Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy

BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibito...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 129; no. 10; pp. 1139 - 1151
Main Authors Xie, Min, Kong, Yongli, Tan, Wei, May, Herman, Battiprolu, Pavan K., Pedrozo, Zully, Wang, Zhao V., Morales, Cyndi, Luo, Xiang, Cho, Geoffrey, Jiang, Nan, Jessen, Michael E., Warner, John J., Lavandero, Sergio, Gillette, Thomas G., Turer, Aslan T., Hill, Joseph A.
Format Journal Article
LanguageEnglish
Published Hagerstown, MD by the American College of Cardiology Foundation and the American Heart Association, Inc 11.03.2014
Lippincott Williams & Wilkins
Subjects
Online AccessGet full text
ISSN0009-7322
1524-4539
1524-4539
DOI10.1161/CIRCULATIONAHA.113.002416

Cover

Abstract BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. METHODS AND RESULTS—Twenty-one rabbits were randomly assigned to 3 groups(1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA’s cardioprotective effects. CONCLUSIONS—The US Food and Drug Administration–approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.
AbstractList Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.
BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. METHODS AND RESULTS—Twenty-one rabbits were randomly assigned to 3 groups(1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA’s cardioprotective effects. CONCLUSIONS—The US Food and Drug Administration–approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.
Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury.BACKGROUNDReperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury.Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects.METHODS AND RESULTSTwenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects.The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.CONCLUSIONSThe US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.
Author Xie, Min
Lavandero, Sergio
Morales, Cyndi
Luo, Xiang
Hill, Joseph A.
Pedrozo, Zully
Jessen, Michael E.
Wang, Zhao V.
Jiang, Nan
Kong, Yongli
May, Herman
Warner, John J.
Battiprolu, Pavan K.
Tan, Wei
Gillette, Thomas G.
Turer, Aslan T.
Cho, Geoffrey
AuthorAffiliation From the Departments of Internal Medicine (Cardiology) (M.X., Y.K., W.Y., H.M., P.K.B., Z.P., Z.V.W., C.M., X.L., G.C., N.J., J.J.W., S.L., T.G.G., A.T.T., J.A.H.), Cardiovascular and Thoracic Surgery (M.E.J.), Advanced Center for Chronic Diseases (ACCDiS) & Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile (S.L.); and the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (J.A.H.)
AuthorAffiliation_xml – name: From the Departments of Internal Medicine (Cardiology) (M.X., Y.K., W.Y., H.M., P.K.B., Z.P., Z.V.W., C.M., X.L., G.C., N.J., J.J.W., S.L., T.G.G., A.T.T., J.A.H.), Cardiovascular and Thoracic Surgery (M.E.J.), Advanced Center for Chronic Diseases (ACCDiS) & Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile (S.L.); and the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (J.A.H.)
Author_xml – sequence: 1
  givenname: Min
  surname: Xie
  fullname: Xie, Min
  organization: From the Departments of Internal Medicine (Cardiology) (M.X., Y.K., W.Y., H.M., P.K.B., Z.P., Z.V.W., C.M., X.L., G.C., N.J., J.J.W., S.L., T.G.G., A.T.T., J.A.H.), Cardiovascular and Thoracic Surgery (M.E.J.), Advanced Center for Chronic Diseases (ACCDiS) & Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile (S.L.); and the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (J.A.H.)
– sequence: 2
  givenname: Yongli
  surname: Kong
  fullname: Kong, Yongli
– sequence: 3
  givenname: Wei
  surname: Tan
  fullname: Tan, Wei
– sequence: 4
  givenname: Herman
  surname: May
  fullname: May, Herman
– sequence: 5
  givenname: Pavan
  surname: Battiprolu
  middlename: K.
  fullname: Battiprolu, Pavan K.
– sequence: 6
  givenname: Zully
  surname: Pedrozo
  fullname: Pedrozo, Zully
– sequence: 7
  givenname: Zhao
  surname: Wang
  middlename: V.
  fullname: Wang, Zhao V.
– sequence: 8
  givenname: Cyndi
  surname: Morales
  fullname: Morales, Cyndi
– sequence: 9
  givenname: Xiang
  surname: Luo
  fullname: Luo, Xiang
– sequence: 10
  givenname: Geoffrey
  surname: Cho
  fullname: Cho, Geoffrey
– sequence: 11
  givenname: Nan
  surname: Jiang
  fullname: Jiang, Nan
– sequence: 12
  givenname: Michael
  surname: Jessen
  middlename: E.
  fullname: Jessen, Michael E.
– sequence: 13
  givenname: John
  surname: Warner
  middlename: J.
  fullname: Warner, John J.
– sequence: 14
  givenname: Sergio
  surname: Lavandero
  fullname: Lavandero, Sergio
– sequence: 15
  givenname: Thomas
  surname: Gillette
  middlename: G.
  fullname: Gillette, Thomas G.
– sequence: 16
  givenname: Aslan
  surname: Turer
  middlename: T.
  fullname: Turer, Aslan T.
– sequence: 17
  givenname: Joseph
  surname: Hill
  middlename: A.
  fullname: Hill, Joseph A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28355470$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24396039$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1O3DAUhS1EBQPlFap0UambgB3bSbyoqjSFTqRRkRCsI8e5IaZOMtiOUN6-Hs2Uql2xun_fOYt7ztDxOI2A0EeCLwlJyVVZ3ZUPm-K-uv1ZrIuwo5cYJ4ykR2hFeMJixqk4RiuMsYgzmiSn6My5pzCmNOMn6DRhVKSYihWCtXY-uEffQSrwi5EOomrsdaO9nsbom5lH76LKqR4GLa_uYAu2m93uVo1Ps12iZgldOys9PkaltK2ehmVSi4eomP207eXj8h6966RxcHGo5-jh5vq-XMeb2x9VWWxixUmexjRjOSai4U1HaUbyRCkFlEMjRCvaLqVdi7tOZiLjkuUsaRJBFAiRp4Q1CcvpOfq8993a6XkG5-tBOwXGyBGm2dWE4zQTPM95QD8c0LkZoK23Vg_SLvWf1wTg0wGQTknTWTkq7f5yOeWcZThwYs8pOzlnoXtFCK53cdX_xhV2tN7HFbRf_9Mq7eXu8d5Kbd7k8GXv8DIZD9b9MvML2LoHaXz_Bv1vr7mxMA
CODEN CIRCAZ
CitedBy_id crossref_primary_10_1007_s13105_024_01032_z
crossref_primary_10_1073_pnas_1508815112
crossref_primary_10_3389_fmolb_2023_1190094
crossref_primary_10_1002_cbin_10809
crossref_primary_10_3389_fphar_2024_1447610
crossref_primary_10_1136_jim_2015_000018
crossref_primary_10_1161_CIRCRESAHA_116_303804
crossref_primary_10_1021_acs_jmedchem_4c01168
crossref_primary_10_3346_jkms_2017_32_11_1738
crossref_primary_10_1016_j_expneurol_2023_114495
crossref_primary_10_1111_jcmm_13053
crossref_primary_10_1172_jci_insight_95824
crossref_primary_10_1007_s13577_020_00466_z
crossref_primary_10_1007_s12265_015_9606_8
crossref_primary_10_1038_s41401_018_0066_y
crossref_primary_10_1016_j_trsl_2020_10_010
crossref_primary_10_14336_AD_2019_0522
crossref_primary_10_1016_j_biopha_2020_109998
crossref_primary_10_1161_JAHA_122_028866
crossref_primary_10_1016_j_yjmcc_2015_03_010
crossref_primary_10_1038_s41375_022_01719_6
crossref_primary_10_1007_s10565_016_9374_5
crossref_primary_10_1016_j_ejphar_2018_04_019
crossref_primary_10_1016_j_bbadis_2014_05_010
crossref_primary_10_1016_j_yjmcc_2016_01_005
crossref_primary_10_1007_s10517_021_05164_w
crossref_primary_10_1080_13543784_2023_2290064
crossref_primary_10_1016_j_bbadis_2020_165728
crossref_primary_10_1016_j_mad_2020_111245
crossref_primary_10_1038_s41569_018_0074_0
crossref_primary_10_1038_s41420_021_00601_1
crossref_primary_10_1016_j_yjmcc_2015_03_001
crossref_primary_10_1007_s13238_020_00809_4
crossref_primary_10_1016_j_yjmcc_2019_03_008
crossref_primary_10_3390_cells4020135
crossref_primary_10_3389_fcvm_2022_952949
crossref_primary_10_1016_j_ejphar_2022_174801
crossref_primary_10_1038_nrcardio_2017_102
crossref_primary_10_1039_D3FO01801F
crossref_primary_10_1016_j_yjmcc_2018_04_011
crossref_primary_10_1007_s10495_017_1347_5
crossref_primary_10_1016_j_phrs_2021_105920
crossref_primary_10_1016_j_bbamcr_2019_01_013
crossref_primary_10_1016_j_ebiom_2018_12_003
crossref_primary_10_2174_0929867329666220802090446
crossref_primary_10_1002_jbt_23047
crossref_primary_10_3892_ijmm_2020_4551
crossref_primary_10_1152_ajpheart_00711_2014
crossref_primary_10_1016_j_jnutbio_2019_108339
crossref_primary_10_1007_s00204_015_1477_x
crossref_primary_10_1016_j_yjmcc_2017_09_002
crossref_primary_10_1016_j_exger_2023_112305
crossref_primary_10_1016_j_atherosclerosis_2018_09_029
crossref_primary_10_1016_j_bbrc_2015_11_128
crossref_primary_10_1042_CS20201066
crossref_primary_10_1152_ajpcell_00147_2016
crossref_primary_10_1016_j_yjmcc_2023_11_001
crossref_primary_10_1161_CIRCRESAHA_120_318601
crossref_primary_10_1016_j_freeradbiomed_2016_05_022
crossref_primary_10_1111_anae_12975
crossref_primary_10_1161_CIRCGENETICS_117_001702
crossref_primary_10_1016_j_ijcard_2015_09_107
crossref_primary_10_1038_s41418_021_00872_2
crossref_primary_10_2174_1389557522666220217103441
crossref_primary_10_1002_jcb_26405
crossref_primary_10_1016_j_hlc_2016_01_002
crossref_primary_10_1080_14779072_2016_1202760
crossref_primary_10_1038_cddis_2017_280
crossref_primary_10_1002_advs_202201271
crossref_primary_10_1016_j_redox_2015_06_012
crossref_primary_10_1161_CIRCRESAHA_117_311082
crossref_primary_10_1126_scitranslmed_abl5654
crossref_primary_10_1038_s41420_023_01308_1
crossref_primary_10_1097_FJC_0000000000001174
crossref_primary_10_1155_2022_9530007
crossref_primary_10_3389_fragi_2022_888190
crossref_primary_10_1093_eurjpc_zwac179
crossref_primary_10_1113_JP270953
crossref_primary_10_1016_j_bioorg_2023_106601
crossref_primary_10_2147_DDDT_S428024
crossref_primary_10_1038_s41467_020_16345_y
crossref_primary_10_1007_s00395_022_00930_x
crossref_primary_10_1016_j_biopha_2019_109645
crossref_primary_10_1007_s13311_014_0320_z
crossref_primary_10_1097_TP_0000000000003319
crossref_primary_10_1016_j_yjmcc_2019_02_013
crossref_primary_10_1016_j_cophys_2017_11_001
crossref_primary_10_1016_j_drudis_2015_02_010
crossref_primary_10_1038_s41418_022_01032_w
crossref_primary_10_1016_j_exger_2021_111508
crossref_primary_10_1155_2019_3201062
crossref_primary_10_1007_s12035_014_8986_0
crossref_primary_10_1371_journal_pone_0100715
crossref_primary_10_3390_nu10081120
crossref_primary_10_1016_j_bbadis_2014_07_028
crossref_primary_10_1038_s44318_023_00009_w
crossref_primary_10_1002_jcb_27035
crossref_primary_10_1016_j_yjmcc_2018_12_011
crossref_primary_10_1161_CIRCGENETICS_114_000671
crossref_primary_10_1113_jphysiol_2014_282442
crossref_primary_10_1038_s41467_018_08129_2
crossref_primary_10_1002_jbt_22710
crossref_primary_10_7554_eLife_60311
crossref_primary_10_1016_j_yjmcc_2015_11_019
crossref_primary_10_1007_s10557_021_07159_1
crossref_primary_10_1007_s40292_020_00400_2
crossref_primary_10_1093_cvr_cvac142
crossref_primary_10_1253_circj_CJ_18_1065
crossref_primary_10_1073_pnas_1415589111
crossref_primary_10_1152_ajprenal_00114_2017
crossref_primary_10_3390_cells11132111
crossref_primary_10_7554_eLife_24570
crossref_primary_10_1093_cvr_cvu122
crossref_primary_10_1007_s11010_019_03662_0
crossref_primary_10_1093_cvr_cvx070
crossref_primary_10_1016_j_bbadis_2019_165659
crossref_primary_10_1038_mt_2015_141
crossref_primary_10_1016_j_cmet_2015_01_016
crossref_primary_10_1016_j_transproceed_2022_05_025
crossref_primary_10_1016_j_ijcard_2015_04_172
crossref_primary_10_1161_CIRCRESAHA_123_322620
crossref_primary_10_1253_circj_CJ_15_0742
crossref_primary_10_1007_s40618_018_0956_3
crossref_primary_10_1007_s40883_018_0056_0
crossref_primary_10_3390_nu16142207
crossref_primary_10_1002_cbf_3151
crossref_primary_10_1186_s13287_019_1256_3
crossref_primary_10_1016_j_phrs_2021_105743
crossref_primary_10_1097_ALN_0000000000000618
crossref_primary_10_1097_SHK_0000000000001008
crossref_primary_10_1016_j_lfs_2019_116976
crossref_primary_10_3389_fphar_2019_00516
crossref_primary_10_1016_j_bbadis_2016_07_002
crossref_primary_10_2217_epi_2023_0120
crossref_primary_10_3892_ijmm_2023_5309
crossref_primary_10_1038_nrcardio_2015_71
crossref_primary_10_1007_s40142_021_00198_y
crossref_primary_10_1111_cpr_13051
crossref_primary_10_1155_mi_8156593
crossref_primary_10_3390_ijms241813723
crossref_primary_10_1016_j_yjmcc_2019_04_003
crossref_primary_10_1152_ajpheart_00053_2015
crossref_primary_10_1002_med_21733
crossref_primary_10_1016_j_phrs_2018_01_022
crossref_primary_10_1002_med_21732
crossref_primary_10_3390_ijms21144845
crossref_primary_10_1016_j_ijcard_2016_03_188
crossref_primary_10_3390_nu16152399
crossref_primary_10_1002_cbin_10626
crossref_primary_10_1016_j_jacbts_2019_05_011
crossref_primary_10_1016_j_bbamcr_2019_03_006
crossref_primary_10_1016_j_yjmcc_2014_10_003
crossref_primary_10_1126_scisignal_aad5736
crossref_primary_10_1002_sctm_20_0456
crossref_primary_10_1186_s13102_019_0121_0
crossref_primary_10_1113_JP271332
crossref_primary_10_3892_ijmm_2016_2686
crossref_primary_10_1007_s10495_022_01786_1
crossref_primary_10_1089_humc_2018_141
crossref_primary_10_3389_fphar_2020_587438
crossref_primary_10_1155_2022_5242323
crossref_primary_10_1002_mco2_150
crossref_primary_10_1016_j_bbadis_2016_11_023
crossref_primary_10_1002_advs_202106058
crossref_primary_10_1038_nrd_2017_22
crossref_primary_10_1080_15592294_2017_1371892
crossref_primary_10_31146_1682_8658_ecg_203_7_171_176
crossref_primary_10_1186_s12967_015_0578_x
crossref_primary_10_1111_jocs_15807
crossref_primary_10_1152_ajpheart_00875_2014
crossref_primary_10_1038_nrcardio_2017_35
crossref_primary_10_1161_JAHA_122_025857
crossref_primary_10_1016_j_amjms_2023_04_034
crossref_primary_10_1016_j_bbrc_2017_09_155
crossref_primary_10_1161_CIRCRESAHA_116_305372
crossref_primary_10_1038_s41419_020_03295_y
crossref_primary_10_3389_fcvm_2024_1247079
crossref_primary_10_1098_rsob_160177
crossref_primary_10_3390_jpm12111805
crossref_primary_10_1016_j_bbadis_2016_08_011
crossref_primary_10_1371_journal_pone_0134676
crossref_primary_10_1002_cbf_3587
crossref_primary_10_1016_j_cellsig_2014_09_005
crossref_primary_10_1038_cddis_2017_7
crossref_primary_10_2174_1871525719666210809121016
crossref_primary_10_1002_jcb_29630
crossref_primary_10_1186_s13148_019_0646_9
crossref_primary_10_1016_j_intimp_2015_02_013
crossref_primary_10_1016_j_ijcard_2016_11_204
crossref_primary_10_1038_s41419_018_0374_7
crossref_primary_10_1126_scitranslmed_aay7205
crossref_primary_10_1016_j_jss_2018_05_018
crossref_primary_10_1161_CIRCULATIONAHA_115_013894
crossref_primary_10_1161_CIRCULATIONAHA_121_054262
crossref_primary_10_1080_15548627_2017_1358848
crossref_primary_10_1007_s00109_015_1256_4
crossref_primary_10_1016_j_ijcard_2015_05_170
crossref_primary_10_1089_ars_2020_8040
crossref_primary_10_3390_ijms19020419
crossref_primary_10_1016_j_semcdb_2019_04_009
crossref_primary_10_1016_j_bbrc_2023_05_120
crossref_primary_10_1152_ajpheart_00271_2016
crossref_primary_10_1152_ajpheart_00075_2023
crossref_primary_10_1016_j_yjmcc_2014_12_017
crossref_primary_10_3390_life14010023
crossref_primary_10_3389_fcvm_2022_1000067
crossref_primary_10_1016_j_bbrc_2015_06_149
crossref_primary_10_3389_fcvm_2022_923014
crossref_primary_10_1007_s12020_015_0797_1
crossref_primary_10_3389_fcvm_2020_585309
crossref_primary_10_1016_j_yjmcc_2015_10_032
crossref_primary_10_1172_JCI73943
crossref_primary_10_1016_j_jacc_2017_05_067
crossref_primary_10_3389_fphar_2015_00168
crossref_primary_10_1161_CIRCRESAHA_123_323520
crossref_primary_10_1093_cvr_cvy128
crossref_primary_10_1016_j_mam_2016_10_001
crossref_primary_10_38109_2225_1685_2023_4_76_82
crossref_primary_10_1007_s10741_015_9483_x
crossref_primary_10_3389_fgene_2021_780649
crossref_primary_10_1007_s12576_017_0555_7
crossref_primary_10_1371_journal_pone_0161233
crossref_primary_10_4155_fmc_2018_0311
crossref_primary_10_1093_cvr_cvz233
crossref_primary_10_1016_j_biopha_2018_08_016
crossref_primary_10_1161_CIRCULATIONAHA_115_017443
crossref_primary_10_1161_JAHA_120_016349
crossref_primary_10_1038_s41392_022_01055_2
crossref_primary_10_2174_1389450123666221003094908
crossref_primary_10_1161_CIRCRESAHA_116_303787
crossref_primary_10_1016_j_tcm_2017_12_008
crossref_primary_10_14814_phy2_15686
crossref_primary_10_1002_jcp_28530
crossref_primary_10_3389_fcell_2023_1149409
crossref_primary_10_3389_fcvm_2020_00028
crossref_primary_10_1016_j_semcdb_2016_08_004
crossref_primary_10_3390_ijms20010102
crossref_primary_10_1080_27694127_2024_2330327
crossref_primary_10_1016_j_bbadis_2016_10_021
crossref_primary_10_1016_j_yjmcc_2017_12_004
crossref_primary_10_1172_jci_insight_90183
crossref_primary_10_1161_JAHA_116_004076
crossref_primary_10_3390_jcm13247797
crossref_primary_10_1155_2017_8208065
crossref_primary_10_1111_bph_14549
crossref_primary_10_1161_CIRCRESAHA_116_303791
crossref_primary_10_1016_j_tcm_2017_12_012
crossref_primary_10_31083_j_fbl2911398
Cites_doi 10.4161/auto.6.6.12397
10.1038/nrcardio.2009.12
10.1038/npp.2009.197
10.1074/jbc.M112.379115
10.1016/j.jmb.2004.02.006
10.1093/cvr/cvs109
10.1161/01.res.0000261924.76669.36
10.1007/s10549-011-1364-y
10.1074/jbc.M303113200
10.1002/bdrb.20104
10.1016/j.yjmcc.2013.01.003
10.1161/circulationaha.111.041814
10.1158/1078-0432.CCR-10-2949
10.1093/cvr/cvr358
10.1016/j.cmet.2009.10.008
10.1371/journal.pone.0022158
10.1073/pnas.1015081108
10.1161/cir.0b013e31828124ad
10.1038/nrd3802
10.1093/cvr/cvs018
10.4161/auto.7.4.14680
10.4161/auto.23908
10.1161/circulationaha.106.625467
10.1002/(SICI)1097-0185(199704)247:4<521::AID-AR11>3.0.CO;2-R
10.1016/j.cardiores.2007.08.010
10.1161/cir.0b013e31820a55f5
10.1016/S1388-9842(02)00099-5
10.1161/circulationaha.111.032698
10.1016/j.amjcard.2010.03.032
10.1517/14740338.7.1.53
10.1073/pnas.1222878110
10.1152/ajpheart.00891.2006
10.1016/j.tcm.2012.12.006
10.1161/01.RES.87.2.118
10.1161/circulationaha.109.928242
10.1096/fj.08-108548
10.1038/sj.bjp.0707165
10.1056/NEJMoa032292
10.1016/j.molcel.2008.07.002
10.1189/jlb.0509363
10.1146/annurev-pharmtox-010611-134712
10.1002/cncr.26073
10.1056/NEJMra071667
10.1016/j.jacc.2009.08.031
ContentType Journal Article
Copyright 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCULATIONAHA.113.002416
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 1151
ExternalDocumentID 24396039
28355470
10_1161_CIRCULATIONAHA_113_002416
10.1161/CIRCULATIONAHA.113.002416
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL120732
– fundername: NHLBI NIH HHS
  grantid: HL-0980842
– fundername: NHLBI NIH HHS
  grantid: R01 HL090842
– fundername: NHLBI NIH HHS
  grantid: P30 HL101254
– fundername: NHLBI NIH HHS
  grantid: T32 HL098040
– fundername: NCRR NIH HHS
  grantid: S10 RR023729
– fundername: NHLBI NIH HHS
  grantid: U01 HL100401
– fundername: NHLBI NIH HHS
  grantid: R01 HL080144
– fundername: NHLBI NIH HHS
  grantid: HL-080144
– fundername: NHLBI NIH HHS
  grantid: HL-100401
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AARTV
AASOK
AAUEB
AAWTL
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEETU
AENEX
AFCHL
AFDTB
AFEXH
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
DUNZO
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GX1
H0~
H13
HZ~
IKREB
IKYAY
IN~
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
ZZMQN
~H1
AAFWJ
AAYXX
CITATION
.55
.GJ
1CY
41~
AAEJM
AAQKA
AASCR
AASXQ
AAYOK
ABASU
ABVCZ
ABXYN
ABZZY
ACIJW
ACLDA
ACRZS
ACXJB
ADFPA
ADNKB
AEBDS
AFBFQ
AFFNX
AFMBP
AFSOK
AHQVU
AJJEV
AJNYG
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
C1A
E.X
EEVPB
ERAAH
FEDTE
FL-
FW0
GNXGY
GQDEL
HLJTE
HVGLF
H~9
IPNFZ
IQODW
J5H
M18
MVM
N4W
NEJ
N~M
OCUKA
ODA
OHT
ORVUJ
OUVQU
P-K
R58
RIG
TSPGW
WHG
X7M
YQJ
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADKSD
ID FETCH-LOGICAL-c5186-3748019b5bf337182ccce35eb99d9df63fd0ffa7975a4842b291ce998614b2483
ISSN 0009-7322
1524-4539
IngestDate Mon Sep 08 03:44:11 EDT 2025
Thu Apr 03 07:03:33 EDT 2025
Wed Apr 02 07:15:02 EDT 2025
Tue Jul 01 03:20:36 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Fri May 16 03:43:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Heart
Myocardial infarction
autophagy
Injury
Cardiovascular disease
reperfusion injury
Coronary heart disease
Myocardial disease
Trauma
Myocyte
Reperfusion
Ischemia
Cell death
Blunted effect
histone deacetylases
Circulatory system
Inhibition
Lesion
Cardiology
Histone
cell death
myocardial infarction
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5186-3748019b5bf337182ccce35eb99d9df63fd0ffa7975a4842b291ce998614b2483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.113.002416
PMID 24396039
PQID 1506795885
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1506795885
pubmed_primary_24396039
pascalfrancis_primary_28355470
crossref_primary_10_1161_CIRCULATIONAHA_113_002416
crossref_citationtrail_10_1161_CIRCULATIONAHA_113_002416
wolterskluwer_health_10_1161_CIRCULATIONAHA_113_002416
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-March-11
PublicationDateYYYYMMDD 2014-03-11
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-March-11
  day: 11
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2014
Publisher by the American College of Cardiology Foundation and the American Heart Association, Inc
Lippincott Williams & Wilkins
Publisher_xml – name: by the American College of Cardiology Foundation and the American Heart Association, Inc
– name: Lippincott Williams & Wilkins
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_46_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
Kelly WK (e_1_3_4_25_2) 2003; 9
17855673 - N Engl J Med. 2007 Sep 13;357(11):1121-35
22592897 - Circulation. 2012 Jun 26;125(25):3170-81
16735673 - Circulation. 2006 Jun 6;113(22):2579-88
18606865 - FASEB J. 2008 Oct;22(10):3549-60
20200406 - J Leukoc Biol. 2010 Jun;87(6):1103-14
23401516 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12
21262990 - Circulation. 2011 Mar 1;123(8):933-44
24396040 - Circulation. 2014 Mar 11;129(10):1088-91
21421857 - Clin Cancer Res. 2011 Apr 15;17(8):2339-49
23466676 - Autophagy. 2013 Jun 1;9(6):819-29
9096792 - Anat Rec. 1997 Apr;247(4):521-7
21789227 - PLoS One. 2011;6(7):e22158
23499301 - Trends Cardiovasc Med. 2013 Aug;23(6):229-35
21491416 - Cancer. 2011 Oct 1;117(19):4424-38
12761226 - J Biol Chem. 2003 Aug 1;278(31):28930-7
21298336 - Breast Cancer Res Treat. 2011 Nov;130(2):437-47
23239837 - Circulation. 2013 Jan 1;127(1):e6-e245
12167391 - Eur J Heart Fail. 2002 Aug;4(4):501-6
23328483 - J Mol Cell Cardiol. 2013 May;58:209-16
20010553 - Neuropsychopharmacology. 2010 Mar;35(4):870-80
21367693 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4123-8
21942627 - Annu Rev Pharmacol Toxicol. 2012;52:303-19
15050820 - J Mol Biol. 2004 Apr 16;338(1):17-31
19352332 - Nat Rev Cardiol. 2009 Apr;6(4):283-91
20837911 - Circulation. 2010 Sep 14;122(11 Suppl):S179-84
22215722 - Cardiovasc Res. 2012 May 1;94(2):197-205
22387461 - Cardiovasc Res. 2012 May 1;94(2):293-303
14610160 - N Engl J Med. 2003 Nov 13;349(20):1893-906
10903995 - Circ Res. 2000 Jul 21;87(2):118-25
22266751 - Cardiovasc Res. 2012 May 1;94(2):276-83
22935804 - Nat Rev Drug Discov. 2012 Sep;11(9):709-30
17294457 - Birth Defects Res B Dev Reprod Toxicol. 2007 Feb;80(1):57-68
21900096 - Circulation. 2011 Sep 6;124(10):1172-9
20643246 - Am J Cardiol. 2010 Aug 1;106(3):360-8
17884027 - Cardiovasc Res. 2007 Dec 1;76(3):473-81
14506144 - Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3578-88
17325656 - Br J Pharmacol. 2007 Apr;150(7):862-72
18722172 - Mol Cell. 2008 Aug 22;31(4):449-61
20543569 - Autophagy. 2010 Aug;6(6):711-24
17332429 - Circ Res. 2007 Mar 30;100(6):914-22
18171314 - Expert Opin Drug Saf. 2008 Jan;7(1):53-67
17400721 - Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H968-77
20082935 - J Am Coll Cardiol. 2009 Dec 15;54(25):2435-46
21224727 - Autophagy. 2011 Apr;7(4):440-1
23024362 - J Biol Chem. 2012 Nov 16;287(47):39338-48
19945408 - Cell Metab. 2009 Dec;10(6):507-15
References_xml – ident: e_1_3_4_39_2
  doi: 10.4161/auto.6.6.12397
– ident: e_1_3_4_5_2
  doi: 10.1038/nrcardio.2009.12
– ident: e_1_3_4_21_2
  doi: 10.1038/npp.2009.197
– ident: e_1_3_4_34_2
  doi: 10.1074/jbc.M112.379115
– ident: e_1_3_4_11_2
  doi: 10.1016/j.jmb.2004.02.006
– ident: e_1_3_4_4_2
  doi: 10.1093/cvr/cvs109
– ident: e_1_3_4_35_2
  doi: 10.1161/01.res.0000261924.76669.36
– ident: e_1_3_4_40_2
  doi: 10.1007/s10549-011-1364-y
– ident: e_1_3_4_14_2
  doi: 10.1074/jbc.M303113200
– ident: e_1_3_4_20_2
  doi: 10.1002/bdrb.20104
– ident: e_1_3_4_29_2
  doi: 10.1016/j.yjmcc.2013.01.003
– ident: e_1_3_4_36_2
  doi: 10.1161/circulationaha.111.041814
– ident: e_1_3_4_23_2
  doi: 10.1158/1078-0432.CCR-10-2949
– ident: e_1_3_4_27_2
  doi: 10.1093/cvr/cvr358
– ident: e_1_3_4_42_2
  doi: 10.1016/j.cmet.2009.10.008
– ident: e_1_3_4_46_2
  doi: 10.1371/journal.pone.0022158
– ident: e_1_3_4_31_2
  doi: 10.1073/pnas.1015081108
– ident: e_1_3_4_2_2
  doi: 10.1161/cir.0b013e31828124ad
– ident: e_1_3_4_26_2
  doi: 10.1038/nrd3802
– ident: e_1_3_4_45_2
  doi: 10.1093/cvr/cvs018
– ident: e_1_3_4_28_2
  doi: 10.4161/auto.7.4.14680
– ident: e_1_3_4_41_2
  doi: 10.4161/auto.23908
– ident: e_1_3_4_15_2
  doi: 10.1161/circulationaha.106.625467
– ident: e_1_3_4_24_2
  doi: 10.1002/(SICI)1097-0185(199704)247:4<521::AID-AR11>3.0.CO;2-R
– ident: e_1_3_4_16_2
  doi: 10.1016/j.cardiores.2007.08.010
– volume: 9
  start-page: 3578
  year: 2003
  ident: e_1_3_4_25_2
  article-title: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously.
  publication-title: Clin Cancer Res
– ident: e_1_3_4_3_2
  doi: 10.1161/cir.0b013e31820a55f5
– ident: e_1_3_4_19_2
– ident: e_1_3_4_47_2
  doi: 10.1016/S1388-9842(02)00099-5
– ident: e_1_3_4_9_2
  doi: 10.1161/circulationaha.111.032698
– ident: e_1_3_4_7_2
  doi: 10.1016/j.amjcard.2010.03.032
– ident: e_1_3_4_13_2
  doi: 10.1517/14740338.7.1.53
– ident: e_1_3_4_18_2
  doi: 10.1073/pnas.1222878110
– ident: e_1_3_4_33_2
  doi: 10.1152/ajpheart.00891.2006
– ident: e_1_3_4_32_2
  doi: 10.1016/j.tcm.2012.12.006
– ident: e_1_3_4_30_2
  doi: 10.1161/01.RES.87.2.118
– ident: e_1_3_4_38_2
  doi: 10.1161/circulationaha.109.928242
– ident: e_1_3_4_17_2
  doi: 10.1096/fj.08-108548
– ident: e_1_3_4_44_2
  doi: 10.1038/sj.bjp.0707165
– ident: e_1_3_4_6_2
  doi: 10.1056/NEJMoa032292
– ident: e_1_3_4_10_2
  doi: 10.1016/j.molcel.2008.07.002
– ident: e_1_3_4_43_2
  doi: 10.1189/jlb.0509363
– ident: e_1_3_4_12_2
  doi: 10.1146/annurev-pharmtox-010611-134712
– ident: e_1_3_4_22_2
  doi: 10.1002/cncr.26073
– ident: e_1_3_4_8_2
  doi: 10.1056/NEJMra071667
– ident: e_1_3_4_37_2
  doi: 10.1016/j.jacc.2009.08.031
– reference: 23239837 - Circulation. 2013 Jan 1;127(1):e6-e245
– reference: 17325656 - Br J Pharmacol. 2007 Apr;150(7):862-72
– reference: 17400721 - Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H968-77
– reference: 21789227 - PLoS One. 2011;6(7):e22158
– reference: 20082935 - J Am Coll Cardiol. 2009 Dec 15;54(25):2435-46
– reference: 23499301 - Trends Cardiovasc Med. 2013 Aug;23(6):229-35
– reference: 20200406 - J Leukoc Biol. 2010 Jun;87(6):1103-14
– reference: 17855673 - N Engl J Med. 2007 Sep 13;357(11):1121-35
– reference: 19945408 - Cell Metab. 2009 Dec;10(6):507-15
– reference: 23466676 - Autophagy. 2013 Jun 1;9(6):819-29
– reference: 21367693 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4123-8
– reference: 20643246 - Am J Cardiol. 2010 Aug 1;106(3):360-8
– reference: 21942627 - Annu Rev Pharmacol Toxicol. 2012;52:303-19
– reference: 14610160 - N Engl J Med. 2003 Nov 13;349(20):1893-906
– reference: 20837911 - Circulation. 2010 Sep 14;122(11 Suppl):S179-84
– reference: 24396040 - Circulation. 2014 Mar 11;129(10):1088-91
– reference: 22387461 - Cardiovasc Res. 2012 May 1;94(2):293-303
– reference: 21421857 - Clin Cancer Res. 2011 Apr 15;17(8):2339-49
– reference: 21900096 - Circulation. 2011 Sep 6;124(10):1172-9
– reference: 22215722 - Cardiovasc Res. 2012 May 1;94(2):197-205
– reference: 14506144 - Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3578-88
– reference: 21298336 - Breast Cancer Res Treat. 2011 Nov;130(2):437-47
– reference: 22266751 - Cardiovasc Res. 2012 May 1;94(2):276-83
– reference: 22935804 - Nat Rev Drug Discov. 2012 Sep;11(9):709-30
– reference: 15050820 - J Mol Biol. 2004 Apr 16;338(1):17-31
– reference: 20010553 - Neuropsychopharmacology. 2010 Mar;35(4):870-80
– reference: 12167391 - Eur J Heart Fail. 2002 Aug;4(4):501-6
– reference: 17332429 - Circ Res. 2007 Mar 30;100(6):914-22
– reference: 23401516 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12
– reference: 22592897 - Circulation. 2012 Jun 26;125(25):3170-81
– reference: 18722172 - Mol Cell. 2008 Aug 22;31(4):449-61
– reference: 21224727 - Autophagy. 2011 Apr;7(4):440-1
– reference: 17884027 - Cardiovasc Res. 2007 Dec 1;76(3):473-81
– reference: 21262990 - Circulation. 2011 Mar 1;123(8):933-44
– reference: 18171314 - Expert Opin Drug Saf. 2008 Jan;7(1):53-67
– reference: 23328483 - J Mol Cell Cardiol. 2013 May;58:209-16
– reference: 19352332 - Nat Rev Cardiol. 2009 Apr;6(4):283-91
– reference: 10903995 - Circ Res. 2000 Jul 21;87(2):118-25
– reference: 12761226 - J Biol Chem. 2003 Aug 1;278(31):28930-7
– reference: 23024362 - J Biol Chem. 2012 Nov 16;287(47):39338-48
– reference: 9096792 - Anat Rec. 1997 Apr;247(4):521-7
– reference: 16735673 - Circulation. 2006 Jun 6;113(22):2579-88
– reference: 17294457 - Birth Defects Res B Dev Reprod Toxicol. 2007 Feb;80(1):57-68
– reference: 18606865 - FASEB J. 2008 Oct;22(10):3549-60
– reference: 21491416 - Cancer. 2011 Oct 1;117(19):4424-38
– reference: 20543569 - Autophagy. 2010 Aug;6(6):711-24
SSID ssj0006375
Score 2.5768304
Snippet BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are...
Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1139
SubjectTerms Animals
Animals, Genetically Modified
Apoptosis - drug effects
Autophagy - drug effects
Biological and medical sciences
Blood and lymphatic vessels
Cardiology. Vascular system
Cells, Cultured
Coronary heart disease
Disease Models, Animal
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Heart
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylase Inhibitors - therapeutic use
Histone Deacetylases - drug effects
Humans
Hydroxamic Acids - pharmacology
Hydroxamic Acids - therapeutic use
Male
Medical sciences
Mice
Mice, Inbred C57BL
Myocardial Infarction - pathology
Myocardial Infarction - prevention & control
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - prevention & control
Myocarditis. Cardiomyopathies
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - pathology
Rabbits
Rats
Rats, Sprague-Dawley
Title Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy
URI https://www.ncbi.nlm.nih.gov/pubmed/24396039
https://www.proquest.com/docview/1506795885
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSBMSQrDxUT4mT0K8TGFN4jjOY1UxFUR5QKsoT5GdOlBY06pNhMpfz53t5kN0YvASVU78ofx-ud6d786EvEpCNYsDKbwoTiQYKHHuqUgpT_e5kjqULJfo0B9_5KMJez-Npo1XyWSXlOpN9mtvXsn_oAptgCtmyf4DsvWg0AC_AV-4AsJwvRHGpsZHgZlPMtPlFhRhLAHyba5MHNaZuqowyGUOBqxeYFDsxVqv9DqvNjbA8Tu8T1Q_wSyvMpN8a4JTF9tlti31mayw6ID82tn4Hc7XmTvxa99BPi3HwtTufIznzT6_C__9ssTc4cZnYATfZ123jKVNm8A_jaLtlvAZxmU5samdKA2YxyJbqqiWtW4VjlT9luj0ffvonzKdo0wfvvs0nHywFYJHAzyKBn1hzCZqtrBeLQzYAShavO8m7xbU3t26Te4EMShcmCE-beKCeBhHh-TUzXx-7bxYRtqN1NFp7q3kBj6v3J6Lss9wgWd-LjEWYvPDpEK0FJrLB-S-s0TowNLqIbmliyNyPChkCQygr6mJDTabLkfkcOxCMI6JdqSjLdLRhnTUko7uSHfeohy1lKNqS3eUox3K0Zpyj8jk4u3lcOS5szq8LPIF97CKEVgL8J3nYQj6TpBlmQ4jrZJklsxyHuazfp7LOIkjyQQLVJD4mQZbH9RDFTARPiYHBSz-KaE4UsCFr3mQsFBwxTjmj0khBI_zTPWI2L3tNHOF7PE8lavUGLTcT7uYQVuYWsx6JKi7rmw1l5t0OulAWvfEUoURi_s9crrDOAXhjDtustDLapNi-c44iYSIeuSJBb_p7cjTI7zDhtQmQP99Xc-uHfI5udt8ki_IQbmu9EvQnUt1Yrj-GycMwAQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+deacetylase+inhibition+blunts+ischemia%2Freperfusion+injury+by+inducing+cardiomyocyte+autophagy&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Xie%2C+Min&rft.au=Kong%2C+Yongli&rft.au=Tan%2C+Wei&rft.au=May%2C+Herman&rft.date=2014-03-11&rft.eissn=1524-4539&rft.volume=129&rft.issue=10&rft.spage=1139&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.113.002416&rft_id=info%3Apmid%2F24396039&rft.externalDocID=24396039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon