Electrophysiological characteristics of motor units and muscle fibers in trained and untrained young male subjects

We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that t...

Full description

Saved in:
Bibliographic Details
Published inMuscle & nerve Vol. 42; no. 2; pp. 177 - 183
Main Authors Duez, Lene, Qerama, Erisela, Fuglsang-Frederiksen, Anders, Bangsbo, Jens, Jensen, Troels S.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2010
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0148-639X
1097-4598
1097-4598
DOI10.1002/mus.21641

Cover

Abstract We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless‐steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability. Muscle Nerve, 2010
AbstractList We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless-steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability.We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless-steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability.
We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless‐steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability. Muscle Nerve, 2010
We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless-steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability. Muscle Nerve, 2010 [PUBLICATION ABSTRACT]
We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless-steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability. Muscle Nerve, 2010.
We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless-steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability.
Author Duez, Lene
Jensen, Troels S.
Fuglsang-Frederiksen, Anders
Bangsbo, Jens
Qerama, Erisela
Author_xml – sequence: 1
  givenname: Lene
  surname: Duez
  fullname: Duez, Lene
  organization: Danish Pain Research Center, Aarhus University Hospital, Noerrebrogade 44, Aarhus 8000, Denmark
– sequence: 2
  givenname: Erisela
  surname: Qerama
  fullname: Qerama, Erisela
  organization: Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
– sequence: 3
  givenname: Anders
  surname: Fuglsang-Frederiksen
  fullname: Fuglsang-Frederiksen, Anders
  email: andefugl@rm.dk
  organization: Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
– sequence: 4
  givenname: Jens
  surname: Bangsbo
  fullname: Bangsbo, Jens
  organization: Department of Exercise and Sport Sciences, Copenhagen University, Copenhagen, Denmark
– sequence: 5
  givenname: Troels S.
  surname: Jensen
  fullname: Jensen, Troels S.
  organization: Danish Pain Research Center, Aarhus University Hospital, Noerrebrogade 44, Aarhus 8000, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23060135$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20544918$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEYhYNU7LZ64R-QgIh4MW0ySSaTy1LbVagfoKXSm5DJvNNmnUnWZIZ2_71xPxSKgldJyHPOS07OAdrzwQNCzyk5ooSUx8OUjkpacfoIzShRsuBC1XtoRiivi4qpb_voIKUFIYTWlXyC9ksiOFe0nqF41oMdY1jerpILfbhx1vTY3ppo7AjRpdHZhEOHhzCGiCfvxoSNb3GeaXvAnWsgJuw8HqNxHtr15eR3p1WY_A0eTEbT1CzyrPQUPe5Mn-DZdj1El-dnX0_fFRef5u9PTy4KK2hNCw6srSjjrQAlGygJtE1LoFSNzNuyto1lnehMpcpW1lBXjRK2qRUIY3hLCDtErze-yxh-TJBGPbhkoe-NhzAlLQUXQkrxHyTjhFJCVSZfPiAXYYo-P0PTsqSlZLXimXqxpaZmgFYvoxtMXOld7Bl4tQVMynl30Xjr0h-OkYpQJjJ3vOFsDClF6LR1oxldWOfba0r0rwLo_Bl6XYCsePNAsTP9G7t1v3M9rP4N6g-XX3aKYqPIvYD73woTv-tKMin01ce5Pr9-O6-urj9rwn4CipnP3w
CODEN MUNEDE
CitedBy_id crossref_primary_10_1177_20503121221098120
crossref_primary_10_1016_j_pathophys_2015_10_001
crossref_primary_10_3390_jcm10174031
crossref_primary_10_1097_WNP_0000000000000252
crossref_primary_10_1097_MD_0000000000011510
crossref_primary_10_1016_j_sjpain_2014_05_028
crossref_primary_10_1152_japplphysiol_00094_2021
crossref_primary_10_3389_fneur_2020_00675
crossref_primary_10_3390_medicina58030374
crossref_primary_10_1007_s00421_023_05350_w
crossref_primary_10_1016_j_clinph_2017_09_108
crossref_primary_10_1186_s40798_020_00260_z
Cites_doi 10.1152/japplphysiol.00789.2006
10.1002/mus.10406
10.1016/0013-4694(88)90196-4
10.2165/00007256-200737020-00004
10.1113/jphysiol.1987.sp016721
10.1113/expphysiol.1989.sp003268
10.1007/s00421-003-0833-3
10.1136/jnnp.38.7.683
10.2165/00007256-199825030-00004
10.1136/jnnp.27.5.386
10.1002/(SICI)1097-4598(200001)23:1<18::AID-MUS4>3.0.CO;2-B
10.1152/japplphysiol.01009.2005
10.1152/jappl.1990.69.6.2215
10.1007/BF00421103
10.1055/s-2008-1025796
10.2165/00007256-200636020-00004
10.1136/jnnp.41.10.924
10.1016/S0987-7053(00)00237-9
10.1113/jphysiol.2005.101642
10.1212/WNL.46.3.731
10.1152/japplphysiol.00515.2006
10.2165/00007256-200737090-00001
10.1152/japplphysiol.01185.2001
10.1002/(SICI)1097-4598(199706)20:6<665::AID-MUS2>3.0.CO;2-6
10.1016/S1388-2457(01)00572-7
10.1242/jeb.02182
10.1152/jn.1992.67.5.1114
10.1152/japplphysiol.01408.2004
10.1152/jappl.2000.89.6.2249
10.1007/BF02441531
10.1002/mus.10560
10.1152/japplphysiol.01183.2001
10.1055/s-2000-8882
10.1016/S1050-6411(01)00006-2
10.1016/0013-4694(86)90191-4
10.1085/jgp.200409173
10.1016/1050-6411(91)90007-R
10.2165/00007256-200131060-00002
10.1152/jappl.1987.63.6.2396
10.1007/BF02388334
10.1152/physrev.00011.2003
ContentType Journal Article
Copyright Copyright © 2010 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7TM
7TS
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
DOI 10.1002/mus.21641
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Physical Education Index
Toxicology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Toxicology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Nursing & Allied Health Premium
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-4598
EndPage 183
ExternalDocumentID 2830595231
20544918
23060135
10_1002_mus_21641
MUS21641
ark_67375_WNG_FZDG6WZP_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Danish Ministry of Culture
– fundername: Danish Agency for Science, Technology and Innovation
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWD
RWI
WRC
WUP
YCJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7TM
7TS
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c5181-4e3d6134d5e97be20edbd0e29b70ed28cbc3f5fa692d78e86b95cb89e5aa4d003
IEDL.DBID DR2
ISSN 0148-639X
1097-4598
IngestDate Fri Jul 11 06:33:01 EDT 2025
Fri Jul 11 12:37:10 EDT 2025
Fri Jul 25 12:08:36 EDT 2025
Thu Apr 03 07:10:21 EDT 2025
Mon Jul 21 09:14:32 EDT 2025
Tue Jul 01 00:45:51 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Wed Jan 22 17:05:02 EST 2025
Sun Sep 21 06:18:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human
direct muscle stimulation
compound action potential
interference pattern analysis
Interference
Electrophysiology
Excitability
Action potential
training
Muscular fiber
Motor unit
Biceps muscle
Cutaneous nerve
Needle electrode
Electromyography
brachial biceps muscle
Pattern analysis
Hypertrophy
Power spectrum
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5181-4e3d6134d5e97be20edbd0e29b70ed28cbc3f5fa692d78e86b95cb89e5aa4d003
Notes Danish Ministry of Culture
ArticleID:MUS21641
ark:/67375/WNG-FZDG6WZP-0
Danish Agency for Science, Technology and Innovation
istex:A6C5E1B764B8323218C2FE1BE0CC8D69853CB1AC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20544918
PQID 1221273894
PQPubID 1016420
PageCount 7
ParticipantIDs proquest_miscellaneous_754557750
proquest_miscellaneous_734011019
proquest_journals_1221273894
pubmed_primary_20544918
pascalfrancis_primary_23060135
crossref_citationtrail_10_1002_mus_21641
crossref_primary_10_1002_mus_21641
wiley_primary_10_1002_mus_21641_MUS21641
istex_primary_ark_67375_WNG_FZDG6WZP_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
– name: Rochester
PublicationTitle Muscle & nerve
PublicationTitleAlternate Muscle Nerve
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979; 58: 115-130.
Fuglsang-Frederiksen A, Rønager J. The motor unit firing rate and the power spectrum of EMG in humans. Electroencephalogr Clin Neurophysiol 1988; 70: 68-72.
Colson S, Martin A, Van Hoecke J. Re-examination of training effects by electrostimulation in the human elbow musculoskeletal system. Int J Sports Med 2000; 21: 281-288.
Oddsson LI, De Luca CJ. Activation imbalances in lumbar spine muscles in the presence of chronic low back pain. J Appl Physiol 2003; 94: 1410-1420.
Nandedkar SD, Stalberg E. Simulation of single muscle fibre action potentials. Med Biol Eng Comput 1983; 21: 158-165.
Christensen H, Lomonaco M, Fuglsang-Frederiksen A. Quantitative needle electromyography during sustained maximal effort. J Electromyogr Kinesiol 1991; 1: 130-138.
Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 2006; 101: 1776-1782.
Qerama E, Fuglsang-Frederiksen A, Kasch H, Bach FW, Jensen TS. Evoked pain in the motor endplate region of the brachial biceps muscle: an experimental study. Muscle Nerve 2004; 29: 393-400.
Fuglsang-Frederiksen A, Ronager J. The motor unit firing rate and the power spectrum of EMG in humans. Electroencephalogr Clin Neurophysiol 1988; 70: 68-72.
Fuglsang-Frederiksen A. Electrical activity and force during voluntary contraction of normal and diseased muscle. Acta Neurol Scand Suppl 1981; 83: 1-60.
Cannon RJ, Cafarelli E. Neuromuscular adaptations to training. J Appl Physiol 1987; 63: 2396-2402.
Jones DA, Rutherford OM, Parker DF. Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol 1989; 74: 233-256.
Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 2003; 89: 555-563.
Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med 2007; 37: 737-763.
Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW. Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 1997; 20: 665-673.
Behm DG, St-Pierre DM. The effects of strength training and disuse on the mechanisms of fatigue. Sports Med 1998; 25: 173-189.
Nielsen OB, Clausen T. The Na+/K(+)-pump protects muscle excitability and contractility during exercise. Exerc Sport Sci Rev 2000; 28: 159-164.
Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol 2005; 99: 1558-1568.
Willison RG. Analysis of electrical activity in healthy and dystrophic muscle in man. J Neurol Neurosurg Psychiatry 1964; 27: 386-394.
Fuglsang-Frederiksen A, Mansson A. Analysis of electrical activity of normal muscle in man at different degrees of voluntary effort. J Neurol Neurosurg Psychiatry 1975; 38: 683-694.
Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ. Muscle is electrically inexcitable in acute quadriplegic myopathy. Neurology 1996; 46: 731-736.
Blijham PJ, ter Laak HJ, Schelhaas HJ, van Engelen BG, Stegeman DF, Zwarts MJ. Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol 2006; 100: 1837-1841.
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 2002; 92: 2309-2318.
Ross A, Leveritt M, Riek S. Neural influences on sprint running: training adaptations and acute responses. Sports Med 2001; 31: 409-425.
Komi PV. Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors. Int J Sports Med 1986; 7( suppl 1): 10-15.
Finsterer J. EMG-interference pattern analysis. J Electromyogr Kinesiol 2001; 11: 231-246.
Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 2007; 37: 145-168.
Fuglsang-Frederiksen A, Scheel U. Transient decrease in number of motor units after immobilisation in man. J Neurol Neurosurg Psychiatry 1978; 41: 924-929.
Pedersen TH, de Paoli F, Nielsen OB. Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 2005; 125: 237-246.
Fuglsang-Frederiksen A. The utility of interference pattern analysis. Muscle Nerve 2000; 23: 18-36.
Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 2006; 36: 133-149.
D'Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R, et al. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol 2006; 570: 611-627.
Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 1992; 67: 1114-1123.
Dudley GA, Harris RT, Duvoisin MR, Hather BM, Buchanan P. Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed. J Appl Physiol 1990; 69: 2215-2221.
Trojaborg W, Weimer LH, Hays AP. Electrophysiologic studies in critical illness associated weakness: myopathy or neuropathy-a reappraisal. Clin Neurophysiol 2001; 112: 1586-1593.
Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 2003; 83: 1269-1324.
Bigland-Ritchie B. EMG and fatigue of human voluntary and stimulated contractions. Ciba Found Symp 1981; 82: 130-156.
Johnsen B, Fuglsang-Frederiksen A. Electrodiagnosis of polyneuropathy. Neurophysiol Clin 2000; 30: 339-351.
Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 2006; 209: 2265-2275.
Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjær-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol 2000; 89: 2249-2257.
Zijdewind I, Toering ST, Bessem B, Van Der Laan O, Diercks RL. Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve 2003; 28: 168-173.
Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 2007; 102: 368-373.
Komi PV, Tesch P. EMG frequency-spectrum, muscle structure, and fatigue during dynamic contractions in man. Eur J Appl Physiol Occup Physiol 1979; 42: 41-50.
Christensen H, Fuglsang-Frederiksen A. Power spectrum and turns analysis of EMG at different voluntary efforts in normal sujects. Electroencephalogr Clin Neurophysiol 1986; 64: 528-535.
Krarup C, Buchthal F. Conduction studies in peripheral nerve. Neurobehav Toxicol Teratol 1985; 7: 319-323.
Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol 1987; 391: 1-11.
Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 1989; 59: 310-319.
2007; 102
1991; 1
1979; 58
2000; 28
2004; 29
2000; 23
1997; 20
1964; 27
2000; 89
2000; 21
1975; 38
1985; 7
2006; 36
2006; 570
1981; 83
1981; 82
2003; 94
1988; 70
1987; 391
2007; 37
1998; 25
1989; 74
2001; 112
2006; 209
1987; 63
1990; 69
1986; 7
1986; 64
1978; 41
2005; 125
2000; 30
1983; 21
2003; 28
2002; 92
1989; 59
2001; 11
1979; 42
2003; 83
1996; 46
1992; 67
2005; 99
2006; 101
2006; 100
2001; 31
2003; 89
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
Bigland‐Ritchie B (e_1_2_6_21_2) 1981; 82
Fuglsang‐Frederiksen A (e_1_2_6_31_2) 1981; 83
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_33_2
Moritani T (e_1_2_6_8_2) 1979; 58
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
Krarup C (e_1_2_6_34_2) 1985; 7
e_1_2_6_7_2
Nielsen OB (e_1_2_6_17_2) 2000; 28
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW. Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 1997; 20: 665-673.
– reference: Colson S, Martin A, Van Hoecke J. Re-examination of training effects by electrostimulation in the human elbow musculoskeletal system. Int J Sports Med 2000; 21: 281-288.
– reference: Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 2007; 102: 368-373.
– reference: Qerama E, Fuglsang-Frederiksen A, Kasch H, Bach FW, Jensen TS. Evoked pain in the motor endplate region of the brachial biceps muscle: an experimental study. Muscle Nerve 2004; 29: 393-400.
– reference: Krarup C, Buchthal F. Conduction studies in peripheral nerve. Neurobehav Toxicol Teratol 1985; 7: 319-323.
– reference: Dudley GA, Harris RT, Duvoisin MR, Hather BM, Buchanan P. Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed. J Appl Physiol 1990; 69: 2215-2221.
– reference: Komi PV, Tesch P. EMG frequency-spectrum, muscle structure, and fatigue during dynamic contractions in man. Eur J Appl Physiol Occup Physiol 1979; 42: 41-50.
– reference: Christensen H, Fuglsang-Frederiksen A. Power spectrum and turns analysis of EMG at different voluntary efforts in normal sujects. Electroencephalogr Clin Neurophysiol 1986; 64: 528-535.
– reference: Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ. Muscle is electrically inexcitable in acute quadriplegic myopathy. Neurology 1996; 46: 731-736.
– reference: Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 2006; 36: 133-149.
– reference: Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 2006; 101: 1776-1782.
– reference: Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 2006; 209: 2265-2275.
– reference: Johnsen B, Fuglsang-Frederiksen A. Electrodiagnosis of polyneuropathy. Neurophysiol Clin 2000; 30: 339-351.
– reference: Zijdewind I, Toering ST, Bessem B, Van Der Laan O, Diercks RL. Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve 2003; 28: 168-173.
– reference: Finsterer J. EMG-interference pattern analysis. J Electromyogr Kinesiol 2001; 11: 231-246.
– reference: Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 2002; 92: 2309-2318.
– reference: D'Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R, et al. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol 2006; 570: 611-627.
– reference: Willison RG. Analysis of electrical activity in healthy and dystrophic muscle in man. J Neurol Neurosurg Psychiatry 1964; 27: 386-394.
– reference: Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 2003; 89: 555-563.
– reference: Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol 2005; 99: 1558-1568.
– reference: Ross A, Leveritt M, Riek S. Neural influences on sprint running: training adaptations and acute responses. Sports Med 2001; 31: 409-425.
– reference: Fuglsang-Frederiksen A, Mansson A. Analysis of electrical activity of normal muscle in man at different degrees of voluntary effort. J Neurol Neurosurg Psychiatry 1975; 38: 683-694.
– reference: Oddsson LI, De Luca CJ. Activation imbalances in lumbar spine muscles in the presence of chronic low back pain. J Appl Physiol 2003; 94: 1410-1420.
– reference: Fuglsang-Frederiksen A, Rønager J. The motor unit firing rate and the power spectrum of EMG in humans. Electroencephalogr Clin Neurophysiol 1988; 70: 68-72.
– reference: Nandedkar SD, Stalberg E. Simulation of single muscle fibre action potentials. Med Biol Eng Comput 1983; 21: 158-165.
– reference: Fuglsang-Frederiksen A. Electrical activity and force during voluntary contraction of normal and diseased muscle. Acta Neurol Scand Suppl 1981; 83: 1-60.
– reference: Fuglsang-Frederiksen A, Scheel U. Transient decrease in number of motor units after immobilisation in man. J Neurol Neurosurg Psychiatry 1978; 41: 924-929.
– reference: Cannon RJ, Cafarelli E. Neuromuscular adaptations to training. J Appl Physiol 1987; 63: 2396-2402.
– reference: Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjær-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol 2000; 89: 2249-2257.
– reference: Fuglsang-Frederiksen A, Ronager J. The motor unit firing rate and the power spectrum of EMG in humans. Electroencephalogr Clin Neurophysiol 1988; 70: 68-72.
– reference: Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 2007; 37: 145-168.
– reference: Nielsen OB, Clausen T. The Na+/K(+)-pump protects muscle excitability and contractility during exercise. Exerc Sport Sci Rev 2000; 28: 159-164.
– reference: Jones DA, Rutherford OM, Parker DF. Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol 1989; 74: 233-256.
– reference: Fuglsang-Frederiksen A. The utility of interference pattern analysis. Muscle Nerve 2000; 23: 18-36.
– reference: Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 1992; 67: 1114-1123.
– reference: Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979; 58: 115-130.
– reference: Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol 1987; 391: 1-11.
– reference: Bigland-Ritchie B. EMG and fatigue of human voluntary and stimulated contractions. Ciba Found Symp 1981; 82: 130-156.
– reference: Trojaborg W, Weimer LH, Hays AP. Electrophysiologic studies in critical illness associated weakness: myopathy or neuropathy-a reappraisal. Clin Neurophysiol 2001; 112: 1586-1593.
– reference: Christensen H, Lomonaco M, Fuglsang-Frederiksen A. Quantitative needle electromyography during sustained maximal effort. J Electromyogr Kinesiol 1991; 1: 130-138.
– reference: Behm DG, St-Pierre DM. The effects of strength training and disuse on the mechanisms of fatigue. Sports Med 1998; 25: 173-189.
– reference: Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 1989; 59: 310-319.
– reference: Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 2003; 83: 1269-1324.
– reference: Komi PV. Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors. Int J Sports Med 1986; 7( suppl 1): 10-15.
– reference: Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med 2007; 37: 737-763.
– reference: Pedersen TH, de Paoli F, Nielsen OB. Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 2005; 125: 237-246.
– reference: Blijham PJ, ter Laak HJ, Schelhaas HJ, van Engelen BG, Stegeman DF, Zwarts MJ. Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol 2006; 100: 1837-1841.
– volume: 99
  start-page: 1558
  year: 2005
  end-page: 1568
  article-title: Motor skill training and strength training are associated with different plastic changes in the central nervous system
  publication-title: J Appl Physiol
– volume: 92
  start-page: 2309
  year: 2002
  end-page: 2318
  article-title: Neural adaptation to resistance training: changes in evoked V‐wave and H‐reflex responses
  publication-title: J Appl Physiol
– volume: 570
  start-page: 611
  year: 2006
  end-page: 627
  article-title: Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders
  publication-title: J Physiol
– volume: 70
  start-page: 68
  year: 1988
  end-page: 72
  article-title: The motor unit firing rate and the power spectrum of EMG in humans
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 46
  start-page: 731
  year: 1996
  end-page: 736
  article-title: Muscle is electrically inexcitable in acute quadriplegic myopathy
  publication-title: Neurology
– volume: 1
  start-page: 130
  year: 1991
  end-page: 138
  article-title: Quantitative needle electromyography during sustained maximal effort
  publication-title: J Electromyogr Kinesiol
– volume: 94
  start-page: 1410
  year: 2003
  end-page: 1420
  article-title: Activation imbalances in lumbar spine muscles in the presence of chronic low back pain
  publication-title: J Appl Physiol
– volume: 25
  start-page: 173
  year: 1998
  end-page: 189
  article-title: The effects of strength training and disuse on the mechanisms of fatigue
  publication-title: Sports Med
– volume: 30
  start-page: 339
  year: 2000
  end-page: 351
  article-title: Electrodiagnosis of polyneuropathy
  publication-title: Neurophysiol Clin
– volume: 100
  start-page: 1837
  year: 2006
  end-page: 1841
  article-title: Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders
  publication-title: J Appl Physiol
– volume: 391
  start-page: 1
  year: 1987
  end-page: 11
  article-title: Human muscle strength training: the effects of three different regimens and the nature of the resultant changes
  publication-title: J Physiol
– volume: 64
  start-page: 528
  year: 1986
  end-page: 535
  article-title: Power spectrum and turns analysis of EMG at different voluntary efforts in normal sujects
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 63
  start-page: 2396
  year: 1987
  end-page: 2402
  article-title: Neuromuscular adaptations to training
  publication-title: J Appl Physiol
– volume: 102
  start-page: 368
  year: 2007
  end-page: 373
  article-title: Early skeletal muscle hypertrophy and architectural changes in response to high‐intensity resistance training
  publication-title: J Appl Physiol
– volume: 23
  start-page: 18
  year: 2000
  end-page: 36
  article-title: The utility of interference pattern analysis
  publication-title: Muscle Nerve
– volume: 82
  start-page: 130
  year: 1981
  end-page: 156
  article-title: EMG and fatigue of human voluntary and stimulated contractions
  publication-title: Ciba Found Symp
– volume: 209
  start-page: 2265
  year: 2006
  end-page: 2275
  article-title: Coordination of metabolic plasticity in skeletal muscle
  publication-title: J Exp Biol
– volume: 83
  start-page: 1269
  year: 2003
  end-page: 1324
  article-title: Na+–K+ pump regulation and skeletal muscle contractility
  publication-title: Physiol Rev
– volume: 37
  start-page: 737
  year: 2007
  end-page: 763
  article-title: The molecular bases of training adaptation
  publication-title: Sports Med
– volume: 59
  start-page: 310
  year: 1989
  end-page: 319
  article-title: Changes in force, cross‐sectional area and neural activation during strength training and detraining of the human quadriceps
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 125
  start-page: 237
  year: 2005
  end-page: 246
  article-title: Increased excitability of acidified skeletal muscle: role of chloride conductance
  publication-title: J Gen Physiol
– volume: 112
  start-page: 1586
  year: 2001
  end-page: 1593
  article-title: Electrophysiologic studies in critical illness associated weakness: myopathy or neuropathy—a reappraisal
  publication-title: Clin Neurophysiol
– volume: 36
  start-page: 133
  year: 2006
  end-page: 149
  article-title: Neural adaptations to resistive exercise: mechanisms and recommendations for training practices
  publication-title: Sports Med
– volume: 28
  start-page: 168
  year: 2003
  end-page: 173
  article-title: Effects of imagery motor training on torque production of ankle plantar flexor muscles
  publication-title: Muscle Nerve
– volume: 58
  start-page: 115
  year: 1979
  end-page: 130
  article-title: Neural factors versus hypertrophy in the time course of muscle strength gain
  publication-title: Am J Phys Med
– volume: 83
  start-page: 1
  year: 1981
  end-page: 60
  article-title: Electrical activity and force during voluntary contraction of normal and diseased muscle
  publication-title: Acta Neurol Scand Suppl
– volume: 7
  start-page: 10
  issue: suppl 1
  year: 1986
  end-page: 15
  article-title: Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors
  publication-title: Int J Sports Med
– volume: 7
  start-page: 319
  year: 1985
  end-page: 323
  article-title: Conduction studies in peripheral nerve
  publication-title: Neurobehav Toxicol Teratol
– volume: 21
  start-page: 281
  year: 2000
  end-page: 288
  article-title: Re‐examination of training effects by electrostimulation in the human elbow musculoskeletal system
  publication-title: Int J Sports Med
– volume: 38
  start-page: 683
  year: 1975
  end-page: 694
  article-title: Analysis of electrical activity of normal muscle in man at different degrees of voluntary effort
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 11
  start-page: 231
  year: 2001
  end-page: 246
  article-title: EMG‐interference pattern analysis
  publication-title: J Electromyogr Kinesiol
– volume: 89
  start-page: 555
  year: 2003
  end-page: 563
  article-title: Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength‐trained and untrained men
  publication-title: Eur J Appl Physiol
– volume: 21
  start-page: 158
  year: 1983
  end-page: 165
  article-title: Simulation of single muscle fibre action potentials
  publication-title: Med Biol Eng Comput
– volume: 27
  start-page: 386
  year: 1964
  end-page: 394
  article-title: Analysis of electrical activity in healthy and dystrophic muscle in man
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 29
  start-page: 393
  year: 2004
  end-page: 400
  article-title: Evoked pain in the motor endplate region of the brachial biceps muscle: an experimental study
  publication-title: Muscle Nerve
– volume: 31
  start-page: 409
  year: 2001
  end-page: 425
  article-title: Neural influences on sprint running: training adaptations and acute responses
  publication-title: Sports Med
– volume: 41
  start-page: 924
  year: 1978
  end-page: 929
  article-title: Transient decrease in number of motor units after immobilisation in man
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 42
  start-page: 41
  year: 1979
  end-page: 50
  article-title: EMG frequency‐spectrum, muscle structure, and fatigue during dynamic contractions in man
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 74
  start-page: 233
  year: 1989
  end-page: 256
  article-title: Physiological changes in skeletal muscle as a result of strength training
  publication-title: Q J Exp Physiol
– volume: 20
  start-page: 665
  year: 1997
  end-page: 673
  article-title: Direct muscle stimulation in acute quadriplegic myopathy
  publication-title: Muscle Nerve
– volume: 69
  start-page: 2215
  year: 1990
  end-page: 2221
  article-title: Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed
  publication-title: J Appl Physiol
– volume: 37
  start-page: 145
  year: 2007
  end-page: 168
  article-title: The adaptations to strength training: morphological and neurological contributions to increased strength
  publication-title: Sports Med
– volume: 89
  start-page: 2249
  year: 2000
  end-page: 2257
  article-title: Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training
  publication-title: J Appl Physiol
– volume: 101
  start-page: 1776
  year: 2006
  end-page: 1782
  article-title: Motor training induces experience‐specific patterns of plasticity across motor cortex and spinal cord
  publication-title: J Appl Physiol
– volume: 67
  start-page: 1114
  year: 1992
  end-page: 1123
  article-title: Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions
  publication-title: J Neurophysiol
– volume: 28
  start-page: 159
  year: 2000
  end-page: 164
  article-title: The Na+/K(+)‐pump protects muscle excitability and contractility during exercise
  publication-title: Exerc Sport Sci Rev
– ident: e_1_2_6_14_2
  doi: 10.1152/japplphysiol.00789.2006
– volume: 28
  start-page: 159
  year: 2000
  ident: e_1_2_6_17_2
  article-title: The Na+/K(+)‐pump protects muscle excitability and contractility during exercise
  publication-title: Exerc Sport Sci Rev
– ident: e_1_2_6_10_2
  doi: 10.1002/mus.10406
– ident: e_1_2_6_29_2
  doi: 10.1016/0013-4694(88)90196-4
– ident: e_1_2_6_2_2
  doi: 10.2165/00007256-200737020-00004
– ident: e_1_2_6_5_2
  doi: 10.1113/jphysiol.1987.sp016721
– ident: e_1_2_6_38_2
  doi: 10.1113/expphysiol.1989.sp003268
– ident: e_1_2_6_46_2
  doi: 10.1007/s00421-003-0833-3
– ident: e_1_2_6_48_2
  doi: 10.1136/jnnp.38.7.683
– ident: e_1_2_6_4_2
  doi: 10.2165/00007256-199825030-00004
– ident: e_1_2_6_30_2
  doi: 10.1136/jnnp.27.5.386
– ident: e_1_2_6_19_2
  doi: 10.1002/(SICI)1097-4598(200001)23:1<18::AID-MUS4>3.0.CO;2-B
– volume: 82
  start-page: 130
  year: 1981
  ident: e_1_2_6_21_2
  article-title: EMG and fatigue of human voluntary and stimulated contractions
  publication-title: Ciba Found Symp
– ident: e_1_2_6_43_2
  doi: 10.1152/japplphysiol.01009.2005
– ident: e_1_2_6_40_2
  doi: 10.1152/jappl.1990.69.6.2215
– ident: e_1_2_6_47_2
  doi: 10.1007/BF00421103
– ident: e_1_2_6_6_2
  doi: 10.1055/s-2008-1025796
– ident: e_1_2_6_35_2
  doi: 10.2165/00007256-200636020-00004
– ident: e_1_2_6_41_2
  doi: 10.1016/0013-4694(88)90196-4
– ident: e_1_2_6_3_2
  doi: 10.1136/jnnp.41.10.924
– ident: e_1_2_6_27_2
  doi: 10.1016/S0987-7053(00)00237-9
– ident: e_1_2_6_15_2
  doi: 10.1113/jphysiol.2005.101642
– ident: e_1_2_6_24_2
  doi: 10.1212/WNL.46.3.731
– ident: e_1_2_6_12_2
  doi: 10.1152/japplphysiol.00515.2006
– ident: e_1_2_6_33_2
  doi: 10.2165/00007256-200737090-00001
– volume: 58
  start-page: 115
  year: 1979
  ident: e_1_2_6_8_2
  article-title: Neural factors versus hypertrophy in the time course of muscle strength gain
  publication-title: Am J Phys Med
– ident: e_1_2_6_13_2
  doi: 10.1152/japplphysiol.01185.2001
– ident: e_1_2_6_23_2
  doi: 10.1002/(SICI)1097-4598(199706)20:6<665::AID-MUS2>3.0.CO;2-6
– ident: e_1_2_6_25_2
  doi: 10.1016/S1388-2457(01)00572-7
– volume: 7
  start-page: 319
  year: 1985
  ident: e_1_2_6_34_2
  article-title: Conduction studies in peripheral nerve
  publication-title: Neurobehav Toxicol Teratol
– ident: e_1_2_6_32_2
  doi: 10.1242/jeb.02182
– ident: e_1_2_6_9_2
  doi: 10.1152/jn.1992.67.5.1114
– ident: e_1_2_6_11_2
  doi: 10.1152/japplphysiol.01408.2004
– ident: e_1_2_6_39_2
  doi: 10.1152/jappl.2000.89.6.2249
– ident: e_1_2_6_42_2
  doi: 10.1007/BF02441531
– ident: e_1_2_6_26_2
  doi: 10.1002/mus.10560
– volume: 83
  start-page: 1
  year: 1981
  ident: e_1_2_6_31_2
  article-title: Electrical activity and force during voluntary contraction of normal and diseased muscle
  publication-title: Acta Neurol Scand Suppl
– ident: e_1_2_6_45_2
  doi: 10.1152/japplphysiol.01183.2001
– ident: e_1_2_6_37_2
  doi: 10.1055/s-2000-8882
– ident: e_1_2_6_20_2
  doi: 10.1016/S1050-6411(01)00006-2
– ident: e_1_2_6_28_2
  doi: 10.1016/0013-4694(86)90191-4
– ident: e_1_2_6_16_2
  doi: 10.1085/jgp.200409173
– ident: e_1_2_6_22_2
  doi: 10.1016/1050-6411(91)90007-R
– ident: e_1_2_6_44_2
  doi: 10.2165/00007256-200131060-00002
– ident: e_1_2_6_36_2
  doi: 10.1152/jappl.1987.63.6.2396
– ident: e_1_2_6_7_2
  doi: 10.1007/BF02388334
– ident: e_1_2_6_18_2
  doi: 10.1152/physrev.00011.2003
SSID ssj0001867
Score 2.0271401
Snippet We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 177
SubjectTerms Action Potentials - physiology
Adult
Biological and medical sciences
brachial biceps muscle
compound action potential
direct muscle stimulation
Electric Stimulation
Electromyography
Fundamental and applied biological sciences. Psychology
Humans
interference pattern analysis
Male
Muscle Contraction - physiology
Muscle Strength - physiology
Muscle, Skeletal - physiology
Patient Selection
Resistance Training
Statistics, Nonparametric
Striated muscle. Tendons
Studies
training
Vertebrates: osteoarticular system, musculoskeletal system
Title Electrophysiological characteristics of motor units and muscle fibers in trained and untrained young male subjects
URI https://api.istex.fr/ark:/67375/WNG-FZDG6WZP-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmus.21641
https://www.ncbi.nlm.nih.gov/pubmed/20544918
https://www.proquest.com/docview/1221273894
https://www.proquest.com/docview/734011019
https://www.proquest.com/docview/754557750
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jgvji_F51jiAivvSubdImwSdxuxvChqiXXYYQ8lWQud5xewvqX-9J0vZyZYr4lpKTJic9OfklOf0FoZeZUsxp61LFSZZSVdtUKWFTq1VuKsFJbkO0xVl1MqPv5-V8C70Z_oWJ_BDjhpsfGcFf-wGudHuwJg296tpJAWDfL31yUnne_MOPa-ooT9QWwxd5CrPwfGAVyoqDseTGXHTLd-t3HxupWuieOt5rcRPw3MSxYSKa7qAvgwox_uRy0q30xPz8jd3xP3W8h-72ABW_jRZ1H2255gG6fdofwT9Ey6N4cU7YEhk8JzabvM94UWOwgcUSd-AyWqwai6EWeCGufYhKi782ONxO4WzI7Jrh6Yd3P_gK5i3cdtrvErWP0Gx69PndSdpf3JCaEhBDSh2xABOoLZ1g2hWZs9pmrhCaQbLgRhtSl7WqRGEZd7zSojSaC1cqRS34mcdou1k0bhdhTZgWmSbc1BW1ginj-fgJVQJsrGZlgl4Pn1CantXcN_ibjHzMhQTtZOjDBL0YRa8jlcdNQq-CHYwSannpY99YKc_PjuX04vC4Or_4ILME7W8YyljAr-kAV0PL9gbLkb1faGVeeEZ9AIk0QXjMhhHtj2lU4xbQDkaoB2W5-IsI4N6SAdhL0JNok-vqAYNTkXPomGBZf1ZVns4-hcTTfxd9hu7E8AkfAbmHtlfLzj0HVLbS-2H4_QKY9DYe
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGA9jA_XLfHfVOYOI-KW3vqRNA34R3e3U3SG6Y8dAQt4KY1tPrlfY_Ot9krQ9TqaI31LypMmTPnnyS_L0F4ReRUJQI7UJRZFGIRGlDoVgOtRSxCpnRRprF20xyUdT8mmWzTbQ2-5fGM8P0W-42ZHh_LUd4HZDen_FGnrZ1IME0D6sfbbc-ZyFRF9X5FGWqs0HMBYhzMOzjlcoSvb7omuz0Zbt2CsbHSlq6KDS32xxE_RcR7JuKhreRd87JXwEyvmgWcqB-vkbv-P_ankPbbcYFb_zRnUfbZjqAbo1bk_hH6LFgb87x-2KdM4Tq3XqZzwvMZjBfIEb8Bo1FpXGUAu8EJc2SqXGZxV2F1QY7TKbqnu6th4IX8LUhetG2o2i-hGaDg-O34_C9u6GUGUAGkJiUg1IgejMMCpNEhktdWQSJikkk0JJlZZZKXKWaFqYIpcsU7JgJhOCaHA1j9FmNa_MDsIypZJFMi1UmRPNqFCWkj8lgoGZlTQL0JvuG3LVEpvbBl9wT8mccNCOuz4M0Mte9Idn87hJ6LUzhF5CLM5t-BvN-MnkkA9PPxzmJ6dfeBSgvTVL6QvYZR1Aa2jZbmc6vHUNNY8TS6oPOJEECPfZMKjtSY2ozBzaQVNicVnM_iIC0DejgPcC9MQb5ap6gOGExQV0jDOtP6vKx9NvLvH030VfoNuj4_ERP_o4-fwM3fHRFDYgchdtLheNeQ4gbSn33Fj8BdcZOjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBYhgdCX3ofbNBWllL5440OyLPpUmmzSI0tou2QJAaHLUNJ4w3oNbX99R5LtZUtaSt9kNLIOj2Y-SeNPCL1IpGRWGRvLMk9iIisTS8lNbJRMdcHLPDU-2mJSHE3J-xmdbaDX_b8wgR9i2HBzM8PbazfBr0y1tyINvWybUQZgH5Y-W6QAN-kQ0acVd5Rjagvxi2UMbnjW0wol2d5QdM0Zbblx_e6CI2UD41OFiy2uQ57rQNZ7ovEtdN73IQSgXIzapRrpn7_RO_5nJ2-jmx1CxW-CSt1BG7a-i7aPuzP4e2hxEG7O8XsivenEep34Gc8rDEowX-AWbEaDZW0w1AIvxJWLUWnw1xr76yms8Zlt3T_9cPYHX4Ljwk2r3DZRcx9Nxwdf3h7F3c0NsaYAGWJicwM4gRhqOVM2S6xRJrEZVwySWamVzitayYJnhpW2LBSnWpXcUimJAUPzAG3W89o-QljlTPFE5aWuCmI4k9oR8udEclCyitEIveo_odAdrblr8DcRCJkzAb0Tfgwj9HwQvQpcHtcJvfR6MEjIxYULfmNUnE4Oxfhs_7A4PTsRSYR21xRlKOAWdQCsoWU7veaIzjA0Is0cpT6gRBIhPGTDlHbnNLK2c2gHy4lDZSn_iwgAX8oA7UXoYdDJVfUAwglPSxgYr1l_7qo4nn72icf_LvoMbZ_sj8XHd5MPT9CNEErhoiF30OZy0dqngNCWatfPxF8GQzjr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophysiological+characteristics+of+motor+units+and+muscle+fibers+in+trained+and+untrained+young+male+subjects&rft.jtitle=Muscle+%26+nerve&rft.au=Duez%2C+Lene&rft.au=Qerama%2C+Erisela&rft.au=Fuglsang-Frederiksen%2C+Anders&rft.au=Bangsbo%2C+Jens&rft.date=2010-08-01&rft.eissn=1097-4598&rft.volume=42&rft.issue=2&rft.spage=177&rft_id=info:doi/10.1002%2Fmus.21641&rft_id=info%3Apmid%2F20544918&rft.externalDocID=20544918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-639X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-639X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-639X&client=summon