The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells

Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent t...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 11; no. 1; pp. 110 - 117
Main Authors Bao, Siqin, Leitch, Harry G., Gillich, Astrid, Nichols, Jennifer, Tang, Fuchou, Kim, Shinseog, Lee, Caroline, Zwaka, Thomas, Li, Xihe, Surani, M. Azim
Format Journal Article
LanguageEnglish
Published Cambridge, MA Elsevier Inc 06.07.2012
Cell Press
Subjects
Online AccessGet full text
ISSN1934-5909
1875-9777
1875-9777
DOI10.1016/j.stem.2012.02.023

Cover

Abstract Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state. [Display omitted] ► Knockout of Blimp1 has no effect on derivation or maintenance of ESCs or epiSCs ► Blimp1 is not required for reversion of epiSCs to an ESC state ► Blimp1 is required for PGC specification ► Transit through a PGC state is not obligatory for acquisition of pluripotency Bao et al. demonstrate that the key determinant of primordial germ cells (PGCs) Blimp1 is dispensable for the derivation of embryonic stem cells (ESCs) and epiblast stem cells (epiSCs) and for reprogramming. This suggests that acquisition of pluripotency does not entail an obligatory route through a Blimp1-positive PGC-like state.
AbstractList Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state. [Display omitted] ► Knockout of Blimp1 has no effect on derivation or maintenance of ESCs or epiSCs ► Blimp1 is not required for reversion of epiSCs to an ESC state ► Blimp1 is required for PGC specification ► Transit through a PGC state is not obligatory for acquisition of pluripotency Bao et al. demonstrate that the key determinant of primordial germ cells (PGCs) Blimp1 is dispensable for the derivation of embryonic stem cells (ESCs) and epiblast stem cells (epiSCs) and for reprogramming. This suggests that acquisition of pluripotency does not entail an obligatory route through a Blimp1-positive PGC-like state.
Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.
Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.
Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state. Bao et al. demonstrate that the key determinant of primordial germ cells (PGCs) Blimp1 is dispensable for the derivation of embryonic stem cells (ESCs) and epiblast stem cells (epiSCs) and for reprogramming. This suggests that acquisition of pluripotency does not entail an obligatory route through a Blimp1-positive PGC-like state.
Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.
Author Kim, Shinseog
Tang, Fuchou
Leitch, Harry G.
Li, Xihe
Gillich, Astrid
Lee, Caroline
Nichols, Jennifer
Bao, Siqin
Zwaka, Thomas
Surani, M. Azim
AuthorAffiliation 4 College of Life Science, Inner Mongolia University/Mengniu RB CO. Ltd., No. 235 Da Xue Xi Road, Huhhot, Inner Mongolia 010021, China
3 Center for Cell and Gene Therapy, and Departments of Molecular and Cellular Biology and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
2 Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
1 Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
AuthorAffiliation_xml – name: 3 Center for Cell and Gene Therapy, and Departments of Molecular and Cellular Biology and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– name: 1 Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– name: 4 College of Life Science, Inner Mongolia University/Mengniu RB CO. Ltd., No. 235 Da Xue Xi Road, Huhhot, Inner Mongolia 010021, China
– name: 2 Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
Author_xml – sequence: 1
  givenname: Siqin
  surname: Bao
  fullname: Bao, Siqin
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– sequence: 2
  givenname: Harry G.
  surname: Leitch
  fullname: Leitch, Harry G.
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– sequence: 3
  givenname: Astrid
  surname: Gillich
  fullname: Gillich, Astrid
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– sequence: 4
  givenname: Jennifer
  surname: Nichols
  fullname: Nichols, Jennifer
  organization: Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– sequence: 5
  givenname: Fuchou
  surname: Tang
  fullname: Tang, Fuchou
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– sequence: 6
  givenname: Shinseog
  surname: Kim
  fullname: Kim, Shinseog
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– sequence: 7
  givenname: Caroline
  surname: Lee
  fullname: Lee, Caroline
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
– sequence: 8
  givenname: Thomas
  surname: Zwaka
  fullname: Zwaka, Thomas
  organization: Center for Cell and Gene Therapy, and Departments of Molecular and Cellular Biology and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 9
  givenname: Xihe
  surname: Li
  fullname: Li, Xihe
  organization: College of Life Science, Inner Mongolia University/Mengniu RB CO. Ltd., No. 235 Da Xue Xi Road, Huhhot, Inner Mongolia 010021, China
– sequence: 10
  givenname: M. Azim
  surname: Surani
  fullname: Surani, M. Azim
  email: a.surani@gurdon.cam.ac.uk
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26151607$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22770244$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNU7If-AS8kN4I3s-ZzMgERdNVaKCpaL7wK2cwZm2Vmsk0yC_33zXTX-nFR4UACed6XN-ecY3QwhhEQekrJghJav1wvUoZhwQhlCzIXf4COaKNkpZVSB-WuuaikJvoQHae0JkQqStQjdMiYUoQJcYR-XFwCPoU44CX0PX4Hudz9aMeM3_Z-2FB8lvCnkPFXuJp8hBZ3IRYs-q3NPow4dPhLP0W_CRmK6FtJdGuVHqOHne0TPNmfJ-j7h_cXy4_V-efTs-Wb88pJ2uRKSAnMCkclc-BqZaHmAljH6o601FndqFZZrqWlrRZOat6ubAcr2VmiHBH8BL3e-W6m1QCtKymi7c0m-sHGaxOsN3-_jP7S_Axbw7mmdVMXgxd7gxiuJkjZDD658gU7QpiSoYpzKZpa0f-jpalcaKLmWM_-jHWX51frC_B8D9jkbN9FOzqffnM1lbQmqnBsx7kYUorQ3SGUmHkPzNrMe2DmPTBkLl5EzT8i5_PtwEoLfH-_9NVOCmVoWw_RJOdhdNCW8bts2uDvk98AIWvOAw
CitedBy_id crossref_primary_10_1155_2013_690415
crossref_primary_10_1002_dvdy_24461
crossref_primary_10_1038_ncb2638
crossref_primary_10_12688_f1000research_16793_1
crossref_primary_10_1038_nprot_2012_157
crossref_primary_10_1017_S0967199413000622
crossref_primary_10_1017_S0967199417000363
crossref_primary_10_1002_mrd_22151
crossref_primary_10_1016_j_gde_2012_06_002
crossref_primary_10_4161_idp_29997
crossref_primary_10_1038_nature16480
crossref_primary_10_1016_j_stem_2014_09_015
crossref_primary_10_1080_15384101_2015_1026485
crossref_primary_10_1007_s00441_014_1804_1
crossref_primary_10_3390_biology2010107
crossref_primary_10_1016_j_stem_2012_06_001
crossref_primary_10_1016_j_tcb_2013_04_004
crossref_primary_10_1038_s41467_022_30325_4
crossref_primary_10_1038_s41392_022_01197_3
crossref_primary_10_1007_s00018_018_2965_y
Cites_doi 10.1016/j.stem.2010.01.003
10.1093/bioinformatics/btn224
10.1242/dev.01711
10.1242/dev.050427
10.1038/ng.186
10.1093/nar/gkm1075
10.1371/journal.pone.0003531
10.1242/dev.01586
10.1038/ncb2136
10.1242/dev.038893
10.1242/dev.050831
10.1038/nsmb.2000
10.1038/nature03813
10.1016/j.cub.2011.09.010
10.1242/dev.037747
10.1242/dev.012047
10.1038/nature06968
10.1016/j.stem.2010.06.022
10.2202/1544-6115.1027
10.1038/nature05950
10.1074/jbc.M110.216390
10.1038/nature06714
10.1016/j.cell.2007.02.010
10.1038/nature05972
10.1016/j.stem.2009.04.015
10.1038/nature09531
10.1038/nature08534
10.1101/gad.13.4.424
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2012 Elsevier Inc. All rights reserved.
2012 ELL & Excerpta Medica. 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: 2012 ELL & Excerpta Medica. 2012 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.stem.2012.02.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 117
ExternalDocumentID PMC3391686
22770244
26151607
10_1016_j_stem_2012_02_023
S1934590912001166
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0800784
– fundername: Wellcome Trust
  grantid: RG44593
– fundername: Wellcome Trust
  grantid: 092096
– fundername: Wellcome Trust
  grantid: 079249
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
HZ~
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
OZT
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c518t-455e2a4c152cec67ae634e2f26f0d1ca987d7a395a1d94c593dbafeb5fa07c043
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Thu Aug 21 18:17:32 EDT 2025
Sun Sep 28 02:46:25 EDT 2025
Sat Sep 27 23:58:22 EDT 2025
Mon Jul 21 05:50:33 EDT 2025
Mon Jul 21 09:10:49 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
Tue Jul 01 01:08:23 EDT 2025
Fri Feb 23 02:30:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Germinal cell
Pluripotent cell
Stem cell
Language English
License http://creativecommons.org/licenses/by/3.0
https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Inc. All rights reserved.
Open Access under CC BY 3.0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-455e2a4c152cec67ae634e2f26f0d1ca987d7a395a1d94c593dbafeb5fa07c043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
Present address: BIOPIC, School of Life Sciences, Peking University, Beijing 100871, China
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590912001166
PMID 22770244
PQID 1024349074
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3391686
proquest_miscellaneous_1733548671
proquest_miscellaneous_1024349074
pubmed_primary_22770244
pascalfrancis_primary_26151607
crossref_primary_10_1016_j_stem_2012_02_023
crossref_citationtrail_10_1016_j_stem_2012_02_023
elsevier_sciencedirect_doi_10_1016_j_stem_2012_02_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-06
PublicationDateYYYYMMDD 2012-07-06
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-06
  day: 06
PublicationDecade 2010
PublicationPlace Cambridge, MA
PublicationPlace_xml – name: Cambridge, MA
– name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2012
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Hayashi, Surani (bib11) 2009; 136
Surani, Hayashi, Hajkova (bib23) 2007; 128
Chia, Chan, Feng, Lu, Orlov, Moreau, Kumar, Yang, Jiang, Lau (bib3) 2010; 468
Lin, Du, Huber, Kibbe (bib14) 2008; 36
Bao, Tang, Li, Hayashi, Gillich, Lao, Surani (bib1) 2009; 461
Nagy, Gertsenstein, Vintersten, Behringer (bib17) 2003
Nagamatsu, Kosaka, Kawasumi, Kinoshita, Takubo, Akiyama, Sudo, Kobayashi, Oya, Suda (bib16) 2011; 286
Yang, van Oosten, Theunissen, Guo, Silva, Smith (bib27) 2010; 7
Zwaka, Thomson (bib29) 2005; 132
Hanna, Markoulaki, Mitalipova, Cheng, Cassady, Staerk, Carey, Lengner, Foreman, Love (bib10) 2009; 4
Lawson, Dunn, Roelen, Zeinstra, Davis, Wright, Korving, Hogan (bib12) 1999; 13
Ohinata, Payer, O'Carroll, Ancelin, Ono, Sano, Barton, Obukhanych, Nussenzweig, Tarakhovsky (bib20) 2005; 436
Ying, Wray, Nichols, Batlle-Morera, Doble, Woodgett, Cohen, Smith (bib28) 2008; 453
Du, Kibbe, Lin (bib5) 2008; 24
Vincent, Dunn, Sciammas, Shapiro-Shalef, Davis, Calame, Bikoff, Robertson (bib25) 2005; 132
Durcova-Hills, Tang, Doody, Tooze, Surani (bib6) 2008; 3
Leitch, Blair, Mansfield, Ayetey, Humphreys, Nichols, Surani, Smith (bib13) 2010; 137
Yamaji, Seki, Kurimoto, Yabuta, Yuasa, Shigeta, Yamanaka, Ohinata, Saitou (bib26) 2008; 40
Tesar, Chenoweth, Brook, Davies, Evans, Mack, Gardner, McKay (bib24) 2007; 448
Chu, Surani, Jaenisch, Zwaka (bib4) 2011; 21
Greber, Wu, Bernemann, Joo, Han, Ko, Tapia, Sabour, Sterneckert, Tesar, Schöler (bib7) 2010; 6
Han, Greber, Wu, Tapia, Araúzo-Bravo, Ko, Bernemann, Stehling, Schöler (bib9) 2011; 13
Robertson, Charatsi, Joyner, Koonce, Morgan, Islam, Paterson, Lejsek, Arnold, Kallies (bib21) 2007; 134
Brons, Smithers, Trotter, Rugg-Gunn, Sun, Chuva de Sousa Lopes, Howlett, Clarkson, Ahrlund-Richter, Pedersen, Vallier (bib2) 2007; 448
Hajkova, Ancelin, Waldmann, Lacoste, Lange, Cesari, Lee, Almouzni, Schneider, Surani (bib8) 2008; 452
Nichols, Smith (bib18) 2011; 138
Nichols, Silva, Roode, Smith (bib19) 2009; 136
Ma, Swigut, Valouev, Rada-Iglesias, Wysocka (bib15) 2011; 18
Smyth (bib22) 2004; 3
Bao (10.1016/j.stem.2012.02.023_bib1) 2009; 461
Smyth (10.1016/j.stem.2012.02.023_bib22) 2004; 3
Hayashi (10.1016/j.stem.2012.02.023_bib11) 2009; 136
Nagamatsu (10.1016/j.stem.2012.02.023_bib16) 2011; 286
Surani (10.1016/j.stem.2012.02.023_bib23) 2007; 128
Nagy (10.1016/j.stem.2012.02.023_bib17) 2003
Lin (10.1016/j.stem.2012.02.023_bib14) 2008; 36
Chia (10.1016/j.stem.2012.02.023_bib3) 2010; 468
Ying (10.1016/j.stem.2012.02.023_bib28) 2008; 453
Tesar (10.1016/j.stem.2012.02.023_bib24) 2007; 448
Lawson (10.1016/j.stem.2012.02.023_bib12) 1999; 13
Hanna (10.1016/j.stem.2012.02.023_bib10) 2009; 4
Ma (10.1016/j.stem.2012.02.023_bib15) 2011; 18
Hajkova (10.1016/j.stem.2012.02.023_bib8) 2008; 452
Leitch (10.1016/j.stem.2012.02.023_bib13) 2010; 137
Chu (10.1016/j.stem.2012.02.023_bib4) 2011; 21
Nichols (10.1016/j.stem.2012.02.023_bib18) 2011; 138
Yang (10.1016/j.stem.2012.02.023_bib27) 2010; 7
Greber (10.1016/j.stem.2012.02.023_bib7) 2010; 6
Yamaji (10.1016/j.stem.2012.02.023_bib26) 2008; 40
Han (10.1016/j.stem.2012.02.023_bib9) 2011; 13
Vincent (10.1016/j.stem.2012.02.023_bib25) 2005; 132
Durcova-Hills (10.1016/j.stem.2012.02.023_bib6) 2008; 3
Ohinata (10.1016/j.stem.2012.02.023_bib20) 2005; 436
Brons (10.1016/j.stem.2012.02.023_bib2) 2007; 448
Du (10.1016/j.stem.2012.02.023_bib5) 2008; 24
Robertson (10.1016/j.stem.2012.02.023_bib21) 2007; 134
Nichols (10.1016/j.stem.2012.02.023_bib19) 2009; 136
Zwaka (10.1016/j.stem.2012.02.023_bib29) 2005; 132
22770234 - Cell Stem Cell. 2012 Jul 6;11(1):1-2. doi: 10.1016/j.stem.2012.06.001.
References_xml – volume: 436
  start-page: 207
  year: 2005
  end-page: 213
  ident: bib20
  article-title: Blimp1 is a critical determinant of the germ cell lineage in mice
  publication-title: Nature
– volume: 13
  start-page: 66
  year: 2011
  end-page: 71
  ident: bib9
  article-title: Direct reprogramming of fibroblasts into epiblast stem cells
  publication-title: Nat. Cell Biol.
– volume: 134
  start-page: 4335
  year: 2007
  end-page: 4345
  ident: bib21
  article-title: Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice
  publication-title: Development
– volume: 452
  start-page: 877
  year: 2008
  end-page: 881
  ident: bib8
  article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line
  publication-title: Nature
– volume: 21
  start-page: 1759
  year: 2011
  end-page: 1765
  ident: bib4
  article-title: Blimp1 expression predicts embryonic stem cell development in vitro
  publication-title: Curr. Biol.
– year: 2003
  ident: bib17
  article-title: Manipulating the Mouse Embryo: a Laboratory Manual
– volume: 468
  start-page: 316
  year: 2010
  end-page: 320
  ident: bib3
  article-title: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity
  publication-title: Nature
– volume: 138
  start-page: 3
  year: 2011
  end-page: 8
  ident: bib18
  article-title: The origin and identity of embryonic stem cells
  publication-title: Development
– volume: 137
  start-page: 2279
  year: 2010
  end-page: 2287
  ident: bib13
  article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state
  publication-title: Development
– volume: 453
  start-page: 519
  year: 2008
  end-page: 523
  ident: bib28
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
– volume: 136
  start-page: 3549
  year: 2009
  end-page: 3556
  ident: bib11
  article-title: Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro
  publication-title: Development
– volume: 13
  start-page: 424
  year: 1999
  end-page: 436
  ident: bib12
  article-title: Bmp4 is required for the generation of primordial germ cells in the mouse embryo
  publication-title: Genes Dev.
– volume: 448
  start-page: 196
  year: 2007
  end-page: 199
  ident: bib24
  article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells
  publication-title: Nature
– volume: 132
  start-page: 227
  year: 2005
  end-page: 233
  ident: bib29
  article-title: A germ cell origin of embryonic stem cells?
  publication-title: Development
– volume: 136
  start-page: 3215
  year: 2009
  end-page: 3222
  ident: bib19
  article-title: Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo
  publication-title: Development
– volume: 286
  start-page: 10641
  year: 2011
  end-page: 10648
  ident: bib16
  article-title: A germ cell-specific gene, Prmt5, works in somatic cell reprogramming
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 1547
  year: 2008
  end-page: 1548
  ident: bib5
  article-title: lumi: a pipeline for processing Illumina microarray
  publication-title: Bioinformatics
– volume: 7
  start-page: 319
  year: 2010
  end-page: 328
  ident: bib27
  article-title: Stat3 activation is limiting for reprogramming to ground state pluripotency
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 513
  year: 2009
  end-page: 524
  ident: bib10
  article-title: Metastable pluripotent states in NOD-mouse-derived ESCs
  publication-title: Cell Stem Cell
– volume: 6
  start-page: 215
  year: 2010
  end-page: 226
  ident: bib7
  article-title: Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 461
  start-page: 1292
  year: 2009
  end-page: 1295
  ident: bib1
  article-title: Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells
  publication-title: Nature
– volume: 132
  start-page: 1315
  year: 2005
  end-page: 1325
  ident: bib25
  article-title: The zinc finger transcriptional repressor
  publication-title: Development
– volume: 18
  start-page: 120
  year: 2011
  end-page: 127
  ident: bib15
  article-title: Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates
  publication-title: Nat. Struct. Mol. Biol.
– volume: 128
  start-page: 747
  year: 2007
  end-page: 762
  ident: bib23
  article-title: Genetic and epigenetic regulators of pluripotency
  publication-title: Cell
– volume: 3
  start-page: e3531
  year: 2008
  ident: bib6
  article-title: Reprogramming primordial germ cells into pluripotent stem cells
  publication-title: PLoS ONE
– volume: 36
  start-page: e11
  year: 2008
  ident: bib14
  article-title: Model-based variance-stabilizing transformation for Illumina microarray data
  publication-title: Nucleic Acids Res.
– volume: 3
  year: 2004
  ident: bib22
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 448
  start-page: 191
  year: 2007
  end-page: 195
  ident: bib2
  article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos
  publication-title: Nature
– volume: 40
  start-page: 1016
  year: 2008
  end-page: 1022
  ident: bib26
  article-title: Critical function of Prdm14 for the establishment of the germ cell lineage in mice
  publication-title: Nat. Genet.
– volume: 6
  start-page: 215
  year: 2010
  ident: 10.1016/j.stem.2012.02.023_bib7
  article-title: Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.01.003
– volume: 24
  start-page: 1547
  year: 2008
  ident: 10.1016/j.stem.2012.02.023_bib5
  article-title: lumi: a pipeline for processing Illumina microarray
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn224
– year: 2003
  ident: 10.1016/j.stem.2012.02.023_bib17
– volume: 132
  start-page: 1315
  year: 2005
  ident: 10.1016/j.stem.2012.02.023_bib25
  article-title: The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse
  publication-title: Development
  doi: 10.1242/dev.01711
– volume: 137
  start-page: 2279
  year: 2010
  ident: 10.1016/j.stem.2012.02.023_bib13
  article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state
  publication-title: Development
  doi: 10.1242/dev.050427
– volume: 40
  start-page: 1016
  year: 2008
  ident: 10.1016/j.stem.2012.02.023_bib26
  article-title: Critical function of Prdm14 for the establishment of the germ cell lineage in mice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.186
– volume: 36
  start-page: e11
  year: 2008
  ident: 10.1016/j.stem.2012.02.023_bib14
  article-title: Model-based variance-stabilizing transformation for Illumina microarray data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm1075
– volume: 3
  start-page: e3531
  year: 2008
  ident: 10.1016/j.stem.2012.02.023_bib6
  article-title: Reprogramming primordial germ cells into pluripotent stem cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003531
– volume: 132
  start-page: 227
  year: 2005
  ident: 10.1016/j.stem.2012.02.023_bib29
  article-title: A germ cell origin of embryonic stem cells?
  publication-title: Development
  doi: 10.1242/dev.01586
– volume: 13
  start-page: 66
  year: 2011
  ident: 10.1016/j.stem.2012.02.023_bib9
  article-title: Direct reprogramming of fibroblasts into epiblast stem cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2136
– volume: 136
  start-page: 3215
  year: 2009
  ident: 10.1016/j.stem.2012.02.023_bib19
  article-title: Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo
  publication-title: Development
  doi: 10.1242/dev.038893
– volume: 138
  start-page: 3
  year: 2011
  ident: 10.1016/j.stem.2012.02.023_bib18
  article-title: The origin and identity of embryonic stem cells
  publication-title: Development
  doi: 10.1242/dev.050831
– volume: 18
  start-page: 120
  year: 2011
  ident: 10.1016/j.stem.2012.02.023_bib15
  article-title: Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2000
– volume: 436
  start-page: 207
  year: 2005
  ident: 10.1016/j.stem.2012.02.023_bib20
  article-title: Blimp1 is a critical determinant of the germ cell lineage in mice
  publication-title: Nature
  doi: 10.1038/nature03813
– volume: 21
  start-page: 1759
  year: 2011
  ident: 10.1016/j.stem.2012.02.023_bib4
  article-title: Blimp1 expression predicts embryonic stem cell development in vitro
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.09.010
– volume: 136
  start-page: 3549
  year: 2009
  ident: 10.1016/j.stem.2012.02.023_bib11
  article-title: Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro
  publication-title: Development
  doi: 10.1242/dev.037747
– volume: 134
  start-page: 4335
  year: 2007
  ident: 10.1016/j.stem.2012.02.023_bib21
  article-title: Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice
  publication-title: Development
  doi: 10.1242/dev.012047
– volume: 453
  start-page: 519
  year: 2008
  ident: 10.1016/j.stem.2012.02.023_bib28
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 7
  start-page: 319
  year: 2010
  ident: 10.1016/j.stem.2012.02.023_bib27
  article-title: Stat3 activation is limiting for reprogramming to ground state pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.06.022
– volume: 3
  year: 2004
  ident: 10.1016/j.stem.2012.02.023_bib22
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1027
– volume: 448
  start-page: 191
  year: 2007
  ident: 10.1016/j.stem.2012.02.023_bib2
  article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos
  publication-title: Nature
  doi: 10.1038/nature05950
– volume: 286
  start-page: 10641
  year: 2011
  ident: 10.1016/j.stem.2012.02.023_bib16
  article-title: A germ cell-specific gene, Prmt5, works in somatic cell reprogramming
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.216390
– volume: 452
  start-page: 877
  year: 2008
  ident: 10.1016/j.stem.2012.02.023_bib8
  article-title: Chromatin dynamics during epigenetic reprogramming in the mouse germ line
  publication-title: Nature
  doi: 10.1038/nature06714
– volume: 128
  start-page: 747
  year: 2007
  ident: 10.1016/j.stem.2012.02.023_bib23
  article-title: Genetic and epigenetic regulators of pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.010
– volume: 448
  start-page: 196
  year: 2007
  ident: 10.1016/j.stem.2012.02.023_bib24
  article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature05972
– volume: 4
  start-page: 513
  year: 2009
  ident: 10.1016/j.stem.2012.02.023_bib10
  article-title: Metastable pluripotent states in NOD-mouse-derived ESCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.04.015
– volume: 468
  start-page: 316
  year: 2010
  ident: 10.1016/j.stem.2012.02.023_bib3
  article-title: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity
  publication-title: Nature
  doi: 10.1038/nature09531
– volume: 461
  start-page: 1292
  year: 2009
  ident: 10.1016/j.stem.2012.02.023_bib1
  article-title: Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature08534
– volume: 13
  start-page: 424
  year: 1999
  ident: 10.1016/j.stem.2012.02.023_bib12
  article-title: Bmp4 is required for the generation of primordial germ cells in the mouse embryo
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.4.424
– reference: 22770234 - Cell Stem Cell. 2012 Jul 6;11(1):1-2. doi: 10.1016/j.stem.2012.06.001.
SSID ssj0057107
Score 2.1765432
Snippet Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms Animals
Biological and medical sciences
Blastocyst - cytology
Blastocyst - metabolism
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Cellular Reprogramming
Embryo Implantation
embryonic stem cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
epigenetics
Fundamental and applied biological sciences. Psychology
germ cells
Germ Cells - cytology
Germ Cells - metabolism
Germ Layers - cytology
Germ Layers - metabolism
Mice
Mice, Inbred C57BL
Models, Biological
Molecular and cellular biology
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Positive Regulatory Domain I-Binding Factor 1
Short
somatic cells
Transcription Factors - deficiency
Transcription Factors - metabolism
Title The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells
URI https://dx.doi.org/10.1016/j.stem.2012.02.023
https://www.ncbi.nlm.nih.gov/pubmed/22770244
https://www.proquest.com/docview/1024349074
https://www.proquest.com/docview/1733548671
https://pubmed.ncbi.nlm.nih.gov/PMC3391686
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF-OA0EQ8dt6WlbwTUKT_ew-etXzTuEQz4P6FDa7E64Sk3JtH-6_dyYfPSvaByEPTTu7y-5sZibd3_yGsTfWAMjMpEkahUtU9EXifenxk3E2FoJYpwhtcW5OL9WnuZ4fsNmQC0Owyt72dza9tdb9N5N-NSfLxWJygaGH0g79nWhPE4h2m7JKKYlvfjxYY40e1HYnyyoh6T5xpsN4EVcywbtEy9sp5L-c072lX-GSlV2ti78Fo39iKn9zUicP2P0-uuTvugk8ZAdQP2J3unqTN4_Zd9wU_CPaYj6DquLvb6Ew_Lha_Fxm_GzFz5s1_woEEIbIMaRFseu-BBpvSv6l2qCdaTDUXvMLnFjb1eoJuzz58G12mvS1FZKgs-k6UVqD8Cqg-w4QjPVgpAJRClOmMQveTW20Xjrts-hU0E7GwpdQ6NKnNqRKPmWHdVPDc8YlBLCQRa8cKFdYn4ZpASlqOvqykG7EsmFR89ATj1P9iyofEGY_clJETorIU7rkiL3dtll2tBt7pfWgq3xn8-ToF_a2G-8odjuUoDjPpHbEXg-azvGxo7MUX0OzWWGPQklF_yzskbFSamI0zEbsWbc7bkcQ1mIX2Nru7JutANF-7_5SL65a-m9JudJT8-I_J33E7tJdCzk2L9nh-noDrzCwWhdjfKU4-zxun59f_-Ej-Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEAIJIb7GyscwEm8oquPP-pEVRgujQmyTypPl2I4oypJqTR_47znno6MI-oCUhyg527LvcvdT_PMdQq-VDIGlkiTEU51wb7PE2tzCndTKZzRmnYpsi5mcXPCPczHfQ-P-LEykVXa-v_Xpjbfungy71RwuF4vhGUAPLjTEO9rsJsgb6CagARJNezo_7t2xgBCq2q1lnkTx7uRMS_KKyZIjv4s2iTsp-1d0uru0K1izvC128Tc0-iep8rcodXIf3evgJX7bzuAB2gvlQ3SrLTj58xH6BlaBP4AzxuNQFPjdNRcGHxeLy2WKpys8q2r8NUSGcPAYMC2IXXU10HCV4y_FGhxNBVi7xmcwsaar1WN0cfL-fDxJuuIKiRPpqE64EIFa7iB-u-CkskEyHmhOZU586qweKa8s08KmXnMnNPOZzUMmckuUI5wdoP2yKsMhwiy4oELqLdeB60xZ4kZZIKBqb_OM6QFK-0U1rss8HgtgFKanmP0wUREmKsKQeLEBerNps2zzbuyUFr2uzJb1GAgMO9sdbSl2MxSNQE8SNUCvek0b-O7iZootQ7VeQY-UMx5_LeyQUYyJmNIwHaAnrXVcj0CVgi6gtdqym41AzPu9_aZcfG_yf7N4WHokn_7npF-i25Pzz6fmdDr79AzdiW8a_rF8jvbrq3V4ASirzo6ar-gX0I0mIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+germ+cell+determinant+Blimp1+is+not+required+for+derivation+of+pluripotent+stem+cells&rft.jtitle=Cell+stem+cell&rft.au=Bao%2C+Siqin&rft.au=Leitch%2C+Harry+G&rft.au=Gillich%2C+Astrid&rft.au=Nichols%2C+Jennifer&rft.date=2012-07-06&rft.eissn=1875-9777&rft.volume=11&rft.issue=1&rft.spage=110&rft_id=info:doi/10.1016%2Fj.stem.2012.02.023&rft_id=info%3Apmid%2F22770244&rft.externalDocID=22770244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon