3,6,7-Triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazole: A Non-toxic, High-Performance Energetic Building Block with Excellent Stability
A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7H‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with ad...
Saved in:
Published in | Chemistry : a European journal Vol. 21; no. 25; pp. 9219 - 9228 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
15.06.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0947-6539 1521-3765 |
DOI | 10.1002/chem.201500982 |
Cover
Abstract | A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7H‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as “green explosives”. Neutral TATOT can be synthesized in a convenient and inexpensive two‐step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical‐ and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values.
Triaminotriazolotriazolium (TATOT) nitrate (see figure) can be synthesized safely by a two‐step protocol. TATOT shows no aquatic toxicity, excellent stability towards thermal and physical stimuli, as well as good energetic performance. The TATOT cation is a “green”, inexpensive energetic building block and a promising alternative to currently used nitrogen‐rich cations, such as hydrazinium, hydroxylammonium, or guanidinium cations. |
---|---|
AbstractList | A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7H‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as “green explosives”. Neutral TATOT can be synthesized in a convenient and inexpensive two‐step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical‐ and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values.
Triaminotriazolotriazolium (TATOT) nitrate (see figure) can be synthesized safely by a two‐step protocol. TATOT shows no aquatic toxicity, excellent stability towards thermal and physical stimuli, as well as good energetic performance. The TATOT cation is a “green”, inexpensive energetic building block and a promising alternative to currently used nitrogen‐rich cations, such as hydrazinium, hydroxylammonium, or guanidinium cations. A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen-rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as "green explosives". Neutral TATOT can be synthesized in a convenient and inexpensive two-step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical- and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280°C) with promising calculated energetic values. A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen-rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as "green explosives". Neutral TATOT can be synthesized in a convenient and inexpensive two-step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical- and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values. A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The 3,6,7‐triamino‐7 H ‐[1,2,4]triazolo[4,3‐b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen‐rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as “green explosives”. Neutral TATOT can be synthesized in a convenient and inexpensive two‐step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical‐ and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values. A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]tri azolium (TATOT) motif can be incorporated into many ionic, nitrogen-rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as "green explosives". Neutral TATOT can be synthesized in a convenient and inexpensive two-step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical- and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 degree C) with promising calculated energetic values. Triaminotriazolotriazolium (TATOT) nitrate (see figure) can be synthesized safely by a two-step protocol. TATOT shows no aquatic toxicity, excellent stability towards thermal and physical stimuli, as well as good energetic performance. The TATOT cation is a "green", inexpensive energetic building block and a promising alternative to currently used nitrogen-rich cations, such as hydrazinium, hydroxylammonium, or guanidinium cations. |
Author | Schnell, Simon Klapötke, Thomas M. Stierstorfer, Jörg Schmid, Philipp C. |
Author_xml | – sequence: 1 givenname: Thomas M. surname: Klapötke fullname: Klapötke, Thomas M. email: tmk@cup.uni-muenchen.de organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany) – sequence: 2 givenname: Philipp C. surname: Schmid fullname: Schmid, Philipp C. organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany) – sequence: 3 givenname: Simon surname: Schnell fullname: Schnell, Simon organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany) – sequence: 4 givenname: Jörg surname: Stierstorfer fullname: Stierstorfer, Jörg organization: Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstr. 5-13 (D), 81377 München (Germany) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26012719$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9v0zAYhi00xLrClSOKxIVDXPwjjhNuW1U60BiTWsRhmizH-dp6S-zhuFrLnf-bVN0mmIQ4WZ_1PJ8-ve8ROnDeAUKvKRlRQth7s4J2xAgVhJQFe4YGVDCKuczFARqQMpM4F7w8REddd016Juf8BTpkOaFM0nKAfvE0TyWeB6tb6zy-pClLs6vYzz994y-zlOPq6u9f-JAcJ-fe4eg31qTJqV2u8AWEhQ-tdgaSiYOwhGhNcrK2TW3dMjlpvLlJ7mxcJZONgaYBF5NZ1JVtbNy-RM8Xuung1f07RN8-TubjU3z2dfppfHyGjaAFw5rUOmOyLLiglGiSl6QGVtAajKhYSUQtJWWsLqtqoYHrSpYLyHIwtZC0EMCH6N1-723wP9bQRdXabneNduDXnaKyyPsABWM9-vYJeu3XwfXXKZoXgsqS9WEO0Zt7al21UKvbYFsdtuoh4B7I9oAJvusCLJSxUUfrXQzaNooStetR7XpUjz322uiJ9rD5n0K5F-5sA9v_0Gp8Ovnyp4v3ru0ibB5dHW5ULrkU6vv5VM3mfCY_Zxdqyn8DT868cg |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1016_j_fpc_2023_02_004 crossref_primary_10_1016_j_ica_2016_10_031 crossref_primary_10_1002_jhet_4741 crossref_primary_10_1002_asia_201801145 crossref_primary_10_1007_s11224_018_1126_0 crossref_primary_10_1016_j_molstruc_2023_137029 crossref_primary_10_1021_acs_chemrev_9b00804 crossref_primary_10_1002_ange_201606894 crossref_primary_10_1021_acs_joc_4c01699 crossref_primary_10_1021_acsami_4c15237 crossref_primary_10_1021_acs_chemmater_5b04891 crossref_primary_10_1039_C8OB02155D crossref_primary_10_1007_s12039_016_1117_x crossref_primary_10_1002_asia_201500701 crossref_primary_10_1002_prep_201900141 crossref_primary_10_1021_acsaem_0c02052 crossref_primary_10_1002_prep_201800088 crossref_primary_10_1016_j_bioorg_2019_102939 crossref_primary_10_1039_C7DT01261F crossref_primary_10_1039_D0CE00317D crossref_primary_10_1039_D1NJ00924A crossref_primary_10_1002_zaac_201600006 crossref_primary_10_1039_C7TA02209C crossref_primary_10_1016_j_enmf_2022_08_003 crossref_primary_10_1063_1_4978579 crossref_primary_10_1016_j_mtcomm_2022_103699 crossref_primary_10_1007_s12039_018_1508_2 crossref_primary_10_1002_anie_201704687 crossref_primary_10_1016_j_dt_2022_10_003 crossref_primary_10_1039_C9CC08782F crossref_primary_10_1016_j_dt_2021_11_016 crossref_primary_10_1021_acsami_4c01522 crossref_primary_10_3390_molecules27154969 crossref_primary_10_1139_cjc_2016_0274 crossref_primary_10_1016_j_fluid_2022_113653 crossref_primary_10_1021_acs_cgd_1c01112 crossref_primary_10_1002_slct_202403134 crossref_primary_10_1055_a_2181_0453 crossref_primary_10_1039_D0NJ05152G crossref_primary_10_1016_j_cej_2021_129635 crossref_primary_10_1039_C6CC03833F crossref_primary_10_1016_j_enmf_2022_01_002 crossref_primary_10_1016_j_enmf_2025_01_004 crossref_primary_10_1021_acscatal_4c00718 crossref_primary_10_1021_jacs_7b08789 crossref_primary_10_1021_acs_joc_3c01530 crossref_primary_10_1016_j_cej_2021_129190 crossref_primary_10_1039_C6RA10108A crossref_primary_10_1016_j_cej_2020_128021 crossref_primary_10_1039_C5DT04731E crossref_primary_10_1007_s00894_022_05128_5 crossref_primary_10_1021_acs_joc_7b00380 crossref_primary_10_1016_j_cej_2023_145512 crossref_primary_10_1002_prep_201800021 crossref_primary_10_1039_C9DT03829A crossref_primary_10_1002_zaac_201800018 crossref_primary_10_1021_acs_jced_9b00385 crossref_primary_10_1039_C7TA01111C crossref_primary_10_1039_D1NJ00076D crossref_primary_10_1016_j_poly_2021_115158 crossref_primary_10_1039_D0CE01427C crossref_primary_10_1039_D0CC01065K crossref_primary_10_1021_acs_orglett_4c04507 crossref_primary_10_1021_acs_cgd_3c00016 crossref_primary_10_3390_molecules24234324 crossref_primary_10_1016_j_tca_2023_179515 crossref_primary_10_1039_D2DT03255D crossref_primary_10_1007_s41061_023_00435_8 crossref_primary_10_1002_prep_201700163 crossref_primary_10_1002_zaac_201600230 crossref_primary_10_1007_s11696_023_03172_w crossref_primary_10_1016_j_molstruc_2016_12_009 crossref_primary_10_1039_C7TA00846E crossref_primary_10_1039_D4CP03051F crossref_primary_10_1039_C7RA08115D crossref_primary_10_1016_j_cej_2022_138094 crossref_primary_10_1016_j_enmf_2024_05_001 crossref_primary_10_1016_j_enmf_2020_05_001 crossref_primary_10_1021_acs_inorgchem_5b02434 crossref_primary_10_1039_D4RA03233K crossref_primary_10_1002_cplu_201800318 crossref_primary_10_1021_acs_jcim_4c01904 crossref_primary_10_1021_jacs_5b07852 crossref_primary_10_1039_C9TA12704F crossref_primary_10_3390_ijms24043918 crossref_primary_10_1039_D4QM01120A crossref_primary_10_1002_prep_202000044 crossref_primary_10_1039_C9NJ01065C crossref_primary_10_1016_j_fluid_2022_113667 crossref_primary_10_1021_acs_orglett_2c02889 crossref_primary_10_1002_anie_201606894 crossref_primary_10_1039_C9NJ04519H crossref_primary_10_1016_j_enmf_2024_07_002 crossref_primary_10_1002_ange_201704687 crossref_primary_10_1039_D4NJ04427D crossref_primary_10_1002_slct_201800005 crossref_primary_10_1016_j_cej_2020_126817 crossref_primary_10_1039_D1DT00527H crossref_primary_10_1016_j_dt_2023_09_001 crossref_primary_10_1016_j_cej_2021_133235 crossref_primary_10_1039_D2MA00406B crossref_primary_10_1039_D3CP02121A crossref_primary_10_1021_acs_cgd_0c00190 crossref_primary_10_1016_j_cej_2019_122331 crossref_primary_10_1016_j_dt_2023_09_005 crossref_primary_10_1021_acs_inorgchem_1c02002 crossref_primary_10_1039_D0CE00772B crossref_primary_10_1002_qua_27137 crossref_primary_10_1039_C9CE00690G crossref_primary_10_1039_D0RA07579E crossref_primary_10_1021_acs_orglett_1c03534 crossref_primary_10_1016_j_enmf_2021_09_003 crossref_primary_10_1016_j_molstruc_2025_141876 crossref_primary_10_1021_acs_orglett_4c04775 crossref_primary_10_1039_C9TA01717H crossref_primary_10_1039_C8RA05274C crossref_primary_10_3390_cryst5040418 crossref_primary_10_1016_j_jhazmat_2018_09_088 crossref_primary_10_1021_acs_orglett_4c04134 crossref_primary_10_1038_s43246_024_00467_7 crossref_primary_10_1021_acsomega_9b01724 crossref_primary_10_1002_zaac_201900164 crossref_primary_10_1002_cplu_201700058 crossref_primary_10_1039_D1NJ01227D crossref_primary_10_1002_slct_202002440 crossref_primary_10_1039_D0CE01882A crossref_primary_10_1002_cplu_201800305 crossref_primary_10_1039_D1QM00916H crossref_primary_10_1021_acs_cgd_9b01177 crossref_primary_10_1002_chem_201701407 crossref_primary_10_1002_slct_201700810 crossref_primary_10_1039_D4TA02521K crossref_primary_10_1016_j_cej_2022_136708 |
Cites_doi | 10.1063/1.470985 10.1002/ange.200801886 10.1021/cm8004166 10.1021/ja106892a 10.1002/ejic.201201192 10.1021/ic010063y 10.1002/ange.200600735 10.1002/9783527625826 10.1021/ja103525v 10.5923/j.chemistry.20110102.09 10.1021/ja042596m 10.1039/C4TA04107K 10.1002/ange.201404790 10.1002/anie.200504236 10.1002/chem.200902951 10.1016/S0040-6031(01)00805-X 10.1039/c2jm33646d 10.1021/ic800353y 10.1002/anie.200801886 10.1016/j.jhazmat.2008.04.011 10.1002/chem.201202483 10.1107/S0108270193012272 10.1002/chem.201301042 10.1107/S0567740869004869 10.1021/ic9601697 10.1002/anie.201205134 10.1021/ja208990z 10.1002/ange.200504236 10.1002/9783527628803 10.1002/chem.201203493 10.1021/jp070702b 10.1107/S0108270187095593 10.1021/cm050684f 10.1021/jo01265a027 10.1039/c2dt31217d 10.1002/ange.201205134 10.1002/prep.200400043 10.1515/znb-2001-0902 10.1002/ejoc.201201653 10.1021/ja1055033 10.1063/1.481224 10.1002/anie.200600735 10.1107/S0567740879005495 10.1002/asia.201402538 10.1055/b-002-46985 10.1002/prep.200900036 10.1039/C4TA05964F 10.1002/anie.201404790 10.1038/427580a 10.1021/ja501176q |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. |
DOI | 10.1002/chem.201500982 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 9228 |
ExternalDocumentID | 3702886271 26012719 10_1002_chem_201500982 CHEM201500982 ark_67375_WNG_ST3S7J4P_G |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Armament Research, Development and Engineering Center (ARDEC) funderid: W911NF‐12‐1‐0467 – fundername: ARL, Aberdeen, Proving Ground, MD – fundername: Office of Naval Research (ONR) funderid: ONR.N00014‐10‐1‐0535; ONR.N00014‐12‐1‐0538 – fundername: U.S. Army Research Laboratory (ARL) funderid: W911NF‐09‐2‐0018 – fundername: OZM Research, Czech Republic – fundername: Brodarski Institute, Croatia – fundername: Ludwig‐Maximilian University of Munich (LMU) |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. |
ID | FETCH-LOGICAL-c5182-a0da4279835110a0690de281dec5b2905d77122d9bbfae3ab79fe46ecd57185e3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Fri Jul 11 06:37:24 EDT 2025 Sun Jul 13 03:22:52 EDT 2025 Thu Apr 03 06:56:48 EDT 2025 Tue Jul 01 02:47:07 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Wed Jan 22 16:25:40 EST 2025 Tue Sep 09 05:28:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | triazoles cations energetic materials crystal structures nitrogen |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5182-a0da4279835110a0690de281dec5b2905d77122d9bbfae3ab79fe46ecd57185e3 |
Notes | Ludwig-Maximilian University of Munich (LMU) ArticleID:CHEM201500982 U.S. Army Research Laboratory (ARL) - No. W911NF-09-2-0018 ARL, Aberdeen, Proving Ground, MD istex:0A231D6E74743CCA314594B042D334B3C928954A ark:/67375/WNG-ST3S7J4P-G OZM Research, Czech Republic Armament Research, Development and Engineering Center (ARDEC) - No. W911NF-12-1-0467 Office of Naval Research (ONR) - No. ONR.N00014-10-1-0535; No. ONR.N00014-12-1-0538 Brodarski Institute, Croatia ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26012719 |
PQID | 1685179296 |
PQPubID | 986340 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1786152522 proquest_journals_1685179296 pubmed_primary_26012719 crossref_citationtrail_10_1002_chem_201500982 crossref_primary_10_1002_chem_201500982 wiley_primary_10_1002_chem_201500982_CHEM201500982 istex_primary_ark_67375_WNG_ST3S7J4P_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 15, 2015 |
PublicationDateYYYYMMDD | 2015-06-15 |
PublicationDate_xml | – month: 06 year: 2015 text: June 15, 2015 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | V. Thottempudi, F. Forohor, D. A. Parrish, J. M. Shreeve, Angew. Chem. Int. Ed. 2012, 51, 9881-9885 M. B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A. K. Sikder, B. R. Gandhe, A. Subhananda Rao, J. Hazard. Mater. 2009, 161, 589-607. S. Venkatachalam, G. Santhosh, K. N. Ninan, Propellants Explos. Pyrotech. 2004, 29, 178-187 A. Rheingold, J. Cronin, T. Brill, Acta Crystallogr. Sect. C 1987, 43, 402-404. B. Dickens, Acta Crystallogr. Sect. B 1969, 25, 1875-1882. N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 2012, 22, 20418-20422 Karl. O. Christe, W. W. Wilson, M. A. Petrie, H. H. Michels, J. C. Bottaro, R. Gilardi, Inorg. Chem. 1996, 35, 5068-5071 Angew. Chem. 2006, 118, 5103-5106 M. Göbel, K. Karaghiosoff, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Am. Chem. Soc. 2010, 132, 17216-17226 C. Xue, J. Sun, B. Kang, Y. Liu, X. Liu, G. Song, Q. Xue, Propellants Explos. Pyrotech. 2010, 35, 333-338. A. Hammerl, G. Holl, M. Kaiser, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski, M. Sluter, Z. Naturforsch. Sect. B 2001, 56, 857-870. T. M. Klapötke, J. Stierstorfer, A. Wallek, Chem. Mater. 2008, 20, 4519-4530. C. B. Jones, R. Haiges, T. Schroer, K. O. Christe, Angew. Chem. Int. Ed. 2006, 45, 4981-4984 C. Bian, M. Zhang, C. Li, Z. Zhou, J. Mater. Chem. 2015, 3, 163-169 G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons, Chichester, 2004. D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Chem. Eur. J. 2013, 19, 4602-4613. Angew. Chem. 2008, 120, 6332-6335. A. Hammerl, T. M. Klapötke, H. Nöth, M. Warchhold, Inorg. Chem. 2001, 40, 3570-3575. P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta 2002, 384, 187-204 J. Zhang, J. M. Shreeve, J. Am. Chem. Soc. 2014, 136, 4437-4445 N. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Eur. J. Inorg. Chem. 2013, 2167-2180. Angew. Chem. 2006, 118, 3664-3682 A. Hammerl, M. A. Hiskey, G. Holl, T. M. Klapötke, K. Polborn, J. Stierstorfer, J. J. Weigand, Chem. Mater. 2005, 17, 3784-3793 J. Zhang, D. A. Parrish, J. M. Shreeve, Chem. Asian J. 2014, 9, 2953-2960. Y. Murtim, R. Agnihotri, D. Pathak, Am. J. Chem. 2012, 1, 42-46. Y.-H. Joo, B. Twamley, S. Garg, J. M. Shreeve, Angew. Chem. Int. Ed. 2008, 47, 6236-6239 T. M. Klapötke, P. C. Schmid, S. Schnell, J. Stierstorfer, J. Mater. Chem. A 2015, 3, 2658-2668 J. Köhler, Explosivstoffe, 9th ed., Wiley-VCH, New York, 1998, 166. J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532 R. Wang, H. Xu, Y. Guo, R. Sa, J. M. Shreeve, J. Am. Chem. Soc. 2010, 132, 11904-11905 A. Katrusiak, Acta Crystallogr. Sect. C 1994, 50, 1161-1163. M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, 7th ed., Thieme, Stuttgart, New York, 2005 R. P. Singh, R. D. Verma, D. T. Meshri, J. M. Shreeve, Angew. Chem. Int. Ed. 2006, 45, 3584-3601 V. Thottempudi, J. M. Shreeve, J. Am. Chem. Soc. 2011, 133, 19982-19992 J. Lundgren, R. Liminga, Acta Crystallogr. Sect. B 1979, 35, 1023-1027. A. Dippold, T. M. Klapötke, Chem. Eur. J. 2012, 18, 16742-16753. K. T. Potts, C. Hirsch, J. Org. Chem. 1968, 33, 143-150. D. Fischer, T. M. Klapötke, J. Stierstorfer, Angew. Chem. Int. Ed. 2014, 53, 8172-8175 Y. Guo, G. H. Tao, Z. Zeng, H. Gao, J. M. Shreeve, Chem. Eur. J. 2010, 16, 3753-3762. N. Fischer, K. Hüll, T. M. Klapötke, J. Stierstorfer, G. Laus, M. Hummel, Dalton Trans. 2012, 41, 11201-11211. Angew. Chem. 2014, 126, 8311-8314. Angew. Chem. 2012, 124, 10019-10023 L. Liang, K. Wang, C. Bian, L. Ling, Z. Zhou, Chem. Eur. J. 2013, 19, 14902-14910 H. Gao, C. Ye, C. Piekarski, C. M. Piekarski, J. M. Shreeve, J. Phys. Chem. C 2007, 111, 10718-10731. T. M. Klapötke, P. Mayer, C. M. Sabaté, J. M. Welch, N. Wiegand, Inorg. Chem. 2008, 47, 6014-6027. J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, 1st ed., Weinheim, 2010 Y. Li, C. Qi, S. Li, H. Zhang, C. Sun, Y. Yu, S. Pang, J. Am. Chem. Soc. 2010, 132, 12172-12173. J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., J. Chem. Phys. 1996, 104, 2598 J. Giles, Nature 2004, 427, 580-581 T. M. Klapötke, P. Mayer, A. Schulz, J. J. Weigand, J. Am. Chem. Soc. 2005, 127, 2032-2033 R. C. Centore, S. Fusco, A. Capobianco, V. Piccialli, S. Zaccaria, A. Peluso, Eur. J. Org. Chem. 2013, 3721-3728. 2014 2014; 53 126 2010; 16 1979; 35 2015; 3 2010; 35 2004; 29 2010 1998 2012; 18 2005 2004 2008 2008; 47 120 2000; 112 1996; 104 2004; 427 1996; 35 2014; 136 2001; 40 2011; 133 2013; 19 2006 2006; 45 118 1987; 43 2012; 1 2002; 384 2012 2012; 51 124 2007; 111 2005; 127 2010; 132 2008; 47 1969; 25 2009; 161 2013 2008; 20 2014; 9 2001; 56 2005; 17 1994; 50 2012; 22 1968; 33 2012; 41 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_3 e_1_2_6_30_2 Hammerl A. (e_1_2_6_45_2) 2001; 56 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_3 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_20_3 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_50_2 e_1_2_6_31_2 Socrates G. (e_1_2_6_52_2) 2004 e_1_2_6_18_2 e_1_2_6_39_3 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_4_3 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: J. Giles, Nature 2004, 427, 580-581; – reference: C. B. Jones, R. Haiges, T. Schroer, K. O. Christe, Angew. Chem. Int. Ed. 2006, 45, 4981-4984; – reference: T. M. Klapötke, P. C. Schmid, S. Schnell, J. Stierstorfer, J. Mater. Chem. A 2015, 3, 2658-2668; – reference: S. Venkatachalam, G. Santhosh, K. N. Ninan, Propellants Explos. Pyrotech. 2004, 29, 178-187; – reference: Y.-H. Joo, B. Twamley, S. Garg, J. M. Shreeve, Angew. Chem. Int. Ed. 2008, 47, 6236-6239; – reference: D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Chem. Eur. J. 2013, 19, 4602-4613. – reference: J. Zhang, J. M. Shreeve, J. Am. Chem. Soc. 2014, 136, 4437-4445; – reference: J. Zhang, D. A. Parrish, J. M. Shreeve, Chem. Asian J. 2014, 9, 2953-2960. – reference: C. Bian, M. Zhang, C. Li, Z. Zhou, J. Mater. Chem. 2015, 3, 163-169; – reference: D. Fischer, T. M. Klapötke, J. Stierstorfer, Angew. Chem. Int. Ed. 2014, 53, 8172-8175; – reference: Angew. Chem. 2006, 118, 5103-5106; – reference: L. Liang, K. Wang, C. Bian, L. Ling, Z. Zhou, Chem. Eur. J. 2013, 19, 14902-14910; – reference: T. M. Klapötke, P. Mayer, A. Schulz, J. J. Weigand, J. Am. Chem. Soc. 2005, 127, 2032-2033; – reference: J. Köhler, Explosivstoffe, 9th ed., Wiley-VCH, New York, 1998, 166. – reference: A. Hammerl, T. M. Klapötke, H. Nöth, M. Warchhold, Inorg. Chem. 2001, 40, 3570-3575. – reference: J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532; – reference: R. C. Centore, S. Fusco, A. Capobianco, V. Piccialli, S. Zaccaria, A. Peluso, Eur. J. Org. Chem. 2013, 3721-3728. – reference: J. Lundgren, R. Liminga, Acta Crystallogr. Sect. B 1979, 35, 1023-1027. – reference: A. Dippold, T. M. Klapötke, Chem. Eur. J. 2012, 18, 16742-16753. – reference: K. T. Potts, C. Hirsch, J. Org. Chem. 1968, 33, 143-150. – reference: M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, 7th ed., Thieme, Stuttgart, New York, 2005; – reference: M. Göbel, K. Karaghiosoff, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Am. Chem. Soc. 2010, 132, 17216-17226; – reference: T. M. Klapötke, J. Stierstorfer, A. Wallek, Chem. Mater. 2008, 20, 4519-4530. – reference: Y. Murtim, R. Agnihotri, D. Pathak, Am. J. Chem. 2012, 1, 42-46. – reference: M. B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A. K. Sikder, B. R. Gandhe, A. Subhananda Rao, J. Hazard. Mater. 2009, 161, 589-607. – reference: Angew. Chem. 2006, 118, 3664-3682; – reference: A. Hammerl, M. A. Hiskey, G. Holl, T. M. Klapötke, K. Polborn, J. Stierstorfer, J. J. Weigand, Chem. Mater. 2005, 17, 3784-3793; – reference: C. Xue, J. Sun, B. Kang, Y. Liu, X. Liu, G. Song, Q. Xue, Propellants Explos. Pyrotech. 2010, 35, 333-338. – reference: T. M. Klapötke, P. Mayer, C. M. Sabaté, J. M. Welch, N. Wiegand, Inorg. Chem. 2008, 47, 6014-6027. – reference: P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta 2002, 384, 187-204; – reference: V. Thottempudi, J. M. Shreeve, J. Am. Chem. Soc. 2011, 133, 19982-19992; – reference: A. Rheingold, J. Cronin, T. Brill, Acta Crystallogr. Sect. C 1987, 43, 402-404. – reference: N. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Eur. J. Inorg. Chem. 2013, 2167-2180. – reference: J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, 1st ed., Weinheim, 2010; – reference: B. Dickens, Acta Crystallogr. Sect. B 1969, 25, 1875-1882. – reference: Y. Li, C. Qi, S. Li, H. Zhang, C. Sun, Y. Yu, S. Pang, J. Am. Chem. Soc. 2010, 132, 12172-12173. – reference: N. Fischer, K. Hüll, T. M. Klapötke, J. Stierstorfer, G. Laus, M. Hummel, Dalton Trans. 2012, 41, 11201-11211. – reference: A. Hammerl, G. Holl, M. Kaiser, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski, M. Sluter, Z. Naturforsch. Sect. B 2001, 56, 857-870. – reference: R. Wang, H. Xu, Y. Guo, R. Sa, J. M. Shreeve, J. Am. Chem. Soc. 2010, 132, 11904-11905; – reference: Angew. Chem. 2008, 120, 6332-6335. – reference: R. P. Singh, R. D. Verma, D. T. Meshri, J. M. Shreeve, Angew. Chem. Int. Ed. 2006, 45, 3584-3601; – reference: V. Thottempudi, F. Forohor, D. A. Parrish, J. M. Shreeve, Angew. Chem. Int. Ed. 2012, 51, 9881-9885; – reference: H. Gao, C. Ye, C. Piekarski, C. M. Piekarski, J. M. Shreeve, J. Phys. Chem. C 2007, 111, 10718-10731. – reference: J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., J. Chem. Phys. 1996, 104, 2598; – reference: G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons, Chichester, 2004. – reference: N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem. 2012, 22, 20418-20422; – reference: Angew. Chem. 2014, 126, 8311-8314. – reference: Karl. O. Christe, W. W. Wilson, M. A. Petrie, H. H. Michels, J. C. Bottaro, R. Gilardi, Inorg. Chem. 1996, 35, 5068-5071; – reference: Angew. Chem. 2012, 124, 10019-10023; – reference: A. Katrusiak, Acta Crystallogr. Sect. C 1994, 50, 1161-1163. – reference: Y. Guo, G. H. Tao, Z. Zeng, H. Gao, J. M. Shreeve, Chem. Eur. J. 2010, 16, 3753-3762. – volume: 18 start-page: 16742 year: 2012 end-page: 16753 publication-title: Chem. Eur. J. – volume: 17 start-page: 3784 year: 2005 end-page: 3793 publication-title: Chem. Mater. – volume: 43 start-page: 402 year: 1987 end-page: 404 publication-title: Acta Crystallogr. Sect. C – volume: 112 start-page: 6532 year: 2000 publication-title: J. Chem. Phys. – volume: 35 start-page: 333 year: 2010 end-page: 338 publication-title: Propellants Explos. Pyrotech. – volume: 33 start-page: 143 year: 1968 end-page: 150 publication-title: J. Org. Chem. – volume: 25 start-page: 1875 year: 1969 end-page: 1882 publication-title: Acta Crystallogr. Sect. B – year: 2005 – volume: 22 start-page: 20418 year: 2012 end-page: 20422 publication-title: J. Mater. Chem. – start-page: 166 year: 1998 – volume: 19 start-page: 4602 year: 2013 end-page: 4613 publication-title: Chem. Eur. J. – volume: 51 124 start-page: 9881 10019 year: 2012 2012 end-page: 9885 10023 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 19982 year: 2011 end-page: 19992 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 163 year: 2015 end-page: 169 publication-title: J. Mater. Chem. – volume: 47 120 start-page: 6236 6332 year: 2008 2008 end-page: 6239 6335 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 3570 year: 2001 end-page: 3575 publication-title: Inorg. Chem. – year: 2010 – volume: 35 start-page: 5068 year: 1996 end-page: 5071 publication-title: Inorg. Chem. – volume: 35 start-page: 1023 year: 1979 end-page: 1027 publication-title: Acta Crystallogr. Sect. B – volume: 132 start-page: 12172 year: 2010 end-page: 12173 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 8172 8311 year: 2014 2014 end-page: 8175 8314 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 11201 year: 2012 end-page: 11211 publication-title: Dalton Trans. – volume: 16 start-page: 3753 year: 2010 end-page: 3762 publication-title: Chem. Eur. J. – volume: 104 start-page: 2598 year: 1996 publication-title: J. Chem. Phys. – volume: 3 start-page: 2658 year: 2015 end-page: 2668 publication-title: J. Mater. Chem. A – volume: 29 start-page: 178 year: 2004 end-page: 187 publication-title: Propellants Explos. Pyrotech. – volume: 132 start-page: 17216 year: 2010 end-page: 17226 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 14902 year: 2013 end-page: 14910 publication-title: Chem. Eur. J. – volume: 56 start-page: 857 year: 2001 end-page: 870 publication-title: Z. Naturforsch. Sect. B – volume: 111 start-page: 10718 year: 2007 end-page: 10731 publication-title: J. Phys. Chem. C – year: 2004 – volume: 136 start-page: 4437 year: 2014 end-page: 4445 publication-title: J. Am. Chem. Soc. – volume: 161 start-page: 589 year: 2009 end-page: 607 publication-title: J. Hazard. Mater. – volume: 132 start-page: 11904 year: 2010 end-page: 11905 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 4981 5103 year: 2006 2006 end-page: 4984 5106 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 1161 year: 1994 end-page: 1163 publication-title: Acta Crystallogr. Sect. C – volume: 1 start-page: 42 year: 2012 end-page: 46 publication-title: Am. J. Chem. – volume: 127 start-page: 2032 year: 2005 end-page: 2033 publication-title: J. Am. Chem. Soc. – volume: 384 start-page: 187 year: 2002 end-page: 204 publication-title: Thermochim. Acta – volume: 47 start-page: 6014 year: 2008 end-page: 6027 publication-title: Inorg. Chem. – start-page: 3721 year: 2013 end-page: 3728 publication-title: Eur. J. Org. Chem. – start-page: 2167 year: 2013 end-page: 2180 publication-title: Eur. J. Inorg. Chem. – volume: 427 start-page: 580 year: 2004 end-page: 581 publication-title: Nature – volume: 45 118 start-page: 3584 3664 year: 2006 2006 end-page: 3601 3682 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 2953 year: 2014 end-page: 2960 publication-title: Chem. Asian J. – volume: 20 start-page: 4519 year: 2008 end-page: 4530 publication-title: Chem. Mater. – ident: e_1_2_6_49_2 doi: 10.1063/1.470985 – ident: e_1_2_6_30_3 doi: 10.1002/ange.200801886 – ident: e_1_2_6_41_2 doi: 10.1021/cm8004166 – ident: e_1_2_6_27_2 – ident: e_1_2_6_16_2 doi: 10.1021/ja106892a – ident: e_1_2_6_38_2 doi: 10.1002/ejic.201201192 – ident: e_1_2_6_58_2 doi: 10.1021/ic010063y – ident: e_1_2_6_3_3 doi: 10.1002/ange.200600735 – ident: e_1_2_6_57_2 doi: 10.1002/9783527625826 – ident: e_1_2_6_13_2 – ident: e_1_2_6_6_2 doi: 10.1021/ja103525v – ident: e_1_2_6_53_2 doi: 10.5923/j.chemistry.20110102.09 – ident: e_1_2_6_14_2 doi: 10.1021/ja042596m – ident: e_1_2_6_29_2 doi: 10.1039/C4TA04107K – ident: e_1_2_6_39_3 doi: 10.1002/ange.201404790 – ident: e_1_2_6_4_2 doi: 10.1002/anie.200504236 – ident: e_1_2_6_26_2 doi: 10.1002/chem.200902951 – ident: e_1_2_6_19_2 doi: 10.1016/S0040-6031(01)00805-X – ident: e_1_2_6_18_2 doi: 10.1039/c2jm33646d – ident: e_1_2_6_35_2 doi: 10.1021/ic800353y – volume-title: Infrared and Raman Characteristic Group Frequencies: Tables and Charts year: 2004 ident: e_1_2_6_52_2 – ident: e_1_2_6_30_2 doi: 10.1002/anie.200801886 – ident: e_1_2_6_9_2 doi: 10.1016/j.jhazmat.2008.04.011 – ident: e_1_2_6_34_2 doi: 10.1002/chem.201202483 – ident: e_1_2_6_36_2 doi: 10.1107/S0108270193012272 – ident: e_1_2_6_28_2 doi: 10.1002/chem.201301042 – ident: e_1_2_6_43_2 doi: 10.1107/S0567740869004869 – ident: e_1_2_6_12_2 doi: 10.1021/ic9601697 – ident: e_1_2_6_20_2 doi: 10.1002/anie.201205134 – ident: e_1_2_6_25_2 doi: 10.1021/ja208990z – ident: e_1_2_6_33_2 – ident: e_1_2_6_4_3 doi: 10.1002/ange.200504236 – ident: e_1_2_6_17_2 – ident: e_1_2_6_2_2 doi: 10.1002/9783527628803 – ident: e_1_2_6_47_2 doi: 10.1002/chem.201203493 – ident: e_1_2_6_10_2 – ident: e_1_2_6_55_2 – ident: e_1_2_6_44_2 doi: 10.1021/jp070702b – ident: e_1_2_6_37_2 doi: 10.1107/S0108270187095593 – ident: e_1_2_6_15_2 doi: 10.1021/cm050684f – ident: e_1_2_6_31_2 doi: 10.1021/jo01265a027 – ident: e_1_2_6_46_2 doi: 10.1039/c2dt31217d – ident: e_1_2_6_20_3 doi: 10.1002/ange.201205134 – ident: e_1_2_6_54_2 – ident: e_1_2_6_11_2 doi: 10.1002/prep.200400043 – volume: 56 start-page: 857 year: 2001 ident: e_1_2_6_45_2 publication-title: Z. Naturforsch. Sect. B doi: 10.1515/znb-2001-0902 – ident: e_1_2_6_23_2 – ident: e_1_2_6_32_2 doi: 10.1002/ejoc.201201653 – ident: e_1_2_6_24_2 doi: 10.1021/ja1055033 – ident: e_1_2_6_50_2 doi: 10.1063/1.481224 – ident: e_1_2_6_3_2 doi: 10.1002/anie.200600735 – ident: e_1_2_6_48_2 – ident: e_1_2_6_40_2 – ident: e_1_2_6_42_2 doi: 10.1107/S0567740879005495 – ident: e_1_2_6_22_2 doi: 10.1002/asia.201402538 – ident: e_1_2_6_51_2 doi: 10.1055/b-002-46985 – ident: e_1_2_6_56_2 doi: 10.1002/prep.200900036 – ident: e_1_2_6_21_2 doi: 10.1039/C4TA05964F – ident: e_1_2_6_39_2 doi: 10.1002/anie.201404790 – ident: e_1_2_6_8_2 doi: 10.1038/427580a – ident: e_1_2_6_5_2 doi: 10.1021/ja501176q – ident: e_1_2_6_1_2 – ident: e_1_2_6_7_2 |
SSID | ssj0009633 |
Score | 2.5222955 |
Snippet | A novel strategy for the design of energetic materials that uses fused amino‐substituted triazoles as energetic building blocks is presented. The... A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9219 |
SubjectTerms | Alternative energy sources Cations Chemistry crystal structures energetic materials Friction Mathematical analysis Nitrates nitrogen Physicochemical properties Stability Stimuli Toxicity triazoles |
Title | 3,6,7-Triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazole: A Non-toxic, High-Performance Energetic Building Block with Excellent Stability |
URI | https://api.istex.fr/ark:/67375/WNG-ST3S7J4P-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201500982 https://www.ncbi.nlm.nih.gov/pubmed/26012719 https://www.proquest.com/docview/1685179296 https://www.proquest.com/docview/1786152522 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3765 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0947-6539 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF9yNQkJEQXJI28SNOuLXVtlUlVhXdikpVZdmOI6FFCdruSktP_AP4jfwSZvJaFoGQ4GbHtvwaeyaemW8IeSkVK8qMuyizsYhEqXhkXRFHhmVZXginvEWN7ttxengqjs7k2U9e_C0-xPDghiejua_xgBt7ub0CDYU5oSc5CDRxnuElnHDZ6GnfrfCjgLraWPJCRYjB2qM2xmx7vfkaV7qOC7z8nci5LsE2LGj_NjH94FvLk-nWYm633NUvuI7_M7s75FYnn9KdlqDukmu-ukdu7PVh4e6TrzxMQ_X9y7fJDH3CqxqS50nIQnGBEUCu4DI9FyGHr_Zi_bt_Q3fouK6gaF4vP7iQopEJ5I5Xzgt0hL6I6FhJd7uA3XQX-O2U4oMxHS0bRUM1pyAkN2a9nx-Q0_3RZO8w6qI6RE7Cz0xk4sIIpvIMVZixQaTkwjMQm72TluWxLJRKGCtya0vjubEqL71IvSsk8FHp-UOyUdWVf0yoEtZ5VxqhuBI-taY0PHPe5sCageuKgET9rmrXQZ5j5I2PugVrZhqXWQ_LHJDXQ_1PLdjHH2u-aohkqGZmUzSRU1K_Hx_okwk_UUfiWB8EZLOnIt3dDpc6STNERmN5GpAXQzHsI66hqXy9gDoqSzE2FYO-HrXUN3SGMHBMJXlAWENDfxmsRnSNIffkXxo9JTcxjTZyidwkG_PZwj8DaWxunzcn7gfx4y43 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQ-1BeuI_QQo2E4CVpE8eJE956bLuUdlXRrUCqKst2HAktSqolKy194h_Ab-SXMJNrtQiEBG_xJV9jz8Qz8w0hLyLBsjwJjZdon3s8F6GnTeZ7iiVJmnEjrEaN7skoHp7zow9RZ02IvjANPkT_4IYno76v8YDjg_T2AjUUJoWu5CDR-GkCt_AqKunwbO6_WyBIAX010eS58BCFtcNt9Nn2cvslvrSKSzz_ndC5LMPWTOjgNtHd8Bvbk8nWrNJb5voXZMf_mt8dcqsVUelOQ1N3yQ1b3CNre11kuPvkW-jGrvjx9ft4im7hRQmfF4HLXH6JQUCu4T694G4IufpyOd--pjt0VBZQVJXzj8alaGcCqdOF_wIdoDsi-lbS3TZmN90Fljuh-GZMB_Na11BUFOTk2rL3ywNyfjAY7w29NrCDZyL4n_GUnynORJqgFtNXCJacWQaSszWRZqkfZUIEjGWp1rmyodIizS2PrckiYKWRDR-SlaIs7GNCBdfGmlxxEQpuY61yFSbG6hS4MzBe7hCv21ZpWtRzDL7xSTZ4zUziMst-mR3yqq9_1eB9_LHmy5pK-mpqOkErORHJ96NDeTYOz8QRP5WHDtnoyEi2F8RnGcQJgqOxNHbI874Y9hHXUBW2nEEdkcQYnopBX48a8us7QyQ4JoLUIawmor8MViLARp968i-NNsnacHxyLI_fjN6uk5uYjyZzQbRBVqrpzD4F4azSz-rj9xO9YjJT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwEX3o9AASMhuCRt4jhxwq0tuy0FViu6VStVlWU7joQWJdWSlZae-AfwG_klzOS1LAIhwS1-KfZ47BnbM98Q8iwSLMuT0HiJ9rnHcxF62mS-p1iSpBk3wmp80X03iveP-MFJdPKTF3-DD9FfuOHKqPdrXODnWb61BA2FMaEnOSg0fprAJrzOYzhioVr0fgkgBezVBJPnwkMQ1g620Wdbq-1XxNI6UnjxO51zVYWtZdDwOlFd7xvTk-nmvNKb5uIXYMf_Gd4Ncq1VUOl2w1E3ySVb3CJXdru4cLfJ19CNXfH9y7fJDJ3CixI-TwOXufwMQ4BcwG56yt0QcvXZar59SbfpqCygqCoXH4xL0coEUuOl9wIdoDMielbSnTZiN90BgTuleGNMB4v6paGoKGjJtV3v5zvkaDiY7O57bVgHz0RwmvGUnynORJrgG6avECo5swz0ZmsizVI_yoQIGMtSrXNlQ6VFmlseW5NFIEgjG94la0VZ2PuECq6NNbniIhTcxlrlKkyM1SnIZhC73CFeN6vStJjnGHrjo2zQmplEMsuezA550dc_b9A-_ljzec0kfTU1m6KNnIjk8WhPHk7CQ3HAx3LPIRsdF8l2e_gkgzhBaDSWxg552hfDPCINVWHLOdQRSYzBqRj8617Dff3PEAeOiSB1CKt56C-dlQiv0ace_EujJ-Ty-NVQvn09evOQXMVstJcLog2yVs3m9hFoZpV-XC--H_4vMQI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3%2C6%2C7-Triamino-%5B1%2C2%2C4%5Dtriazolo%5B4%2C3-b%5D%5B1%2C2%2C4%5Dtriazole%3A+A+Non-toxic%2C+High-Performance+Energetic+Building+Block+with+Excellent+Stability&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Klapotke%2C+Thomas+M&rft.au=Schmid%2C+Philipp+C&rft.au=Schnell%2C+Simon&rft.au=Stierstorfer%2C+J%C3%B6rg&rft.date=2015-06-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=25&rft.spage=9219&rft_id=info:doi/10.1002%2Fchem.201500982&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3702886271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |