wysocka (bib15) 2011; 18 Smyth (bib22) 2004; 3 Bao (10.1016/j.stem.2012.02.023_bib1) 2009; 461 Smyth (10.1016/j.stem.2012.02.023_bib22) 2004; 3 Hayashi (10.1016/j.stem.2012.02.023_bib11) 2009; 136 Nagamatsu (10.1016/j.stem.2012.02.023_bib16) 2011; 286 Surani (10.1016/j.stem.2012.02.023_bib23) 2007; 128 Nagy (10.1016/j.stem.2012.02.023_bib17) 2003 Lin (10.1016/j.stem.2012.02.023_bib14) 2008; 36 Chia (10.1016/j.stem.2012.02.023_bib3) 2010; 468 Ying (10.1016/j.stem.2012.02.023_bib28) 2008; 453 Tesar (10.1016/j.stem.2012.02.023_bib24) 2007; 448 Lawson (10.1016/j.stem.2012.02.023_bib12) 1999; 13 Hanna (10.1016/j.stem.2012.02.023_bib10) 2009; 4 Ma (10.1016/j.stem.2012.02.023_bib15) 2011; 18 Hajkova (10.1016/j.stem.2012.02.023_bib8) 2008; 452 Leitch (10.1016/j.stem.2012.02.023_bib13) 2010; 137 Chu (10.1016/j.stem.2012.02.023_bib4) 2011; 21 Nichols (10.1016/j.stem.2012.02.023_bib18) 2011; 138 Yang (10.1016/j.stem.2012.02.023_bib27) 2010; 7 Greber (10.1016/j.stem.2012.02.023_bib7) 2010; 6 Yamaji (10.1016/j.stem.2012.02.023_bib26) 2008; 40 Han (10.1016/j.stem.2012.02.023_bib9) 2011; 13 Vincent (10.1016/j.stem.2012.02.023_bib25) 2005; 132 Durcova-Hills (10.1016/j.stem.2012.02.023_bib6) 2008; 3 Ohinata (10.1016/j.stem.2012.02.023_bib20) 2005; 436 Brons (10.1016/j.stem.2012.02.023_bib2) 2007; 448 Du (10.1016/j.stem.2012.02.023_bib5) 2008; 24 Robertson (10.1016/j.stem.2012.02.023_bib21) 2007; 134 Nichols (10.1016/j.stem.2012.02.023_bib19) 2009; 136 Zwaka (10.1016/j.stem.2012.02.023_bib29) 2005; 132 22770234 - Cell Stem Cell. 2012 Jul 6;11(1):1-2. doi: 10.1016/j.stem.2012.06.001. |
References_xml | – volume: 436 start-page: 207 year: 2005 end-page: 213 ident: bib20 article-title: Blimp1 is a critical determinant of the germ cell lineage in mice publication-title: Nature – volume: 13 start-page: 66 year: 2011 end-page: 71 ident: bib9 article-title: Direct reprogramming of fibroblasts into epiblast stem cells publication-title: Nat. Cell Biol. – volume: 134 start-page: 4335 year: 2007 end-page: 4345 ident: bib21 article-title: Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice publication-title: Development – volume: 452 start-page: 877 year: 2008 end-page: 881 ident: bib8 article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line publication-title: Nature – volume: 21 start-page: 1759 year: 2011 end-page: 1765 ident: bib4 article-title: Blimp1 expression predicts embryonic stem cell development in vitro publication-title: Curr. Biol. – year: 2003 ident: bib17 article-title: Manipulating the Mouse Embryo: a Laboratory Manual – volume: 468 start-page: 316 year: 2010 end-page: 320 ident: bib3 article-title: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity publication-title: Nature – volume: 138 start-page: 3 year: 2011 end-page: 8 ident: bib18 article-title: The origin and identity of embryonic stem cells publication-title: Development – volume: 137 start-page: 2279 year: 2010 end-page: 2287 ident: bib13 article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state publication-title: Development – volume: 453 start-page: 519 year: 2008 end-page: 523 ident: bib28 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature – volume: 136 start-page: 3549 year: 2009 end-page: 3556 ident: bib11 article-title: Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro publication-title: Development – volume: 13 start-page: 424 year: 1999 end-page: 436 ident: bib12 article-title: Bmp4 is required for the generation of primordial germ cells in the mouse embryo publication-title: Genes Dev. – volume: 448 start-page: 196 year: 2007 end-page: 199 ident: bib24 article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells publication-title: Nature – volume: 132 start-page: 227 year: 2005 end-page: 233 ident: bib29 article-title: A germ cell origin of embryonic stem cells? publication-title: Development – volume: 136 start-page: 3215 year: 2009 end-page: 3222 ident: bib19 article-title: Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo publication-title: Development – volume: 286 start-page: 10641 year: 2011 end-page: 10648 ident: bib16 article-title: A germ cell-specific gene, Prmt5, works in somatic cell reprogramming publication-title: J. Biol. Chem. – volume: 24 start-page: 1547 year: 2008 end-page: 1548 ident: bib5 article-title: lumi: a pipeline for processing Illumina microarray publication-title: Bioinformatics – volume: 7 start-page: 319 year: 2010 end-page: 328 ident: bib27 article-title: Stat3 activation is limiting for reprogramming to ground state pluripotency publication-title: Cell Stem Cell – volume: 4 start-page: 513 year: 2009 end-page: 524 ident: bib10 article-title: Metastable pluripotent states in NOD-mouse-derived ESCs publication-title: Cell Stem Cell – volume: 6 start-page: 215 year: 2010 end-page: 226 ident: bib7 article-title: Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells publication-title: Cell Stem Cell – volume: 461 start-page: 1292 year: 2009 end-page: 1295 ident: bib1 article-title: Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells publication-title: Nature – volume: 132 start-page: 1315 year: 2005 end-page: 1325 ident: bib25 article-title: The zinc finger transcriptional repressor publication-title: Development – volume: 18 start-page: 120 year: 2011 end-page: 127 ident: bib15 article-title: Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates publication-title: Nat. Struct. Mol. Biol. – volume: 128 start-page: 747 year: 2007 end-page: 762 ident: bib23 article-title: Genetic and epigenetic regulators of pluripotency publication-title: Cell – volume: 3 start-page: e3531 year: 2008 ident: bib6 article-title: Reprogramming primordial germ cells into pluripotent stem cells publication-title: PLoS ONE – volume: 36 start-page: e11 year: 2008 ident: bib14 article-title: Model-based variance-stabilizing transformation for Illumina microarray data publication-title: Nucleic Acids Res. – volume: 3 year: 2004 ident: bib22 article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 448 start-page: 191 year: 2007 end-page: 195 ident: bib2 article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos publication-title: Nature – volume: 40 start-page: 1016 year: 2008 end-page: 1022 ident: bib26 article-title: Critical function of Prdm14 for the establishment of the germ cell lineage in mice publication-title: Nat. Genet. – volume: 6 start-page: 215 year: 2010 ident: 10.1016/j.stem.2012.02.023_bib7 article-title: Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.01.003 – volume: 24 start-page: 1547 year: 2008 ident: 10.1016/j.stem.2012.02.023_bib5 article-title: lumi: a pipeline for processing Illumina microarray publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn224 – year: 2003 ident: 10.1016/j.stem.2012.02.023_bib17 – volume: 132 start-page: 1315 year: 2005 ident: 10.1016/j.stem.2012.02.023_bib25 article-title: The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse publication-title: Development doi: 10.1242/dev.01711 – volume: 137 start-page: 2279 year: 2010 ident: 10.1016/j.stem.2012.02.023_bib13 article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state publication-title: Development doi: 10.1242/dev.050427 – volume: 40 start-page: 1016 year: 2008 ident: 10.1016/j.stem.2012.02.023_bib26 article-title: Critical function of Prdm14 for the establishment of the germ cell lineage in mice publication-title: Nat. Genet. doi: 10.1038/ng.186 – volume: 36 start-page: e11 year: 2008 ident: 10.1016/j.stem.2012.02.023_bib14 article-title: Model-based variance-stabilizing transformation for Illumina microarray data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm1075 – volume: 3 start-page: e3531 year: 2008 ident: 10.1016/j.stem.2012.02.023_bib6 article-title: Reprogramming primordial germ cells into pluripotent stem cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0003531 – volume: 132 start-page: 227 year: 2005 ident: 10.1016/j.stem.2012.02.023_bib29 article-title: A germ cell origin of embryonic stem cells? publication-title: Development doi: 10.1242/dev.01586 – volume: 13 start-page: 66 year: 2011 ident: 10.1016/j.stem.2012.02.023_bib9 article-title: Direct reprogramming of fibroblasts into epiblast stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2136 – volume: 136 start-page: 3215 year: 2009 ident: 10.1016/j.stem.2012.02.023_bib19 article-title: Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo publication-title: Development doi: 10.1242/dev.038893 – volume: 138 start-page: 3 year: 2011 ident: 10.1016/j.stem.2012.02.023_bib18 article-title: The origin and identity of embryonic stem cells publication-title: Development doi: 10.1242/dev.050831 – volume: 18 start-page: 120 year: 2011 ident: 10.1016/j.stem.2012.02.023_bib15 article-title: Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2000 – volume: 436 start-page: 207 year: 2005 ident: 10.1016/j.stem.2012.02.023_bib20 article-title: Blimp1 is a critical determinant of the germ cell lineage in mice publication-title: Nature doi: 10.1038/nature03813 – volume: 21 start-page: 1759 year: 2011 ident: 10.1016/j.stem.2012.02.023_bib4 article-title: Blimp1 expression predicts embryonic stem cell development in vitro publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.09.010 – volume: 136 start-page: 3549 year: 2009 ident: 10.1016/j.stem.2012.02.023_bib11 article-title: Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro publication-title: Development doi: 10.1242/dev.037747 – volume: 134 start-page: 4335 year: 2007 ident: 10.1016/j.stem.2012.02.023_bib21 article-title: Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice publication-title: Development doi: 10.1242/dev.012047 – volume: 453 start-page: 519 year: 2008 ident: 10.1016/j.stem.2012.02.023_bib28 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature doi: 10.1038/nature06968 – volume: 7 start-page: 319 year: 2010 ident: 10.1016/j.stem.2012.02.023_bib27 article-title: Stat3 activation is limiting for reprogramming to ground state pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.06.022 – volume: 3 year: 2004 ident: 10.1016/j.stem.2012.02.023_bib22 article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1027 – volume: 448 start-page: 191 year: 2007 ident: 10.1016/j.stem.2012.02.023_bib2 article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos publication-title: Nature doi: 10.1038/nature05950 – volume: 286 start-page: 10641 year: 2011 ident: 10.1016/j.stem.2012.02.023_bib16 article-title: A germ cell-specific gene, Prmt5, works in somatic cell reprogramming publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.216390 – volume: 452 start-page: 877 year: 2008 ident: 10.1016/j.stem.2012.02.023_bib8 article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line publication-title: Nature doi: 10.1038/nature06714 – volume: 128 start-page: 747 year: 2007 ident: 10.1016/j.stem.2012.02.023_bib23 article-title: Genetic and epigenetic regulators of pluripotency publication-title: Cell doi: 10.1016/j.cell.2007.02.010 – volume: 448 start-page: 196 year: 2007 ident: 10.1016/j.stem.2012.02.023_bib24 article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells publication-title: Nature doi: 10.1038/nature05972 – volume: 4 start-page: 513 year: 2009 ident: 10.1016/j.stem.2012.02.023_bib10 article-title: Metastable pluripotent states in NOD-mouse-derived ESCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.04.015 – volume: 468 start-page: 316 year: 2010 ident: 10.1016/j.stem.2012.02.023_bib3 article-title: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity publication-title: Nature doi: 10.1038/nature09531 – volume: 461 start-page: 1292 year: 2009 ident: 10.1016/j.stem.2012.02.023_bib1 article-title: Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells publication-title: Nature doi: 10.1038/nature08534 – volume: 13 start-page: 424 year: 1999 ident: 10.1016/j.stem.2012.02.023_bib12 article-title: Bmp4 is required for the generation of primordial germ cells in the mouse embryo publication-title: Genes Dev. doi: 10.1101/gad.13.4.424 – reference: 22770234 - Cell Stem Cell. 2012 Jul 6;11(1):1-2. doi: 10.1016/j.stem.2012.06.001. |
SSID | ssj0057107 |
Score | 2.1765432 |
Snippet | Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110 |
SubjectTerms | Animals Biological and medical sciences Blastocyst - cytology Blastocyst - metabolism Cell differentiation, maturation, development, hematopoiesis Cell physiology Cellular Reprogramming Embryo Implantation embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism epigenetics Fundamental and applied biological sciences. Psychology germ cells Germ Cells - cytology Germ Cells - metabolism Germ Layers - cytology Germ Layers - metabolism Mice Mice, Inbred C57BL Models, Biological Molecular and cellular biology Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Positive Regulatory Domain I-Binding Factor 1 Short somatic cells Transcription Factors - deficiency Transcription Factors - metabolism |
Title | The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells |
URI | https://dx.doi.org/10.1016/j.stem.2012.02.023 https://www.ncbi.nlm.nih.gov/pubmed/22770244 https://www.proquest.com/docview/1024349074 https://www.proquest.com/docview/1733548671 https://pubmed.ncbi.nlm.nih.gov/PMC3391686 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF-OA0EQ8dt6WlbwTUKT_ew-etXzTuEQz4P6FDa7E64Sk3JtH-6_dyYfPSvaByEPTTu7y-5sZibd3_yGsTfWAMjMpEkahUtU9EXifenxk3E2FoJYpwhtcW5OL9WnuZ4fsNmQC0Owyt72dza9tdb9N5N-NSfLxWJygaGH0g79nWhPE4h2m7JKKYlvfjxYY40e1HYnyyoh6T5xpsN4EVcywbtEy9sp5L-c072lX-GSlV2ti78Fo39iKn9zUicP2P0-uuTvugk8ZAdQP2J3unqTN4_Zd9wU_CPaYj6DquLvb6Ew_Lha_Fxm_GzFz5s1_woEEIbIMaRFseu-BBpvSv6l2qCdaTDUXvMLnFjb1eoJuzz58G12mvS1FZKgs-k6UVqD8Cqg-w4QjPVgpAJRClOmMQveTW20Xjrts-hU0E7GwpdQ6NKnNqRKPmWHdVPDc8YlBLCQRa8cKFdYn4ZpASlqOvqykG7EsmFR89ATj1P9iyofEGY_clJETorIU7rkiL3dtll2tBt7pfWgq3xn8-ToF_a2G-8odjuUoDjPpHbEXg-azvGxo7MUX0OzWWGPQklF_yzskbFSamI0zEbsWbc7bkcQ1mIX2Nru7JutANF-7_5SL65a-m9JudJT8-I_J33E7tJdCzk2L9nh-noDrzCwWhdjfKU4-zxun59f_-Ej-Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEAIJIb7GyscwEm8oquPP-pEVRgujQmyTypPl2I4oypJqTR_47znno6MI-oCUhyg527LvcvdT_PMdQq-VDIGlkiTEU51wb7PE2tzCndTKZzRmnYpsi5mcXPCPczHfQ-P-LEykVXa-v_Xpjbfungy71RwuF4vhGUAPLjTEO9rsJsgb6CagARJNezo_7t2xgBCq2q1lnkTx7uRMS_KKyZIjv4s2iTsp-1d0uru0K1izvC128Tc0-iep8rcodXIf3evgJX7bzuAB2gvlQ3SrLTj58xH6BlaBP4AzxuNQFPjdNRcGHxeLy2WKpys8q2r8NUSGcPAYMC2IXXU10HCV4y_FGhxNBVi7xmcwsaar1WN0cfL-fDxJuuIKiRPpqE64EIFa7iB-u-CkskEyHmhOZU586qweKa8s08KmXnMnNPOZzUMmckuUI5wdoP2yKsMhwiy4oELqLdeB60xZ4kZZIKBqb_OM6QFK-0U1rss8HgtgFKanmP0wUREmKsKQeLEBerNps2zzbuyUFr2uzJb1GAgMO9sdbSl2MxSNQE8SNUCvek0b-O7iZootQ7VeQY-UMx5_LeyQUYyJmNIwHaAnrXVcj0CVgi6gtdqym41AzPu9_aZcfG_yf7N4WHokn_7npF-i25Pzz6fmdDr79AzdiW8a_rF8jvbrq3V4ASirzo6ar-gX0I0mIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+germ+cell+determinant+Blimp1+is+not+required+for+derivation+of+pluripotent+stem+cells&rft.jtitle=Cell+stem+cell&rft.au=Bao%2C+Siqin&rft.au=Leitch%2C+Harry+G&rft.au=Gillich%2C+Astrid&rft.au=Nichols%2C+Jennifer&rft.date=2012-07-06&rft.eissn=1875-9777&rft.volume=11&rft.issue=1&rft.spage=110&rft_id=info:doi/10.1016%2Fj.stem.2012.02.023&rft_id=info%3Apmid%2F22770244&rft.externalDocID=22770244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |