Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film

Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industri...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 9; no. 12; pp. 125014 - 125014-13
Main Authors Belus, Vincent, Rabault, Jean, Viquerat, Jonathan, Che, Zhizhao, Hachem, Elie, Reglade, Ulysse
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.12.2019
American Institute of Physics- AIP Publishing LLC
AIP Publishing LLC
Subjects
Online AccessGet full text
ISSN2158-3226
2158-3226
DOI10.1063/1.5132378

Cover

Abstract Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance.
AbstractList Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance.
Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional (1D) depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows to both speed up learning considerably, and to easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naive approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional (2D) or three-dimensional (3D) systems featuring translational, axisymmetric or other invariance.
Author Rabault, Jean
Viquerat, Jonathan
Che, Zhizhao
Reglade, Ulysse
Hachem, Elie
Belus, Vincent
Author_xml – sequence: 1
  givenname: Vincent
  surname: Belus
  fullname: Belus, Vincent
  email: vincent.belus@mines-paristech.fr
  organization: 3State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Jean
  surname: Rabault
  fullname: Rabault, Jean
  organization: 3State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Jonathan
  surname: Viquerat
  fullname: Viquerat, Jonathan
  email: jonathan.viquerat@mines-paristech.fr
  organization: MINES Paristech PSL, Research University CEMEF
– sequence: 4
  givenname: Zhizhao
  surname: Che
  fullname: Che, Zhizhao
  email: chezhizhao@tju.edu.cn
  organization: State Key Laboratory of Engines, Tianjin University
– sequence: 5
  givenname: Elie
  surname: Hachem
  fullname: Hachem, Elie
  email: elie.hachem@mines-paristech.fr
  organization: MINES Paristech PSL, Research University CEMEF
– sequence: 6
  givenname: Ulysse
  surname: Reglade
  fullname: Reglade, Ulysse
  email: ulysse.reglade@mines-paristech.fr
  organization: 3State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
BackLink https://hal.science/hal-02401501$$DView record in HAL
BookMark eNp9ks1uGyEUhUdVKjVNs-gTFKmrVpoEmIEZL6MobSJZ6qZdoztwcbAwOICt5lX6tMWe9FdV2YCOvnsul8PL5iTEgE3zmtELRmV3yS4E63g3jM-aU87E2Hacy5Pfzi-a85zXtK5-wejYnzbfbr5ufXTFhRXxUYN35ZFAMKQkCNlDcTGAJy7sITkIGkmJxGB2q0DQWtTF7bEKuCUJXbAxadxgKMQjpHBw1TGUFD2JlpR7JKw1rgJ59t2FXGDySCx4f7yDe9g5Q6zzm1fN86pmPH_az5ovH24-X9-2y08f766vlq0WbCit7QdDByaYnPqRib6OhWyQoEezEHYEgcYaPvVU0B6MRqSDtqLTi2nBhRS2O2vuZl8TYa22yW0gPaoITh2FmFYKUnHao9J0pJMe2EJq2wsxgUTk0ySAD5OETlavd7PXPfg_rG6vluqgUd5TJijbs8q-mVmdXK4BqBATqBqL4GoQVB6ItzOxTfFhh7moddyl-m5Z8Zoz53Wk4VdPnWLOCe3Pxoyqw79QTD39i8pe_sVqV44h17yd_2fF-7ki_yD_Y_8dQVTJCw
CODEN AAIDBI
CitedBy_id crossref_primary_10_1017_jfm_2024_1133
crossref_primary_10_3390_fluids7020062
crossref_primary_10_1007_s42241_020_0028_y
crossref_primary_10_1063_5_0006492
crossref_primary_10_1007_s10494_025_00642_x
crossref_primary_10_1098_rspa_2021_0618
crossref_primary_10_1017_jfm_2022_1043
crossref_primary_10_1038_s42256_020_00272_0
crossref_primary_10_1063_5_0103113
crossref_primary_10_3390_app14093561
crossref_primary_10_1016_j_snb_2023_134636
crossref_primary_10_3390_act13120488
crossref_primary_10_1038_s41598_023_34007_z
crossref_primary_10_1017_jfm_2021_301
crossref_primary_10_21605_cukurovaumfd_1005315
crossref_primary_10_1007_s10494_024_00619_2
crossref_primary_10_1016_j_nucengdes_2023_112731
crossref_primary_10_1038_s41467_025_56408_6
crossref_primary_10_1063_5_0153181
crossref_primary_10_1103_PhysRevFluids_6_053902
crossref_primary_10_1017_jfm_2023_76
crossref_primary_10_1103_PhysRevE_104_055108
crossref_primary_10_1007_s00521_022_07013_x
crossref_primary_10_3390_act11120359
crossref_primary_10_1063_5_0037371
crossref_primary_10_1017_jfm_2020_1170
crossref_primary_10_1063_5_0128446
crossref_primary_10_1063_5_0068454
crossref_primary_10_1103_PhysRevFluids_7_L122001
crossref_primary_10_1063_5_0172081
crossref_primary_10_1017_jfm_2023_147
crossref_primary_10_1017_dce_2023_28
crossref_primary_10_1007_s10494_024_00609_4
crossref_primary_10_1007_s11012_024_01808_z
crossref_primary_10_1063_5_0097241
crossref_primary_10_1017_jfm_2022_1020
crossref_primary_10_1140_epje_s10189_023_00285_8
crossref_primary_10_1016_j_jcp_2021_110317
crossref_primary_10_3390_en13225920
crossref_primary_10_1063_5_0135638
crossref_primary_10_1016_j_jcp_2023_112018
crossref_primary_10_1063_5_0052524
crossref_primary_10_1016_j_flowmeasinst_2021_102047
crossref_primary_10_1063_5_0204237
crossref_primary_10_1016_j_physd_2024_134096
crossref_primary_10_1063_5_0143913
crossref_primary_10_1103_PhysRevFluids_8_024604
crossref_primary_10_3390_fluids8070208
crossref_primary_10_1016_j_oceaneng_2025_120989
crossref_primary_10_1063_5_0087208
crossref_primary_10_1088_1873_7005_ac4f2d
crossref_primary_10_1103_PhysRevE_105_045105
crossref_primary_10_3389_arc_2023_11130
crossref_primary_10_1017_jfm_2021_1045
Cites_doi 10.1016/j.ijmultiphaseflow.2014.06.013
10.1016/j.jcp.2019.108910
10.1038/nature14236
10.1063/1.5116415
10.1017/jfm.2015.95
10.1063/1.3294884
10.1109/tim.2019.2932649
10.1002/aic.690310907
10.1103/physrevfluids.4.054603
10.1017/jfm.2019.62
10.1103/revmodphys.81.1131
10.1038/nature24270
10.1063/1.2750384
10.1016/0009-2509(95)00292-8
10.1038/nature14539
10.1063/1.4938761
10.1098/rspa.2019.0351
10.1063/1.2196450
10.1088/1361-6501/aa8b87
10.1016/0893-6080(89)90020-8
10.1063/1.2158428
10.1063/1.5115258
10.1063/1.5055016
ContentType Journal Article
Copyright Author(s)
2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
info:eu-repo/semantics/openAccess
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
– notice: info:eu-repo/semantics/openAccess
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
3HK
1XC
VOOES
DOA
DOI 10.1063/1.5132378
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
NORA - Norwegian Open Research Archives
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Architecture
Computer Science
EISSN 2158-3226
EndPage 125014-13
ExternalDocumentID oai_doaj_org_article_c080bc7196cf455ba6ee2bb5a27b6a36
oai_HAL_hal_02401501v1
10852_75061
10_1063_1_5132378
adv
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 280625
  funderid: http://dx.doi.org/10.13039/501100005416
GroupedDBID 5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AHSDT
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRP
GROUPED_DOAJ
HH5
KQ8
M~E
OK1
RIP
RNS
RQS
AAYXX
ABJGX
ADMLS
AKSGC
CITATION
8FD
H8D
L7M
3HK
4.4
EJD
IPNFZ
M71
RIG
ROL
1XC
VOOES
ID FETCH-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3
IEDL.DBID AJDQP
ISSN 2158-3226
IngestDate Wed Aug 27 01:30:08 EDT 2025
Fri Sep 12 12:32:52 EDT 2025
Sat Apr 29 05:44:06 EDT 2023
Mon Jun 30 04:34:06 EDT 2025
Thu Apr 24 22:49:20 EDT 2025
Wed Sep 10 04:19:13 EDT 2025
Fri Jun 21 00:14:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2158-3226/2019/9(12)/125014/13/$0.00
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7244-6592
0000-0002-5947-138X
0000-0002-0682-0603
0000-0002-6026-9250
0000-0002-2202-6397
OpenAccessLink http://dx.doi.org/10.1063/1.5132378
PQID 2323225047
PQPubID 2050671
PageCount 13
ParticipantIDs proquest_journals_2323225047
doaj_primary_oai_doaj_org_article_c080bc7196cf455ba6ee2bb5a27b6a36
scitation_primary_10_1063_1_5132378
crossref_primary_10_1063_1_5132378
hal_primary_oai_HAL_hal_02401501v1
crossref_citationtrail_10_1063_1_5132378
cristin_nora_10852_75061
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2019
Publisher American Institute of Physics
American Institute of Physics- AIP Publishing LLC
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics- AIP Publishing LLC
– name: AIP Publishing LLC
References Rabault, Kuchta, Jensen, Réglade, Cerardi (c12) 2019; 865
Ren, Wang, Tang (c17) 2019; 31
Rabault, Kolaas, Jensen (c26) 2017; 28
LeCun, Bengio, Hinton (c23) 2015; 521
Bingham, Raibaudo, Morton, Martinuzzi (c18) 2018; 30
Alekseenko, Antipin, Guzanov, Kharlamov, Markovich (c3) 2005; 17
Alekseenko, Nakoryakov, Pokusaev (c1) 1985; 31
Dávalos-Orozco (c4) 2007; 19
Srinivasan, Guastoni, Azizpour, Schlatter, Vinuesa (c28) 2019; 4
Rabault, Kuhnle (c13) 2019; 31
Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (c24) 2017; 550
Nosoko, Yoshimura, Nagata, Oyakawa (c2) 1996; 51
Thompson, Gomes, Pavliotis, Papageorgiou (c6) 2016; 28
Gautier, Aider, Duriez, Noack, Segond, Abel (c16) 2015; 770
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (c11) 2015; 518
Cai, Liang, Gao, Xu, Wei (c27)
Vlachogiannis, Samandas, Leontidis, Bontozoglou (c5) 2010; 22
Craster, Matar (c20) 2009; 81
Kurt, Stinchcombe, White (c31) 1989; 2
Demekhin, Kalliadasis, Velarde (c7) 2006; 18
Che, Fang, Percival, Pain, Matar, Navon (c19) 2014; 67
2023080501204719600_c15
(2023080501204719600_c36) 2012
2023080501204719600_c37
(2023080501204719600_c22) 2007
(2023080501204719600_c31) 1989; 2
2023080501204719600_c30
2023080501204719600_c32
(2023080501204719600_c18) 2018; 30
(2023080501204719600_c28) 2019; 4
(2023080501204719600_c16) 2015; 770
2023080501204719600_c34
(2023080501204719600_c7) 2006; 18
(2023080501204719600_c3) 2005; 17
(2023080501204719600_c12) 2019; 865
(2023080501204719600_c23) 2015; 521
(2023080501204719600_c33) 2000
(2023080501204719600_c10) 1998
(2023080501204719600_c39) 2016
(2023080501204719600_c1) 1985; 31
(2023080501204719600_c5) 2010; 22
(2023080501204719600_c35) 1995
(2023080501204719600_c2) 1996; 51
(2023080501204719600_c19) 2014; 67
(2023080501204719600_c13) 2019; 31
(2023080501204719600_c14) 2016
(2023080501204719600_c6) 2016; 28
(2023080501204719600_c9) 2013
(2023080501204719600_c26) 2017; 28
2023080501204719600_c27
2023080501204719600_c29
(2023080501204719600_c40) 2016
(2023080501204719600_c20) 2009; 81
(2023080501204719600_c11) 2015; 518
(2023080501204719600_c21) 2003
(2023080501204719600_c4) 2007; 19
(2023080501204719600_c8) 1998
(2023080501204719600_c17) 2019; 31
(2023080501204719600_c24) 2017; 550
(2023080501204719600_c25) 2017
(2023080501204719600_c38) 2018
References_xml – volume: 81
  start-page: 1131
  year: 2009
  ident: c20
  article-title: Dynamics and stability of thin liquid films
  publication-title: Rev. Mod. Phys.
– volume: 550
  start-page: 354
  year: 2017
  ident: c24
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
– volume: 28
  start-page: 125301
  year: 2017
  ident: c26
  article-title: Performing particle image velocimetry using artificial neural networks: A proof-of-concept
  publication-title: Meas. Sci. Technol.
– volume: 18
  start-page: 042111
  year: 2006
  ident: c7
  article-title: Suppressing falling film instabilities by Marangoni forces
  publication-title: Phys. Fluids
– volume: 770
  start-page: 442
  year: 2015
  ident: c16
  article-title: Closed-loop separation control using machine learning
  publication-title: J. Fluid Mech.
– volume: 51
  start-page: 725
  year: 1996
  ident: c2
  article-title: Characteristics of two-dimensional waves on a falling liquid film
  publication-title: Chem. Eng. Sci.
– volume: 2
  start-page: 359
  year: 1989
  ident: c31
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 518
  start-page: 529
  year: 2015
  ident: c11
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 22
  start-page: 012106
  year: 2010
  ident: c5
  article-title: Effect of channel width on the primary instability of inclined film flow
  publication-title: Phys. Fluids
– volume: 67
  start-page: 153
  year: 2014
  ident: c19
  article-title: An ensemble method for sensor optimisation applied to falling liquid films
  publication-title: Int. J. Multiphase Flow
– volume: 17
  start-page: 121704
  year: 2005
  ident: c3
  article-title: Three-dimensional solitary waves on falling liquid film at low Reynolds numbers
  publication-title: Phys. Fluids
– volume: 521
  start-page: 436
  year: 2015
  ident: c23
  article-title: Deep learning
  publication-title: Nature
– volume: 4
  start-page: 054603
  year: 2019
  ident: c28
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Phys. Rev. Fluids
– volume: 31
  start-page: 094105
  year: 2019
  ident: c13
  article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
  publication-title: Phys. Fluids
– ident: c27
  article-title: Particle image velocimetry based on a deep learning motion estimator
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 865
  start-page: 281
  year: 2019
  ident: c12
  article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
  publication-title: J. Fluid Mech.
– volume: 30
  start-page: 127104
  year: 2018
  ident: c18
  article-title: Suppression of fluctuating lift on a cylinder via evolutionary algorithms: Control with interfering small cylinder
  publication-title: Phys. Fluids
– volume: 31
  start-page: 093601
  year: 2019
  ident: c17
  article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning
  publication-title: Phys. Fluids
– volume: 28
  start-page: 012107
  year: 2016
  ident: c6
  article-title: Stabilising falling liquid film flows using feedback control
  publication-title: Phys. Fluids
– volume: 19
  start-page: 074103
  year: 2007
  ident: c4
  article-title: Nonlinear instability of a thin film flowing down a smoothly deformed surface
  publication-title: Phys. Fluids
– volume: 31
  start-page: 1446
  year: 1985
  ident: c1
  article-title: Wave formation on a vertical falling liquid film
  publication-title: AIChE J.
– volume: 67
  start-page: 153
  year: 2014
  ident: 2023080501204719600_c19
  article-title: An ensemble method for sensor optimisation applied to falling liquid films
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2014.06.013
– ident: 2023080501204719600_c30
  doi: 10.1016/j.jcp.2019.108910
– year: 2016
  ident: 2023080501204719600_c40
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 2023080501204719600_c36
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 2023080501204719600_c11
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 31
  start-page: 094105
  issue: 9
  year: 2019
  ident: 2023080501204719600_c13
  article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
  publication-title: Phys. Fluids
  doi: 10.1063/1.5116415
– ident: 2023080501204719600_c34
– ident: 2023080501204719600_c32
– volume: 770
  start-page: 442
  year: 2015
  ident: 2023080501204719600_c16
  article-title: Closed-loop separation control using machine learning
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.95
– volume: 22
  start-page: 012106
  issue: 1
  year: 2010
  ident: 2023080501204719600_c5
  article-title: Effect of channel width on the primary instability of inclined film flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.3294884
– ident: 2023080501204719600_c27
  article-title: Particle image velocimetry based on a deep learning motion estimator
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2019.2932649
– volume-title: Introduction to Reinforcement Learning
  year: 1998
  ident: 2023080501204719600_c10
– volume-title: Foundations of Genetic Programming
  year: 2013
  ident: 2023080501204719600_c9
– volume: 31
  start-page: 1446
  issue: 9
  year: 1985
  ident: 2023080501204719600_c1
  article-title: Wave formation on a vertical falling liquid film
  publication-title: AIChE J.
  doi: 10.1002/aic.690310907
– volume: 4
  start-page: 054603
  issue: 5
  year: 2019
  ident: 2023080501204719600_c28
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/physrevfluids.4.054603
– volume-title: An Introduction to Computational Fluid Dynamics: The Finite Volume Method
  year: 2007
  ident: 2023080501204719600_c22
– start-page: 265
  year: 2016
  ident: 2023080501204719600_c39
  article-title: Tensorflow: A system for large-scale machine learning
– volume: 865
  start-page: 281
  year: 2019
  ident: 2023080501204719600_c12
  article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.62
– volume: 81
  start-page: 1131
  issue: 3
  year: 2009
  ident: 2023080501204719600_c20
  article-title: Dynamics and stability of thin liquid films
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/revmodphys.81.1131
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 2023080501204719600_c24
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– start-page: 1057
  volume-title: Advances in Neural Information Processing Systems
  year: 2000
  ident: 2023080501204719600_c33
  article-title: Policy gradient methods for reinforcement learning with function approximation
– volume: 19
  start-page: 074103
  issue: 7
  year: 2007
  ident: 2023080501204719600_c4
  article-title: Nonlinear instability of a thin film flowing down a smoothly deformed surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.2750384
– volume: 51
  start-page: 725
  issue: 5
  year: 1996
  ident: 2023080501204719600_c2
  article-title: Characteristics of two-dimensional waves on a falling liquid film
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(95)00292-8
– ident: 2023080501204719600_c29
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2023080501204719600_c23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 28
  start-page: 012107
  issue: 1
  year: 2016
  ident: 2023080501204719600_c6
  article-title: Stabilising falling liquid film flows using feedback control
  publication-title: Phys. Fluids
  doi: 10.1063/1.4938761
– start-page: 3389
  year: 2017
  ident: 2023080501204719600_c25
  article-title: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates
– volume-title: Genetic Programming: An Introduction
  year: 1998
  ident: 2023080501204719600_c8
– ident: 2023080501204719600_c15
  doi: 10.1098/rspa.2019.0351
– volume-title: The Handbook of Brain Theory and Neural Networks
  year: 1995
  ident: 2023080501204719600_c35
  article-title: Convolutional networks for images, speech, and time series
– ident: 2023080501204719600_c37
– volume: 18
  start-page: 042111
  issue: 4
  year: 2006
  ident: 2023080501204719600_c7
  article-title: Suppressing falling film instabilities by Marangoni forces
  publication-title: Phys. Fluids
  doi: 10.1063/1.2196450
– volume-title: Level Set Methods and Dynamic Implicit Surfaces
  year: 2003
  ident: 2023080501204719600_c21
– volume: 28
  start-page: 125301
  issue: 12
  year: 2017
  ident: 2023080501204719600_c26
  article-title: Performing particle image velocimetry using artificial neural networks: A proof-of-concept
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa8b87
– year: 2018
  ident: 2023080501204719600_c38
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 2023080501204719600_c31
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 17
  start-page: 121704
  issue: 12
  year: 2005
  ident: 2023080501204719600_c3
  article-title: Three-dimensional solitary waves on falling liquid film at low Reynolds numbers
  publication-title: Phys. Fluids
  doi: 10.1063/1.2158428
– volume: 31
  start-page: 093601
  issue: 9
  year: 2019
  ident: 2023080501204719600_c17
  article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning
  publication-title: Phys. Fluids
  doi: 10.1063/1.5115258
– volume-title: Machine Learning Control-Taming Nonlinear Dynamics and Turbulence
  year: 2016
  ident: 2023080501204719600_c14
– volume: 30
  start-page: 127104
  issue: 12
  year: 2018
  ident: 2023080501204719600_c18
  article-title: Suppression of fluctuating lift on a cylinder via evolutionary algorithms: Control with interfering small cylinder
  publication-title: Phys. Fluids
  doi: 10.1063/1.5055016
SSID ssj0000491084
Score 2.4685977
Snippet Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those...
SourceID doaj
hal
cristin
proquest
crossref
scitation
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125014
SubjectTerms Architecture
Artificial Intelligence
Computer Science
Falling liquid films
Fluid mechanics
Invariance
Machine learning
Mathematical Physics
Mechanics
Modeling and Simulation
Multiphase flow
Physics
System effectiveness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpQouqHypCwWNgAOX0DiJ7eRYENUKAScq9Wb5E4JCtrTZ_pj-Wmbs7GorgbhwtazE8jx7nu2nN4y9bgOeMVrlChmiKZrQicI4FwupIvlVGeU83UN-_iKXZ83Hc3G-U-qLNGHZHjhP3DE5YVunECguNkJYI0OorBWmUlaaOpltl125c5j6kXkvL1O5YUxpbYGolRtbIVkf87cCD2E1lVbbd2ktjbfSUnLvx2TznbSRO8TzLmal_EC-k4NOD9j9mTzCSR70A3YnjA_ZfhJxuqtH7CYJ6noSMkPKUciwwYweJkpIw3ztB_14jQdkijZMK_BJwgFZ14FbHzaEC7gMyVHVpctDmEtLfINZ2A6rCEgcgReeigNkYw9YE9O0Q4BoktE3DP2vde8h9sPPx-zs9MPX98tirr1QOMHVVMRGeWQfgktLdi4NTmbgShrX-k7E1ojgo68s0r2yMR4zbalcFLXrbIckSsT6CdsbV2M4ZBBqiyzNVeR92DSiMjwoXyFV7IySzpQLdjgHQY8Ie7IsFZVGJiP5gr3ZREVvpp5KZww6vZ3LWnM9h3LBXm67XmSjjj91ekeh3XYgb-3UgIjTM-L0vxCHf0Jg3PrG8uSTpjYyjEOGza9x5Ecb3Oh5V7jSyF5p_ywbtWCvtlj6-3Cf_o_hPmP3kOR1WYJzxPamy3V4jkRqsi_SmvkNMsYZZQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film
URI http://dx.doi.org/10.1063/1.5132378
https://www.proquest.com/docview/2323225047
http://hdl.handle.net/10852/75061
https://hal.science/hal-02401501
https://doaj.org/article/c080bc7196cf455ba6ee2bb5a27b6a36
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Nb9QwEIat0grBBfGpbimrEeXAJRAnsZ0cF0q1qloEgkq9Wf4skUK2tNn-mP5axo53tZWoxNXyZqPMjOfxePSakHe1wz1GLUzGnVdZ5RqWKWN8xoUPelVKGBvqkKdf-fysOj5n51vk4J4TfF5-pB8Y7phKUT8gOwWGLrruzuz48Pu3dSkFIZfmdbXSDdr8DVKticHS38k7UZ4fs8mv0Py4QZaPMO2MJ-AbSeboKXmS6BBmozmfkS3XPycPY5emuX5BbmPHXBs6lSEmIURoUL2FIWScLtX1oO1vcAcczAnDAmzs0YCxcQPXNhxwl3DlomSqidVBSHdHXEDqXIeFByRDoJkN6v-jcgcsA0rqzoFXUckbuvbPsrXg2-73S3J29OXn53mWLlfIDKNiyHwlLOIFo1wHvZYKP6CjgitT24b5WjFnvS008lxeKYupNBfGs9I0ukFKYr58Rbb7Re92CbhSI4aZIogbVhUrFHXCFsiCjRLcqHxCdpMRZI9-HTRJWSERVTidkPcrq8jVpw93Y3QyHo7zUlKZTDkhb9dTL0cljn9N-hRMu54QxLPjAHqUTLEog7i6NgLXHuMrxrTizhVaM1UIzVXJ8Z_QMe48Yz47kWEsKMIhQtMbfPP9ld_IFPbXEvE0LJB5JSbkYO1L97_u3n_Nek0eI6Y1YxPNPtkerpbuDaLQoKcYCoenJz-mKSSmsaTwF2v4Bzk
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bb9MwFMct2ITGC-KqdQywgAdessWJL8ljuUxldBNIm7Q3y1eIFNJuTfth-LQcO27pJJB4tdzW8jnx-dn592-E3lYO9hiVMBl3XmXU1SxTxviMCx_8qpQwNpxDnp3zySU9vWJXSZsT_gsDg1gcqWY-WATb1XGawKwF5lzO_xgO8PKYHDHYS5Wiuot2Bc8FJPXu-PTjt6-bQxbAX5JXdO0otP0Z4F0TH6PuVkWKxv1QZ34EWeQWc-5BQRrejW-Vn5OH6EHiRjwexvkI3XHdY3Qv6jfN4gn6FbV0TdAw41ieAK6x6izuQy1q04kfbroV7I1DoHE_wzaqN_Ag6YBVDxrcHN-4aKZq4rkhTrdKfMdJ045nHgMzYpLZcC_A4OmBlwEydeuwV9HjG7fN9bKx2Dftz6fo8uTTxYdJlq5dyAwjos88FRbAgxGug5MLhQl0RHBlKlszXynmrLeFBtLLqbJQZHNhPCtNrWvgJ-bLZ2inm3VuH2FXagA0UwTbQ0pZoYgTtgBKrJXgRuUjtJ-CIDvI-OBWygoJEMPJCL1bR0Wupz7cmtHK-Nqcl5LIFMoRer3pOh88Ov7W6X0I7aZDsNWODZBoMiWZDLbr2ghYlYynjGnFnSu0ZqoQmquSwy9BYtz6jsl4KkNb8IoDuCYrGPnhOm9kWhAWEsA1LJ05FSP0ZpNL_x7uwX_1eoX2JhdnUzn9fP7lOboPMFcPUptDtNPfLN0LAKZev0yPxW-CmRG1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+locality+and+translational+invariance+to+design+effective+deep+reinforcement+learning+control+of+the+1-dimensional+unstable+falling+liquid+film&rft.jtitle=AIP+advances&rft.au=Belus%2C+Vincent&rft.au=Rabault%2C+Jean&rft.au=Viquerat%2C+Jonathan&rft.au=Che%2C+Zhizhao&rft.date=2019-12-01&rft.eissn=2158-3226&rft.volume=9&rft.issue=12&rft_id=info:doi/10.1063%2F1.5132378&rft.externalDocID=adv
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon