Fractal Spiking Neural Network Scheme for EEG-Based Emotion Recognition
Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spe...
        Saved in:
      
    
          | Published in | IEEE journal of translational engineering in health and medicine Vol. 12; pp. 106 - 118 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2372 2168-2372  | 
| DOI | 10.1109/JTEHM.2023.3320132 | 
Cover
| Abstract | Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition. | 
    
|---|---|
| AbstractList | Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition. Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition.Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition.  | 
    
| Author | Li, Wei Song, Aiguo Fang, Cheng Zhu, Zhihao Chen, Chuyi  | 
    
| AuthorAffiliation | School of Instrument Science and Engineering Southeast University Nanjing Jiangsu 210096 China | 
    
| AuthorAffiliation_xml | – name: School of Instrument Science and Engineering Southeast University Nanjing Jiangsu 210096 China | 
    
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-9235-9429 surname: Li fullname: Li, Wei email: li-wei@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Cheng orcidid: 0000-0003-1660-4848 surname: Fang fullname: Fang, Cheng organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Zhihao orcidid: 0000-0002-4063-6009 surname: Zhu fullname: Zhu, Zhihao organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Chuyi orcidid: 0000-0002-9806-8737 surname: Chen fullname: Chen, Chuyi organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Aiguo orcidid: 0000-0002-1982-6780 surname: Song fullname: Song, Aiguo organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38088998$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptUl1v0zAUtdAQG2N_ACEUiRdeWpzrfNhPCKasGxpDYuPZsp2b1l0SFydh2r_HWUrVVfjF1_Y5R-ee69fkqHUtEvI2pvM4puLTt7vi8vscKLA5Y0BjBi_ICcQZnwHL4WivPiZnXbemYfE4EyBekWPGKedC8BOyuPDK9KqObjf23rbL6AYHH4432D84fx_dmhU2GFXOR0WxmH1VHZZR0bjeujb6icYtWzvWb8jLStUdnm33U_Lrorg7v5xd_1hcnX-5npk05v0MFFeVSTWwVAcrAtI8z2mpVQnaiMxopkvkrAp1kmmFZZYhSxImqpyqRJXslFxNuqVTa7nxtlH-UTpl5dOF80upfG9NjZJTVmpeVlqzNFFQcYNAc5awtIIM01GLTVpDu1GPD6qud4IxlWPKct3jqpFjynKbcmB9nlibQTdYGmz7ENgzK89fWruSS_cnaOYxZHkSFD5uFbz7PWDXy8Z2ButateiGToKgIBLBYxGgHw6gazf4NiQsgQueUxE8BdT7fUs7L__GHAB8Ahjvus5jJY3t1Ti34NDWu3afPtVhu3BAPczov6R3E8ki4h4BsoyxnP0FTuPVXg | 
    
| CODEN | IJTEBN | 
    
| CitedBy_id | crossref_primary_10_1109_JTEHM_2024_3448457 crossref_primary_10_1007_s11227_025_07015_1 crossref_primary_10_1038_s41598_024_62990_4 crossref_primary_10_1109_TCDS_2024_3395443 crossref_primary_10_1007_s13534_024_00404_0 crossref_primary_10_3390_metabo15030174 crossref_primary_10_3390_s24237856 crossref_primary_10_1007_s13534_024_00405_z crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1016_j_jneumeth_2024_110223 crossref_primary_10_3389_fnins_2024_1355512 crossref_primary_10_1109_JSEN_2024_3390799 crossref_primary_10_1007_s11042_024_18698_8 crossref_primary_10_1109_TIM_2024_3472838 crossref_primary_10_3389_fphys_2024_1425582 crossref_primary_10_1016_j_eswa_2024_125420  | 
    
| Cites_doi | 10.1109/JBHI.2017.2688239 10.1109/TIM.2022.3165280 10.1109/TCYB.2018.2797176 10.1109/TNNLS.2019.2906158 10.1109/TAFFC.2020.2994159 10.1016/j.compbiomed.2023.106537 10.1109/TBME.2019.2897651 10.1016/j.neucom.2020.12.098 10.1007/978-1-4939-3995-4_1 10.1109/IJCNN52387.2021.9533368 10.1109/TCDS.2019.2949306 10.1109/TAFFC.2022.3170428 10.1109/TAFFC.2017.2714671 10.1142/S0129065712500128 10.1109/TAFFC.2020.3025777 10.1109/TETC.2021.3087174 10.1109/TAFFC.2018.2885474 10.1109/ACCESS.2019.2891579 10.1016/j.artmed.2021.102210 10.1109/EMBC48229.2022.9871720 10.1109/ACCESS.2020.2978163 10.1109/T-AFFC.2011.15 10.1016/j.compbiomed.2023.106857 10.1007/s13042-021-01414-5 10.24963/ijcai.2020/388 10.1016/j.knosys.2020.106243 10.1109/CVPR.2019.00054 10.1145/1102351.1102430 10.1109/tcds.2023.3270170 10.3390/brainsci12070863 10.1007/978-3-031-15919-0_4 10.1109/TAFFC.2021.3064940 10.1017/CBO9781107447615 10.1016/j.neunet.2014.01.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors. Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 2023 The Authors 2023 Authors  | 
    
| Copyright_xml | – notice: 2023 The Authors. – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 – notice: 2023 The Authors 2023 Authors  | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD F28 FR3 K9. 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/JTEHM.2023.3320132 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2168-2372 | 
    
| EndPage | 118 | 
    
| ExternalDocumentID | oai_doaj_org_article_803db8dfbb354a2f8ce2073435f26e5d 10.1109/jtehm.2023.3320132 PMC10712674 38088998 10_1109_JTEHM_2023_3320132 10266337  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Basic Research Project of Leading Technology of Jiangsu Province grantid: BK20192004 – fundername: ; grantid: BK20192004  | 
    
| GroupedDBID | 0R~ 53G 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ADRAZ AGSQL ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ DIK EBS EJD ESBDL GROUPED_DOAJ HYE IPLJI JAVBF KQ8 M43 M48 M~E O9- OCL OK1 PGMZT RIA RIE RPM AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 8FD F28 FR3 K9. 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c518t-2a8afc5b235b9299257770dbad2bc96cb3bde83fc9646baed66e34439f70a4ad3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2168-2372 | 
    
| IngestDate | Fri Oct 03 12:52:05 EDT 2025 Sun Oct 26 04:06:45 EDT 2025 Thu Aug 21 18:35:47 EDT 2025 Wed Oct 01 12:34:48 EDT 2025 Tue Oct 07 06:50:05 EDT 2025 Thu Apr 03 07:03:44 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Wed Oct 01 03:21:58 EDT 2025 Wed Aug 27 02:35:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Electroencephalogram emotion recognition inverted drop-path fractal spiking neural network  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c518t-2a8afc5b235b9299257770dbad2bc96cb3bde83fc9646baed66e34439f70a4ad3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-4063-6009 0000-0002-9235-9429 0000-0003-1660-4848 0000-0002-9806-8737 0000-0002-1982-6780  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6221039/6563131/10266337.pdf | 
    
| PMID | 38088998 | 
    
| PQID | 2898709013 | 
    
| PQPubID | 4437232 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_2902949819 crossref_citationtrail_10_1109_JTEHM_2023_3320132 proquest_journals_2898709013 crossref_primary_10_1109_JTEHM_2023_3320132 unpaywall_primary_10_1109_jtehm_2023_3320132 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10712674 pubmed_primary_38088998 doaj_primary_oai_doaj_org_article_803db8dfbb354a2f8ce2073435f26e5d ieee_primary_10266337  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-01 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE journal of translational engineering in health and medicine | 
    
| PublicationTitleAbbrev | JTEHM | 
    
| PublicationTitleAlternate | IEEE J Transl Eng Health Med | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Larsson (ref24) ref16 ref19 ref18 ref23 ref25 ref20 Hinton (ref26) 2012 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Bahdanau (ref27) 2014  | 
    
| References_xml | – ident: ref14 doi: 10.1109/JBHI.2017.2688239 – ident: ref4 doi: 10.1109/TIM.2022.3165280 – year: 2014 ident: ref27 article-title: Neural machine translation by jointly learning to align and translate publication-title: arXiv:1409.0473 – ident: ref16 doi: 10.1109/TCYB.2018.2797176 – ident: ref28 doi: 10.1109/TNNLS.2019.2906158 – ident: ref5 doi: 10.1109/TAFFC.2020.2994159 – ident: ref7 doi: 10.1016/j.compbiomed.2023.106537 – ident: ref30 doi: 10.1109/TBME.2019.2897651 – ident: ref13 doi: 10.1016/j.neucom.2020.12.098 – ident: ref23 doi: 10.1007/978-1-4939-3995-4_1 – ident: ref12 doi: 10.1109/IJCNN52387.2021.9533368 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref24 article-title: FractalNet: Ultra-deep neural networks without residuals – ident: ref31 doi: 10.1109/TCDS.2019.2949306 – ident: ref35 doi: 10.1109/TAFFC.2022.3170428 – ident: ref1 doi: 10.1109/TAFFC.2017.2714671 – ident: ref19 doi: 10.1142/S0129065712500128 – ident: ref20 doi: 10.1109/TAFFC.2020.3025777 – ident: ref36 doi: 10.1109/TETC.2021.3087174 – ident: ref3 doi: 10.1109/TAFFC.2018.2885474 – ident: ref17 doi: 10.1109/ACCESS.2019.2891579 – ident: ref32 doi: 10.1016/j.artmed.2021.102210 – ident: ref34 doi: 10.1109/EMBC48229.2022.9871720 – year: 2012 ident: ref26 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: arXiv:1207.0580 – ident: ref11 doi: 10.1109/ACCESS.2020.2978163 – ident: ref15 doi: 10.1109/T-AFFC.2011.15 – ident: ref21 doi: 10.1016/j.compbiomed.2023.106857 – ident: ref22 doi: 10.1007/s13042-021-01414-5 – ident: ref10 doi: 10.24963/ijcai.2020/388 – ident: ref2 doi: 10.1016/j.knosys.2020.106243 – ident: ref25 doi: 10.1109/CVPR.2019.00054 – ident: ref29 doi: 10.1145/1102351.1102430 – ident: ref33 doi: 10.1109/tcds.2023.3270170 – ident: ref18 doi: 10.3390/brainsci12070863 – ident: ref6 doi: 10.1007/978-3-031-15919-0_4 – ident: ref37 doi: 10.1109/TAFFC.2021.3064940 – ident: ref9 doi: 10.1017/CBO9781107447615 – ident: ref8 doi: 10.1016/j.neunet.2014.01.006  | 
    
| SSID | ssj0000816929 | 
    
| Score | 2.3930566 | 
    
| Snippet | Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 106 | 
    
| SubjectTerms | Biological neural networks Electroencephalogram Electroencephalography Emotion recognition Emotions Feature extraction fractal spiking neural network Fractals inverted drop-path Neural networks Neural Networks, Computer Neurons Recognition, Psychology Spatial data Three-dimensional displays  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoADKlAgpaAgcYO0jl-xjxRlu6rUHmgr9Rb5FbXVNruCXSH-PeMkGyUqggu3JB478uexZ8YezwB8FJ5Tr0LImPcs416ITHNTZ9wJpXyda9-mbzs7l_MrfnotrkepvqJPWBceuAPuSBHmLdaylgluaK1coMiWKOVrKoPwcfUlSo-MqXYNVrlEwb-9JUP00ellOT87jMnCDxmj8YRhIonagP19hpU_KZsPfSYfb5qV-fXTLBYjgTTbhWe9Jpl-6XrwHB6F5gU8HcUXfAkns3gHCokuVrdxSzyNoTjw9bzz_U4vcMTuQ4p6a1qWJ9kxSjSfll1in_Tb1rVo2ezB1ay8_DrP-swJmRO5WmfUKFM7YSkTFmHQOC-LgnhrPLVOS2eZ9UGxGp-5tCZ4KQPjqJvUBTHcePYKdpplE95AKrySWtZEKGu4Ztxa4lCko9nUnqq5BPItipXrw4rH7BaLqjUviK5a5KuIfNUjn8Cnoc6qC6rxV-rjODgDZQyI3X5ANql6Nqn-xSYJ7MWhHf0ONRPGigQOtmNd9bP3R4VGKC5jqCmxBD4MxTjv4mGKacJygzSaUM01KlQJvO5YY2icqeg8plUCasI0ky5MS5rbmza2N1rjOZUFT-DzwF8PMLpbh5v7CUb7_wOjt_AE2-TdBtMB7Ky_b8I7VLnW9n07u34DJNAk9A priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RXoBDeRUIFBQkbpCQje3EPlKU7apS90BbqbfIr6iFbXZVEiH49YydhzYUELc8Jg_7m_GM7XkAvGWGpoZbGxFjSEQNY5GgsoqoZpybaiaML992sswW5_T4gl30weo-FsZa653PbOwO_V6-WevWLZWhhKM6ISTfgZ2cZ12w1rig4ipIoK4fAmMS8eH4rFicxK4-eExI6jYVJsrH5-jvi6r8yb687SZ5t6038sd3uVpt6aD5A1gOf9-5nnyN20bF-udviR3_u3kPYa-3RsOPHfs8gju2fgz3t3IUPoGjuYujQqLTzZVbVg9dOg88XXb-4-Epon5tQ7R9w6I4ig5RK5qw6IoDhZ8H96R1vQ_n8-Ls0yLqqy9Ems14E6WSy0ozlRKmsF8FynaeJ0ZJkyotMq2IMpaTCo9ppqQ1WWYJRfumyhNJpSFPYbde1_Y5hMzwTGRVwriSVBCqVKLRLMCpl9-Z0wHMBlhK3acmdxUyVqWfoiSi9FCWDsqyhzKAd-Mzmy4xxz-pDx3aI6VLqu0vIABlL6MlT4hRyKBKEUZlWnFtUxwB0aCs0swyE8C-A23rcx1eARwMzFP2I8C3EieyOBSitUUCeDPeRtl1GzKytusWaUSSCirQKAvgWcdr48sJdw5oggfAJ1w4acL0Tn116fOD44x-lmY5DeD9yLC3-uhLYy-vJ3304i_Newn3kIx2604HsNvctPYVWmKNeu0l8Betxi59 priority: 102 providerName: IEEE – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6VIkE5IB4FDAUZiRs42PvK7gEhipxGldIDbaTerF3vmhalTpomgv57Zv1SrAZujj2Ok3nsfLO7ng_gA7eMWOlcRK2lEbOcR4rpImI5l9IWibIVfdvkRIyn7Picn-9AS3fUKPBma2nn-aSmy9ngz_XtVwz4L02_zM_HZ-l4MvA84ANKiV88uAf3MVMpT-UwaeB-NTLLRCAcaN-d2XrrHjyg0u_9UbKXqqqO_g0FyzY0endT5cN1udC3v_VstpGxRk_gcQM1w2-1bzyFHVc-g0cbDQifw9HIvySFQqeLSz9nHvpeHfjxpN4cHp6iSa9ciMA2TNOj6BBTng3Tmvkn_NHuPZqX-zAdpWffx1FDrRDlPJGriGipi5wbQrlBjSgM3OEwtkZbYnIlckONdZIWeMyE0c4K4ShD8FIMY820pS9gt5yX7hWE3EqhRBFzaTRTlBkT55jzsa6qlt3yAJJWi1ne9B339BezrKo_YpVVRsi8EbLGCAF87O5Z1F03_it96I3TSfqO2dWJ-fJn1gRgJmNqDXqfMZQzTQqZO4LDG6LFggjHbQD73rQbj0PoQukwgIPW1lnrnRlWqTjOIZSiAbzvLmNg-tUWXbr5GmVUTBRTiLgCeFm7RvflrYcFIHtO0_sL_Svl5UXV_BvL9YSIIQvgU-dfd3T0a-Uurno6ev3P3_AG9lCQ1dNKB7C7Wq7dWwRaK_Ouip6_HIcfTQ priority: 102 providerName: Scholars Portal  | 
    
| Title | Fractal Spiking Neural Network Scheme for EEG-Based Emotion Recognition | 
    
| URI | https://ieeexplore.ieee.org/document/10266337 https://www.ncbi.nlm.nih.gov/pubmed/38088998 https://www.proquest.com/docview/2898709013 https://www.proquest.com/docview/2902949819 https://pubmed.ncbi.nlm.nih.gov/PMC10712674 https://ieeexplore.ieee.org/ielx7/6221039/6563131/10266337.pdf https://doaj.org/article/803db8dfbb354a2f8ce2073435f26e5d  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: DIK dateStart: 20130101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Open Access customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2168-2372 dateEnd: 20250531 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: M48 dateStart: 20130101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wAceC4QWKogcYO0iV-xj7uo3WqlVojdSsspsmNHWyhpBa14_HrGTlq1LEKCS-Qkk0TOzNifPS-AV9wyYqVzCbWWJsxyniimq4SVXEpbZcqG8m3jiRhN2dklv2w33EIsjHMuOJ-5nm8GW_7Mzb_nfUGIN1v2EYDQjGao7ji3UJr3lra6CQeCIxbvwMF08u74g68olwkUAZqTTaRMqvofV-7KR58T2qOUeCvD3mwUkva3VVb-BDiv-03eWtdL_eObns93JqXhPSg23Wl8UT711ivTK3_-lunx__t7H-62eDU-bgTsAdxw9UO4s5PF8BGcDn2kFRKdL2d-4z32CT_wdNJ4mMfnKBefXYzoOB4MTpMTnDdtPGjKB8XvNw5Mi_oQpsPBxdtR0tZnSEqeyVVCtNRVyQ2h3CDKUqj9eZ5aoy0xpRKlocY6SStsM2G0s0I4yhABVXmqmbb0MXTqRe2eQsytFEpUKZdGM0WZMWmJwAEXZ8F2V0aQbfhUlG3ycl9DY16ERUyqirOLwWhceN4WLW8jeL19Ztmk7vgr9Yln_5bSp90OF5AjRavFhUypNSjCxlDONKlk6QiOkQg5KyIctxEcei7ufK7hWQRHG2kq2jHia4FLXRwsEY_RCF5ub6N2e5ONrt1ijTQqJYophG0RPGmEb_tyKr2LmpIRyD2x3OvC_p16dhUyiOOaPyMiZxG82UrwtX8UtGXvHz37N_LncBtPWbNhdQSd1Ze1e4EQbmW6YesDj2MmuyHmsttq7i_e4kAv | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwEN6BcigceBYwFDAz3MDGsSRHOlImaShNDjSd6c2jl6eF1MmAPQz8elbyY2IKDDcnluNI3672k7QPgFfM0NRwayNiDImoYSwSVBYR1YxzU4yE8eXb5otsdkqPzthZG6zuY2Gstd75zMbu0p_lm7Wu3VYZajiaE0LG1-EGo5SyJlyr31JxNSTQ2nehMYl4e7SczOaxqxAeE5K6Y4WB-fFZ-tuyKn9imFcdJXfrciN_fJer1ZYVmt6BRff_G-eTL3FdqVj__C2143938C7cbvlo-K4RoHtwzZb34dZWlsIHcDh1kVTY6GRz4TbWQ5fQAz8uGg_y8ARxv7Qhst9wMjmMDtAumnDSlAcKP3UOSutyD06nk-X7WdTWX4g0G_EqSiWXhWYqJUzhuArU7vE4MUqaVGmRaUWUsZwUeE0zJa3JMksoMpxinEgqDXkIO-W6tI8hZIZnIisSxpWkglClEo3EABdf_mxOBzDqYMl1m5zc1chY5X6RkojcQ5k7KPMWygBe989smtQc_2x94NDuW7q02v4LBCBvtTTnCTEKRVQpwqhMC65tinMgUsoizSwzAew50LZe1-AVwH4nPHk7B3zLcSmLkyHyLRLAy_42aq87kpGlXdfYRiSpoAJpWQCPGlnrf5xw54ImeAB8IIWDLgzvlBfnPkM4rulHaTamAbzpBfbKGH2u7PnlYIye_KV7L2B3tpwf58cfFh-fwk18hDa7UPuwU32t7TPkZZV67rXxF5nhMco | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B9wA88LlBYKAg8QZpE3_FftxQumrSKsRWaTxFduxohZJW0IqPv55zPqqGISR4s-NLIvvu7J995zuAV9wyYqVzEbWWRsxyHimmy4gVXEpbJsrW6dvOpmIyY6eX_LI9cKvvwjjnauczN_TF2pY_d4vv6UgQ4s2WIwQgNKEJqjuuLZSmw5Utb8Ke4IjFB7A3m747-uAzyiUCRYCmpLspE6vRx7W78rfPCR1SSryVobca1UH72ywrfwKc1_0mb22qlf7xTS8WO4vS-B7kXXcaX5RPw83aDIufv0V6_P_-3oe7LV4NjxoBewA3XPUQ7uxEMXwEJ2N_0wqJzldzf_Ae-oAfWJ02HubhOcrFZxciOg6z7CQ6xnXThlmTPih83zkwLat9mI2zi7eTqM3PEBU8keuIaKnLghtCuUGUpVD70zS2RltiCiUKQ411kpZYZsJoZ4VwlCECKtNYM23pAQyqZeWeQMitFEqUMZdGM0WZMXGBwAE3Z7Xtrggg6fiUF23wcp9DY5HXm5hY5acX2eQs97zNW94G8Hr7zqoJ3fFX6mPP_i2lD7tdP0CO5K0W5zKm1qAIG0M506SUhSM4RyLkLIlw3Aaw77m487uGZwEcdtKUt3PE1xy3ujhZIh6jAbzcNqN2e5ONrtxygzQqJoophG0BPG6Eb_txKr2LmpIByJ5Y9rrQb6nmV3UEcdzzJ0SkLIA3Wwm-Nka1tvTG6Om_kT-D21hlzYHVIQzWXzbuOUK4tXnR6ukvfgE9Xw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+Spiking+Neural+Network+Scheme+for+EEG-Based+Emotion+Recognition&rft.jtitle=IEEE+journal+of+translational+engineering+in+health+and+medicine&rft.au=Li%2C+Wei&rft.au=Fang%2C+Cheng&rft.au=Zhu%2C+Zhihao&rft.au=Chen%2C+Chuyi&rft.date=2024-01-01&rft.eissn=2168-2372&rft.volume=12&rft.spage=106&rft_id=info:doi/10.1109%2FJTEHM.2023.3320132&rft_id=info%3Apmid%2F38088998&rft.externalDocID=38088998 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2372&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2372&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2372&client=summon |