Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film
Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industri...
Saved in:
Published in | AIP advances Vol. 9; no. 12; pp. 125014 - 125014-13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.12.2019
American Institute of Physics- AIP Publishing LLC AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
ISSN | 2158-3226 2158-3226 |
DOI | 10.1063/1.5132378 |
Cover
Abstract | Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance. |
---|---|
AbstractList | Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational, axisymmetric, or other invariance. Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional (1D) depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows to both speed up learning considerably, and to easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naive approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional (2D) or three-dimensional (3D) systems featuring translational, axisymmetric or other invariance. |
Author | Rabault, Jean Viquerat, Jonathan Che, Zhizhao Reglade, Ulysse Hachem, Elie Belus, Vincent |
Author_xml | – sequence: 1 givenname: Vincent surname: Belus fullname: Belus, Vincent email: vincent.belus@mines-paristech.fr organization: 3State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Jean surname: Rabault fullname: Rabault, Jean organization: 3State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Jonathan surname: Viquerat fullname: Viquerat, Jonathan email: jonathan.viquerat@mines-paristech.fr organization: MINES Paristech PSL, Research University CEMEF – sequence: 4 givenname: Zhizhao surname: Che fullname: Che, Zhizhao email: chezhizhao@tju.edu.cn organization: State Key Laboratory of Engines, Tianjin University – sequence: 5 givenname: Elie surname: Hachem fullname: Hachem, Elie email: elie.hachem@mines-paristech.fr organization: MINES Paristech PSL, Research University CEMEF – sequence: 6 givenname: Ulysse surname: Reglade fullname: Reglade, Ulysse email: ulysse.reglade@mines-paristech.fr organization: 3State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China |
BackLink | https://hal.science/hal-02401501$$DView record in HAL |
BookMark | eNp9ks1uGyEUhUdVKjVNs-gTFKmrVpoEmIEZL6MobSJZ6qZdoztwcbAwOICt5lX6tMWe9FdV2YCOvnsul8PL5iTEgE3zmtELRmV3yS4E63g3jM-aU87E2Hacy5Pfzi-a85zXtK5-wejYnzbfbr5ufXTFhRXxUYN35ZFAMKQkCNlDcTGAJy7sITkIGkmJxGB2q0DQWtTF7bEKuCUJXbAxadxgKMQjpHBw1TGUFD2JlpR7JKw1rgJ59t2FXGDySCx4f7yDe9g5Q6zzm1fN86pmPH_az5ovH24-X9-2y08f766vlq0WbCit7QdDByaYnPqRib6OhWyQoEezEHYEgcYaPvVU0B6MRqSDtqLTi2nBhRS2O2vuZl8TYa22yW0gPaoITh2FmFYKUnHao9J0pJMe2EJq2wsxgUTk0ySAD5OETlavd7PXPfg_rG6vluqgUd5TJijbs8q-mVmdXK4BqBATqBqL4GoQVB6ItzOxTfFhh7moddyl-m5Z8Zoz53Wk4VdPnWLOCe3Pxoyqw79QTD39i8pe_sVqV44h17yd_2fF-7ki_yD_Y_8dQVTJCw |
CODEN | AAIDBI |
CitedBy_id | crossref_primary_10_1017_jfm_2024_1133 crossref_primary_10_3390_fluids7020062 crossref_primary_10_1007_s42241_020_0028_y crossref_primary_10_1063_5_0006492 crossref_primary_10_1007_s10494_025_00642_x crossref_primary_10_1098_rspa_2021_0618 crossref_primary_10_1017_jfm_2022_1043 crossref_primary_10_1038_s42256_020_00272_0 crossref_primary_10_1063_5_0103113 crossref_primary_10_3390_app14093561 crossref_primary_10_1016_j_snb_2023_134636 crossref_primary_10_3390_act13120488 crossref_primary_10_1038_s41598_023_34007_z crossref_primary_10_1017_jfm_2021_301 crossref_primary_10_21605_cukurovaumfd_1005315 crossref_primary_10_1007_s10494_024_00619_2 crossref_primary_10_1016_j_nucengdes_2023_112731 crossref_primary_10_1038_s41467_025_56408_6 crossref_primary_10_1063_5_0153181 crossref_primary_10_1103_PhysRevFluids_6_053902 crossref_primary_10_1017_jfm_2023_76 crossref_primary_10_1103_PhysRevE_104_055108 crossref_primary_10_1007_s00521_022_07013_x crossref_primary_10_3390_act11120359 crossref_primary_10_1063_5_0037371 crossref_primary_10_1017_jfm_2020_1170 crossref_primary_10_1063_5_0128446 crossref_primary_10_1063_5_0068454 crossref_primary_10_1103_PhysRevFluids_7_L122001 crossref_primary_10_1063_5_0172081 crossref_primary_10_1017_jfm_2023_147 crossref_primary_10_1017_dce_2023_28 crossref_primary_10_1007_s10494_024_00609_4 crossref_primary_10_1007_s11012_024_01808_z crossref_primary_10_1063_5_0097241 crossref_primary_10_1017_jfm_2022_1020 crossref_primary_10_1140_epje_s10189_023_00285_8 crossref_primary_10_1016_j_jcp_2021_110317 crossref_primary_10_3390_en13225920 crossref_primary_10_1063_5_0135638 crossref_primary_10_1016_j_jcp_2023_112018 crossref_primary_10_1063_5_0052524 crossref_primary_10_1016_j_flowmeasinst_2021_102047 crossref_primary_10_1063_5_0204237 crossref_primary_10_1016_j_physd_2024_134096 crossref_primary_10_1063_5_0143913 crossref_primary_10_1103_PhysRevFluids_8_024604 crossref_primary_10_3390_fluids8070208 crossref_primary_10_1016_j_oceaneng_2025_120989 crossref_primary_10_1063_5_0087208 crossref_primary_10_1088_1873_7005_ac4f2d crossref_primary_10_1103_PhysRevE_105_045105 crossref_primary_10_3389_arc_2023_11130 crossref_primary_10_1017_jfm_2021_1045 |
Cites_doi | 10.1016/j.ijmultiphaseflow.2014.06.013 10.1016/j.jcp.2019.108910 10.1038/nature14236 10.1063/1.5116415 10.1017/jfm.2015.95 10.1063/1.3294884 10.1109/tim.2019.2932649 10.1002/aic.690310907 10.1103/physrevfluids.4.054603 10.1017/jfm.2019.62 10.1103/revmodphys.81.1131 10.1038/nature24270 10.1063/1.2750384 10.1016/0009-2509(95)00292-8 10.1038/nature14539 10.1063/1.4938761 10.1098/rspa.2019.0351 10.1063/1.2196450 10.1088/1361-6501/aa8b87 10.1016/0893-6080(89)90020-8 10.1063/1.2158428 10.1063/1.5115258 10.1063/1.5055016 |
ContentType | Journal Article |
Copyright | Author(s) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). info:eu-repo/semantics/openAccess Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Author(s) – notice: 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). – notice: info:eu-repo/semantics/openAccess – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M 3HK 1XC VOOES DOA |
DOI | 10.1063/1.5132378 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace NORA - Norwegian Open Research Archives Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Architecture Computer Science |
EISSN | 2158-3226 |
EndPage | 125014-13 |
ExternalDocumentID | oai_doaj_org_article_c080bc7196cf455ba6ee2bb5a27b6a36 oai_HAL_hal_02401501v1 10852_75061 10_1063_1_5132378 adv |
GrantInformation_xml | – fundername: Norges Forskningsråd grantid: 280625 funderid: http://dx.doi.org/10.13039/501100005416 |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AKSGC CITATION 8FD H8D L7M 3HK 4.4 EJD IPNFZ M71 RIG ROL 1XC VOOES |
ID | FETCH-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3 |
IEDL.DBID | AJDQP |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:30:08 EDT 2025 Fri Sep 12 12:32:52 EDT 2025 Sat Apr 29 05:44:06 EDT 2023 Mon Jun 30 04:34:06 EDT 2025 Thu Apr 24 22:49:20 EDT 2025 Wed Sep 10 04:19:13 EDT 2025 Fri Jun 21 00:14:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2158-3226/2019/9(12)/125014/13/$0.00 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-f47d071516b48154084e176ac8d95f8a5edfd2b40504adcee07cf53c9b92565f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7244-6592 0000-0002-5947-138X 0000-0002-0682-0603 0000-0002-6026-9250 0000-0002-2202-6397 |
OpenAccessLink | http://dx.doi.org/10.1063/1.5132378 |
PQID | 2323225047 |
PQPubID | 2050671 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2323225047 doaj_primary_oai_doaj_org_article_c080bc7196cf455ba6ee2bb5a27b6a36 scitation_primary_10_1063_1_5132378 crossref_primary_10_1063_1_5132378 hal_primary_oai_HAL_hal_02401501v1 crossref_citationtrail_10_1063_1_5132378 cristin_nora_10852_75061 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2019 |
Publisher | American Institute of Physics American Institute of Physics- AIP Publishing LLC AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: American Institute of Physics- AIP Publishing LLC – name: AIP Publishing LLC |
References | Rabault, Kuchta, Jensen, Réglade, Cerardi (c12) 2019; 865 Ren, Wang, Tang (c17) 2019; 31 Rabault, Kolaas, Jensen (c26) 2017; 28 LeCun, Bengio, Hinton (c23) 2015; 521 Bingham, Raibaudo, Morton, Martinuzzi (c18) 2018; 30 Alekseenko, Antipin, Guzanov, Kharlamov, Markovich (c3) 2005; 17 Alekseenko, Nakoryakov, Pokusaev (c1) 1985; 31 Dávalos-Orozco (c4) 2007; 19 Srinivasan, Guastoni, Azizpour, Schlatter, Vinuesa (c28) 2019; 4 Rabault, Kuhnle (c13) 2019; 31 Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (c24) 2017; 550 Nosoko, Yoshimura, Nagata, Oyakawa (c2) 1996; 51 Thompson, Gomes, Pavliotis, Papageorgiou (c6) 2016; 28 Gautier, Aider, Duriez, Noack, Segond, Abel (c16) 2015; 770 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (c11) 2015; 518 Cai, Liang, Gao, Xu, Wei (c27) Vlachogiannis, Samandas, Leontidis, Bontozoglou (c5) 2010; 22 Craster, Matar (c20) 2009; 81 Kurt, Stinchcombe, White (c31) 1989; 2 Demekhin, Kalliadasis, Velarde (c7) 2006; 18 Che, Fang, Percival, Pain, Matar, Navon (c19) 2014; 67 2023080501204719600_c15 (2023080501204719600_c36) 2012 2023080501204719600_c37 (2023080501204719600_c22) 2007 (2023080501204719600_c31) 1989; 2 2023080501204719600_c30 2023080501204719600_c32 (2023080501204719600_c18) 2018; 30 (2023080501204719600_c28) 2019; 4 (2023080501204719600_c16) 2015; 770 2023080501204719600_c34 (2023080501204719600_c7) 2006; 18 (2023080501204719600_c3) 2005; 17 (2023080501204719600_c12) 2019; 865 (2023080501204719600_c23) 2015; 521 (2023080501204719600_c33) 2000 (2023080501204719600_c10) 1998 (2023080501204719600_c39) 2016 (2023080501204719600_c1) 1985; 31 (2023080501204719600_c5) 2010; 22 (2023080501204719600_c35) 1995 (2023080501204719600_c2) 1996; 51 (2023080501204719600_c19) 2014; 67 (2023080501204719600_c13) 2019; 31 (2023080501204719600_c14) 2016 (2023080501204719600_c6) 2016; 28 (2023080501204719600_c9) 2013 (2023080501204719600_c26) 2017; 28 2023080501204719600_c27 2023080501204719600_c29 (2023080501204719600_c40) 2016 (2023080501204719600_c20) 2009; 81 (2023080501204719600_c11) 2015; 518 (2023080501204719600_c21) 2003 (2023080501204719600_c4) 2007; 19 (2023080501204719600_c8) 1998 (2023080501204719600_c17) 2019; 31 (2023080501204719600_c24) 2017; 550 (2023080501204719600_c25) 2017 (2023080501204719600_c38) 2018 |
References_xml | – volume: 81 start-page: 1131 year: 2009 ident: c20 article-title: Dynamics and stability of thin liquid films publication-title: Rev. Mod. Phys. – volume: 550 start-page: 354 year: 2017 ident: c24 article-title: Mastering the game of Go without human knowledge publication-title: Nature – volume: 28 start-page: 125301 year: 2017 ident: c26 article-title: Performing particle image velocimetry using artificial neural networks: A proof-of-concept publication-title: Meas. Sci. Technol. – volume: 18 start-page: 042111 year: 2006 ident: c7 article-title: Suppressing falling film instabilities by Marangoni forces publication-title: Phys. Fluids – volume: 770 start-page: 442 year: 2015 ident: c16 article-title: Closed-loop separation control using machine learning publication-title: J. Fluid Mech. – volume: 51 start-page: 725 year: 1996 ident: c2 article-title: Characteristics of two-dimensional waves on a falling liquid film publication-title: Chem. Eng. Sci. – volume: 2 start-page: 359 year: 1989 ident: c31 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – volume: 518 start-page: 529 year: 2015 ident: c11 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 22 start-page: 012106 year: 2010 ident: c5 article-title: Effect of channel width on the primary instability of inclined film flow publication-title: Phys. Fluids – volume: 67 start-page: 153 year: 2014 ident: c19 article-title: An ensemble method for sensor optimisation applied to falling liquid films publication-title: Int. J. Multiphase Flow – volume: 17 start-page: 121704 year: 2005 ident: c3 article-title: Three-dimensional solitary waves on falling liquid film at low Reynolds numbers publication-title: Phys. Fluids – volume: 521 start-page: 436 year: 2015 ident: c23 article-title: Deep learning publication-title: Nature – volume: 4 start-page: 054603 year: 2019 ident: c28 article-title: Predictions of turbulent shear flows using deep neural networks publication-title: Phys. Rev. Fluids – volume: 31 start-page: 094105 year: 2019 ident: c13 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids – ident: c27 article-title: Particle image velocimetry based on a deep learning motion estimator publication-title: IEEE Trans. Instrum. Meas. – volume: 865 start-page: 281 year: 2019 ident: c12 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. – volume: 30 start-page: 127104 year: 2018 ident: c18 article-title: Suppression of fluctuating lift on a cylinder via evolutionary algorithms: Control with interfering small cylinder publication-title: Phys. Fluids – volume: 31 start-page: 093601 year: 2019 ident: c17 article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning publication-title: Phys. Fluids – volume: 28 start-page: 012107 year: 2016 ident: c6 article-title: Stabilising falling liquid film flows using feedback control publication-title: Phys. Fluids – volume: 19 start-page: 074103 year: 2007 ident: c4 article-title: Nonlinear instability of a thin film flowing down a smoothly deformed surface publication-title: Phys. Fluids – volume: 31 start-page: 1446 year: 1985 ident: c1 article-title: Wave formation on a vertical falling liquid film publication-title: AIChE J. – volume: 67 start-page: 153 year: 2014 ident: 2023080501204719600_c19 article-title: An ensemble method for sensor optimisation applied to falling liquid films publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2014.06.013 – ident: 2023080501204719600_c30 doi: 10.1016/j.jcp.2019.108910 – year: 2016 ident: 2023080501204719600_c40 – start-page: 1097 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 2023080501204719600_c36 article-title: Imagenet classification with deep convolutional neural networks – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 2023080501204719600_c11 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 31 start-page: 094105 issue: 9 year: 2019 ident: 2023080501204719600_c13 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids doi: 10.1063/1.5116415 – ident: 2023080501204719600_c34 – ident: 2023080501204719600_c32 – volume: 770 start-page: 442 year: 2015 ident: 2023080501204719600_c16 article-title: Closed-loop separation control using machine learning publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.95 – volume: 22 start-page: 012106 issue: 1 year: 2010 ident: 2023080501204719600_c5 article-title: Effect of channel width on the primary instability of inclined film flow publication-title: Phys. Fluids doi: 10.1063/1.3294884 – ident: 2023080501204719600_c27 article-title: Particle image velocimetry based on a deep learning motion estimator publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2019.2932649 – volume-title: Introduction to Reinforcement Learning year: 1998 ident: 2023080501204719600_c10 – volume-title: Foundations of Genetic Programming year: 2013 ident: 2023080501204719600_c9 – volume: 31 start-page: 1446 issue: 9 year: 1985 ident: 2023080501204719600_c1 article-title: Wave formation on a vertical falling liquid film publication-title: AIChE J. doi: 10.1002/aic.690310907 – volume: 4 start-page: 054603 issue: 5 year: 2019 ident: 2023080501204719600_c28 article-title: Predictions of turbulent shear flows using deep neural networks publication-title: Phys. Rev. Fluids doi: 10.1103/physrevfluids.4.054603 – volume-title: An Introduction to Computational Fluid Dynamics: The Finite Volume Method year: 2007 ident: 2023080501204719600_c22 – start-page: 265 year: 2016 ident: 2023080501204719600_c39 article-title: Tensorflow: A system for large-scale machine learning – volume: 865 start-page: 281 year: 2019 ident: 2023080501204719600_c12 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.62 – volume: 81 start-page: 1131 issue: 3 year: 2009 ident: 2023080501204719600_c20 article-title: Dynamics and stability of thin liquid films publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.81.1131 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 2023080501204719600_c24 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – start-page: 1057 volume-title: Advances in Neural Information Processing Systems year: 2000 ident: 2023080501204719600_c33 article-title: Policy gradient methods for reinforcement learning with function approximation – volume: 19 start-page: 074103 issue: 7 year: 2007 ident: 2023080501204719600_c4 article-title: Nonlinear instability of a thin film flowing down a smoothly deformed surface publication-title: Phys. Fluids doi: 10.1063/1.2750384 – volume: 51 start-page: 725 issue: 5 year: 1996 ident: 2023080501204719600_c2 article-title: Characteristics of two-dimensional waves on a falling liquid film publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(95)00292-8 – ident: 2023080501204719600_c29 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2023080501204719600_c23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 28 start-page: 012107 issue: 1 year: 2016 ident: 2023080501204719600_c6 article-title: Stabilising falling liquid film flows using feedback control publication-title: Phys. Fluids doi: 10.1063/1.4938761 – start-page: 3389 year: 2017 ident: 2023080501204719600_c25 article-title: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates – volume-title: Genetic Programming: An Introduction year: 1998 ident: 2023080501204719600_c8 – ident: 2023080501204719600_c15 doi: 10.1098/rspa.2019.0351 – volume-title: The Handbook of Brain Theory and Neural Networks year: 1995 ident: 2023080501204719600_c35 article-title: Convolutional networks for images, speech, and time series – ident: 2023080501204719600_c37 – volume: 18 start-page: 042111 issue: 4 year: 2006 ident: 2023080501204719600_c7 article-title: Suppressing falling film instabilities by Marangoni forces publication-title: Phys. Fluids doi: 10.1063/1.2196450 – volume-title: Level Set Methods and Dynamic Implicit Surfaces year: 2003 ident: 2023080501204719600_c21 – volume: 28 start-page: 125301 issue: 12 year: 2017 ident: 2023080501204719600_c26 article-title: Performing particle image velocimetry using artificial neural networks: A proof-of-concept publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa8b87 – year: 2018 ident: 2023080501204719600_c38 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 2023080501204719600_c31 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 17 start-page: 121704 issue: 12 year: 2005 ident: 2023080501204719600_c3 article-title: Three-dimensional solitary waves on falling liquid film at low Reynolds numbers publication-title: Phys. Fluids doi: 10.1063/1.2158428 – volume: 31 start-page: 093601 issue: 9 year: 2019 ident: 2023080501204719600_c17 article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning publication-title: Phys. Fluids doi: 10.1063/1.5115258 – volume-title: Machine Learning Control-Taming Nonlinear Dynamics and Turbulence year: 2016 ident: 2023080501204719600_c14 – volume: 30 start-page: 127104 issue: 12 year: 2018 ident: 2023080501204719600_c18 article-title: Suppression of fluctuating lift on a cylinder via evolutionary algorithms: Control with interfering small cylinder publication-title: Phys. Fluids doi: 10.1063/1.5055016 |
SSID | ssj0000491084 |
Score | 2.4685977 |
Snippet | Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those... |
SourceID | doaj hal cristin proquest crossref scitation |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 125014 |
SubjectTerms | Architecture Artificial Intelligence Computer Science Falling liquid films Fluid mechanics Invariance Machine learning Mathematical Physics Mechanics Modeling and Simulation Multiphase flow Physics System effectiveness |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpQouqHypCwWNgAOX0DiJ7eRYENUKAScq9Wb5E4JCtrTZ_pj-Wmbs7GorgbhwtazE8jx7nu2nN4y9bgOeMVrlChmiKZrQicI4FwupIvlVGeU83UN-_iKXZ83Hc3G-U-qLNGHZHjhP3DE5YVunECguNkJYI0OorBWmUlaaOpltl125c5j6kXkvL1O5YUxpbYGolRtbIVkf87cCD2E1lVbbd2ktjbfSUnLvx2TznbSRO8TzLmal_EC-k4NOD9j9mTzCSR70A3YnjA_ZfhJxuqtH7CYJ6noSMkPKUciwwYweJkpIw3ztB_14jQdkijZMK_BJwgFZ14FbHzaEC7gMyVHVpctDmEtLfINZ2A6rCEgcgReeigNkYw9YE9O0Q4BoktE3DP2vde8h9sPPx-zs9MPX98tirr1QOMHVVMRGeWQfgktLdi4NTmbgShrX-k7E1ojgo68s0r2yMR4zbalcFLXrbIckSsT6CdsbV2M4ZBBqiyzNVeR92DSiMjwoXyFV7IySzpQLdjgHQY8Ie7IsFZVGJiP5gr3ZREVvpp5KZww6vZ3LWnM9h3LBXm67XmSjjj91ekeh3XYgb-3UgIjTM-L0vxCHf0Jg3PrG8uSTpjYyjEOGza9x5Ecb3Oh5V7jSyF5p_ywbtWCvtlj6-3Cf_o_hPmP3kOR1WYJzxPamy3V4jkRqsi_SmvkNMsYZZQ priority: 102 providerName: Directory of Open Access Journals |
Title | Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film |
URI | http://dx.doi.org/10.1063/1.5132378 https://www.proquest.com/docview/2323225047 http://hdl.handle.net/10852/75061 https://hal.science/hal-02401501 https://doaj.org/article/c080bc7196cf455ba6ee2bb5a27b6a36 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Nb9QwEIat0grBBfGpbimrEeXAJRAnsZ0cF0q1qloEgkq9Wf4skUK2tNn-mP5axo53tZWoxNXyZqPMjOfxePSakHe1wz1GLUzGnVdZ5RqWKWN8xoUPelVKGBvqkKdf-fysOj5n51vk4J4TfF5-pB8Y7phKUT8gOwWGLrruzuz48Pu3dSkFIZfmdbXSDdr8DVKticHS38k7UZ4fs8mv0Py4QZaPMO2MJ-AbSeboKXmS6BBmozmfkS3XPycPY5emuX5BbmPHXBs6lSEmIURoUL2FIWScLtX1oO1vcAcczAnDAmzs0YCxcQPXNhxwl3DlomSqidVBSHdHXEDqXIeFByRDoJkN6v-jcgcsA0rqzoFXUckbuvbPsrXg2-73S3J29OXn53mWLlfIDKNiyHwlLOIFo1wHvZYKP6CjgitT24b5WjFnvS008lxeKYupNBfGs9I0ukFKYr58Rbb7Re92CbhSI4aZIogbVhUrFHXCFsiCjRLcqHxCdpMRZI9-HTRJWSERVTidkPcrq8jVpw93Y3QyHo7zUlKZTDkhb9dTL0cljn9N-hRMu54QxLPjAHqUTLEog7i6NgLXHuMrxrTizhVaM1UIzVXJ8Z_QMe48Yz47kWEsKMIhQtMbfPP9ld_IFPbXEvE0LJB5JSbkYO1L97_u3n_Nek0eI6Y1YxPNPtkerpbuDaLQoKcYCoenJz-mKSSmsaTwF2v4Bzk |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bb9MwFMct2ITGC-KqdQywgAdessWJL8ljuUxldBNIm7Q3y1eIFNJuTfth-LQcO27pJJB4tdzW8jnx-dn592-E3lYO9hiVMBl3XmXU1SxTxviMCx_8qpQwNpxDnp3zySU9vWJXSZsT_gsDg1gcqWY-WATb1XGawKwF5lzO_xgO8PKYHDHYS5Wiuot2Bc8FJPXu-PTjt6-bQxbAX5JXdO0otP0Z4F0TH6PuVkWKxv1QZ34EWeQWc-5BQRrejW-Vn5OH6EHiRjwexvkI3XHdY3Qv6jfN4gn6FbV0TdAw41ieAK6x6izuQy1q04kfbroV7I1DoHE_wzaqN_Ag6YBVDxrcHN-4aKZq4rkhTrdKfMdJ045nHgMzYpLZcC_A4OmBlwEydeuwV9HjG7fN9bKx2Dftz6fo8uTTxYdJlq5dyAwjos88FRbAgxGug5MLhQl0RHBlKlszXynmrLeFBtLLqbJQZHNhPCtNrWvgJ-bLZ2inm3VuH2FXagA0UwTbQ0pZoYgTtgBKrJXgRuUjtJ-CIDvI-OBWygoJEMPJCL1bR0Wupz7cmtHK-Nqcl5LIFMoRer3pOh88Ov7W6X0I7aZDsNWODZBoMiWZDLbr2ghYlYynjGnFnSu0ZqoQmquSwy9BYtz6jsl4KkNb8IoDuCYrGPnhOm9kWhAWEsA1LJ05FSP0ZpNL_x7uwX_1eoX2JhdnUzn9fP7lOboPMFcPUptDtNPfLN0LAKZev0yPxW-CmRG1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+locality+and+translational+invariance+to+design+effective+deep+reinforcement+learning+control+of+the+1-dimensional+unstable+falling+liquid+film&rft.jtitle=AIP+advances&rft.au=Belus%2C+Vincent&rft.au=Rabault%2C+Jean&rft.au=Viquerat%2C+Jonathan&rft.au=Che%2C+Zhizhao&rft.date=2019-12-01&rft.eissn=2158-3226&rft.volume=9&rft.issue=12&rft_id=info:doi/10.1063%2F1.5132378&rft.externalDocID=adv |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |