3,6,7-Triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazole: A Non-toxic, High-Performance Energetic Building Block with Excellent Stability

A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7H‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with ad...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 21; no. 25; pp. 9219 - 9228
Main Authors Klapötke, Thomas M., Schmid, Philipp C., Schnell, Simon, Stierstorfer, Jörg
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 15.06.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
DOI10.1002/chem.201500982

Cover

Abstract A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7H‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as “green explosives”. Neutral TATOT can be synthesized in a convenient and inexpensive two‐step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical‐ and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values. Triaminotriazolotriazolium (TATOT) nitrate (see figure) can be synthesized safely by a two‐step protocol. TATOT shows no aquatic toxicity, excellent stability towards thermal and physical stimuli, as well as good energetic performance. The TATOT cation is a “green”, inexpensive energetic building block and a promising alternative to currently used nitrogen‐rich cations, such as hydrazinium, hydroxylammonium, or guanidinium cations.
AbstractList A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7H‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as “green explosives”. Neutral TATOT can be synthesized in a convenient and inexpensive two‐step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical‐ and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values. Triaminotriazolotriazolium (TATOT) nitrate (see figure) can be synthesized safely by a two‐step protocol. TATOT shows no aquatic toxicity, excellent stability towards thermal and physical stimuli, as well as good energetic performance. The TATOT cation is a “green”, inexpensive energetic building block and a promising alternative to currently used nitrogen‐rich cations, such as hydrazinium, hydroxylammonium, or guanidinium cations.
A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen-rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as "green explosives". Neutral TATOT can be synthesized in a convenient and inexpensive two-step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical- and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280°C) with promising calculated energetic values.
A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen-rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as "green explosives". Neutral TATOT can be synthesized in a convenient and inexpensive two-step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical- and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values.
A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7 H ‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as “green explosives”. Neutral TATOT can be synthesized in a convenient and inexpensive two‐step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical‐ and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values.
A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]tri azolium (TATOT) motif can be incorporated into many ionic, nitrogen-rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as "green explosives". Neutral TATOT can be synthesized in a convenient and inexpensive two-step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical- and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 degree C) with promising calculated energetic values. Triaminotriazolotriazolium (TATOT) nitrate (see figure) can be synthesized safely by a two-step protocol. TATOT shows no aquatic toxicity, excellent stability towards thermal and physical stimuli, as well as good energetic performance. The TATOT cation is a "green", inexpensive energetic building block and a promising alternative to currently used nitrogen-rich cations, such as hydrazinium, hydroxylammonium, or guanidinium cations.
Author Schnell, Simon
Klapötke, Thomas M.
Stierstorfer, Jörg
Schmid, Philipp C.
Author_xml – sequence: 1
  givenname: Thomas M.
  surname: Klapötke
  fullname: Klapötke, Thomas M.
  email: tmk@cup.uni-muenchen.de
  organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany)
– sequence: 2
  givenname: Philipp C.
  surname: Schmid
  fullname: Schmid, Philipp C.
  organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany)
– sequence: 3
  givenname: Simon
  surname: Schnell
  fullname: Schnell, Simon
  organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany)
– sequence: 4
  givenname: Jörg
  surname: Stierstorfer
  fullname: Stierstorfer, Jörg
  organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26012719$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9v0zAYhi00xLrClSOKxIVDXPwjjhNuW1U60BiTWsRhmizH-dp6S-zhuFrLnf-bVN0mmIQ4WZ_1PJ8-ve8ROnDeAUKvKRlRQth7s4J2xAgVhJQFe4YGVDCKuczFARqQMpM4F7w8REddd016Juf8BTpkOaFM0nKAfvE0TyWeB6tb6zy-pClLs6vYzz994y-zlOPq6u9f-JAcJ-fe4eg31qTJqV2u8AWEhQ-tdgaSiYOwhGhNcrK2TW3dMjlpvLlJ7mxcJZONgaYBF5NZ1JVtbNy-RM8Xuung1f07RN8-TubjU3z2dfppfHyGjaAFw5rUOmOyLLiglGiSl6QGVtAajKhYSUQtJWWsLqtqoYHrSpYLyHIwtZC0EMCH6N1-723wP9bQRdXabneNduDXnaKyyPsABWM9-vYJeu3XwfXXKZoXgsqS9WEO0Zt7al21UKvbYFsdtuoh4B7I9oAJvusCLJSxUUfrXQzaNooStetR7XpUjz322uiJ9rD5n0K5F-5sA9v_0Gp8Ovnyp4v3ru0ibB5dHW5ULrkU6vv5VM3mfCY_Zxdqyn8DT868cg
CODEN CEUJED
CitedBy_id crossref_primary_10_1016_j_fpc_2023_02_004
crossref_primary_10_1016_j_ica_2016_10_031
crossref_primary_10_1002_jhet_4741
crossref_primary_10_1002_asia_201801145
crossref_primary_10_1007_s11224_018_1126_0
crossref_primary_10_1016_j_molstruc_2023_137029
crossref_primary_10_1021_acs_chemrev_9b00804
crossref_primary_10_1002_ange_201606894
crossref_primary_10_1021_acs_joc_4c01699
crossref_primary_10_1021_acsami_4c15237
crossref_primary_10_1021_acs_chemmater_5b04891
crossref_primary_10_1039_C8OB02155D
crossref_primary_10_1007_s12039_016_1117_x
crossref_primary_10_1002_asia_201500701
crossref_primary_10_1002_prep_201900141
crossref_primary_10_1021_acsaem_0c02052
crossref_primary_10_1002_prep_201800088
crossref_primary_10_1016_j_bioorg_2019_102939
crossref_primary_10_1039_C7DT01261F
crossref_primary_10_1039_D0CE00317D
crossref_primary_10_1039_D1NJ00924A
crossref_primary_10_1002_zaac_201600006
crossref_primary_10_1039_C7TA02209C
crossref_primary_10_1016_j_enmf_2022_08_003
crossref_primary_10_1063_1_4978579
crossref_primary_10_1016_j_mtcomm_2022_103699
crossref_primary_10_1007_s12039_018_1508_2
crossref_primary_10_1002_anie_201704687
crossref_primary_10_1016_j_dt_2022_10_003
crossref_primary_10_1039_C9CC08782F
crossref_primary_10_1016_j_dt_2021_11_016
crossref_primary_10_1021_acsami_4c01522
crossref_primary_10_3390_molecules27154969
crossref_primary_10_1139_cjc_2016_0274
crossref_primary_10_1016_j_fluid_2022_113653
crossref_primary_10_1021_acs_cgd_1c01112
crossref_primary_10_1002_slct_202403134
crossref_primary_10_1055_a_2181_0453
crossref_primary_10_1039_D0NJ05152G
crossref_primary_10_1016_j_cej_2021_129635
crossref_primary_10_1039_C6CC03833F
crossref_primary_10_1016_j_enmf_2022_01_002
crossref_primary_10_1016_j_enmf_2025_01_004
crossref_primary_10_1021_acscatal_4c00718
crossref_primary_10_1021_jacs_7b08789
crossref_primary_10_1021_acs_joc_3c01530
crossref_primary_10_1016_j_cej_2021_129190
crossref_primary_10_1039_C6RA10108A
crossref_primary_10_1016_j_cej_2020_128021
crossref_primary_10_1039_C5DT04731E
crossref_primary_10_1007_s00894_022_05128_5
crossref_primary_10_1021_acs_joc_7b00380
crossref_primary_10_1016_j_cej_2023_145512
crossref_primary_10_1002_prep_201800021
crossref_primary_10_1039_C9DT03829A
crossref_primary_10_1002_zaac_201800018
crossref_primary_10_1021_acs_jced_9b00385
crossref_primary_10_1039_C7TA01111C
crossref_primary_10_1039_D1NJ00076D
crossref_primary_10_1016_j_poly_2021_115158
crossref_primary_10_1039_D0CE01427C
crossref_primary_10_1039_D0CC01065K
crossref_primary_10_1021_acs_orglett_4c04507
crossref_primary_10_1021_acs_cgd_3c00016
crossref_primary_10_3390_molecules24234324
crossref_primary_10_1016_j_tca_2023_179515
crossref_primary_10_1039_D2DT03255D
crossref_primary_10_1007_s41061_023_00435_8
crossref_primary_10_1002_prep_201700163
crossref_primary_10_1002_zaac_201600230
crossref_primary_10_1007_s11696_023_03172_w
crossref_primary_10_1016_j_molstruc_2016_12_009
crossref_primary_10_1039_C7TA00846E
crossref_primary_10_1039_D4CP03051F
crossref_primary_10_1039_C7RA08115D
crossref_primary_10_1016_j_cej_2022_138094
crossref_primary_10_1016_j_enmf_2024_05_001
crossref_primary_10_1016_j_enmf_2020_05_001
crossref_primary_10_1021_acs_inorgchem_5b02434
crossref_primary_10_1039_D4RA03233K
crossref_primary_10_1002_cplu_201800318
crossref_primary_10_1021_acs_jcim_4c01904
crossref_primary_10_1021_jacs_5b07852
crossref_primary_10_1039_C9TA12704F
crossref_primary_10_3390_ijms24043918
crossref_primary_10_1039_D4QM01120A
crossref_primary_10_1002_prep_202000044
crossref_primary_10_1039_C9NJ01065C
crossref_primary_10_1016_j_fluid_2022_113667
crossref_primary_10_1021_acs_orglett_2c02889
crossref_primary_10_1002_anie_201606894
crossref_primary_10_1039_C9NJ04519H
crossref_primary_10_1016_j_enmf_2024_07_002
crossref_primary_10_1002_ange_201704687
crossref_primary_10_1039_D4NJ04427D
crossref_primary_10_1002_slct_201800005
crossref_primary_10_1016_j_cej_2020_126817
crossref_primary_10_1039_D1DT00527H
crossref_primary_10_1016_j_dt_2023_09_001
crossref_primary_10_1016_j_cej_2021_133235
crossref_primary_10_1039_D2MA00406B
crossref_primary_10_1039_D3CP02121A
crossref_primary_10_1021_acs_cgd_0c00190
crossref_primary_10_1016_j_cej_2019_122331
crossref_primary_10_1016_j_dt_2023_09_005
crossref_primary_10_1021_acs_inorgchem_1c02002
crossref_primary_10_1039_D0CE00772B
crossref_primary_10_1002_qua_27137
crossref_primary_10_1039_C9CE00690G
crossref_primary_10_1039_D0RA07579E
crossref_primary_10_1021_acs_orglett_1c03534
crossref_primary_10_1016_j_enmf_2021_09_003
crossref_primary_10_1016_j_molstruc_2025_141876
crossref_primary_10_1021_acs_orglett_4c04775
crossref_primary_10_1039_C9TA01717H
crossref_primary_10_1039_C8RA05274C
crossref_primary_10_3390_cryst5040418
crossref_primary_10_1016_j_jhazmat_2018_09_088
crossref_primary_10_1021_acs_orglett_4c04134
crossref_primary_10_1038_s43246_024_00467_7
crossref_primary_10_1021_acsomega_9b01724
crossref_primary_10_1002_zaac_201900164
crossref_primary_10_1002_cplu_201700058
crossref_primary_10_1039_D1NJ01227D
crossref_primary_10_1002_slct_202002440
crossref_primary_10_1039_D0CE01882A
crossref_primary_10_1002_cplu_201800305
crossref_primary_10_1039_D1QM00916H
crossref_primary_10_1021_acs_cgd_9b01177
crossref_primary_10_1002_chem_201701407
crossref_primary_10_1002_slct_201700810
crossref_primary_10_1039_D4TA02521K
crossref_primary_10_1016_j_cej_2022_136708
Cites_doi 10.1063/1.470985
10.1002/ange.200801886
10.1021/cm8004166
10.1021/ja106892a
10.1002/ejic.201201192
10.1021/ic010063y
10.1002/ange.200600735
10.1002/9783527625826
10.1021/ja103525v
10.5923/j.chemistry.20110102.09
10.1021/ja042596m
10.1039/C4TA04107K
10.1002/ange.201404790
10.1002/anie.200504236
10.1002/chem.200902951
10.1016/S0040-6031(01)00805-X
10.1039/c2jm33646d
10.1021/ic800353y
10.1002/anie.200801886
10.1016/j.jhazmat.2008.04.011
10.1002/chem.201202483
10.1107/S0108270193012272
10.1002/chem.201301042
10.1107/S0567740869004869
10.1021/ic9601697
10.1002/anie.201205134
10.1021/ja208990z
10.1002/ange.200504236
10.1002/9783527628803
10.1002/chem.201203493
10.1021/jp070702b
10.1107/S0108270187095593
10.1021/cm050684f
10.1021/jo01265a027
10.1039/c2dt31217d
10.1002/ange.201205134
10.1002/prep.200400043
10.1515/znb-2001-0902
10.1002/ejoc.201201653
10.1021/ja1055033
10.1063/1.481224
10.1002/anie.200600735
10.1107/S0567740879005495
10.1002/asia.201402538
10.1055/b-002-46985
10.1002/prep.200900036
10.1039/C4TA05964F
10.1002/anie.201404790
10.1038/427580a
10.1021/ja501176q
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
DOI 10.1002/chem.201500982
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 9228
ExternalDocumentID 3702886271
26012719
10_1002_chem_201500982
CHEM201500982
ark_67375_WNG_ST3S7J4P_G
Genre article
Journal Article
GrantInformation_xml – fundername: Armament Research, Development and Engineering Center (ARDEC)
  funderid: W911NF‐12‐1‐0467
– fundername: ARL, Aberdeen, Proving Ground, MD
– fundername: Office of Naval Research (ONR)
  funderid: ONR.N00014‐10‐1‐0535; ONR.N00014‐12‐1‐0538
– fundername: U.S. Army Research Laboratory (ARL)
  funderid: W911NF‐09‐2‐0018
– fundername: OZM Research, Czech Republic
– fundername: Brodarski Institute, Croatia
– fundername: Ludwig‐Maximilian University of Munich (LMU)
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
ID FETCH-LOGICAL-c5182-a0da4279835110a0690de281dec5b2905d77122d9bbfae3ab79fe46ecd57185e3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Jul 11 06:37:24 EDT 2025
Sun Jul 13 03:22:52 EDT 2025
Thu Apr 03 06:56:48 EDT 2025
Tue Jul 01 02:47:07 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Wed Jan 22 16:25:40 EST 2025
Tue Sep 09 05:28:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords triazoles
cations
energetic materials
crystal structures
nitrogen
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5182-a0da4279835110a0690de281dec5b2905d77122d9bbfae3ab79fe46ecd57185e3
Notes Ludwig-Maximilian University of Munich (LMU)
ArticleID:CHEM201500982
U.S. Army Research Laboratory (ARL) - No. W911NF-09-2-0018
ARL, Aberdeen, Proving Ground, MD
istex:0A231D6E74743CCA314594B042D334B3C928954A
ark:/67375/WNG-ST3S7J4P-G
OZM Research, Czech Republic
Armament Research, Development and Engineering Center (ARDEC) - No. W911NF-12-1-0467
Office of Naval Research (ONR) - No. ONR.N00014-10-1-0535; No. ONR.N00014-12-1-0538
Brodarski Institute, Croatia
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26012719
PQID 1685179296
PQPubID 986340
PageCount 10
ParticipantIDs proquest_miscellaneous_1786152522
proquest_journals_1685179296
pubmed_primary_26012719
crossref_citationtrail_10_1002_chem_201500982
crossref_primary_10_1002_chem_201500982
wiley_primary_10_1002_chem_201500982_CHEM201500982
istex_primary_ark_67375_WNG_ST3S7J4P_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 15, 2015
PublicationDateYYYYMMDD 2015-06-15
PublicationDate_xml – month: 06
  year: 2015
  text: June 15, 2015
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References V. Thottempudi, F. Forohor, D. A. Parrish, J. M. Shreeve, Angew. Chem. Int. Ed. 2012, 51, 9881-9885
M. B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A. K. Sikder, B. R. Gandhe, A. Subhananda Rao, J. Hazard. Mater. 2009, 161, 589-607.
S. Venkatachalam, G. Santhosh, K. N. Ninan, Propellants Explos. Pyrotech. 2004, 29, 178-187
A. Rheingold, J. Cronin, T. Brill, Acta Crystallogr. Sect. C 1987, 43, 402-404.
B. Dickens, Acta Crystallogr. Sect. B 1969, 25, 1875-1882.
N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 2012, 22, 20418-20422
Karl. O. Christe, W. W. Wilson, M. A. Petrie, H. H. Michels, J. C. Bottaro, R. Gilardi, Inorg. Chem. 1996, 35, 5068-5071
Angew. Chem. 2006, 118, 5103-5106
M. Göbel, K. Karaghiosoff, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Am. Chem. Soc. 2010, 132, 17216-17226
C. Xue, J. Sun, B. Kang, Y. Liu, X. Liu, G. Song, Q. Xue, Propellants Explos. Pyrotech. 2010, 35, 333-338.
A. Hammerl, G. Holl, M. Kaiser, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski, M. Sluter, Z. Naturforsch. Sect. B 2001, 56, 857-870.
T. M. Klapötke, J. Stierstorfer, A. Wallek, Chem. Mater. 2008, 20, 4519-4530.
C. B. Jones, R. Haiges, T. Schroer, K. O. Christe, Angew. Chem. Int. Ed. 2006, 45, 4981-4984
C. Bian, M. Zhang, C. Li, Z. Zhou, J. Mater. Chem. 2015, 3, 163-169
G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons, Chichester, 2004.
D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Chem. Eur. J. 2013, 19, 4602-4613.
Angew. Chem. 2008, 120, 6332-6335.
A. Hammerl, T. M. Klapötke, H. Nöth, M. Warchhold, Inorg. Chem. 2001, 40, 3570-3575.
P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta 2002, 384, 187-204
J. Zhang, J. M. Shreeve, J. Am. Chem. Soc. 2014, 136, 4437-4445
N. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Eur. J. Inorg. Chem. 2013, 2167-2180.
Angew. Chem. 2006, 118, 3664-3682
A. Hammerl, M. A. Hiskey, G. Holl, T. M. Klapötke, K. Polborn, J. Stierstorfer, J. J. Weigand, Chem. Mater. 2005, 17, 3784-3793
J. Zhang, D. A. Parrish, J. M. Shreeve, Chem. Asian J. 2014, 9, 2953-2960.
Y. Murtim, R. Agnihotri, D. Pathak, Am. J. Chem. 2012, 1, 42-46.
Y.-H. Joo, B. Twamley, S. Garg, J. M. Shreeve, Angew. Chem. Int. Ed. 2008, 47, 6236-6239
T. M. Klapötke, P. C. Schmid, S. Schnell, J. Stierstorfer, J. Mater. Chem. A 2015, 3, 2658-2668
J. Köhler, Explosivstoffe, 9th ed., Wiley-VCH, New York, 1998, 166.
J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532
R. Wang, H. Xu, Y. Guo, R. Sa, J. M. Shreeve, J. Am. Chem. Soc. 2010, 132, 11904-11905
A. Katrusiak, Acta Crystallogr. Sect. C 1994, 50, 1161-1163.
M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, 7th ed., Thieme, Stuttgart, New York, 2005
R. P. Singh, R. D. Verma, D. T. Meshri, J. M. Shreeve, Angew. Chem. Int. Ed. 2006, 45, 3584-3601
V. Thottempudi, J. M. Shreeve, J. Am. Chem. Soc. 2011, 133, 19982-19992
J. Lundgren, R. Liminga, Acta Crystallogr. Sect. B 1979, 35, 1023-1027.
A. Dippold, T. M. Klapötke, Chem. Eur. J. 2012, 18, 16742-16753.
K. T. Potts, C. Hirsch, J. Org. Chem. 1968, 33, 143-150.
D. Fischer, T. M. Klapötke, J. Stierstorfer, Angew. Chem. Int. Ed. 2014, 53, 8172-8175
Y. Guo, G. H. Tao, Z. Zeng, H. Gao, J. M. Shreeve, Chem. Eur. J. 2010, 16, 3753-3762.
N. Fischer, K. Hüll, T. M. Klapötke, J. Stierstorfer, G. Laus, M. Hummel, Dalton Trans. 2012, 41, 11201-11211.
Angew. Chem. 2014, 126, 8311-8314.
Angew. Chem. 2012, 124, 10019-10023
L. Liang, K. Wang, C. Bian, L. Ling, Z. Zhou, Chem. Eur. J. 2013, 19, 14902-14910
H. Gao, C. Ye, C. Piekarski, C. M. Piekarski, J. M. Shreeve, J. Phys. Chem. C 2007, 111, 10718-10731.
T. M. Klapötke, P. Mayer, C. M. Sabaté, J. M. Welch, N. Wiegand, Inorg. Chem. 2008, 47, 6014-6027.
J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, 1st ed., Weinheim, 2010
Y. Li, C. Qi, S. Li, H. Zhang, C. Sun, Y. Yu, S. Pang, J. Am. Chem. Soc. 2010, 132, 12172-12173.
J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., J. Chem. Phys. 1996, 104, 2598
J. Giles, Nature 2004, 427, 580-581
T. M. Klapötke, P. Mayer, A. Schulz, J. J. Weigand, J. Am. Chem. Soc. 2005, 127, 2032-2033
R. C. Centore, S. Fusco, A. Capobianco, V. Piccialli, S. Zaccaria, A. Peluso, Eur. J. Org. Chem. 2013, 3721-3728.
2014 2014; 53 126
2010; 16
1979; 35
2015; 3
2010; 35
2004; 29
2010
1998
2012; 18
2005
2004
2008 2008; 47 120
2000; 112
1996; 104
2004; 427
1996; 35
2014; 136
2001; 40
2011; 133
2013; 19
2006 2006; 45 118
1987; 43
2012; 1
2002; 384
2012 2012; 51 124
2007; 111
2005; 127
2010; 132
2008; 47
1969; 25
2009; 161
2013
2008; 20
2014; 9
2001; 56
2005; 17
1994; 50
2012; 22
1968; 33
2012; 41
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_3
e_1_2_6_30_2
Hammerl A. (e_1_2_6_45_2) 2001; 56
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_3
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_20_3
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_50_2
e_1_2_6_31_2
Socrates G. (e_1_2_6_52_2) 2004
e_1_2_6_18_2
e_1_2_6_39_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: J. Giles, Nature 2004, 427, 580-581;
– reference: C. B. Jones, R. Haiges, T. Schroer, K. O. Christe, Angew. Chem. Int. Ed. 2006, 45, 4981-4984;
– reference: T. M. Klapötke, P. C. Schmid, S. Schnell, J. Stierstorfer, J. Mater. Chem. A 2015, 3, 2658-2668;
– reference: S. Venkatachalam, G. Santhosh, K. N. Ninan, Propellants Explos. Pyrotech. 2004, 29, 178-187;
– reference: Y.-H. Joo, B. Twamley, S. Garg, J. M. Shreeve, Angew. Chem. Int. Ed. 2008, 47, 6236-6239;
– reference: D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Chem. Eur. J. 2013, 19, 4602-4613.
– reference: J. Zhang, J. M. Shreeve, J. Am. Chem. Soc. 2014, 136, 4437-4445;
– reference: J. Zhang, D. A. Parrish, J. M. Shreeve, Chem. Asian J. 2014, 9, 2953-2960.
– reference: C. Bian, M. Zhang, C. Li, Z. Zhou, J. Mater. Chem. 2015, 3, 163-169;
– reference: D. Fischer, T. M. Klapötke, J. Stierstorfer, Angew. Chem. Int. Ed. 2014, 53, 8172-8175;
– reference: Angew. Chem. 2006, 118, 5103-5106;
– reference: L. Liang, K. Wang, C. Bian, L. Ling, Z. Zhou, Chem. Eur. J. 2013, 19, 14902-14910;
– reference: T. M. Klapötke, P. Mayer, A. Schulz, J. J. Weigand, J. Am. Chem. Soc. 2005, 127, 2032-2033;
– reference: J. Köhler, Explosivstoffe, 9th ed., Wiley-VCH, New York, 1998, 166.
– reference: A. Hammerl, T. M. Klapötke, H. Nöth, M. Warchhold, Inorg. Chem. 2001, 40, 3570-3575.
– reference: J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532;
– reference: R. C. Centore, S. Fusco, A. Capobianco, V. Piccialli, S. Zaccaria, A. Peluso, Eur. J. Org. Chem. 2013, 3721-3728.
– reference: J. Lundgren, R. Liminga, Acta Crystallogr. Sect. B 1979, 35, 1023-1027.
– reference: A. Dippold, T. M. Klapötke, Chem. Eur. J. 2012, 18, 16742-16753.
– reference: K. T. Potts, C. Hirsch, J. Org. Chem. 1968, 33, 143-150.
– reference: M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, 7th ed., Thieme, Stuttgart, New York, 2005;
– reference: M. Göbel, K. Karaghiosoff, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Am. Chem. Soc. 2010, 132, 17216-17226;
– reference: T. M. Klapötke, J. Stierstorfer, A. Wallek, Chem. Mater. 2008, 20, 4519-4530.
– reference: Y. Murtim, R. Agnihotri, D. Pathak, Am. J. Chem. 2012, 1, 42-46.
– reference: M. B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A. K. Sikder, B. R. Gandhe, A. Subhananda Rao, J. Hazard. Mater. 2009, 161, 589-607.
– reference: Angew. Chem. 2006, 118, 3664-3682;
– reference: A. Hammerl, M. A. Hiskey, G. Holl, T. M. Klapötke, K. Polborn, J. Stierstorfer, J. J. Weigand, Chem. Mater. 2005, 17, 3784-3793;
– reference: C. Xue, J. Sun, B. Kang, Y. Liu, X. Liu, G. Song, Q. Xue, Propellants Explos. Pyrotech. 2010, 35, 333-338.
– reference: T. M. Klapötke, P. Mayer, C. M. Sabaté, J. M. Welch, N. Wiegand, Inorg. Chem. 2008, 47, 6014-6027.
– reference: P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta 2002, 384, 187-204;
– reference: V. Thottempudi, J. M. Shreeve, J. Am. Chem. Soc. 2011, 133, 19982-19992;
– reference: A. Rheingold, J. Cronin, T. Brill, Acta Crystallogr. Sect. C 1987, 43, 402-404.
– reference: N. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Eur. J. Inorg. Chem. 2013, 2167-2180.
– reference: J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, 1st ed., Weinheim, 2010;
– reference: B. Dickens, Acta Crystallogr. Sect. B 1969, 25, 1875-1882.
– reference: Y. Li, C. Qi, S. Li, H. Zhang, C. Sun, Y. Yu, S. Pang, J. Am. Chem. Soc. 2010, 132, 12172-12173.
– reference: N. Fischer, K. Hüll, T. M. Klapötke, J. Stierstorfer, G. Laus, M. Hummel, Dalton Trans. 2012, 41, 11201-11211.
– reference: A. Hammerl, G. Holl, M. Kaiser, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski, M. Sluter, Z. Naturforsch. Sect. B 2001, 56, 857-870.
– reference: R. Wang, H. Xu, Y. Guo, R. Sa, J. M. Shreeve, J. Am. Chem. Soc. 2010, 132, 11904-11905;
– reference: Angew. Chem. 2008, 120, 6332-6335.
– reference: R. P. Singh, R. D. Verma, D. T. Meshri, J. M. Shreeve, Angew. Chem. Int. Ed. 2006, 45, 3584-3601;
– reference: V. Thottempudi, F. Forohor, D. A. Parrish, J. M. Shreeve, Angew. Chem. Int. Ed. 2012, 51, 9881-9885;
– reference: H. Gao, C. Ye, C. Piekarski, C. M. Piekarski, J. M. Shreeve, J. Phys. Chem. C 2007, 111, 10718-10731.
– reference: J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., J. Chem. Phys. 1996, 104, 2598;
– reference: G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons, Chichester, 2004.
– reference: N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 2012, 22, 20418-20422;
– reference: Angew. Chem. 2014, 126, 8311-8314.
– reference: Karl. O. Christe, W. W. Wilson, M. A. Petrie, H. H. Michels, J. C. Bottaro, R. Gilardi, Inorg. Chem. 1996, 35, 5068-5071;
– reference: Angew. Chem. 2012, 124, 10019-10023;
– reference: A. Katrusiak, Acta Crystallogr. Sect. C 1994, 50, 1161-1163.
– reference: Y. Guo, G. H. Tao, Z. Zeng, H. Gao, J. M. Shreeve, Chem. Eur. J. 2010, 16, 3753-3762.
– volume: 18
  start-page: 16742
  year: 2012
  end-page: 16753
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 3784
  year: 2005
  end-page: 3793
  publication-title: Chem. Mater.
– volume: 43
  start-page: 402
  year: 1987
  end-page: 404
  publication-title: Acta Crystallogr. Sect. C
– volume: 112
  start-page: 6532
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 35
  start-page: 333
  year: 2010
  end-page: 338
  publication-title: Propellants Explos. Pyrotech.
– volume: 33
  start-page: 143
  year: 1968
  end-page: 150
  publication-title: J. Org. Chem.
– volume: 25
  start-page: 1875
  year: 1969
  end-page: 1882
  publication-title: Acta Crystallogr. Sect. B
– year: 2005
– volume: 22
  start-page: 20418
  year: 2012
  end-page: 20422
  publication-title: J. Mater. Chem.
– start-page: 166
  year: 1998
– volume: 19
  start-page: 4602
  year: 2013
  end-page: 4613
  publication-title: Chem. Eur. J.
– volume: 51 124
  start-page: 9881 10019
  year: 2012 2012
  end-page: 9885 10023
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 19982
  year: 2011
  end-page: 19992
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 163
  year: 2015
  end-page: 169
  publication-title: J. Mater. Chem.
– volume: 47 120
  start-page: 6236 6332
  year: 2008 2008
  end-page: 6239 6335
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 3570
  year: 2001
  end-page: 3575
  publication-title: Inorg. Chem.
– year: 2010
– volume: 35
  start-page: 5068
  year: 1996
  end-page: 5071
  publication-title: Inorg. Chem.
– volume: 35
  start-page: 1023
  year: 1979
  end-page: 1027
  publication-title: Acta Crystallogr. Sect. B
– volume: 132
  start-page: 12172
  year: 2010
  end-page: 12173
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 8172 8311
  year: 2014 2014
  end-page: 8175 8314
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 11201
  year: 2012
  end-page: 11211
  publication-title: Dalton Trans.
– volume: 16
  start-page: 3753
  year: 2010
  end-page: 3762
  publication-title: Chem. Eur. J.
– volume: 104
  start-page: 2598
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 2658
  year: 2015
  end-page: 2668
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 178
  year: 2004
  end-page: 187
  publication-title: Propellants Explos. Pyrotech.
– volume: 132
  start-page: 17216
  year: 2010
  end-page: 17226
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 14902
  year: 2013
  end-page: 14910
  publication-title: Chem. Eur. J.
– volume: 56
  start-page: 857
  year: 2001
  end-page: 870
  publication-title: Z. Naturforsch. Sect. B
– volume: 111
  start-page: 10718
  year: 2007
  end-page: 10731
  publication-title: J. Phys. Chem. C
– year: 2004
– volume: 136
  start-page: 4437
  year: 2014
  end-page: 4445
  publication-title: J. Am. Chem. Soc.
– volume: 161
  start-page: 589
  year: 2009
  end-page: 607
  publication-title: J. Hazard. Mater.
– volume: 132
  start-page: 11904
  year: 2010
  end-page: 11905
  publication-title: J. Am. Chem. Soc.
– volume: 45 118
  start-page: 4981 5103
  year: 2006 2006
  end-page: 4984 5106
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 1161
  year: 1994
  end-page: 1163
  publication-title: Acta Crystallogr. Sect. C
– volume: 1
  start-page: 42
  year: 2012
  end-page: 46
  publication-title: Am. J. Chem.
– volume: 127
  start-page: 2032
  year: 2005
  end-page: 2033
  publication-title: J. Am. Chem. Soc.
– volume: 384
  start-page: 187
  year: 2002
  end-page: 204
  publication-title: Thermochim. Acta
– volume: 47
  start-page: 6014
  year: 2008
  end-page: 6027
  publication-title: Inorg. Chem.
– start-page: 3721
  year: 2013
  end-page: 3728
  publication-title: Eur. J. Org. Chem.
– start-page: 2167
  year: 2013
  end-page: 2180
  publication-title: Eur. J. Inorg. Chem.
– volume: 427
  start-page: 580
  year: 2004
  end-page: 581
  publication-title: Nature
– volume: 45 118
  start-page: 3584 3664
  year: 2006 2006
  end-page: 3601 3682
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 2953
  year: 2014
  end-page: 2960
  publication-title: Chem. Asian J.
– volume: 20
  start-page: 4519
  year: 2008
  end-page: 4530
  publication-title: Chem. Mater.
– ident: e_1_2_6_49_2
  doi: 10.1063/1.470985
– ident: e_1_2_6_30_3
  doi: 10.1002/ange.200801886
– ident: e_1_2_6_41_2
  doi: 10.1021/cm8004166
– ident: e_1_2_6_27_2
– ident: e_1_2_6_16_2
  doi: 10.1021/ja106892a
– ident: e_1_2_6_38_2
  doi: 10.1002/ejic.201201192
– ident: e_1_2_6_58_2
  doi: 10.1021/ic010063y
– ident: e_1_2_6_3_3
  doi: 10.1002/ange.200600735
– ident: e_1_2_6_57_2
  doi: 10.1002/9783527625826
– ident: e_1_2_6_13_2
– ident: e_1_2_6_6_2
  doi: 10.1021/ja103525v
– ident: e_1_2_6_53_2
  doi: 10.5923/j.chemistry.20110102.09
– ident: e_1_2_6_14_2
  doi: 10.1021/ja042596m
– ident: e_1_2_6_29_2
  doi: 10.1039/C4TA04107K
– ident: e_1_2_6_39_3
  doi: 10.1002/ange.201404790
– ident: e_1_2_6_4_2
  doi: 10.1002/anie.200504236
– ident: e_1_2_6_26_2
  doi: 10.1002/chem.200902951
– ident: e_1_2_6_19_2
  doi: 10.1016/S0040-6031(01)00805-X
– ident: e_1_2_6_18_2
  doi: 10.1039/c2jm33646d
– ident: e_1_2_6_35_2
  doi: 10.1021/ic800353y
– volume-title: Infrared and Raman Characteristic Group Frequencies: Tables and Charts
  year: 2004
  ident: e_1_2_6_52_2
– ident: e_1_2_6_30_2
  doi: 10.1002/anie.200801886
– ident: e_1_2_6_9_2
  doi: 10.1016/j.jhazmat.2008.04.011
– ident: e_1_2_6_34_2
  doi: 10.1002/chem.201202483
– ident: e_1_2_6_36_2
  doi: 10.1107/S0108270193012272
– ident: e_1_2_6_28_2
  doi: 10.1002/chem.201301042
– ident: e_1_2_6_43_2
  doi: 10.1107/S0567740869004869
– ident: e_1_2_6_12_2
  doi: 10.1021/ic9601697
– ident: e_1_2_6_20_2
  doi: 10.1002/anie.201205134
– ident: e_1_2_6_25_2
  doi: 10.1021/ja208990z
– ident: e_1_2_6_33_2
– ident: e_1_2_6_4_3
  doi: 10.1002/ange.200504236
– ident: e_1_2_6_17_2
– ident: e_1_2_6_2_2
  doi: 10.1002/9783527628803
– ident: e_1_2_6_47_2
  doi: 10.1002/chem.201203493
– ident: e_1_2_6_10_2
– ident: e_1_2_6_55_2
– ident: e_1_2_6_44_2
  doi: 10.1021/jp070702b
– ident: e_1_2_6_37_2
  doi: 10.1107/S0108270187095593
– ident: e_1_2_6_15_2
  doi: 10.1021/cm050684f
– ident: e_1_2_6_31_2
  doi: 10.1021/jo01265a027
– ident: e_1_2_6_46_2
  doi: 10.1039/c2dt31217d
– ident: e_1_2_6_20_3
  doi: 10.1002/ange.201205134
– ident: e_1_2_6_54_2
– ident: e_1_2_6_11_2
  doi: 10.1002/prep.200400043
– volume: 56
  start-page: 857
  year: 2001
  ident: e_1_2_6_45_2
  publication-title: Z. Naturforsch. Sect. B
  doi: 10.1515/znb-2001-0902
– ident: e_1_2_6_23_2
– ident: e_1_2_6_32_2
  doi: 10.1002/ejoc.201201653
– ident: e_1_2_6_24_2
  doi: 10.1021/ja1055033
– ident: e_1_2_6_50_2
  doi: 10.1063/1.481224
– ident: e_1_2_6_3_2
  doi: 10.1002/anie.200600735
– ident: e_1_2_6_48_2
– ident: e_1_2_6_40_2
– ident: e_1_2_6_42_2
  doi: 10.1107/S0567740879005495
– ident: e_1_2_6_22_2
  doi: 10.1002/asia.201402538
– ident: e_1_2_6_51_2
  doi: 10.1055/b-002-46985
– ident: e_1_2_6_56_2
  doi: 10.1002/prep.200900036
– ident: e_1_2_6_21_2
  doi: 10.1039/C4TA05964F
– ident: e_1_2_6_39_2
  doi: 10.1002/anie.201404790
– ident: e_1_2_6_8_2
  doi: 10.1038/427580a
– ident: e_1_2_6_5_2
  doi: 10.1021/ja501176q
– ident: e_1_2_6_1_2
– ident: e_1_2_6_7_2
SSID ssj0009633
Score 2.5222955
Snippet A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The...
A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9219
SubjectTerms Alternative energy sources
Cations
Chemistry
crystal structures
energetic materials
Friction
Mathematical analysis
Nitrates
nitrogen
Physicochemical properties
Stability
Stimuli
Toxicity
triazoles
Title 3,6,7-Triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazole: A Non-toxic, High-Performance Energetic Building Block with Excellent Stability
URI https://api.istex.fr/ark:/67375/WNG-ST3S7J4P-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201500982
https://www.ncbi.nlm.nih.gov/pubmed/26012719
https://www.proquest.com/docview/1685179296
https://www.proquest.com/docview/1786152522
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3765
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0947-6539
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF9yNQkJEQXJI28SNOuLXVtlUlVhXdikpVZdmOI6FFCdruSktP_AP4jfwSZvJaFoGQ4GbHtvwaeyaemW8IeSkVK8qMuyizsYhEqXhkXRFHhmVZXginvEWN7ttxengqjs7k2U9e_C0-xPDghiejua_xgBt7ub0CDYU5oSc5CDRxnuElnHDZ6GnfrfCjgLraWPJCRYjB2qM2xmx7vfkaV7qOC7z8nci5LsE2LGj_NjH94FvLk-nWYm633NUvuI7_M7s75FYnn9KdlqDukmu-ukdu7PVh4e6TrzxMQ_X9y7fJDH3CqxqS50nIQnGBEUCu4DI9FyGHr_Zi_bt_Q3fouK6gaF4vP7iQopEJ5I5Xzgt0hL6I6FhJd7uA3XQX-O2U4oMxHS0bRUM1pyAkN2a9nx-Q0_3RZO8w6qI6RE7Cz0xk4sIIpvIMVZixQaTkwjMQm72TluWxLJRKGCtya0vjubEqL71IvSsk8FHp-UOyUdWVf0yoEtZ5VxqhuBI-taY0PHPe5sCageuKgET9rmrXQZ5j5I2PugVrZhqXWQ_LHJDXQ_1PLdjHH2u-aohkqGZmUzSRU1K_Hx_okwk_UUfiWB8EZLOnIt3dDpc6STNERmN5GpAXQzHsI66hqXy9gDoqSzE2FYO-HrXUN3SGMHBMJXlAWENDfxmsRnSNIffkXxo9JTcxjTZyidwkG_PZwj8DaWxunzcn7gfx4y43
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQ-1BeuI_QQo2E4CVpE8eJE956bLuUdlXRrUCqKst2HAktSqolKy194h_Ab-SXMJNrtQiEBG_xJV9jz8Qz8w0hLyLBsjwJjZdon3s8F6GnTeZ7iiVJmnEjrEaN7skoHp7zow9RZ02IvjANPkT_4IYno76v8YDjg_T2AjUUJoWu5CDR-GkCt_AqKunwbO6_WyBIAX010eS58BCFtcNt9Nn2cvslvrSKSzz_ndC5LMPWTOjgNtHd8Bvbk8nWrNJb5voXZMf_mt8dcqsVUelOQ1N3yQ1b3CNre11kuPvkW-jGrvjx9ft4im7hRQmfF4HLXH6JQUCu4T694G4IufpyOd--pjt0VBZQVJXzj8alaGcCqdOF_wIdoDsi-lbS3TZmN90Fljuh-GZMB_Na11BUFOTk2rL3ywNyfjAY7w29NrCDZyL4n_GUnynORJqgFtNXCJacWQaSszWRZqkfZUIEjGWp1rmyodIizS2PrckiYKWRDR-SlaIs7GNCBdfGmlxxEQpuY61yFSbG6hS4MzBe7hCv21ZpWtRzDL7xSTZ4zUziMst-mR3yqq9_1eB9_LHmy5pK-mpqOkErORHJ96NDeTYOz8QRP5WHDtnoyEi2F8RnGcQJgqOxNHbI874Y9hHXUBW2nEEdkcQYnopBX48a8us7QyQ4JoLUIawmor8MViLARp968i-NNsnacHxyLI_fjN6uk5uYjyZzQbRBVqrpzD4F4azSz-rj9xO9YjJT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwEX3o9AASMhuCRt4jhxwq0tuy0FViu6VStVlWU7joQWJdWSlZae-AfwG_klzOS1LAIhwS1-KfZ47BnbM98Q8iwSLMuT0HiJ9rnHcxF62mS-p1iSpBk3wmp80X03iveP-MFJdPKTF3-DD9FfuOHKqPdrXODnWb61BA2FMaEnOSg0fprAJrzOYzhioVr0fgkgBezVBJPnwkMQ1g620Wdbq-1XxNI6UnjxO51zVYWtZdDwOlFd7xvTk-nmvNKb5uIXYMf_Gd4Ncq1VUOl2w1E3ySVb3CJXdru4cLfJ19CNXfH9y7fJDJ3CixI-TwOXufwMQ4BcwG56yt0QcvXZar59SbfpqCygqCoXH4xL0coEUuOl9wIdoDMielbSnTZiN90BgTuleGNMB4v6paGoKGjJtV3v5zvkaDiY7O57bVgHz0RwmvGUnynORJrgG6avECo5swz0ZmsizVI_yoQIGMtSrXNlQ6VFmlseW5NFIEgjG94la0VZ2PuECq6NNbniIhTcxlrlKkyM1SnIZhC73CFeN6vStJjnGHrjo2zQmplEMsuezA550dc_b9A-_ljzec0kfTU1m6KNnIjk8WhPHk7CQ3HAx3LPIRsdF8l2e_gkgzhBaDSWxg552hfDPCINVWHLOdQRSYzBqRj8617Dff3PEAeOiSB1CKt56C-dlQiv0ace_EujJ-Ty-NVQvn09evOQXMVstJcLog2yVs3m9hFoZpV-XC--H_4vMQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3%2C6%2C7-Triamino-%5B1%2C2%2C4%5Dtriazolo%5B4%2C3-b%5D%5B1%2C2%2C4%5Dtriazole%3A+A+Non-toxic%2C+High-Performance+Energetic+Building+Block+with+Excellent+Stability&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Klapotke%2C+Thomas+M&rft.au=Schmid%2C+Philipp+C&rft.au=Schnell%2C+Simon&rft.au=Stierstorfer%2C+J%C3%B6rg&rft.date=2015-06-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=25&rft.spage=9219&rft_id=info:doi/10.1002%2Fchem.201500982&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3702886271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon