Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with gi...
Saved in:
| Published in | Scientific reports Vol. 11; no. 1; pp. 15227 - 33 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
27.07.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-021-93830-4 |
Cover
| Abstract | Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of
O
(
N
) non-linear, coupled equations (with
N
being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e.
accuracy
,
speed
and
scalability
. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work. |
|---|---|
| AbstractList | Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work. Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work. Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton's method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton's method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton's method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton's method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work. Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O ( N ) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy , speed and scalability . The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work. |
| ArticleNumber | 15227 |
| Author | Squartini, Tiziano Vallarano, Nicolò Saracco, Fabio Bruno, Matteo Marchese, Emiliano Zanon, Mario Cimini, Giulio Trapani, Giuseppe |
| Author_xml | – sequence: 1 givenname: Nicolò surname: Vallarano fullname: Vallarano, Nicolò organization: IMT School for Advanced Studies Lucca – sequence: 2 givenname: Matteo surname: Bruno fullname: Bruno, Matteo organization: IMT School for Advanced Studies Lucca – sequence: 3 givenname: Emiliano surname: Marchese fullname: Marchese, Emiliano organization: IMT School for Advanced Studies Lucca – sequence: 4 givenname: Giuseppe surname: Trapani fullname: Trapani, Giuseppe organization: IMT School for Advanced Studies Lucca – sequence: 5 givenname: Fabio surname: Saracco fullname: Saracco, Fabio organization: IMT School for Advanced Studies Lucca – sequence: 6 givenname: Giulio surname: Cimini fullname: Cimini, Giulio organization: Physics Department and INFN, ‘Tor Vergata’ University of Rome – sequence: 7 givenname: Mario surname: Zanon fullname: Zanon, Mario organization: IMT School for Advanced Studies Lucca – sequence: 8 givenname: Tiziano surname: Squartini fullname: Squartini, Tiziano email: tiziano.squartini@imtlucca.it organization: IMT School for Advanced Studies Lucca, Institute for Advanced Study (IAS), University of Amsterdam |
| BookMark | eNqNks1vFCEYxiemxtbaf8ATiRcvo3wucDExTVub1JgYPZN3BmaXlYEVZvrhXy_d3ajtoZELBJ7nx8v78LI5iCm6pnlN8DuCmXpfOBFatZiSVjPFcMufNUcUc9FSRunBP-vD5qSUNa5DUM2JftEcMs6qm-Kjxp5DmRBEi0oPAbrgUPA_XPCrlCwa4daP_hdMPkU0pIzObje1jDh5COhrdaURXWTYrNDnZF0o6MZPKxRSRaE-xTJl8HEqr5rnA4TiTvbzcfP9_Ozb6af26svF5enHq7YXRE6to53GTmuhOBsEMGIlkRpLxXhHQDMgg657YgCrbUclAGW9dSCtGqSUmh03lzuuTbA2m-xHyHcmgTfbjZSXBvLk--AMxoMelO2YJJRLyjo5AGgg3UILbnlfWWzHmuMG7m4ghD9Ags19BGYXgakRmG0EhlfXh51rM3ejs31tVYbwoJSHJ9GvzDJdG8XIgitSAW_3gJx-zq5MZvSldyFAdGkuhgoh9EIooar0zSPpOs051gZvVVwxwWhV0Z2qz6mU7Ib_e4Z6ZOr9tP0F94mGp637vpV6T1y6_LeqJ1y_AYTa3Mg |
| CitedBy_id | crossref_primary_10_1038_s41598_023_31658_w crossref_primary_10_1016_j_ecolind_2024_112378 crossref_primary_10_1088_2632_072X_ad1411 crossref_primary_10_1038_s41598_022_16603_7 crossref_primary_10_1140_epjp_s13360_023_04003_3 crossref_primary_10_1016_j_chaos_2022_112620 crossref_primary_10_1093_pnasnexus_pgae177 crossref_primary_10_1103_PhysRevE_109_L053301 crossref_primary_10_1038_s41598_023_33184_1 crossref_primary_10_1371_journal_pone_0254748 crossref_primary_10_1140_epjds_s13688_021_00301_x crossref_primary_10_1140_epjds_s13688_022_00330_0 crossref_primary_10_1038_s41598_022_22798_6 crossref_primary_10_1038_s41598_022_20710_w crossref_primary_10_1038_s41598_023_34024_y crossref_primary_10_3390_agronomy13020576 crossref_primary_10_1038_s41598_023_30649_1 crossref_primary_10_1371_journal_pcsy_0000010 crossref_primary_10_1016_j_chaos_2024_114630 crossref_primary_10_1038_s42005_024_01640_7 crossref_primary_10_1140_epjds_s13688_024_00477_y crossref_primary_10_1038_s41598_024_61448_x crossref_primary_10_1007_s41109_022_00506_7 crossref_primary_10_1103_PhysRevE_111_024312 |
| Cites_doi | 10.1088/1367-2630/ab74a7 10.1093/acprof:oso/9780199206650.001.0001 10.1209/0295-5075/81/28005 10.1103/PhysRevLett.102.038701 10.1103/RevModPhys.87.925 10.1126/science.1065103 10.1038/srep03357 10.1007/978-1-4939-7131-2_233 10.1017/CBO9780511804441 10.1038/nphys209 10.1103/PhysRevE.84.046117 10.1038/s42254-018-0002-6 10.1088/1367-2630/13/8/083001 10.1088/1367-2630/16/4/043022 10.1103/PhysRevE.85.046103 10.1103/PhysRevE.73.016108 10.1016/j.jedc.2007.01.032 10.1073/pnas.0510525103 10.1140/epjds/s13688-021-00289-4 10.1103/PhysRevE.90.062804 10.1038/srep15758 10.1103/PhysRevE.72.056708 10.1017/CBO9780511791383 10.1103/PhysRev.106.620 10.1103/PhysRevE.78.015101 10.1007/s10955-009-9821-2 10.1371/journal.pone.0010012 10.1038/srep10595 10.1103/PhysRevE.99.030301 10.1177/0022002702046005006 10.1080/15427951.2010.557277 10.1038/nphys560 10.1088/1367-2630/aba062 10.1007/978-3-642-21286-4_10 10.3389/fphy.2020.00286 10.1007/PL00012580 10.1103/PhysRevE.70.066117 10.1103/PhysRevE.92.040802 10.1103/RevModPhys.81.591 10.1088/1367-2630/14/2/023012 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-021-93830-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 33 |
| ExternalDocumentID | oai_doaj_org_article_00f9f8db37124723b7faa9a1b6954d4c 10.1038/s41598-021-93830-4 PMC8316481 10_1038_s41598_021_93830_4 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c517t-e2b90e995843f5a31d717907834b1a93a1f91d75fad9db27aa23cdea7d8f77793 |
| IEDL.DBID | DOA |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:43:15 EDT 2025 Sun Oct 26 04:08:36 EDT 2025 Tue Sep 30 16:31:15 EDT 2025 Fri Sep 05 07:41:06 EDT 2025 Tue Oct 07 08:08:50 EDT 2025 Wed Oct 01 04:28:03 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Fri Feb 21 02:39:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-e2b90e995843f5a31d717907834b1a93a1f91d75fad9db27aa23cdea7d8f77793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/00f9f8db37124723b7faa9a1b6954d4c |
| PMID | 34315920 |
| PQID | 2555483532 |
| PQPubID | 2041939 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_00f9f8db37124723b7faa9a1b6954d4c unpaywall_primary_10_1038_s41598_021_93830_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8316481 proquest_miscellaneous_2555965858 proquest_journals_2555483532 crossref_primary_10_1038_s41598_021_93830_4 crossref_citationtrail_10_1038_s41598_021_93830_4 springer_journals_10_1038_s41598_021_93830_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-27 |
| PublicationDateYYYYMMDD | 2021-07-27 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | GabrielliAMastrandreaRCaldarelliGCiminiGGrand canonical ensemble of weighted networksPhys. Rev. E2019993030301(R)2019PhRvE..99c0301G10.1103/PhysRevE.99.030301 SquartiniTFagioloGGarlaschelliDRandomizing world trade. I. A binary network analysisPhys. Rev. E2011840461172011PhRvE..84d6117S10.1103/PhysRevE.84.046117 ParisiFSquartiniTGarlaschelliDA faster horse on a safer trail: generalized inference for the efficient reconstruction of weighted networksNew J. Phys.2020220530532020NJPh...22e3053P412760410.1088/1367-2630/ab74a7 KimHDel GenioCIBasslerKEToroczkaiZConstructing and sampling directed graphs with given degree sequencesNew J. Phys.2012140230122012NJPh...14b3012K10.1088/1367-2630/14/2/023012 NocedalJWrightSJNumerical Optimization2006Springer1104.65059 ColizzaVBarratABarthelemyMVespignaniAThe role of the airline transportation network in the prediction and predictability of global epidemicsProc. Natl. Acad. Sci.20061037201520202006PNAS..103.2015C1:CAS:528:DC%2BD28XhslCqu7o%3D10.1073/pnas.0510525103 FronczakAgataRedaAlhajjJonRokneExponential random graph modelsEncyclopedia of Social Network Analysis and Mining20142014New YorkSpringer-Verlag10.1007/978-1-4939-7131-2_2331290.82006 SaraccoFDi ClementeRGabrielliASquartiniTRandomizing bipartite networks: the case of the World Trade WebSci. Rep.20155105952015NatSR...510595S1:CAS:528:DC%2BC2MXhtFOrsbrI10.1038/srep10595 RobertsESCoolenACCUnbiased degree-preserving randomization of directed binary networksPhys. Rev. E20128540461032012PhRvE..85d6103R1:STN:280:DC%2BC38fkvFOkuw%3D%3D10.1103/PhysRevE.85.046103 ChungFLuLConnected components in random graphs with given expected degree sequencesAnn. Combinatorics20026125145195551410.1007/PL00012580 SquartiniTGarlaschelliDAnalytical maximum-likelihood method to detect patterns in real networksNew. J. Phys.2011130830012011NJPh...13h3001S10.1088/1367-2630/13/8/083001 CiminiGSquartiniTSaraccoFGarlaschelliDGabrielliACaldarelliGThe statistical physics of real-world networksNat. Rev. Phys.201911587110.1038/s42254-018-0002-6 GarlaschelliDLoffredoMIMaximum likelihood: extracting unbiased information from complex networksPhys. Rev. E2008781015101(R)2008PhRvE..78a5101G10.1103/PhysRevE.78.015101 BianconiGThe entropy of randomized network ensemblesEurophys. Lett.2007812280052008EL.....8128005B244395510.1209/0295-5075/81/28005 BarratABarthlemyMVespignaniADynamical Processes on Complex Networks2008Cambridge University Press10.1017/CBO9780511791383 BlitzsteinJDiaconisPA sequential importance sampling algorithm for generating random graphs with prescribed degreesInternet Math.201164489522280983610.1080/15427951.2010.557277 CiminiGSquartiniTGabrielliAGarlaschelliDEstimating topological properties of weighted networks from limited informationPhys. Rev. E2015920408022015PhRvE..92d0802C10.1103/PhysRevE.92.040802 ColizzaVPastor-SatorrasRVespignaniAReaction-diffusion processes and metapopulation models in heterogeneous networksNat. Phys.200732762821:CAS:528:DC%2BD2sXjs12nsro%3D10.1038/nphys560 CastellanoCFortunatoSLoretoVStatistical physics of social dynamicsRev. Mod. Phys.2009815912009RvMP...81..591C10.1103/RevModPhys.81.591 JaynesETInformation theory and statistical mechanicsPhys. Rev.195710646206301957PhRv..106..620J8730510.1103/PhysRev.106.620 Del GenioCIKimHToroczkaiZBasslerKEDel GenioCIKimHToroczkaiZBasslerKEPLoS One201054e1001210.1371/journal.pone.0010012 BoydSVandenbergheLConvex Optimization2004Cambridge University Press10.1017/CBO9780511804441 GleditschKExpanded trade and GDP dataJ. Conflict Resol.2002467122410.1177/0022002702046005006 Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev. Mod. Phys.2015879252015RvMP...87..925P340604010.1103/RevModPhys.87.925 ParkJNewmanMEJStatistical mechanics of networksPhys. Rev. E20047060661172004PhRvE..70f6117P213380710.1103/PhysRevE.70.066117 MastrandreaRSquartiniTFagioloGGarlaschelliDIntensive and extensive biases in economic networks: reconstructing world tradeNew J. Phys.2014160430222014NJPh...16d3022M10.1088/1367-2630/16/4/043022 NewmanMEJNetworks: An Introduction2010Oxford University Press10.1093/acprof:oso/9780199206650.001.0001 CaldarelliGuidoDe NicolaRoccoPetrocchiMarinellaPratelliManuelSaraccoFabioFlow of online misinformation during the peak of the COVID-19 pandemic in ItalyEPJ Data Science202010.1140/epjds/s13688-021-00289-4 Artzy-RandrupYStoneLGenerating uniformly distributed random networksPhys. Rev. E20057250567082005PhRvE..72e6708A219832310.1103/PhysRevE.72.056708 Bovet, A., Campajola, C., Mottes, F., Restocchi, V., Vallarano, N., Squartini, T. & Tessone, C. J.The evolving liaisons between the transaction networks of Bitcoin and its price dynamics, arXiv:1907.03577 (2019). Database of Interacting Proteins and can be found at the following URL: http://dip.doe-mbi.ucla.edu/dip/Main.cgi Dianati, N. A maximum entropy approach to separating noise from signal in bimodal affiliation networks, arXiv:1607.01735 (2016). SquartiniTvan LelyveldIGarlaschelliDEarly-warning signals of topological collapse in interbank networksSci. Rep.20133335710.1038/srep03357 CoolenACCDe MartinoAAnnibaleAConstrained Markovian dynamics of random graphsJ. Stat. Phys.2009136103510672009JSP...136.1035C25503951:CAS:528:DC%2BD1MXht1Ggtb%2FN10.1007/s10955-009-9821-2 ColizzaVFlamminiASerranoMAVespignaniADetecting rich-club ordering in complex networksNat. Phys.200621101151:CAS:528:DC%2BD28XhvFWlsbw%3D10.1038/nphys209 MastrandreaRSquartiniTFagioloGGarlaschelliDReconstructing the world trade multiplex: the role of intensive and extensive biasesPhys. Rev. E20149060628042014PhRvE..90f2804M1:CAS:528:DC%2BC2MXhslGis7o%3D10.1103/PhysRevE.90.062804 FronczakAFronczakPHolystJAFluctuation-dissipation relations in complex networksPhys. Rev. E20067310161082006PhRvE..73a6108F222305610.1103/PhysRevE.73.016108 GarlaschelliDLoffredoMIGeneralized bose-fermi statistics and structural correlations in weighted networksPhys. Rev. Lett.200910230387012009PhRvL.102c8701G10.1103/PhysRevLett.102.038701 VallaranoNicolòTessoneClaudio J.SquartiniTizianoBitcoin Transaction Networks: an overview of recent resultsFrontiers in Physics202082862020FrP.....8..286V10.3389/fphy.2020.00286 Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K. & Kawamura, K. Database of Synaptic Connectivity of C. elegans, Technical Report of CCeP, Keio Future3, (Keio University, 2003). Miller, J. C. & Hagberg, A. Efficient generation of networks with given expected degrees, LNCS 6732. (eds Frieze, A., Horn, P. & Pralat P.) 115–126 (Springer, 2011). MaslovSSneppenKSpecificity and stability in topology of protein networksScience200229655699109132002Sci...296..910M1:CAS:528:DC%2BD38XjsFymsr8%3D10.1126/science.1065103 IoriGDe MasiGPrecupOVGabbiGCaldarelliGA network analysis of the Italian overnight money marketJ. Econ. Dyn. Control200632125927810.1016/j.jedc.2007.01.032 CiminiGSquartiniTGabrielliAGarlaschelliDSystemic risk analysis on reconstructed economic and financial networksSci. Rep.20155157582015NatSR...515758C1:CAS:528:DC%2BC2MXhslCnt7vN10.1038/srep15758 LinJ-HPrimicerioKSquartiniTDeckerCTessoneCJLightning Network: a second path towards centralisation of the Bitcoin economyNew J. Phys.2020220830222020NJPh...22h3022L10.1088/1367-2630/aba062 F Chung (93830_CR27) 2002; 6 T Squartini (93830_CR6) 2013; 3 CI Del Genio (93830_CR12) 2010; 5 C Castellano (93830_CR5) 2009; 81 93830_CR35 G Iori (93830_CR42) 2006; 32 R Pastor-Satorras (93830_CR4) 2015; 87 Guido Caldarelli (93830_CR36) 2020 93830_CR33 D Garlaschelli (93830_CR39) 2009; 102 93830_CR30 H Kim (93830_CR13) 2012; 14 J Nocedal (93830_CR25) 2006 G Cimini (93830_CR45) 2015; 5 A Fronczak (93830_CR18) 2006; 73 V Colizza (93830_CR31) 2006; 2 ET Jaynes (93830_CR21) 1957; 106 J-H Lin (93830_CR32) 2020; 22 Nicolò Vallarano (93830_CR23) 2020; 8 V Colizza (93830_CR2) 2006; 103 K Gleditsch (93830_CR41) 2002; 46 J Park (93830_CR16) 2004; 70 S Maslov (93830_CR8) 2002; 296 A Gabrielli (93830_CR19) 2019; 99 G Cimini (93830_CR44) 2015; 92 J Blitzstein (93830_CR14) 2011; 6 T Squartini (93830_CR34) 2011; 84 R Mastrandrea (93830_CR40) 2014; 90 D Garlaschelli (93830_CR24) 2008; 78 V Colizza (93830_CR29) 2007; 3 F Parisi (93830_CR43) 2020; 22 Y Artzy-Randrup (93830_CR11) 2005; 72 93830_CR28 F Saracco (93830_CR37) 2015; 5 MEJ Newman (93830_CR1) 2010 S Boyd (93830_CR26) 2004 93830_CR22 R Mastrandrea (93830_CR38) 2014; 16 ES Roberts (93830_CR10) 2012; 85 ACC Coolen (93830_CR9) 2009; 136 G Cimini (93830_CR7) 2019; 1 T Squartini (93830_CR15) 2011; 13 Agata Fronczak (93830_CR20) 2014 G Bianconi (93830_CR17) 2007; 81 A Barrat (93830_CR3) 2008 |
| References_xml | – reference: NewmanMEJNetworks: An Introduction2010Oxford University Press10.1093/acprof:oso/9780199206650.001.0001 – reference: RobertsESCoolenACCUnbiased degree-preserving randomization of directed binary networksPhys. Rev. E20128540461032012PhRvE..85d6103R1:STN:280:DC%2BC38fkvFOkuw%3D%3D10.1103/PhysRevE.85.046103 – reference: ColizzaVFlamminiASerranoMAVespignaniADetecting rich-club ordering in complex networksNat. Phys.200621101151:CAS:528:DC%2BD28XhvFWlsbw%3D10.1038/nphys209 – reference: NocedalJWrightSJNumerical Optimization2006Springer1104.65059 – reference: SquartiniTFagioloGGarlaschelliDRandomizing world trade. I. A binary network analysisPhys. Rev. E2011840461172011PhRvE..84d6117S10.1103/PhysRevE.84.046117 – reference: CiminiGSquartiniTGabrielliAGarlaschelliDEstimating topological properties of weighted networks from limited informationPhys. Rev. E2015920408022015PhRvE..92d0802C10.1103/PhysRevE.92.040802 – reference: Dianati, N. A maximum entropy approach to separating noise from signal in bimodal affiliation networks, arXiv:1607.01735 (2016). – reference: Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K. & Kawamura, K. Database of Synaptic Connectivity of C. elegans, Technical Report of CCeP, Keio Future3, (Keio University, 2003). – reference: ColizzaVBarratABarthelemyMVespignaniAThe role of the airline transportation network in the prediction and predictability of global epidemicsProc. Natl. Acad. Sci.20061037201520202006PNAS..103.2015C1:CAS:528:DC%2BD28XhslCqu7o%3D10.1073/pnas.0510525103 – reference: IoriGDe MasiGPrecupOVGabbiGCaldarelliGA network analysis of the Italian overnight money marketJ. Econ. Dyn. Control200632125927810.1016/j.jedc.2007.01.032 – reference: BarratABarthlemyMVespignaniADynamical Processes on Complex Networks2008Cambridge University Press10.1017/CBO9780511791383 – reference: GabrielliAMastrandreaRCaldarelliGCiminiGGrand canonical ensemble of weighted networksPhys. Rev. E2019993030301(R)2019PhRvE..99c0301G10.1103/PhysRevE.99.030301 – reference: GarlaschelliDLoffredoMIMaximum likelihood: extracting unbiased information from complex networksPhys. Rev. E2008781015101(R)2008PhRvE..78a5101G10.1103/PhysRevE.78.015101 – reference: MastrandreaRSquartiniTFagioloGGarlaschelliDIntensive and extensive biases in economic networks: reconstructing world tradeNew J. Phys.2014160430222014NJPh...16d3022M10.1088/1367-2630/16/4/043022 – reference: CastellanoCFortunatoSLoretoVStatistical physics of social dynamicsRev. Mod. Phys.2009815912009RvMP...81..591C10.1103/RevModPhys.81.591 – reference: Miller, J. C. & Hagberg, A. Efficient generation of networks with given expected degrees, LNCS 6732. (eds Frieze, A., Horn, P. & Pralat P.) 115–126 (Springer, 2011). – reference: ChungFLuLConnected components in random graphs with given expected degree sequencesAnn. Combinatorics20026125145195551410.1007/PL00012580 – reference: Database of Interacting Proteins and can be found at the following URL: http://dip.doe-mbi.ucla.edu/dip/Main.cgi – reference: Del GenioCIKimHToroczkaiZBasslerKEDel GenioCIKimHToroczkaiZBasslerKEPLoS One201054e1001210.1371/journal.pone.0010012 – reference: Bovet, A., Campajola, C., Mottes, F., Restocchi, V., Vallarano, N., Squartini, T. & Tessone, C. J.The evolving liaisons between the transaction networks of Bitcoin and its price dynamics, arXiv:1907.03577 (2019). – reference: BianconiGThe entropy of randomized network ensemblesEurophys. Lett.2007812280052008EL.....8128005B244395510.1209/0295-5075/81/28005 – reference: JaynesETInformation theory and statistical mechanicsPhys. Rev.195710646206301957PhRv..106..620J8730510.1103/PhysRev.106.620 – reference: ParisiFSquartiniTGarlaschelliDA faster horse on a safer trail: generalized inference for the efficient reconstruction of weighted networksNew J. Phys.2020220530532020NJPh...22e3053P412760410.1088/1367-2630/ab74a7 – reference: BlitzsteinJDiaconisPA sequential importance sampling algorithm for generating random graphs with prescribed degreesInternet Math.201164489522280983610.1080/15427951.2010.557277 – reference: BoydSVandenbergheLConvex Optimization2004Cambridge University Press10.1017/CBO9780511804441 – reference: CaldarelliGuidoDe NicolaRoccoPetrocchiMarinellaPratelliManuelSaraccoFabioFlow of online misinformation during the peak of the COVID-19 pandemic in ItalyEPJ Data Science202010.1140/epjds/s13688-021-00289-4 – reference: Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev. Mod. Phys.2015879252015RvMP...87..925P340604010.1103/RevModPhys.87.925 – reference: CiminiGSquartiniTSaraccoFGarlaschelliDGabrielliACaldarelliGThe statistical physics of real-world networksNat. Rev. Phys.201911587110.1038/s42254-018-0002-6 – reference: GarlaschelliDLoffredoMIGeneralized bose-fermi statistics and structural correlations in weighted networksPhys. Rev. Lett.200910230387012009PhRvL.102c8701G10.1103/PhysRevLett.102.038701 – reference: ParkJNewmanMEJStatistical mechanics of networksPhys. Rev. E20047060661172004PhRvE..70f6117P213380710.1103/PhysRevE.70.066117 – reference: SquartiniTvan LelyveldIGarlaschelliDEarly-warning signals of topological collapse in interbank networksSci. Rep.20133335710.1038/srep03357 – reference: GleditschKExpanded trade and GDP dataJ. Conflict Resol.2002467122410.1177/0022002702046005006 – reference: ColizzaVPastor-SatorrasRVespignaniAReaction-diffusion processes and metapopulation models in heterogeneous networksNat. Phys.200732762821:CAS:528:DC%2BD2sXjs12nsro%3D10.1038/nphys560 – reference: CoolenACCDe MartinoAAnnibaleAConstrained Markovian dynamics of random graphsJ. Stat. Phys.2009136103510672009JSP...136.1035C25503951:CAS:528:DC%2BD1MXht1Ggtb%2FN10.1007/s10955-009-9821-2 – reference: Artzy-RandrupYStoneLGenerating uniformly distributed random networksPhys. Rev. E20057250567082005PhRvE..72e6708A219832310.1103/PhysRevE.72.056708 – reference: MastrandreaRSquartiniTFagioloGGarlaschelliDReconstructing the world trade multiplex: the role of intensive and extensive biasesPhys. Rev. E20149060628042014PhRvE..90f2804M1:CAS:528:DC%2BC2MXhslGis7o%3D10.1103/PhysRevE.90.062804 – reference: CiminiGSquartiniTGabrielliAGarlaschelliDSystemic risk analysis on reconstructed economic and financial networksSci. Rep.20155157582015NatSR...515758C1:CAS:528:DC%2BC2MXhslCnt7vN10.1038/srep15758 – reference: FronczakAFronczakPHolystJAFluctuation-dissipation relations in complex networksPhys. Rev. E20067310161082006PhRvE..73a6108F222305610.1103/PhysRevE.73.016108 – reference: MaslovSSneppenKSpecificity and stability in topology of protein networksScience200229655699109132002Sci...296..910M1:CAS:528:DC%2BD38XjsFymsr8%3D10.1126/science.1065103 – reference: KimHDel GenioCIBasslerKEToroczkaiZConstructing and sampling directed graphs with given degree sequencesNew J. Phys.2012140230122012NJPh...14b3012K10.1088/1367-2630/14/2/023012 – reference: VallaranoNicolòTessoneClaudio J.SquartiniTizianoBitcoin Transaction Networks: an overview of recent resultsFrontiers in Physics202082862020FrP.....8..286V10.3389/fphy.2020.00286 – reference: FronczakAgataRedaAlhajjJonRokneExponential random graph modelsEncyclopedia of Social Network Analysis and Mining20142014New YorkSpringer-Verlag10.1007/978-1-4939-7131-2_2331290.82006 – reference: SquartiniTGarlaschelliDAnalytical maximum-likelihood method to detect patterns in real networksNew. J. Phys.2011130830012011NJPh...13h3001S10.1088/1367-2630/13/8/083001 – reference: LinJ-HPrimicerioKSquartiniTDeckerCTessoneCJLightning Network: a second path towards centralisation of the Bitcoin economyNew J. Phys.2020220830222020NJPh...22h3022L10.1088/1367-2630/aba062 – reference: SaraccoFDi ClementeRGabrielliASquartiniTRandomizing bipartite networks: the case of the World Trade WebSci. Rep.20155105952015NatSR...510595S1:CAS:528:DC%2BC2MXhtFOrsbrI10.1038/srep10595 – volume: 22 start-page: 053053 year: 2020 ident: 93830_CR43 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab74a7 – volume-title: Networks: An Introduction year: 2010 ident: 93830_CR1 doi: 10.1093/acprof:oso/9780199206650.001.0001 – volume: 81 start-page: 28005 issue: 2 year: 2007 ident: 93830_CR17 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/81/28005 – volume: 102 start-page: 038701 issue: 3 year: 2009 ident: 93830_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.038701 – volume: 87 start-page: 925 year: 2015 ident: 93830_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.925 – volume: 296 start-page: 910 issue: 5569 year: 2002 ident: 93830_CR8 publication-title: Science doi: 10.1126/science.1065103 – volume: 3 start-page: 3357 year: 2013 ident: 93830_CR6 publication-title: Sci. Rep. doi: 10.1038/srep03357 – volume-title: Numerical Optimization year: 2006 ident: 93830_CR25 – volume-title: Encyclopedia of Social Network Analysis and Mining year: 2014 ident: 93830_CR20 doi: 10.1007/978-1-4939-7131-2_233 – volume-title: Convex Optimization year: 2004 ident: 93830_CR26 doi: 10.1017/CBO9780511804441 – ident: 93830_CR28 – volume: 2 start-page: 110 year: 2006 ident: 93830_CR31 publication-title: Nat. Phys. doi: 10.1038/nphys209 – volume: 84 start-page: 046117 year: 2011 ident: 93830_CR34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.046117 – volume: 1 start-page: 58 issue: 1 year: 2019 ident: 93830_CR7 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0002-6 – volume: 13 start-page: 083001 year: 2011 ident: 93830_CR15 publication-title: New. J. Phys. doi: 10.1088/1367-2630/13/8/083001 – volume: 16 start-page: 043022 year: 2014 ident: 93830_CR38 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/4/043022 – volume: 85 start-page: 046103 issue: 4 year: 2012 ident: 93830_CR10 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.046103 – ident: 93830_CR30 – volume: 73 start-page: 016108 issue: 1 year: 2006 ident: 93830_CR18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.73.016108 – volume: 32 start-page: 259 issue: 1 year: 2006 ident: 93830_CR42 publication-title: J. Econ. Dyn. Control doi: 10.1016/j.jedc.2007.01.032 – volume: 103 start-page: 2015 issue: 7 year: 2006 ident: 93830_CR2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0510525103 – year: 2020 ident: 93830_CR36 publication-title: EPJ Data Science doi: 10.1140/epjds/s13688-021-00289-4 – ident: 93830_CR22 – volume: 90 start-page: 062804 issue: 6 year: 2014 ident: 93830_CR40 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.062804 – volume: 5 start-page: 15758 year: 2015 ident: 93830_CR45 publication-title: Sci. Rep. doi: 10.1038/srep15758 – volume: 72 start-page: 056708 issue: 5 year: 2005 ident: 93830_CR11 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.056708 – volume-title: Dynamical Processes on Complex Networks year: 2008 ident: 93830_CR3 doi: 10.1017/CBO9780511791383 – volume: 106 start-page: 620 issue: 4 year: 1957 ident: 93830_CR21 publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.620 – volume: 78 start-page: 015101(R) issue: 1 year: 2008 ident: 93830_CR24 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.015101 – volume: 136 start-page: 1035 year: 2009 ident: 93830_CR9 publication-title: J. Stat. Phys. doi: 10.1007/s10955-009-9821-2 – volume: 5 start-page: e10012 issue: 4 year: 2010 ident: 93830_CR12 publication-title: PLoS One doi: 10.1371/journal.pone.0010012 – ident: 93830_CR35 – volume: 5 start-page: 10595 year: 2015 ident: 93830_CR37 publication-title: Sci. Rep. doi: 10.1038/srep10595 – volume: 99 start-page: 030301(R) issue: 3 year: 2019 ident: 93830_CR19 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.030301 – volume: 46 start-page: 712 year: 2002 ident: 93830_CR41 publication-title: J. Conflict Resol. doi: 10.1177/0022002702046005006 – volume: 6 start-page: 489 issue: 4 year: 2011 ident: 93830_CR14 publication-title: Internet Math. doi: 10.1080/15427951.2010.557277 – volume: 3 start-page: 276 year: 2007 ident: 93830_CR29 publication-title: Nat. Phys. doi: 10.1038/nphys560 – volume: 22 start-page: 083022 year: 2020 ident: 93830_CR32 publication-title: New J. Phys. doi: 10.1088/1367-2630/aba062 – ident: 93830_CR33 doi: 10.1007/978-3-642-21286-4_10 – volume: 8 start-page: 286 year: 2020 ident: 93830_CR23 publication-title: Frontiers in Physics doi: 10.3389/fphy.2020.00286 – volume: 6 start-page: 125 year: 2002 ident: 93830_CR27 publication-title: Ann. Combinatorics doi: 10.1007/PL00012580 – volume: 70 start-page: 066117 issue: 6 year: 2004 ident: 93830_CR16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066117 – volume: 92 start-page: 040802 year: 2015 ident: 93830_CR44 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.040802 – volume: 81 start-page: 591 year: 2009 ident: 93830_CR5 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.591 – volume: 14 start-page: 023012 year: 2012 ident: 93830_CR13 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/2/023012 |
| SSID | ssj0000529419 |
| Score | 2.5414088 |
| Snippet | Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been... Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15227 |
| SubjectTerms | 639/766/530/2801 639/766/530/2804 Algorithms Humanities and Social Sciences multidisciplinary Probability distribution Science Science (multidisciplinary) Statistical analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgh4QPwUgYGMxBuLFttJHD8gxFDLhESFJibtLTrHMVSkabe02vbf40uTjPJQ8Zo4iZO7iz_7fN8H8M6mLsqMK0IjhQ1jbTDENC2owCdymSy1abUIvk3Tk7P463lyvgfTvhaGtlX2_8T2R20XBa2RH3no68G1TKT4uLwISTWKsqu9hAZ20gr2Q0sxdgf2BTFjjWD_eDz9fjqsulBeK-a6q56JZHbU-BGMqsxop4KfrUVhvDVCtUT-W-jz372TQwL1Adxb10u8ucKq-muMmjyChx24ZJ823vAY9sr6CdzdyE3ePAU7wWbFsLas8ZahmilWzX6X1Yyojdkcr2fzriqTeSjLxtfLRU2bifwtT_1Vizn7QvTWjPTTqobREi5rx0JWEMoksYlV8wzOJuMfn0_CTmUhLBKuVmEpjI5KrT0SkS5Bya0i1i4S4DActUTutD-WOLTaGqEQhSxsicpmTikf3s9hVPvuvAAmIiklRy5Si3HijEYsk9KgNk5L7mwAvP-yedFRkFPnqrxNhcss31gj99bIW2vkcQDvh2uWGwKOna2PyWBDSyLPbg8sLn_mXSzmUeS0y6yRyoMbJaRRDlEjN6lOYhsXARz05s67iG7yW_8L4O1w2sciJViwLhfrTRsi00myANSWm2x1aPtMPfvVsnpn0s9cMx7AYe9Qtw_f9cKHg9P9x_d5ufvVXsF9QZEQqVCoAxitLtflaw-6VuZNF0l_ANZ5KvQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_niagP4idWT4ngm1dtkrZpHkRUbj2E80FcuLcwaRpd7HbXbRd3_3sz_dLKcfjgaz7aNDPDzDSZ34-Q5zZ1UWZcHhrBbRgrAyGkaY4FPpHLRKFMy0Vw9ik9nccfz5PzAzLQHfUbWF-Y2iGf1HxTvtz92L_xBv-6KxnPXtXeCWGhGF428AlXFMZXyFXvqRRSOZz14X6H9c1VzFRfO3Px1Il_amH8J7Hn3zcnx-PTm-T6tlrD_ieU5R8eanab3OpDS_q204U75KCo7pJrHdnk_h6xM6gbCpWltZcLVkzRcvG9KBcIbEyXsFss-5pM6gNZerJbryq8SuQf-dnPWi3pBwS3psieVtYUf-DS1hPSHGNMpJpo6vtkPjv58v407DkWwjxhsgkLblRUKOXjEOESEMxKxOxC-g3DQAlgTvm2xIFV1nAJwEVuC5A2c1J6435ADiu_nIeE8kgIwYDx1EKcOKMAiqQwoIxTgjkbEDbsrM57AHJcXKnbg3CR6U4a2ktDt9LQcUBejHPWHfzGpaPfocDGkQid3TasNl91b4k6ipxymTVC-tBGcmGkA1DATKqS2MZ5QI4GcetBHbVPvHxqJxLBA_Js7PaWiMcrUBWrbTcGoXSSLCByoiaTBU17qsW3FtM7Ez5vzVhAjgeF-v3yyz74eFS6f9ifR_9jfx6TGxztJZIhl0fksNlsiyc-MGvM09bafgF2sDSr priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPUR9ED-xekoE39xi07RN8rjKrceCPqgH9xYmTYKL3e5iu3j335u03WoVDn1NMmmamWEmmcxvAF6ZwiVCuzLWLDVxJjXGWBRlSPBJnGBW6q4WwYePxdl5trrIL45gfsiFmcTvO-juxpuYkAYWnhL441QSZzfgWHjBFDM4XixWn1fjnUqIWmVUDrkxnvzN38QT-9PB9E98yz9fRo7h0Ttwa1_v8OoHVtVvFmh5D-4OriNZ9Ly-D0e2fgA3-2KSVw_BLLFpCdaGNH7fQ0YUqdbfbLUOwMVkg5frzZBzSbyjSk4vd9s6PBXyU37yVNsNeR_Aq0mojlY1JFzQks7SkTL4kKGURNs8gvPl6Zd3Z_FQQyEuc8rb2KZaJlZK72cwlyOjhgdMrlBeQ1OUDKmTvi13aKTRKUdMWWksciMc5155H8Os9st5AiRNGGMUaVoYzHKnJaLNrUapnWTUmQjoYWdVOQCMh8VVqgt0M6F6bijPDdVxQ2URvB5pdj28xrWj3waGjSMDNHbX4CVGDZqmksRJJ4xm3LsuPGWaO0SJVBcyz0xWRnByYLca9LVR_mDlj24sZ2kEL8dur2khfIK13e77MQEqJxcR8ImYTBY07anXXzvMbsH8uVTQCOYHgfr18et-eD4K3T_sz9P_m_0Z3E6DZiQ8TvkJzNrve_vcu1itfjFo1k9H0R8r priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwBs1UJCRuNFsYzuJ42NBXSokKoRYUU7ROI5h1Wx21WRFy6_HzgtSoYpe43Hix9j-Jp75BuC1jk2QKJP5ijPth1Khj3GcuQCfwCQ8l6rJRfDxJD6ehx9Oo9MtiPtYmMZpv6G0bLbp3jvsoLIHjQsGcw4F1qgK_HC61uYWbMeRxeAT2J6ffDr85jLJWYziW5jAugiZgCf_qDw6hRqy_hHCvOofOVyS3oU7m3KNlz-xKP46h2b34Wvfg9b95Gy6qdU0-3WF3PHmXXwA9zpoSg5byYewlZeP4HabrPLyMegZVjXBUpPKzquLuCLF4iwvFo4YmSzxYrHsYjqJBcLk6GK9Kp0rkn3lZ1trtSTvHTk2cdnXioq4H8CkOUlJ5jCqS1VRV09gPjv68u7Y73I0-FlERe3nTMkgl9LiGG4i5FQLx_nl0ncoipIjNdI-iwxqqRUTiIxnOkehEyOE3RyewqS0zdkFwgLOOUXKYo1hZJREzKNcoVRGcmq0B7SfszTrCMxd44q0uUjnSdqOYGpHMG1GMA09eDPUWbf0HddKv3WqMEg66u3mwer8e9rNUxoERppEKy4sNBKMK2EQJVIVyyjUYebBXq9IabcfVKk13KxpyCPOPHg1FNuV7K5nsMxXm1bGUfFEiQdipICjBo1LysWPhhM84dbuTagH-72q_vn4dR3eH9T5P8bn2c3En8MOc9ocCJ-JPZjU55v8hYVwtXrZrdff5SRBuw priority: 102 providerName: Unpaywall |
| Title | Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints |
| URI | https://link.springer.com/article/10.1038/s41598-021-93830-4 https://www.proquest.com/docview/2555483532 https://www.proquest.com/docview/2555965858 https://pubmed.ncbi.nlm.nih.gov/PMC8316481 https://www.nature.com/articles/s41598-021-93830-4.pdf https://doaj.org/article/00f9f8db37124723b7faa9a1b6954d4c |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiE8RGJWReGPRYjuJ7ceuapkqrZoGlcpTdI5jrSJNK9KK7b_nnKSl5WHwwEsi2U5y8d3l7mLf7wj5aFMXKePy0Ahuw1gbCCFNc5_gEzklCm2aWgQXk_R8Go9nyWyv1JffE9bCA7cTdxpFTjtljZBoiSQXRjoADcykOoltnPuvb6T0XjDVonpzHTPdZclEQp3WaKl8NpnfkYBRWRTGB5aoAew_8DL_3CO5Wyh9Qh5tqhXc_oSy3LNFo2fkaedE0n5L_HNyr6hekIdtWcnbl8SOoF5TqCytkQM-N4qW8-9FOfcQxnQBN_NFl31J0WWlw5vVsvKbhvCWV3jVckE_exhr6uuklTX1v2ppY_No7r1JX1RiXb8i09Hw6-A87KophHnC5DosuNFRoTV6HMIlIJiVHp3LF9owDLQA5jS2JQ6stoZLAC5yW4C0ykmJavyaHFVIzhtCeSSEYMB4aiFOnNEARVIY0MZpwZwNCNvObJZ3UOOeuDJrlryFylpuZMiNrOFGFgfk0-6aVQu0cefoM8-w3UgPkt00oOhknehkfxOdgBxv2Z11mltnGGJhECcSwQPyYdeNOucXUqAqlpt2jAfNSVRA5IGYHBB02FPNrxv0biUwQlUsICdbgfr98Lte-GQndP8wP2__x_y8I4-515dIhlwek6P1j03xHl2wtemR-3Ime-RBvz_-Msbz2XByeYWtg3TQazQRjxexwp7p5LL_7RcB0jR9 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTWjwgPgpAgOMBE8sWmIncfwwIQYtHdsqNG3S3rJzbENFmpal09Z_jr8NX5pklIeKl70mTuL47nxnn-_7CHmrExukyua-4kz7kVTgQ5LkWOAT2JQbqWougqNhMjiNvp7FZ2vkd1sLg8cq2zmxnqj1JMc98h0X-rrgmsecfZj-8pE1CrOrLYUGNNQKereGGGsKOw7M_Mot4ard_c9O3u8Y6_dOPg38hmXAz-NQzHzDlAyMlM4TcxsDD7VA1CokoFAhSA6hle5abEFLrZgAYDzXBoROrRACwZicC9iIeCTd4m9jrzf8dtzt8mAeLQplU60T8HSnch4Tq9rwZIRbHQZ-tOQRa-KApWj337OaXcL2Htm8LKcwv4Ki-Msn9h-Q-00wSz8utO8hWTPlI3JnQW85f0x0H6oZhVLTymkC1mjRYvTTFCOEUqZjuB6NmypQ6kJn2rueTko8vOReeeyemozpF4TTpsjXVlQUt4xp7XtpjlEtklvMqifk9FbG-ylZL113nhHKAs55CCFLNESxVRLAxEaBVFby0GqPhO3IZnkDeY6dK7I69c7TbCGNzEkjq6WRRR553z0zXQB-rGy9hwLrWiJYd31hcvE9a2w_CwIrbaoVFy6YEowrYQEkhCqRcaSj3CNbrbizZgapsht998ib7razfUzoQGkml4s2CN4Tpx4RS2qy1KHlO-XoR40innK3Uk5Dj2y3CnXz8VU_vN0p3X-Mz_PVv_aabA5Ojg6zw_3hwQtyl6FVBMJnYouszy4uzUsX8M3Uq8aqKDm_bUP-A4ULZ-g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxFMEChgJTjTa2E7i-IAQ0C4thQohKu0tHccxXTWbXZpdtfvX-HV48irLYcWlV9tJHM-MZ-yZ-YaQVya2QaJt5mvBjR8qDT7EcYYJPoFNRK50XYvg62G8dxR-HkWjDfK7y4XBsMpuT6w3ajPN8I584ExfZ1yLSPCBbcMivu0M381--VhBCj2tXTmNhkUO8uW5O75Vb_d3HK1fcz7c_fFxz28rDPhZxOTcz7lWQa6U08LCRiCYkYhYhcUnNAMlgFnl2iILRhnNJQAXmclBmsRKKRGIyW3_16QQCsMJ5Uj29zvoQQuZavN0ApEMKqcrMZ8NYyLcuTDwwxVdWJcMWLFz_43S7F21t8nNRTmD5TkUxV_acHiX3GnNWPq-4bt7ZCMv75PrTWHL5QNihlDNKZSGVo4HMDuLFuPTvBgjiDKdwMV40uZ_Umc0092L2bTEsCX3yu_uqemEfkIgbYqV2oqK4mUxrbUuzdCexbIW8-ohObqS1X5ENks3nceE8kAIwYDx2EAYWa0A8ijXoLRVglnjEdatbJq1YOc4uSKtne4iSRtqpI4aaU2NNPTIm_6ZWQP1sXb0ByRYPxJhuuuG6dnPtJX6NAissonRQjozSnKhpQVQwHSsotCEmUe2OnKn7d5RpZec7pGXfbeTenTlQJlPF80YhO2JEo_IFTZZmdBqTzk-qfHDE-HOyAnzyHbHUJcfX_fD2z3T_cf6PFn_ay_IDSe-6Zf9w4On5BZHoQikz-UW2ZyfLfJnztKb6-e1SFFyfNUy_AemXWWC |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwBs1UJCRuNFsYzuJ42NBXSokKoRYUU7ROI5h1Wx21WRFy6_HzgtSoYpe43Hix9j-Jp75BuC1jk2QKJP5ijPth1Khj3GcuQCfwCQ8l6rJRfDxJD6ehx9Oo9MtiPtYmMZpv6G0bLbp3jvsoLIHjQsGcw4F1qgK_HC61uYWbMeRxeAT2J6ffDr85jLJWYziW5jAugiZgCf_qDw6hRqy_hHCvOofOVyS3oU7m3KNlz-xKP46h2b34Wvfg9b95Gy6qdU0-3WF3PHmXXwA9zpoSg5byYewlZeP4HabrPLyMegZVjXBUpPKzquLuCLF4iwvFo4YmSzxYrHsYjqJBcLk6GK9Kp0rkn3lZ1trtSTvHTk2cdnXioq4H8CkOUlJ5jCqS1VRV09gPjv68u7Y73I0-FlERe3nTMkgl9LiGG4i5FQLx_nl0ncoipIjNdI-iwxqqRUTiIxnOkehEyOE3RyewqS0zdkFwgLOOUXKYo1hZJREzKNcoVRGcmq0B7SfszTrCMxd44q0uUjnSdqOYGpHMG1GMA09eDPUWbf0HddKv3WqMEg66u3mwer8e9rNUxoERppEKy4sNBKMK2EQJVIVyyjUYebBXq9IabcfVKk13KxpyCPOPHg1FNuV7K5nsMxXm1bGUfFEiQdipICjBo1LysWPhhM84dbuTagH-72q_vn4dR3eH9T5P8bn2c3En8MOc9ocCJ-JPZjU55v8hYVwtXrZrdff5SRBuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+scalable+likelihood+maximization+for+Exponential+Random+Graph+Models+with+local+constraints&rft.jtitle=Scientific+reports&rft.au=Nicol%C3%B2+Vallarano&rft.au=Matteo+Bruno&rft.au=Emiliano+Marchese&rft.au=Giuseppe+Trapani&rft.date=2021-07-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1038%2Fs41598-021-93830-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_00f9f8db37124723b7faa9a1b6954d4c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |