Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy
BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibito...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 129; no. 10; pp. 1139 - 1151 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
by the American College of Cardiology Foundation and the American Heart Association, Inc
11.03.2014
Lippincott Williams & Wilkins |
Subjects | |
Online Access | Get full text |
ISSN | 0009-7322 1524-4539 1524-4539 |
DOI | 10.1161/CIRCULATIONAHA.113.002416 |
Cover
Abstract | BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury.
METHODS AND RESULTS—Twenty-one rabbits were randomly assigned to 3 groups(1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA’s cardioprotective effects.
CONCLUSIONS—The US Food and Drug Administration–approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux. |
---|---|
AbstractList | Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury.
Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects.
The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux. BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. METHODS AND RESULTS—Twenty-one rabbits were randomly assigned to 3 groups(1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA’s cardioprotective effects. CONCLUSIONS—The US Food and Drug Administration–approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux. Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury.BACKGROUNDReperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury.Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects.METHODS AND RESULTSTwenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects.The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.CONCLUSIONSThe US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux. |
Author | Xie, Min Lavandero, Sergio Morales, Cyndi Luo, Xiang Hill, Joseph A. Pedrozo, Zully Jessen, Michael E. Wang, Zhao V. Jiang, Nan Kong, Yongli May, Herman Warner, John J. Battiprolu, Pavan K. Tan, Wei Gillette, Thomas G. Turer, Aslan T. Cho, Geoffrey |
AuthorAffiliation | From the Departments of Internal Medicine (Cardiology) (M.X., Y.K., W.Y., H.M., P.K.B., Z.P., Z.V.W., C.M., X.L., G.C., N.J., J.J.W., S.L., T.G.G., A.T.T., J.A.H.), Cardiovascular and Thoracic Surgery (M.E.J.), Advanced Center for Chronic Diseases (ACCDiS) & Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile (S.L.); and the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (J.A.H.) |
AuthorAffiliation_xml | – name: From the Departments of Internal Medicine (Cardiology) (M.X., Y.K., W.Y., H.M., P.K.B., Z.P., Z.V.W., C.M., X.L., G.C., N.J., J.J.W., S.L., T.G.G., A.T.T., J.A.H.), Cardiovascular and Thoracic Surgery (M.E.J.), Advanced Center for Chronic Diseases (ACCDiS) & Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile (S.L.); and the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (J.A.H.) |
Author_xml | – sequence: 1 givenname: Min surname: Xie fullname: Xie, Min organization: From the Departments of Internal Medicine (Cardiology) (M.X., Y.K., W.Y., H.M., P.K.B., Z.P., Z.V.W., C.M., X.L., G.C., N.J., J.J.W., S.L., T.G.G., A.T.T., J.A.H.), Cardiovascular and Thoracic Surgery (M.E.J.), Advanced Center for Chronic Diseases (ACCDiS) & Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile (S.L.); and the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (J.A.H.) – sequence: 2 givenname: Yongli surname: Kong fullname: Kong, Yongli – sequence: 3 givenname: Wei surname: Tan fullname: Tan, Wei – sequence: 4 givenname: Herman surname: May fullname: May, Herman – sequence: 5 givenname: Pavan surname: Battiprolu middlename: K. fullname: Battiprolu, Pavan K. – sequence: 6 givenname: Zully surname: Pedrozo fullname: Pedrozo, Zully – sequence: 7 givenname: Zhao surname: Wang middlename: V. fullname: Wang, Zhao V. – sequence: 8 givenname: Cyndi surname: Morales fullname: Morales, Cyndi – sequence: 9 givenname: Xiang surname: Luo fullname: Luo, Xiang – sequence: 10 givenname: Geoffrey surname: Cho fullname: Cho, Geoffrey – sequence: 11 givenname: Nan surname: Jiang fullname: Jiang, Nan – sequence: 12 givenname: Michael surname: Jessen middlename: E. fullname: Jessen, Michael E. – sequence: 13 givenname: John surname: Warner middlename: J. fullname: Warner, John J. – sequence: 14 givenname: Sergio surname: Lavandero fullname: Lavandero, Sergio – sequence: 15 givenname: Thomas surname: Gillette middlename: G. fullname: Gillette, Thomas G. – sequence: 16 givenname: Aslan surname: Turer middlename: T. fullname: Turer, Aslan T. – sequence: 17 givenname: Joseph surname: Hill middlename: A. fullname: Hill, Joseph A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28355470$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24396039$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1O3DAUhS1EBQPlFap0UambgB3bSbyoqjSFTqRRkRCsI8e5IaZOMtiOUN6-Hs2Uql2xun_fOYt7ztDxOI2A0EeCLwlJyVVZ3ZUPm-K-uv1ZrIuwo5cYJ4ykR2hFeMJixqk4RiuMsYgzmiSn6My5pzCmNOMn6DRhVKSYihWCtXY-uEffQSrwi5EOomrsdaO9nsbom5lH76LKqR4GLa_uYAu2m93uVo1Ps12iZgldOys9PkaltK2ehmVSi4eomP207eXj8h6966RxcHGo5-jh5vq-XMeb2x9VWWxixUmexjRjOSai4U1HaUbyRCkFlEMjRCvaLqVdi7tOZiLjkuUsaRJBFAiRp4Q1CcvpOfq8993a6XkG5-tBOwXGyBGm2dWE4zQTPM95QD8c0LkZoK23Vg_SLvWf1wTg0wGQTknTWTkq7f5yOeWcZThwYs8pOzlnoXtFCK53cdX_xhV2tN7HFbRf_9Mq7eXu8d5Kbd7k8GXv8DIZD9b9MvML2LoHaXz_Bv1vr7mxMA |
CODEN | CIRCAZ |
CitedBy_id | crossref_primary_10_1007_s13105_024_01032_z crossref_primary_10_1073_pnas_1508815112 crossref_primary_10_3389_fmolb_2023_1190094 crossref_primary_10_1002_cbin_10809 crossref_primary_10_3389_fphar_2024_1447610 crossref_primary_10_1136_jim_2015_000018 crossref_primary_10_1161_CIRCRESAHA_116_303804 crossref_primary_10_1021_acs_jmedchem_4c01168 crossref_primary_10_3346_jkms_2017_32_11_1738 crossref_primary_10_1016_j_expneurol_2023_114495 crossref_primary_10_1111_jcmm_13053 crossref_primary_10_1172_jci_insight_95824 crossref_primary_10_1007_s13577_020_00466_z crossref_primary_10_1007_s12265_015_9606_8 crossref_primary_10_1038_s41401_018_0066_y crossref_primary_10_1016_j_trsl_2020_10_010 crossref_primary_10_14336_AD_2019_0522 crossref_primary_10_1016_j_biopha_2020_109998 crossref_primary_10_1161_JAHA_122_028866 crossref_primary_10_1016_j_yjmcc_2015_03_010 crossref_primary_10_1038_s41375_022_01719_6 crossref_primary_10_1007_s10565_016_9374_5 crossref_primary_10_1016_j_ejphar_2018_04_019 crossref_primary_10_1016_j_bbadis_2014_05_010 crossref_primary_10_1016_j_yjmcc_2016_01_005 crossref_primary_10_1007_s10517_021_05164_w crossref_primary_10_1080_13543784_2023_2290064 crossref_primary_10_1016_j_bbadis_2020_165728 crossref_primary_10_1016_j_mad_2020_111245 crossref_primary_10_1038_s41569_018_0074_0 crossref_primary_10_1038_s41420_021_00601_1 crossref_primary_10_1016_j_yjmcc_2015_03_001 crossref_primary_10_1007_s13238_020_00809_4 crossref_primary_10_1016_j_yjmcc_2019_03_008 crossref_primary_10_3390_cells4020135 crossref_primary_10_3389_fcvm_2022_952949 crossref_primary_10_1016_j_ejphar_2022_174801 crossref_primary_10_1038_nrcardio_2017_102 crossref_primary_10_1039_D3FO01801F crossref_primary_10_1016_j_yjmcc_2018_04_011 crossref_primary_10_1007_s10495_017_1347_5 crossref_primary_10_1016_j_phrs_2021_105920 crossref_primary_10_1016_j_bbamcr_2019_01_013 crossref_primary_10_1016_j_ebiom_2018_12_003 crossref_primary_10_2174_0929867329666220802090446 crossref_primary_10_1002_jbt_23047 crossref_primary_10_3892_ijmm_2020_4551 crossref_primary_10_1152_ajpheart_00711_2014 crossref_primary_10_1016_j_jnutbio_2019_108339 crossref_primary_10_1007_s00204_015_1477_x crossref_primary_10_1016_j_yjmcc_2017_09_002 crossref_primary_10_1016_j_exger_2023_112305 crossref_primary_10_1016_j_atherosclerosis_2018_09_029 crossref_primary_10_1016_j_bbrc_2015_11_128 crossref_primary_10_1042_CS20201066 crossref_primary_10_1152_ajpcell_00147_2016 crossref_primary_10_1016_j_yjmcc_2023_11_001 crossref_primary_10_1161_CIRCRESAHA_120_318601 crossref_primary_10_1016_j_freeradbiomed_2016_05_022 crossref_primary_10_1111_anae_12975 crossref_primary_10_1161_CIRCGENETICS_117_001702 crossref_primary_10_1016_j_ijcard_2015_09_107 crossref_primary_10_1038_s41418_021_00872_2 crossref_primary_10_2174_1389557522666220217103441 crossref_primary_10_1002_jcb_26405 crossref_primary_10_1016_j_hlc_2016_01_002 crossref_primary_10_1080_14779072_2016_1202760 crossref_primary_10_1038_cddis_2017_280 crossref_primary_10_1002_advs_202201271 crossref_primary_10_1016_j_redox_2015_06_012 crossref_primary_10_1161_CIRCRESAHA_117_311082 crossref_primary_10_1126_scitranslmed_abl5654 crossref_primary_10_1038_s41420_023_01308_1 crossref_primary_10_1097_FJC_0000000000001174 crossref_primary_10_1155_2022_9530007 crossref_primary_10_3389_fragi_2022_888190 crossref_primary_10_1093_eurjpc_zwac179 crossref_primary_10_1113_JP270953 crossref_primary_10_1016_j_bioorg_2023_106601 crossref_primary_10_2147_DDDT_S428024 crossref_primary_10_1038_s41467_020_16345_y crossref_primary_10_1007_s00395_022_00930_x crossref_primary_10_1016_j_biopha_2019_109645 crossref_primary_10_1007_s13311_014_0320_z crossref_primary_10_1097_TP_0000000000003319 crossref_primary_10_1016_j_yjmcc_2019_02_013 crossref_primary_10_1016_j_cophys_2017_11_001 crossref_primary_10_1016_j_drudis_2015_02_010 crossref_primary_10_1038_s41418_022_01032_w crossref_primary_10_1016_j_exger_2021_111508 crossref_primary_10_1155_2019_3201062 crossref_primary_10_1007_s12035_014_8986_0 crossref_primary_10_1371_journal_pone_0100715 crossref_primary_10_3390_nu10081120 crossref_primary_10_1016_j_bbadis_2014_07_028 crossref_primary_10_1038_s44318_023_00009_w crossref_primary_10_1002_jcb_27035 crossref_primary_10_1016_j_yjmcc_2018_12_011 crossref_primary_10_1161_CIRCGENETICS_114_000671 crossref_primary_10_1113_jphysiol_2014_282442 crossref_primary_10_1038_s41467_018_08129_2 crossref_primary_10_1002_jbt_22710 crossref_primary_10_7554_eLife_60311 crossref_primary_10_1016_j_yjmcc_2015_11_019 crossref_primary_10_1007_s10557_021_07159_1 crossref_primary_10_1007_s40292_020_00400_2 crossref_primary_10_1093_cvr_cvac142 crossref_primary_10_1253_circj_CJ_18_1065 crossref_primary_10_1073_pnas_1415589111 crossref_primary_10_1152_ajprenal_00114_2017 crossref_primary_10_3390_cells11132111 crossref_primary_10_7554_eLife_24570 crossref_primary_10_1093_cvr_cvu122 crossref_primary_10_1007_s11010_019_03662_0 crossref_primary_10_1093_cvr_cvx070 crossref_primary_10_1016_j_bbadis_2019_165659 crossref_primary_10_1038_mt_2015_141 crossref_primary_10_1016_j_cmet_2015_01_016 crossref_primary_10_1016_j_transproceed_2022_05_025 crossref_primary_10_1016_j_ijcard_2015_04_172 crossref_primary_10_1161_CIRCRESAHA_123_322620 crossref_primary_10_1253_circj_CJ_15_0742 crossref_primary_10_1007_s40618_018_0956_3 crossref_primary_10_1007_s40883_018_0056_0 crossref_primary_10_3390_nu16142207 crossref_primary_10_1002_cbf_3151 crossref_primary_10_1186_s13287_019_1256_3 crossref_primary_10_1016_j_phrs_2021_105743 crossref_primary_10_1097_ALN_0000000000000618 crossref_primary_10_1097_SHK_0000000000001008 crossref_primary_10_1016_j_lfs_2019_116976 crossref_primary_10_3389_fphar_2019_00516 crossref_primary_10_1016_j_bbadis_2016_07_002 crossref_primary_10_2217_epi_2023_0120 crossref_primary_10_3892_ijmm_2023_5309 crossref_primary_10_1038_nrcardio_2015_71 crossref_primary_10_1007_s40142_021_00198_y crossref_primary_10_1111_cpr_13051 crossref_primary_10_1155_mi_8156593 crossref_primary_10_3390_ijms241813723 crossref_primary_10_1016_j_yjmcc_2019_04_003 crossref_primary_10_1152_ajpheart_00053_2015 crossref_primary_10_1002_med_21733 crossref_primary_10_1016_j_phrs_2018_01_022 crossref_primary_10_1002_med_21732 crossref_primary_10_3390_ijms21144845 crossref_primary_10_1016_j_ijcard_2016_03_188 crossref_primary_10_3390_nu16152399 crossref_primary_10_1002_cbin_10626 crossref_primary_10_1016_j_jacbts_2019_05_011 crossref_primary_10_1016_j_bbamcr_2019_03_006 crossref_primary_10_1016_j_yjmcc_2014_10_003 crossref_primary_10_1126_scisignal_aad5736 crossref_primary_10_1002_sctm_20_0456 crossref_primary_10_1186_s13102_019_0121_0 crossref_primary_10_1113_JP271332 crossref_primary_10_3892_ijmm_2016_2686 crossref_primary_10_1007_s10495_022_01786_1 crossref_primary_10_1089_humc_2018_141 crossref_primary_10_3389_fphar_2020_587438 crossref_primary_10_1155_2022_5242323 crossref_primary_10_1002_mco2_150 crossref_primary_10_1016_j_bbadis_2016_11_023 crossref_primary_10_1002_advs_202106058 crossref_primary_10_1038_nrd_2017_22 crossref_primary_10_1080_15592294_2017_1371892 crossref_primary_10_31146_1682_8658_ecg_203_7_171_176 crossref_primary_10_1186_s12967_015_0578_x crossref_primary_10_1111_jocs_15807 crossref_primary_10_1152_ajpheart_00875_2014 crossref_primary_10_1038_nrcardio_2017_35 crossref_primary_10_1161_JAHA_122_025857 crossref_primary_10_1016_j_amjms_2023_04_034 crossref_primary_10_1016_j_bbrc_2017_09_155 crossref_primary_10_1161_CIRCRESAHA_116_305372 crossref_primary_10_1038_s41419_020_03295_y crossref_primary_10_3389_fcvm_2024_1247079 crossref_primary_10_1098_rsob_160177 crossref_primary_10_3390_jpm12111805 crossref_primary_10_1016_j_bbadis_2016_08_011 crossref_primary_10_1371_journal_pone_0134676 crossref_primary_10_1002_cbf_3587 crossref_primary_10_1016_j_cellsig_2014_09_005 crossref_primary_10_1038_cddis_2017_7 crossref_primary_10_2174_1871525719666210809121016 crossref_primary_10_1002_jcb_29630 crossref_primary_10_1186_s13148_019_0646_9 crossref_primary_10_1016_j_intimp_2015_02_013 crossref_primary_10_1016_j_ijcard_2016_11_204 crossref_primary_10_1038_s41419_018_0374_7 crossref_primary_10_1126_scitranslmed_aay7205 crossref_primary_10_1016_j_jss_2018_05_018 crossref_primary_10_1161_CIRCULATIONAHA_115_013894 crossref_primary_10_1161_CIRCULATIONAHA_121_054262 crossref_primary_10_1080_15548627_2017_1358848 crossref_primary_10_1007_s00109_015_1256_4 crossref_primary_10_1016_j_ijcard_2015_05_170 crossref_primary_10_1089_ars_2020_8040 crossref_primary_10_3390_ijms19020419 crossref_primary_10_1016_j_semcdb_2019_04_009 crossref_primary_10_1016_j_bbrc_2023_05_120 crossref_primary_10_1152_ajpheart_00271_2016 crossref_primary_10_1152_ajpheart_00075_2023 crossref_primary_10_1016_j_yjmcc_2014_12_017 crossref_primary_10_3390_life14010023 crossref_primary_10_3389_fcvm_2022_1000067 crossref_primary_10_1016_j_bbrc_2015_06_149 crossref_primary_10_3389_fcvm_2022_923014 crossref_primary_10_1007_s12020_015_0797_1 crossref_primary_10_3389_fcvm_2020_585309 crossref_primary_10_1016_j_yjmcc_2015_10_032 crossref_primary_10_1172_JCI73943 crossref_primary_10_1016_j_jacc_2017_05_067 crossref_primary_10_3389_fphar_2015_00168 crossref_primary_10_1161_CIRCRESAHA_123_323520 crossref_primary_10_1093_cvr_cvy128 crossref_primary_10_1016_j_mam_2016_10_001 crossref_primary_10_38109_2225_1685_2023_4_76_82 crossref_primary_10_1007_s10741_015_9483_x crossref_primary_10_3389_fgene_2021_780649 crossref_primary_10_1007_s12576_017_0555_7 crossref_primary_10_1371_journal_pone_0161233 crossref_primary_10_4155_fmc_2018_0311 crossref_primary_10_1093_cvr_cvz233 crossref_primary_10_1016_j_biopha_2018_08_016 crossref_primary_10_1161_CIRCULATIONAHA_115_017443 crossref_primary_10_1161_JAHA_120_016349 crossref_primary_10_1038_s41392_022_01055_2 crossref_primary_10_2174_1389450123666221003094908 crossref_primary_10_1161_CIRCRESAHA_116_303787 crossref_primary_10_1016_j_tcm_2017_12_008 crossref_primary_10_14814_phy2_15686 crossref_primary_10_1002_jcp_28530 crossref_primary_10_3389_fcell_2023_1149409 crossref_primary_10_3389_fcvm_2020_00028 crossref_primary_10_1016_j_semcdb_2016_08_004 crossref_primary_10_3390_ijms20010102 crossref_primary_10_1080_27694127_2024_2330327 crossref_primary_10_1016_j_bbadis_2016_10_021 crossref_primary_10_1016_j_yjmcc_2017_12_004 crossref_primary_10_1172_jci_insight_90183 crossref_primary_10_1161_JAHA_116_004076 crossref_primary_10_3390_jcm13247797 crossref_primary_10_1155_2017_8208065 crossref_primary_10_1111_bph_14549 crossref_primary_10_1161_CIRCRESAHA_116_303791 crossref_primary_10_1016_j_tcm_2017_12_012 crossref_primary_10_31083_j_fbl2911398 |
Cites_doi | 10.4161/auto.6.6.12397 10.1038/nrcardio.2009.12 10.1038/npp.2009.197 10.1074/jbc.M112.379115 10.1016/j.jmb.2004.02.006 10.1093/cvr/cvs109 10.1161/01.res.0000261924.76669.36 10.1007/s10549-011-1364-y 10.1074/jbc.M303113200 10.1002/bdrb.20104 10.1016/j.yjmcc.2013.01.003 10.1161/circulationaha.111.041814 10.1158/1078-0432.CCR-10-2949 10.1093/cvr/cvr358 10.1016/j.cmet.2009.10.008 10.1371/journal.pone.0022158 10.1073/pnas.1015081108 10.1161/cir.0b013e31828124ad 10.1038/nrd3802 10.1093/cvr/cvs018 10.4161/auto.7.4.14680 10.4161/auto.23908 10.1161/circulationaha.106.625467 10.1002/(SICI)1097-0185(199704)247:4<521::AID-AR11>3.0.CO;2-R 10.1016/j.cardiores.2007.08.010 10.1161/cir.0b013e31820a55f5 10.1016/S1388-9842(02)00099-5 10.1161/circulationaha.111.032698 10.1016/j.amjcard.2010.03.032 10.1517/14740338.7.1.53 10.1073/pnas.1222878110 10.1152/ajpheart.00891.2006 10.1016/j.tcm.2012.12.006 10.1161/01.RES.87.2.118 10.1161/circulationaha.109.928242 10.1096/fj.08-108548 10.1038/sj.bjp.0707165 10.1056/NEJMoa032292 10.1016/j.molcel.2008.07.002 10.1189/jlb.0509363 10.1146/annurev-pharmtox-010611-134712 10.1002/cncr.26073 10.1056/NEJMra071667 10.1016/j.jacc.2009.08.031 |
ContentType | Journal Article |
Copyright | 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCULATIONAHA.113.002416 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 1151 |
ExternalDocumentID | 24396039 28355470 10_1161_CIRCULATIONAHA_113_002416 10.1161/CIRCULATIONAHA.113.002416 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL120732 – fundername: NHLBI NIH HHS grantid: HL-0980842 – fundername: NHLBI NIH HHS grantid: R01 HL090842 – fundername: NHLBI NIH HHS grantid: P30 HL101254 – fundername: NHLBI NIH HHS grantid: T32 HL098040 – fundername: NCRR NIH HHS grantid: S10 RR023729 – fundername: NHLBI NIH HHS grantid: U01 HL100401 – fundername: NHLBI NIH HHS grantid: R01 HL080144 – fundername: NHLBI NIH HHS grantid: HL-080144 – fundername: NHLBI NIH HHS grantid: HL-100401 |
GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AARTV AASOK AAUEB AAWTL AAXQO ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACWDW ACWRI ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEETU AENEX AFCHL AFDTB AFEXH AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 DUNZO E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FCALG GX1 H0~ H13 HZ~ IKREB IKYAY IN~ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ZZMQN ~H1 AAFWJ AAYXX CITATION .55 .GJ 1CY 41~ AAEJM AAQKA AASCR AASXQ AAYOK ABASU ABVCZ ABXYN ABZZY ACIJW ACLDA ACRZS ACXJB ADFPA ADNKB AEBDS AFBFQ AFFNX AFMBP AFSOK AHQVU AJJEV AJNYG AKCTQ AKULP ALMTX AMKUR AOHHW AOQMC BS7 C1A E.X EEVPB ERAAH FEDTE FL- FW0 GNXGY GQDEL HLJTE HVGLF H~9 IPNFZ IQODW J5H M18 MVM N4W NEJ N~M OCUKA ODA OHT ORVUJ OUVQU P-K R58 RIG TSPGW WHG X7M YQJ YXB YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 ADKSD |
ID | FETCH-LOGICAL-c5186-3748019b5bf337182ccce35eb99d9df63fd0ffa7975a4842b291ce998614b2483 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Mon Sep 08 03:44:11 EDT 2025 Thu Apr 03 07:03:33 EDT 2025 Wed Apr 02 07:15:02 EDT 2025 Tue Jul 01 03:20:36 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 Fri May 16 03:43:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Heart Myocardial infarction autophagy Injury Cardiovascular disease reperfusion injury Coronary heart disease Myocardial disease Trauma Myocyte Reperfusion Ischemia Cell death Blunted effect histone deacetylases Circulatory system Inhibition Lesion Cardiology Histone cell death myocardial infarction |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5186-3748019b5bf337182ccce35eb99d9df63fd0ffa7975a4842b291ce998614b2483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.113.002416 |
PMID | 24396039 |
PQID | 1506795885 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1506795885 pubmed_primary_24396039 pascalfrancis_primary_28355470 crossref_primary_10_1161_CIRCULATIONAHA_113_002416 crossref_citationtrail_10_1161_CIRCULATIONAHA_113_002416 wolterskluwer_health_10_1161_CIRCULATIONAHA_113_002416 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-March-11 |
PublicationDateYYYYMMDD | 2014-03-11 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-March-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2014 |
Publisher | by the American College of Cardiology Foundation and the American Heart Association, Inc Lippincott Williams & Wilkins |
Publisher_xml | – name: by the American College of Cardiology Foundation and the American Heart Association, Inc – name: Lippincott Williams & Wilkins |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_46_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 Kelly WK (e_1_3_4_25_2) 2003; 9 17855673 - N Engl J Med. 2007 Sep 13;357(11):1121-35 22592897 - Circulation. 2012 Jun 26;125(25):3170-81 16735673 - Circulation. 2006 Jun 6;113(22):2579-88 18606865 - FASEB J. 2008 Oct;22(10):3549-60 20200406 - J Leukoc Biol. 2010 Jun;87(6):1103-14 23401516 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12 21262990 - Circulation. 2011 Mar 1;123(8):933-44 24396040 - Circulation. 2014 Mar 11;129(10):1088-91 21421857 - Clin Cancer Res. 2011 Apr 15;17(8):2339-49 23466676 - Autophagy. 2013 Jun 1;9(6):819-29 9096792 - Anat Rec. 1997 Apr;247(4):521-7 21789227 - PLoS One. 2011;6(7):e22158 23499301 - Trends Cardiovasc Med. 2013 Aug;23(6):229-35 21491416 - Cancer. 2011 Oct 1;117(19):4424-38 12761226 - J Biol Chem. 2003 Aug 1;278(31):28930-7 21298336 - Breast Cancer Res Treat. 2011 Nov;130(2):437-47 23239837 - Circulation. 2013 Jan 1;127(1):e6-e245 12167391 - Eur J Heart Fail. 2002 Aug;4(4):501-6 23328483 - J Mol Cell Cardiol. 2013 May;58:209-16 20010553 - Neuropsychopharmacology. 2010 Mar;35(4):870-80 21367693 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4123-8 21942627 - Annu Rev Pharmacol Toxicol. 2012;52:303-19 15050820 - J Mol Biol. 2004 Apr 16;338(1):17-31 19352332 - Nat Rev Cardiol. 2009 Apr;6(4):283-91 20837911 - Circulation. 2010 Sep 14;122(11 Suppl):S179-84 22215722 - Cardiovasc Res. 2012 May 1;94(2):197-205 22387461 - Cardiovasc Res. 2012 May 1;94(2):293-303 14610160 - N Engl J Med. 2003 Nov 13;349(20):1893-906 10903995 - Circ Res. 2000 Jul 21;87(2):118-25 22266751 - Cardiovasc Res. 2012 May 1;94(2):276-83 22935804 - Nat Rev Drug Discov. 2012 Sep;11(9):709-30 17294457 - Birth Defects Res B Dev Reprod Toxicol. 2007 Feb;80(1):57-68 21900096 - Circulation. 2011 Sep 6;124(10):1172-9 20643246 - Am J Cardiol. 2010 Aug 1;106(3):360-8 17884027 - Cardiovasc Res. 2007 Dec 1;76(3):473-81 14506144 - Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3578-88 17325656 - Br J Pharmacol. 2007 Apr;150(7):862-72 18722172 - Mol Cell. 2008 Aug 22;31(4):449-61 20543569 - Autophagy. 2010 Aug;6(6):711-24 17332429 - Circ Res. 2007 Mar 30;100(6):914-22 18171314 - Expert Opin Drug Saf. 2008 Jan;7(1):53-67 17400721 - Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H968-77 20082935 - J Am Coll Cardiol. 2009 Dec 15;54(25):2435-46 21224727 - Autophagy. 2011 Apr;7(4):440-1 23024362 - J Biol Chem. 2012 Nov 16;287(47):39338-48 19945408 - Cell Metab. 2009 Dec;10(6):507-15 |
References_xml | – ident: e_1_3_4_39_2 doi: 10.4161/auto.6.6.12397 – ident: e_1_3_4_5_2 doi: 10.1038/nrcardio.2009.12 – ident: e_1_3_4_21_2 doi: 10.1038/npp.2009.197 – ident: e_1_3_4_34_2 doi: 10.1074/jbc.M112.379115 – ident: e_1_3_4_11_2 doi: 10.1016/j.jmb.2004.02.006 – ident: e_1_3_4_4_2 doi: 10.1093/cvr/cvs109 – ident: e_1_3_4_35_2 doi: 10.1161/01.res.0000261924.76669.36 – ident: e_1_3_4_40_2 doi: 10.1007/s10549-011-1364-y – ident: e_1_3_4_14_2 doi: 10.1074/jbc.M303113200 – ident: e_1_3_4_20_2 doi: 10.1002/bdrb.20104 – ident: e_1_3_4_29_2 doi: 10.1016/j.yjmcc.2013.01.003 – ident: e_1_3_4_36_2 doi: 10.1161/circulationaha.111.041814 – ident: e_1_3_4_23_2 doi: 10.1158/1078-0432.CCR-10-2949 – ident: e_1_3_4_27_2 doi: 10.1093/cvr/cvr358 – ident: e_1_3_4_42_2 doi: 10.1016/j.cmet.2009.10.008 – ident: e_1_3_4_46_2 doi: 10.1371/journal.pone.0022158 – ident: e_1_3_4_31_2 doi: 10.1073/pnas.1015081108 – ident: e_1_3_4_2_2 doi: 10.1161/cir.0b013e31828124ad – ident: e_1_3_4_26_2 doi: 10.1038/nrd3802 – ident: e_1_3_4_45_2 doi: 10.1093/cvr/cvs018 – ident: e_1_3_4_28_2 doi: 10.4161/auto.7.4.14680 – ident: e_1_3_4_41_2 doi: 10.4161/auto.23908 – ident: e_1_3_4_15_2 doi: 10.1161/circulationaha.106.625467 – ident: e_1_3_4_24_2 doi: 10.1002/(SICI)1097-0185(199704)247:4<521::AID-AR11>3.0.CO;2-R – ident: e_1_3_4_16_2 doi: 10.1016/j.cardiores.2007.08.010 – volume: 9 start-page: 3578 year: 2003 ident: e_1_3_4_25_2 article-title: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. publication-title: Clin Cancer Res – ident: e_1_3_4_3_2 doi: 10.1161/cir.0b013e31820a55f5 – ident: e_1_3_4_19_2 – ident: e_1_3_4_47_2 doi: 10.1016/S1388-9842(02)00099-5 – ident: e_1_3_4_9_2 doi: 10.1161/circulationaha.111.032698 – ident: e_1_3_4_7_2 doi: 10.1016/j.amjcard.2010.03.032 – ident: e_1_3_4_13_2 doi: 10.1517/14740338.7.1.53 – ident: e_1_3_4_18_2 doi: 10.1073/pnas.1222878110 – ident: e_1_3_4_33_2 doi: 10.1152/ajpheart.00891.2006 – ident: e_1_3_4_32_2 doi: 10.1016/j.tcm.2012.12.006 – ident: e_1_3_4_30_2 doi: 10.1161/01.RES.87.2.118 – ident: e_1_3_4_38_2 doi: 10.1161/circulationaha.109.928242 – ident: e_1_3_4_17_2 doi: 10.1096/fj.08-108548 – ident: e_1_3_4_44_2 doi: 10.1038/sj.bjp.0707165 – ident: e_1_3_4_6_2 doi: 10.1056/NEJMoa032292 – ident: e_1_3_4_10_2 doi: 10.1016/j.molcel.2008.07.002 – ident: e_1_3_4_43_2 doi: 10.1189/jlb.0509363 – ident: e_1_3_4_12_2 doi: 10.1146/annurev-pharmtox-010611-134712 – ident: e_1_3_4_22_2 doi: 10.1002/cncr.26073 – ident: e_1_3_4_8_2 doi: 10.1056/NEJMra071667 – ident: e_1_3_4_37_2 doi: 10.1016/j.jacc.2009.08.031 – reference: 23239837 - Circulation. 2013 Jan 1;127(1):e6-e245 – reference: 17325656 - Br J Pharmacol. 2007 Apr;150(7):862-72 – reference: 17400721 - Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H968-77 – reference: 21789227 - PLoS One. 2011;6(7):e22158 – reference: 20082935 - J Am Coll Cardiol. 2009 Dec 15;54(25):2435-46 – reference: 23499301 - Trends Cardiovasc Med. 2013 Aug;23(6):229-35 – reference: 20200406 - J Leukoc Biol. 2010 Jun;87(6):1103-14 – reference: 17855673 - N Engl J Med. 2007 Sep 13;357(11):1121-35 – reference: 19945408 - Cell Metab. 2009 Dec;10(6):507-15 – reference: 23466676 - Autophagy. 2013 Jun 1;9(6):819-29 – reference: 21367693 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4123-8 – reference: 20643246 - Am J Cardiol. 2010 Aug 1;106(3):360-8 – reference: 21942627 - Annu Rev Pharmacol Toxicol. 2012;52:303-19 – reference: 14610160 - N Engl J Med. 2003 Nov 13;349(20):1893-906 – reference: 20837911 - Circulation. 2010 Sep 14;122(11 Suppl):S179-84 – reference: 24396040 - Circulation. 2014 Mar 11;129(10):1088-91 – reference: 22387461 - Cardiovasc Res. 2012 May 1;94(2):293-303 – reference: 21421857 - Clin Cancer Res. 2011 Apr 15;17(8):2339-49 – reference: 21900096 - Circulation. 2011 Sep 6;124(10):1172-9 – reference: 22215722 - Cardiovasc Res. 2012 May 1;94(2):197-205 – reference: 14506144 - Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3578-88 – reference: 21298336 - Breast Cancer Res Treat. 2011 Nov;130(2):437-47 – reference: 22266751 - Cardiovasc Res. 2012 May 1;94(2):276-83 – reference: 22935804 - Nat Rev Drug Discov. 2012 Sep;11(9):709-30 – reference: 15050820 - J Mol Biol. 2004 Apr 16;338(1):17-31 – reference: 20010553 - Neuropsychopharmacology. 2010 Mar;35(4):870-80 – reference: 12167391 - Eur J Heart Fail. 2002 Aug;4(4):501-6 – reference: 17332429 - Circ Res. 2007 Mar 30;100(6):914-22 – reference: 23401516 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12 – reference: 22592897 - Circulation. 2012 Jun 26;125(25):3170-81 – reference: 18722172 - Mol Cell. 2008 Aug 22;31(4):449-61 – reference: 21224727 - Autophagy. 2011 Apr;7(4):440-1 – reference: 17884027 - Cardiovasc Res. 2007 Dec 1;76(3):473-81 – reference: 21262990 - Circulation. 2011 Mar 1;123(8):933-44 – reference: 18171314 - Expert Opin Drug Saf. 2008 Jan;7(1):53-67 – reference: 23328483 - J Mol Cell Cardiol. 2013 May;58:209-16 – reference: 19352332 - Nat Rev Cardiol. 2009 Apr;6(4):283-91 – reference: 10903995 - Circ Res. 2000 Jul 21;87(2):118-25 – reference: 12761226 - J Biol Chem. 2003 Aug 1;278(31):28930-7 – reference: 23024362 - J Biol Chem. 2012 Nov 16;287(47):39338-48 – reference: 9096792 - Anat Rec. 1997 Apr;247(4):521-7 – reference: 16735673 - Circulation. 2006 Jun 6;113(22):2579-88 – reference: 17294457 - Birth Defects Res B Dev Reprod Toxicol. 2007 Feb;80(1):57-68 – reference: 18606865 - FASEB J. 2008 Oct;22(10):3549-60 – reference: 21491416 - Cancer. 2011 Oct 1;117(19):4424-38 – reference: 20543569 - Autophagy. 2010 Aug;6(6):711-24 |
SSID | ssj0006375 |
Score | 2.5768304 |
Snippet | BACKGROUND—Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are... Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available... |
SourceID | proquest pubmed pascalfrancis crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1139 |
SubjectTerms | Animals Animals, Genetically Modified Apoptosis - drug effects Autophagy - drug effects Biological and medical sciences Blood and lymphatic vessels Cardiology. Vascular system Cells, Cultured Coronary heart disease Disease Models, Animal Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Heart Histone Deacetylase Inhibitors - pharmacology Histone Deacetylase Inhibitors - therapeutic use Histone Deacetylases - drug effects Humans Hydroxamic Acids - pharmacology Hydroxamic Acids - therapeutic use Male Medical sciences Mice Mice, Inbred C57BL Myocardial Infarction - pathology Myocardial Infarction - prevention & control Myocardial Reperfusion Injury - pathology Myocardial Reperfusion Injury - prevention & control Myocarditis. Cardiomyopathies Myocytes, Cardiac - drug effects Myocytes, Cardiac - pathology Rabbits Rats Rats, Sprague-Dawley |
Title | Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24396039 https://www.proquest.com/docview/1506795885 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSBMSQrDxUT4mT0K8TGFN4jjOY1UxFUR5QKsoT5GdOlBY06pNhMpfz53t5kN0YvASVU78ofx-ud6d786EvEpCNYsDKbwoTiQYKHHuqUgpT_e5kjqULJfo0B9_5KMJez-Npo1XyWSXlOpN9mtvXsn_oAptgCtmyf4DsvWg0AC_AV-4AsJwvRHGpsZHgZlPMtPlFhRhLAHyba5MHNaZuqowyGUOBqxeYFDsxVqv9DqvNjbA8Tu8T1Q_wSyvMpN8a4JTF9tlti31mayw6ID82tn4Hc7XmTvxa99BPi3HwtTufIznzT6_C__9ssTc4cZnYATfZ123jKVNm8A_jaLtlvAZxmU5samdKA2YxyJbqqiWtW4VjlT9luj0ffvonzKdo0wfvvs0nHywFYJHAzyKBn1hzCZqtrBeLQzYAShavO8m7xbU3t26Te4EMShcmCE-beKCeBhHh-TUzXx-7bxYRtqN1NFp7q3kBj6v3J6Lss9wgWd-LjEWYvPDpEK0FJrLB-S-s0TowNLqIbmliyNyPChkCQygr6mJDTabLkfkcOxCMI6JdqSjLdLRhnTUko7uSHfeohy1lKNqS3eUox3K0Zpyj8jk4u3lcOS5szq8LPIF97CKEVgL8J3nYQj6TpBlmQ4jrZJklsxyHuazfp7LOIkjyQQLVJD4mQZbH9RDFTARPiYHBSz-KaE4UsCFr3mQsFBwxTjmj0khBI_zTPWI2L3tNHOF7PE8lavUGLTcT7uYQVuYWsx6JKi7rmw1l5t0OulAWvfEUoURi_s9crrDOAXhjDtustDLapNi-c44iYSIeuSJBb_p7cjTI7zDhtQmQP99Xc-uHfI5udt8ki_IQbmu9EvQnUt1Yrj-GycMwAQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+deacetylase+inhibition+blunts+ischemia%2Freperfusion+injury+by+inducing+cardiomyocyte+autophagy&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Xie%2C+Min&rft.au=Kong%2C+Yongli&rft.au=Tan%2C+Wei&rft.au=May%2C+Herman&rft.date=2014-03-11&rft.eissn=1524-4539&rft.volume=129&rft.issue=10&rft.spage=1139&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.113.002416&rft_id=info%3Apmid%2F24396039&rft.externalDocID=24396039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |