Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints

Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with gi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 15227 - 33
Main Authors Vallarano, Nicolò, Bruno, Matteo, Marchese, Emiliano, Trapani, Giuseppe, Saracco, Fabio, Cimini, Giulio, Zanon, Mario, Squartini, Tiziano
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-93830-4

Cover

Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O ( N ) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy , speed and scalability . The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
AbstractList Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton's method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton's method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O(N) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton's method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton's method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of O ( N ) non-linear, coupled equations (with N being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy , speed and scalability . The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newton’s method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newton’s method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
ArticleNumber 15227
Author Squartini, Tiziano
Vallarano, Nicolò
Saracco, Fabio
Bruno, Matteo
Marchese, Emiliano
Zanon, Mario
Cimini, Giulio
Trapani, Giuseppe
Author_xml – sequence: 1
  givenname: Nicolò
  surname: Vallarano
  fullname: Vallarano, Nicolò
  organization: IMT School for Advanced Studies Lucca
– sequence: 2
  givenname: Matteo
  surname: Bruno
  fullname: Bruno, Matteo
  organization: IMT School for Advanced Studies Lucca
– sequence: 3
  givenname: Emiliano
  surname: Marchese
  fullname: Marchese, Emiliano
  organization: IMT School for Advanced Studies Lucca
– sequence: 4
  givenname: Giuseppe
  surname: Trapani
  fullname: Trapani, Giuseppe
  organization: IMT School for Advanced Studies Lucca
– sequence: 5
  givenname: Fabio
  surname: Saracco
  fullname: Saracco, Fabio
  organization: IMT School for Advanced Studies Lucca
– sequence: 6
  givenname: Giulio
  surname: Cimini
  fullname: Cimini, Giulio
  organization: Physics Department and INFN, ‘Tor Vergata’ University of Rome
– sequence: 7
  givenname: Mario
  surname: Zanon
  fullname: Zanon, Mario
  organization: IMT School for Advanced Studies Lucca
– sequence: 8
  givenname: Tiziano
  surname: Squartini
  fullname: Squartini, Tiziano
  email: tiziano.squartini@imtlucca.it
  organization: IMT School for Advanced Studies Lucca, Institute for Advanced Study (IAS), University of Amsterdam
BookMark eNqNks1vFCEYxiemxtbaf8ATiRcvo3wucDExTVub1JgYPZN3BmaXlYEVZvrhXy_d3ajtoZELBJ7nx8v78LI5iCm6pnlN8DuCmXpfOBFatZiSVjPFcMufNUcUc9FSRunBP-vD5qSUNa5DUM2JftEcMs6qm-Kjxp5DmRBEi0oPAbrgUPA_XPCrlCwa4daP_hdMPkU0pIzObje1jDh5COhrdaURXWTYrNDnZF0o6MZPKxRSRaE-xTJl8HEqr5rnA4TiTvbzcfP9_Ozb6af26svF5enHq7YXRE6to53GTmuhOBsEMGIlkRpLxXhHQDMgg657YgCrbUclAGW9dSCtGqSUmh03lzuuTbA2m-xHyHcmgTfbjZSXBvLk--AMxoMelO2YJJRLyjo5AGgg3UILbnlfWWzHmuMG7m4ghD9Ags19BGYXgakRmG0EhlfXh51rM3ejs31tVYbwoJSHJ9GvzDJdG8XIgitSAW_3gJx-zq5MZvSldyFAdGkuhgoh9EIooar0zSPpOs051gZvVVwxwWhV0Z2qz6mU7Ib_e4Z6ZOr9tP0F94mGp637vpV6T1y6_LeqJ1y_AYTa3Mg
CitedBy_id crossref_primary_10_1038_s41598_023_31658_w
crossref_primary_10_1016_j_ecolind_2024_112378
crossref_primary_10_1088_2632_072X_ad1411
crossref_primary_10_1038_s41598_022_16603_7
crossref_primary_10_1140_epjp_s13360_023_04003_3
crossref_primary_10_1016_j_chaos_2022_112620
crossref_primary_10_1093_pnasnexus_pgae177
crossref_primary_10_1103_PhysRevE_109_L053301
crossref_primary_10_1038_s41598_023_33184_1
crossref_primary_10_1371_journal_pone_0254748
crossref_primary_10_1140_epjds_s13688_021_00301_x
crossref_primary_10_1140_epjds_s13688_022_00330_0
crossref_primary_10_1038_s41598_022_22798_6
crossref_primary_10_1038_s41598_022_20710_w
crossref_primary_10_1038_s41598_023_34024_y
crossref_primary_10_3390_agronomy13020576
crossref_primary_10_1038_s41598_023_30649_1
crossref_primary_10_1371_journal_pcsy_0000010
crossref_primary_10_1016_j_chaos_2024_114630
crossref_primary_10_1038_s42005_024_01640_7
crossref_primary_10_1140_epjds_s13688_024_00477_y
crossref_primary_10_1038_s41598_024_61448_x
crossref_primary_10_1007_s41109_022_00506_7
crossref_primary_10_1103_PhysRevE_111_024312
Cites_doi 10.1088/1367-2630/ab74a7
10.1093/acprof:oso/9780199206650.001.0001
10.1209/0295-5075/81/28005
10.1103/PhysRevLett.102.038701
10.1103/RevModPhys.87.925
10.1126/science.1065103
10.1038/srep03357
10.1007/978-1-4939-7131-2_233
10.1017/CBO9780511804441
10.1038/nphys209
10.1103/PhysRevE.84.046117
10.1038/s42254-018-0002-6
10.1088/1367-2630/13/8/083001
10.1088/1367-2630/16/4/043022
10.1103/PhysRevE.85.046103
10.1103/PhysRevE.73.016108
10.1016/j.jedc.2007.01.032
10.1073/pnas.0510525103
10.1140/epjds/s13688-021-00289-4
10.1103/PhysRevE.90.062804
10.1038/srep15758
10.1103/PhysRevE.72.056708
10.1017/CBO9780511791383
10.1103/PhysRev.106.620
10.1103/PhysRevE.78.015101
10.1007/s10955-009-9821-2
10.1371/journal.pone.0010012
10.1038/srep10595
10.1103/PhysRevE.99.030301
10.1177/0022002702046005006
10.1080/15427951.2010.557277
10.1038/nphys560
10.1088/1367-2630/aba062
10.1007/978-3-642-21286-4_10
10.3389/fphy.2020.00286
10.1007/PL00012580
10.1103/PhysRevE.70.066117
10.1103/PhysRevE.92.040802
10.1103/RevModPhys.81.591
10.1088/1367-2630/14/2/023012
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-021-93830-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 33
ExternalDocumentID oai_doaj_org_article_00f9f8db37124723b7faa9a1b6954d4c
10.1038/s41598-021-93830-4
PMC8316481
10_1038_s41598_021_93830_4
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c517t-e2b90e995843f5a31d717907834b1a93a1f91d75fad9db27aa23cdea7d8f77793
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:15 EDT 2025
Sun Oct 26 04:08:36 EDT 2025
Tue Sep 30 16:31:15 EDT 2025
Fri Sep 05 07:41:06 EDT 2025
Tue Oct 07 08:08:50 EDT 2025
Wed Oct 01 04:28:03 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-e2b90e995843f5a31d717907834b1a93a1f91d75fad9db27aa23cdea7d8f77793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/00f9f8db37124723b7faa9a1b6954d4c
PMID 34315920
PQID 2555483532
PQPubID 2041939
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_00f9f8db37124723b7faa9a1b6954d4c
unpaywall_primary_10_1038_s41598_021_93830_4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8316481
proquest_miscellaneous_2555965858
proquest_journals_2555483532
crossref_primary_10_1038_s41598_021_93830_4
crossref_citationtrail_10_1038_s41598_021_93830_4
springer_journals_10_1038_s41598_021_93830_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-27
PublicationDateYYYYMMDD 2021-07-27
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References GabrielliAMastrandreaRCaldarelliGCiminiGGrand canonical ensemble of weighted networksPhys. Rev. E2019993030301(R)2019PhRvE..99c0301G10.1103/PhysRevE.99.030301
SquartiniTFagioloGGarlaschelliDRandomizing world trade. I. A binary network analysisPhys. Rev. E2011840461172011PhRvE..84d6117S10.1103/PhysRevE.84.046117
ParisiFSquartiniTGarlaschelliDA faster horse on a safer trail: generalized inference for the efficient reconstruction of weighted networksNew J. Phys.2020220530532020NJPh...22e3053P412760410.1088/1367-2630/ab74a7
KimHDel GenioCIBasslerKEToroczkaiZConstructing and sampling directed graphs with given degree sequencesNew J. Phys.2012140230122012NJPh...14b3012K10.1088/1367-2630/14/2/023012
NocedalJWrightSJNumerical Optimization2006Springer1104.65059
ColizzaVBarratABarthelemyMVespignaniAThe role of the airline transportation network in the prediction and predictability of global epidemicsProc. Natl. Acad. Sci.20061037201520202006PNAS..103.2015C1:CAS:528:DC%2BD28XhslCqu7o%3D10.1073/pnas.0510525103
FronczakAgataRedaAlhajjJonRokneExponential random graph modelsEncyclopedia of Social Network Analysis and Mining20142014New YorkSpringer-Verlag10.1007/978-1-4939-7131-2_2331290.82006
SaraccoFDi ClementeRGabrielliASquartiniTRandomizing bipartite networks: the case of the World Trade WebSci. Rep.20155105952015NatSR...510595S1:CAS:528:DC%2BC2MXhtFOrsbrI10.1038/srep10595
RobertsESCoolenACCUnbiased degree-preserving randomization of directed binary networksPhys. Rev. E20128540461032012PhRvE..85d6103R1:STN:280:DC%2BC38fkvFOkuw%3D%3D10.1103/PhysRevE.85.046103
ChungFLuLConnected components in random graphs with given expected degree sequencesAnn. Combinatorics20026125145195551410.1007/PL00012580
SquartiniTGarlaschelliDAnalytical maximum-likelihood method to detect patterns in real networksNew. J. Phys.2011130830012011NJPh...13h3001S10.1088/1367-2630/13/8/083001
CiminiGSquartiniTSaraccoFGarlaschelliDGabrielliACaldarelliGThe statistical physics of real-world networksNat. Rev. Phys.201911587110.1038/s42254-018-0002-6
GarlaschelliDLoffredoMIMaximum likelihood: extracting unbiased information from complex networksPhys. Rev. E2008781015101(R)2008PhRvE..78a5101G10.1103/PhysRevE.78.015101
BianconiGThe entropy of randomized network ensemblesEurophys. Lett.2007812280052008EL.....8128005B244395510.1209/0295-5075/81/28005
BarratABarthlemyMVespignaniADynamical Processes on Complex Networks2008Cambridge University Press10.1017/CBO9780511791383
BlitzsteinJDiaconisPA sequential importance sampling algorithm for generating random graphs with prescribed degreesInternet Math.201164489522280983610.1080/15427951.2010.557277
CiminiGSquartiniTGabrielliAGarlaschelliDEstimating topological properties of weighted networks from limited informationPhys. Rev. E2015920408022015PhRvE..92d0802C10.1103/PhysRevE.92.040802
ColizzaVPastor-SatorrasRVespignaniAReaction-diffusion processes and metapopulation models in heterogeneous networksNat. Phys.200732762821:CAS:528:DC%2BD2sXjs12nsro%3D10.1038/nphys560
CastellanoCFortunatoSLoretoVStatistical physics of social dynamicsRev. Mod. Phys.2009815912009RvMP...81..591C10.1103/RevModPhys.81.591
JaynesETInformation theory and statistical mechanicsPhys. Rev.195710646206301957PhRv..106..620J8730510.1103/PhysRev.106.620
Del GenioCIKimHToroczkaiZBasslerKEDel GenioCIKimHToroczkaiZBasslerKEPLoS One201054e1001210.1371/journal.pone.0010012
BoydSVandenbergheLConvex Optimization2004Cambridge University Press10.1017/CBO9780511804441
GleditschKExpanded trade and GDP dataJ. Conflict Resol.2002467122410.1177/0022002702046005006
Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev. Mod. Phys.2015879252015RvMP...87..925P340604010.1103/RevModPhys.87.925
ParkJNewmanMEJStatistical mechanics of networksPhys. Rev. E20047060661172004PhRvE..70f6117P213380710.1103/PhysRevE.70.066117
MastrandreaRSquartiniTFagioloGGarlaschelliDIntensive and extensive biases in economic networks: reconstructing world tradeNew J. Phys.2014160430222014NJPh...16d3022M10.1088/1367-2630/16/4/043022
NewmanMEJNetworks: An Introduction2010Oxford University Press10.1093/acprof:oso/9780199206650.001.0001
CaldarelliGuidoDe NicolaRoccoPetrocchiMarinellaPratelliManuelSaraccoFabioFlow of online misinformation during the peak of the COVID-19 pandemic in ItalyEPJ Data Science202010.1140/epjds/s13688-021-00289-4
Artzy-RandrupYStoneLGenerating uniformly distributed random networksPhys. Rev. E20057250567082005PhRvE..72e6708A219832310.1103/PhysRevE.72.056708
Bovet, A., Campajola, C., Mottes, F., Restocchi, V., Vallarano, N., Squartini, T. & Tessone, C. J.The evolving liaisons between the transaction networks of Bitcoin and its price dynamics, arXiv:1907.03577 (2019).
Database of Interacting Proteins and can be found at the following URL: http://dip.doe-mbi.ucla.edu/dip/Main.cgi
Dianati, N. A maximum entropy approach to separating noise from signal in bimodal affiliation networks, arXiv:1607.01735 (2016).
SquartiniTvan LelyveldIGarlaschelliDEarly-warning signals of topological collapse in interbank networksSci. Rep.20133335710.1038/srep03357
CoolenACCDe MartinoAAnnibaleAConstrained Markovian dynamics of random graphsJ. Stat. Phys.2009136103510672009JSP...136.1035C25503951:CAS:528:DC%2BD1MXht1Ggtb%2FN10.1007/s10955-009-9821-2
ColizzaVFlamminiASerranoMAVespignaniADetecting rich-club ordering in complex networksNat. Phys.200621101151:CAS:528:DC%2BD28XhvFWlsbw%3D10.1038/nphys209
MastrandreaRSquartiniTFagioloGGarlaschelliDReconstructing the world trade multiplex: the role of intensive and extensive biasesPhys. Rev. E20149060628042014PhRvE..90f2804M1:CAS:528:DC%2BC2MXhslGis7o%3D10.1103/PhysRevE.90.062804
FronczakAFronczakPHolystJAFluctuation-dissipation relations in complex networksPhys. Rev. E20067310161082006PhRvE..73a6108F222305610.1103/PhysRevE.73.016108
GarlaschelliDLoffredoMIGeneralized bose-fermi statistics and structural correlations in weighted networksPhys. Rev. Lett.200910230387012009PhRvL.102c8701G10.1103/PhysRevLett.102.038701
VallaranoNicolòTessoneClaudio J.SquartiniTizianoBitcoin Transaction Networks: an overview of recent resultsFrontiers in Physics202082862020FrP.....8..286V10.3389/fphy.2020.00286
Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K. & Kawamura, K. Database of Synaptic Connectivity of C. elegans, Technical Report of CCeP, Keio Future3, (Keio University, 2003).
Miller, J. C. & Hagberg, A. Efficient generation of networks with given expected degrees, LNCS 6732. (eds Frieze, A., Horn, P. & Pralat P.) 115–126 (Springer, 2011).
MaslovSSneppenKSpecificity and stability in topology of protein networksScience200229655699109132002Sci...296..910M1:CAS:528:DC%2BD38XjsFymsr8%3D10.1126/science.1065103
IoriGDe MasiGPrecupOVGabbiGCaldarelliGA network analysis of the Italian overnight money marketJ. Econ. Dyn. Control200632125927810.1016/j.jedc.2007.01.032
CiminiGSquartiniTGabrielliAGarlaschelliDSystemic risk analysis on reconstructed economic and financial networksSci. Rep.20155157582015NatSR...515758C1:CAS:528:DC%2BC2MXhslCnt7vN10.1038/srep15758
LinJ-HPrimicerioKSquartiniTDeckerCTessoneCJLightning Network: a second path towards centralisation of the Bitcoin economyNew J. Phys.2020220830222020NJPh...22h3022L10.1088/1367-2630/aba062
F Chung (93830_CR27) 2002; 6
T Squartini (93830_CR6) 2013; 3
CI Del Genio (93830_CR12) 2010; 5
C Castellano (93830_CR5) 2009; 81
93830_CR35
G Iori (93830_CR42) 2006; 32
R Pastor-Satorras (93830_CR4) 2015; 87
Guido Caldarelli (93830_CR36) 2020
93830_CR33
D Garlaschelli (93830_CR39) 2009; 102
93830_CR30
H Kim (93830_CR13) 2012; 14
J Nocedal (93830_CR25) 2006
G Cimini (93830_CR45) 2015; 5
A Fronczak (93830_CR18) 2006; 73
V Colizza (93830_CR31) 2006; 2
ET Jaynes (93830_CR21) 1957; 106
J-H Lin (93830_CR32) 2020; 22
Nicolò Vallarano (93830_CR23) 2020; 8
V Colizza (93830_CR2) 2006; 103
K Gleditsch (93830_CR41) 2002; 46
J Park (93830_CR16) 2004; 70
S Maslov (93830_CR8) 2002; 296
A Gabrielli (93830_CR19) 2019; 99
G Cimini (93830_CR44) 2015; 92
J Blitzstein (93830_CR14) 2011; 6
T Squartini (93830_CR34) 2011; 84
R Mastrandrea (93830_CR40) 2014; 90
D Garlaschelli (93830_CR24) 2008; 78
V Colizza (93830_CR29) 2007; 3
F Parisi (93830_CR43) 2020; 22
Y Artzy-Randrup (93830_CR11) 2005; 72
93830_CR28
F Saracco (93830_CR37) 2015; 5
MEJ Newman (93830_CR1) 2010
S Boyd (93830_CR26) 2004
93830_CR22
R Mastrandrea (93830_CR38) 2014; 16
ES Roberts (93830_CR10) 2012; 85
ACC Coolen (93830_CR9) 2009; 136
G Cimini (93830_CR7) 2019; 1
T Squartini (93830_CR15) 2011; 13
Agata Fronczak (93830_CR20) 2014
G Bianconi (93830_CR17) 2007; 81
A Barrat (93830_CR3) 2008
References_xml – reference: NewmanMEJNetworks: An Introduction2010Oxford University Press10.1093/acprof:oso/9780199206650.001.0001
– reference: RobertsESCoolenACCUnbiased degree-preserving randomization of directed binary networksPhys. Rev. E20128540461032012PhRvE..85d6103R1:STN:280:DC%2BC38fkvFOkuw%3D%3D10.1103/PhysRevE.85.046103
– reference: ColizzaVFlamminiASerranoMAVespignaniADetecting rich-club ordering in complex networksNat. Phys.200621101151:CAS:528:DC%2BD28XhvFWlsbw%3D10.1038/nphys209
– reference: NocedalJWrightSJNumerical Optimization2006Springer1104.65059
– reference: SquartiniTFagioloGGarlaschelliDRandomizing world trade. I. A binary network analysisPhys. Rev. E2011840461172011PhRvE..84d6117S10.1103/PhysRevE.84.046117
– reference: CiminiGSquartiniTGabrielliAGarlaschelliDEstimating topological properties of weighted networks from limited informationPhys. Rev. E2015920408022015PhRvE..92d0802C10.1103/PhysRevE.92.040802
– reference: Dianati, N. A maximum entropy approach to separating noise from signal in bimodal affiliation networks, arXiv:1607.01735 (2016).
– reference: Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K. & Kawamura, K. Database of Synaptic Connectivity of C. elegans, Technical Report of CCeP, Keio Future3, (Keio University, 2003).
– reference: ColizzaVBarratABarthelemyMVespignaniAThe role of the airline transportation network in the prediction and predictability of global epidemicsProc. Natl. Acad. Sci.20061037201520202006PNAS..103.2015C1:CAS:528:DC%2BD28XhslCqu7o%3D10.1073/pnas.0510525103
– reference: IoriGDe MasiGPrecupOVGabbiGCaldarelliGA network analysis of the Italian overnight money marketJ. Econ. Dyn. Control200632125927810.1016/j.jedc.2007.01.032
– reference: BarratABarthlemyMVespignaniADynamical Processes on Complex Networks2008Cambridge University Press10.1017/CBO9780511791383
– reference: GabrielliAMastrandreaRCaldarelliGCiminiGGrand canonical ensemble of weighted networksPhys. Rev. E2019993030301(R)2019PhRvE..99c0301G10.1103/PhysRevE.99.030301
– reference: GarlaschelliDLoffredoMIMaximum likelihood: extracting unbiased information from complex networksPhys. Rev. E2008781015101(R)2008PhRvE..78a5101G10.1103/PhysRevE.78.015101
– reference: MastrandreaRSquartiniTFagioloGGarlaschelliDIntensive and extensive biases in economic networks: reconstructing world tradeNew J. Phys.2014160430222014NJPh...16d3022M10.1088/1367-2630/16/4/043022
– reference: CastellanoCFortunatoSLoretoVStatistical physics of social dynamicsRev. Mod. Phys.2009815912009RvMP...81..591C10.1103/RevModPhys.81.591
– reference: Miller, J. C. & Hagberg, A. Efficient generation of networks with given expected degrees, LNCS 6732. (eds Frieze, A., Horn, P. & Pralat P.) 115–126 (Springer, 2011).
– reference: ChungFLuLConnected components in random graphs with given expected degree sequencesAnn. Combinatorics20026125145195551410.1007/PL00012580
– reference: Database of Interacting Proteins and can be found at the following URL: http://dip.doe-mbi.ucla.edu/dip/Main.cgi
– reference: Del GenioCIKimHToroczkaiZBasslerKEDel GenioCIKimHToroczkaiZBasslerKEPLoS One201054e1001210.1371/journal.pone.0010012
– reference: Bovet, A., Campajola, C., Mottes, F., Restocchi, V., Vallarano, N., Squartini, T. & Tessone, C. J.The evolving liaisons between the transaction networks of Bitcoin and its price dynamics, arXiv:1907.03577 (2019).
– reference: BianconiGThe entropy of randomized network ensemblesEurophys. Lett.2007812280052008EL.....8128005B244395510.1209/0295-5075/81/28005
– reference: JaynesETInformation theory and statistical mechanicsPhys. Rev.195710646206301957PhRv..106..620J8730510.1103/PhysRev.106.620
– reference: ParisiFSquartiniTGarlaschelliDA faster horse on a safer trail: generalized inference for the efficient reconstruction of weighted networksNew J. Phys.2020220530532020NJPh...22e3053P412760410.1088/1367-2630/ab74a7
– reference: BlitzsteinJDiaconisPA sequential importance sampling algorithm for generating random graphs with prescribed degreesInternet Math.201164489522280983610.1080/15427951.2010.557277
– reference: BoydSVandenbergheLConvex Optimization2004Cambridge University Press10.1017/CBO9780511804441
– reference: CaldarelliGuidoDe NicolaRoccoPetrocchiMarinellaPratelliManuelSaraccoFabioFlow of online misinformation during the peak of the COVID-19 pandemic in ItalyEPJ Data Science202010.1140/epjds/s13688-021-00289-4
– reference: Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev. Mod. Phys.2015879252015RvMP...87..925P340604010.1103/RevModPhys.87.925
– reference: CiminiGSquartiniTSaraccoFGarlaschelliDGabrielliACaldarelliGThe statistical physics of real-world networksNat. Rev. Phys.201911587110.1038/s42254-018-0002-6
– reference: GarlaschelliDLoffredoMIGeneralized bose-fermi statistics and structural correlations in weighted networksPhys. Rev. Lett.200910230387012009PhRvL.102c8701G10.1103/PhysRevLett.102.038701
– reference: ParkJNewmanMEJStatistical mechanics of networksPhys. Rev. E20047060661172004PhRvE..70f6117P213380710.1103/PhysRevE.70.066117
– reference: SquartiniTvan LelyveldIGarlaschelliDEarly-warning signals of topological collapse in interbank networksSci. Rep.20133335710.1038/srep03357
– reference: GleditschKExpanded trade and GDP dataJ. Conflict Resol.2002467122410.1177/0022002702046005006
– reference: ColizzaVPastor-SatorrasRVespignaniAReaction-diffusion processes and metapopulation models in heterogeneous networksNat. Phys.200732762821:CAS:528:DC%2BD2sXjs12nsro%3D10.1038/nphys560
– reference: CoolenACCDe MartinoAAnnibaleAConstrained Markovian dynamics of random graphsJ. Stat. Phys.2009136103510672009JSP...136.1035C25503951:CAS:528:DC%2BD1MXht1Ggtb%2FN10.1007/s10955-009-9821-2
– reference: Artzy-RandrupYStoneLGenerating uniformly distributed random networksPhys. Rev. E20057250567082005PhRvE..72e6708A219832310.1103/PhysRevE.72.056708
– reference: MastrandreaRSquartiniTFagioloGGarlaschelliDReconstructing the world trade multiplex: the role of intensive and extensive biasesPhys. Rev. E20149060628042014PhRvE..90f2804M1:CAS:528:DC%2BC2MXhslGis7o%3D10.1103/PhysRevE.90.062804
– reference: CiminiGSquartiniTGabrielliAGarlaschelliDSystemic risk analysis on reconstructed economic and financial networksSci. Rep.20155157582015NatSR...515758C1:CAS:528:DC%2BC2MXhslCnt7vN10.1038/srep15758
– reference: FronczakAFronczakPHolystJAFluctuation-dissipation relations in complex networksPhys. Rev. E20067310161082006PhRvE..73a6108F222305610.1103/PhysRevE.73.016108
– reference: MaslovSSneppenKSpecificity and stability in topology of protein networksScience200229655699109132002Sci...296..910M1:CAS:528:DC%2BD38XjsFymsr8%3D10.1126/science.1065103
– reference: KimHDel GenioCIBasslerKEToroczkaiZConstructing and sampling directed graphs with given degree sequencesNew J. Phys.2012140230122012NJPh...14b3012K10.1088/1367-2630/14/2/023012
– reference: VallaranoNicolòTessoneClaudio J.SquartiniTizianoBitcoin Transaction Networks: an overview of recent resultsFrontiers in Physics202082862020FrP.....8..286V10.3389/fphy.2020.00286
– reference: FronczakAgataRedaAlhajjJonRokneExponential random graph modelsEncyclopedia of Social Network Analysis and Mining20142014New YorkSpringer-Verlag10.1007/978-1-4939-7131-2_2331290.82006
– reference: SquartiniTGarlaschelliDAnalytical maximum-likelihood method to detect patterns in real networksNew. J. Phys.2011130830012011NJPh...13h3001S10.1088/1367-2630/13/8/083001
– reference: LinJ-HPrimicerioKSquartiniTDeckerCTessoneCJLightning Network: a second path towards centralisation of the Bitcoin economyNew J. Phys.2020220830222020NJPh...22h3022L10.1088/1367-2630/aba062
– reference: SaraccoFDi ClementeRGabrielliASquartiniTRandomizing bipartite networks: the case of the World Trade WebSci. Rep.20155105952015NatSR...510595S1:CAS:528:DC%2BC2MXhtFOrsbrI10.1038/srep10595
– volume: 22
  start-page: 053053
  year: 2020
  ident: 93830_CR43
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab74a7
– volume-title: Networks: An Introduction
  year: 2010
  ident: 93830_CR1
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– volume: 81
  start-page: 28005
  issue: 2
  year: 2007
  ident: 93830_CR17
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/81/28005
– volume: 102
  start-page: 038701
  issue: 3
  year: 2009
  ident: 93830_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.038701
– volume: 87
  start-page: 925
  year: 2015
  ident: 93830_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.925
– volume: 296
  start-page: 910
  issue: 5569
  year: 2002
  ident: 93830_CR8
  publication-title: Science
  doi: 10.1126/science.1065103
– volume: 3
  start-page: 3357
  year: 2013
  ident: 93830_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/srep03357
– volume-title: Numerical Optimization
  year: 2006
  ident: 93830_CR25
– volume-title: Encyclopedia of Social Network Analysis and Mining
  year: 2014
  ident: 93830_CR20
  doi: 10.1007/978-1-4939-7131-2_233
– volume-title: Convex Optimization
  year: 2004
  ident: 93830_CR26
  doi: 10.1017/CBO9780511804441
– ident: 93830_CR28
– volume: 2
  start-page: 110
  year: 2006
  ident: 93830_CR31
  publication-title: Nat. Phys.
  doi: 10.1038/nphys209
– volume: 84
  start-page: 046117
  year: 2011
  ident: 93830_CR34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.046117
– volume: 1
  start-page: 58
  issue: 1
  year: 2019
  ident: 93830_CR7
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0002-6
– volume: 13
  start-page: 083001
  year: 2011
  ident: 93830_CR15
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/13/8/083001
– volume: 16
  start-page: 043022
  year: 2014
  ident: 93830_CR38
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/4/043022
– volume: 85
  start-page: 046103
  issue: 4
  year: 2012
  ident: 93830_CR10
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.046103
– ident: 93830_CR30
– volume: 73
  start-page: 016108
  issue: 1
  year: 2006
  ident: 93830_CR18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.73.016108
– volume: 32
  start-page: 259
  issue: 1
  year: 2006
  ident: 93830_CR42
  publication-title: J. Econ. Dyn. Control
  doi: 10.1016/j.jedc.2007.01.032
– volume: 103
  start-page: 2015
  issue: 7
  year: 2006
  ident: 93830_CR2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0510525103
– year: 2020
  ident: 93830_CR36
  publication-title: EPJ Data Science
  doi: 10.1140/epjds/s13688-021-00289-4
– ident: 93830_CR22
– volume: 90
  start-page: 062804
  issue: 6
  year: 2014
  ident: 93830_CR40
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.062804
– volume: 5
  start-page: 15758
  year: 2015
  ident: 93830_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/srep15758
– volume: 72
  start-page: 056708
  issue: 5
  year: 2005
  ident: 93830_CR11
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.056708
– volume-title: Dynamical Processes on Complex Networks
  year: 2008
  ident: 93830_CR3
  doi: 10.1017/CBO9780511791383
– volume: 106
  start-page: 620
  issue: 4
  year: 1957
  ident: 93830_CR21
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
– volume: 78
  start-page: 015101(R)
  issue: 1
  year: 2008
  ident: 93830_CR24
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.015101
– volume: 136
  start-page: 1035
  year: 2009
  ident: 93830_CR9
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-009-9821-2
– volume: 5
  start-page: e10012
  issue: 4
  year: 2010
  ident: 93830_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010012
– ident: 93830_CR35
– volume: 5
  start-page: 10595
  year: 2015
  ident: 93830_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/srep10595
– volume: 99
  start-page: 030301(R)
  issue: 3
  year: 2019
  ident: 93830_CR19
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.030301
– volume: 46
  start-page: 712
  year: 2002
  ident: 93830_CR41
  publication-title: J. Conflict Resol.
  doi: 10.1177/0022002702046005006
– volume: 6
  start-page: 489
  issue: 4
  year: 2011
  ident: 93830_CR14
  publication-title: Internet Math.
  doi: 10.1080/15427951.2010.557277
– volume: 3
  start-page: 276
  year: 2007
  ident: 93830_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/nphys560
– volume: 22
  start-page: 083022
  year: 2020
  ident: 93830_CR32
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aba062
– ident: 93830_CR33
  doi: 10.1007/978-3-642-21286-4_10
– volume: 8
  start-page: 286
  year: 2020
  ident: 93830_CR23
  publication-title: Frontiers in Physics
  doi: 10.3389/fphy.2020.00286
– volume: 6
  start-page: 125
  year: 2002
  ident: 93830_CR27
  publication-title: Ann. Combinatorics
  doi: 10.1007/PL00012580
– volume: 70
  start-page: 066117
  issue: 6
  year: 2004
  ident: 93830_CR16
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066117
– volume: 92
  start-page: 040802
  year: 2015
  ident: 93830_CR44
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.040802
– volume: 81
  start-page: 591
  year: 2009
  ident: 93830_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.591
– volume: 14
  start-page: 023012
  year: 2012
  ident: 93830_CR13
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/2/023012
SSID ssj0000529419
Score 2.5414088
Snippet Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been...
Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15227
SubjectTerms 639/766/530/2801
639/766/530/2804
Algorithms
Humanities and Social Sciences
multidisciplinary
Probability distribution
Science
Science (multidisciplinary)
Statistical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgh4QPwUgYGMxBuLFttJHD8gxFDLhESFJibtLTrHMVSkabe02vbf40uTjPJQ8Zo4iZO7iz_7fN8H8M6mLsqMK0IjhQ1jbTDENC2owCdymSy1abUIvk3Tk7P463lyvgfTvhaGtlX2_8T2R20XBa2RH3no68G1TKT4uLwISTWKsqu9hAZ20gr2Q0sxdgf2BTFjjWD_eDz9fjqsulBeK-a6q56JZHbU-BGMqsxop4KfrUVhvDVCtUT-W-jz372TQwL1Adxb10u8ucKq-muMmjyChx24ZJ823vAY9sr6CdzdyE3ePAU7wWbFsLas8ZahmilWzX6X1Yyojdkcr2fzriqTeSjLxtfLRU2bifwtT_1Vizn7QvTWjPTTqobREi5rx0JWEMoksYlV8wzOJuMfn0_CTmUhLBKuVmEpjI5KrT0SkS5Bya0i1i4S4DActUTutD-WOLTaGqEQhSxsicpmTikf3s9hVPvuvAAmIiklRy5Si3HijEYsk9KgNk5L7mwAvP-yedFRkFPnqrxNhcss31gj99bIW2vkcQDvh2uWGwKOna2PyWBDSyLPbg8sLn_mXSzmUeS0y6yRyoMbJaRRDlEjN6lOYhsXARz05s67iG7yW_8L4O1w2sciJViwLhfrTRsi00myANSWm2x1aPtMPfvVsnpn0s9cMx7AYe9Qtw_f9cKHg9P9x_d5ufvVXsF9QZEQqVCoAxitLtflaw-6VuZNF0l_ANZ5KvQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_niagP4idWT4ngm1dtkrZpHkRUbj2E80FcuLcwaRpd7HbXbRd3_3sz_dLKcfjgaz7aNDPDzDSZ34-Q5zZ1UWZcHhrBbRgrAyGkaY4FPpHLRKFMy0Vw9ik9nccfz5PzAzLQHfUbWF-Y2iGf1HxTvtz92L_xBv-6KxnPXtXeCWGhGF428AlXFMZXyFXvqRRSOZz14X6H9c1VzFRfO3Px1Il_amH8J7Hn3zcnx-PTm-T6tlrD_ieU5R8eanab3OpDS_q204U75KCo7pJrHdnk_h6xM6gbCpWltZcLVkzRcvG9KBcIbEyXsFss-5pM6gNZerJbryq8SuQf-dnPWi3pBwS3psieVtYUf-DS1hPSHGNMpJpo6vtkPjv58v407DkWwjxhsgkLblRUKOXjEOESEMxKxOxC-g3DQAlgTvm2xIFV1nAJwEVuC5A2c1J6435ADiu_nIeE8kgIwYDx1EKcOKMAiqQwoIxTgjkbEDbsrM57AHJcXKnbg3CR6U4a2ktDt9LQcUBejHPWHfzGpaPfocDGkQid3TasNl91b4k6ipxymTVC-tBGcmGkA1DATKqS2MZ5QI4GcetBHbVPvHxqJxLBA_Js7PaWiMcrUBWrbTcGoXSSLCByoiaTBU17qsW3FtM7Ez5vzVhAjgeF-v3yyz74eFS6f9ifR_9jfx6TGxztJZIhl0fksNlsiyc-MGvM09bafgF2sDSr
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPUR9ED-xekoE39xi07RN8rjKrceCPqgH9xYmTYKL3e5iu3j335u03WoVDn1NMmmamWEmmcxvAF6ZwiVCuzLWLDVxJjXGWBRlSPBJnGBW6q4WwYePxdl5trrIL45gfsiFmcTvO-juxpuYkAYWnhL441QSZzfgWHjBFDM4XixWn1fjnUqIWmVUDrkxnvzN38QT-9PB9E98yz9fRo7h0Ttwa1_v8OoHVtVvFmh5D-4OriNZ9Ly-D0e2fgA3-2KSVw_BLLFpCdaGNH7fQ0YUqdbfbLUOwMVkg5frzZBzSbyjSk4vd9s6PBXyU37yVNsNeR_Aq0mojlY1JFzQks7SkTL4kKGURNs8gvPl6Zd3Z_FQQyEuc8rb2KZaJlZK72cwlyOjhgdMrlBeQ1OUDKmTvi13aKTRKUdMWWksciMc5155H8Os9st5AiRNGGMUaVoYzHKnJaLNrUapnWTUmQjoYWdVOQCMh8VVqgt0M6F6bijPDdVxQ2URvB5pdj28xrWj3waGjSMDNHbX4CVGDZqmksRJJ4xm3LsuPGWaO0SJVBcyz0xWRnByYLca9LVR_mDlj24sZ2kEL8dur2khfIK13e77MQEqJxcR8ImYTBY07anXXzvMbsH8uVTQCOYHgfr18et-eD4K3T_sz9P_m_0Z3E6DZiQ8TvkJzNrve_vcu1itfjFo1k9H0R8r
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwBs1UJCRuNFsYzuJ42NBXSokKoRYUU7ROI5h1Wx21WRFy6_HzgtSoYpe43Hix9j-Jp75BuC1jk2QKJP5ijPth1Khj3GcuQCfwCQ8l6rJRfDxJD6ehx9Oo9MtiPtYmMZpv6G0bLbp3jvsoLIHjQsGcw4F1qgK_HC61uYWbMeRxeAT2J6ffDr85jLJWYziW5jAugiZgCf_qDw6hRqy_hHCvOofOVyS3oU7m3KNlz-xKP46h2b34Wvfg9b95Gy6qdU0-3WF3PHmXXwA9zpoSg5byYewlZeP4HabrPLyMegZVjXBUpPKzquLuCLF4iwvFo4YmSzxYrHsYjqJBcLk6GK9Kp0rkn3lZ1trtSTvHTk2cdnXioq4H8CkOUlJ5jCqS1VRV09gPjv68u7Y73I0-FlERe3nTMkgl9LiGG4i5FQLx_nl0ncoipIjNdI-iwxqqRUTiIxnOkehEyOE3RyewqS0zdkFwgLOOUXKYo1hZJREzKNcoVRGcmq0B7SfszTrCMxd44q0uUjnSdqOYGpHMG1GMA09eDPUWbf0HddKv3WqMEg66u3mwer8e9rNUxoERppEKy4sNBKMK2EQJVIVyyjUYebBXq9IabcfVKk13KxpyCPOPHg1FNuV7K5nsMxXm1bGUfFEiQdipICjBo1LysWPhhM84dbuTagH-72q_vn4dR3eH9T5P8bn2c3En8MOc9ocCJ-JPZjU55v8hYVwtXrZrdff5SRBuw
  priority: 102
  providerName: Unpaywall
Title Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
URI https://link.springer.com/article/10.1038/s41598-021-93830-4
https://www.proquest.com/docview/2555483532
https://www.proquest.com/docview/2555965858
https://pubmed.ncbi.nlm.nih.gov/PMC8316481
https://www.nature.com/articles/s41598-021-93830-4.pdf
https://doaj.org/article/00f9f8db37124723b7faa9a1b6954d4c
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiE8RGJWReGPRYjuJ7ceuapkqrZoGlcpTdI5jrSJNK9KK7b_nnKSl5WHwwEsi2U5y8d3l7mLf7wj5aFMXKePy0Ahuw1gbCCFNc5_gEzklCm2aWgQXk_R8Go9nyWyv1JffE9bCA7cTdxpFTjtljZBoiSQXRjoADcykOoltnPuvb6T0XjDVonpzHTPdZclEQp3WaKl8NpnfkYBRWRTGB5aoAew_8DL_3CO5Wyh9Qh5tqhXc_oSy3LNFo2fkaedE0n5L_HNyr6hekIdtWcnbl8SOoF5TqCytkQM-N4qW8-9FOfcQxnQBN_NFl31J0WWlw5vVsvKbhvCWV3jVckE_exhr6uuklTX1v2ppY_No7r1JX1RiXb8i09Hw6-A87KophHnC5DosuNFRoTV6HMIlIJiVHp3LF9owDLQA5jS2JQ6stoZLAC5yW4C0ykmJavyaHFVIzhtCeSSEYMB4aiFOnNEARVIY0MZpwZwNCNvObJZ3UOOeuDJrlryFylpuZMiNrOFGFgfk0-6aVQu0cefoM8-w3UgPkt00oOhknehkfxOdgBxv2Z11mltnGGJhECcSwQPyYdeNOucXUqAqlpt2jAfNSVRA5IGYHBB02FPNrxv0biUwQlUsICdbgfr98Lte-GQndP8wP2__x_y8I4-515dIhlwek6P1j03xHl2wtemR-3Ime-RBvz_-Msbz2XByeYWtg3TQazQRjxexwp7p5LL_7RcB0jR9
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTWjwgPgpAgOMBE8sWmIncfwwIQYtHdsqNG3S3rJzbENFmpal09Z_jr8NX5pklIeKl70mTuL47nxnn-_7CHmrExukyua-4kz7kVTgQ5LkWOAT2JQbqWougqNhMjiNvp7FZ2vkd1sLg8cq2zmxnqj1JMc98h0X-rrgmsecfZj-8pE1CrOrLYUGNNQKereGGGsKOw7M_Mot4ard_c9O3u8Y6_dOPg38hmXAz-NQzHzDlAyMlM4TcxsDD7VA1CokoFAhSA6hle5abEFLrZgAYDzXBoROrRACwZicC9iIeCTd4m9jrzf8dtzt8mAeLQplU60T8HSnch4Tq9rwZIRbHQZ-tOQRa-KApWj337OaXcL2Htm8LKcwv4Ki-Msn9h-Q-00wSz8utO8hWTPlI3JnQW85f0x0H6oZhVLTymkC1mjRYvTTFCOEUqZjuB6NmypQ6kJn2rueTko8vOReeeyemozpF4TTpsjXVlQUt4xp7XtpjlEtklvMqifk9FbG-ylZL113nhHKAs55CCFLNESxVRLAxEaBVFby0GqPhO3IZnkDeY6dK7I69c7TbCGNzEkjq6WRRR553z0zXQB-rGy9hwLrWiJYd31hcvE9a2w_CwIrbaoVFy6YEowrYQEkhCqRcaSj3CNbrbizZgapsht998ib7razfUzoQGkml4s2CN4Tpx4RS2qy1KHlO-XoR40innK3Uk5Dj2y3CnXz8VU_vN0p3X-Mz_PVv_aabA5Ojg6zw_3hwQtyl6FVBMJnYouszy4uzUsX8M3Uq8aqKDm_bUP-A4ULZ-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxFMEChgJTjTa2E7i-IAQ0C4thQohKu0tHccxXTWbXZpdtfvX-HV48irLYcWlV9tJHM-MZ-yZ-YaQVya2QaJt5mvBjR8qDT7EcYYJPoFNRK50XYvg62G8dxR-HkWjDfK7y4XBsMpuT6w3ajPN8I584ExfZ1yLSPCBbcMivu0M381--VhBCj2tXTmNhkUO8uW5O75Vb_d3HK1fcz7c_fFxz28rDPhZxOTcz7lWQa6U08LCRiCYkYhYhcUnNAMlgFnl2iILRhnNJQAXmclBmsRKKRGIyW3_16QQCsMJ5Uj29zvoQQuZavN0ApEMKqcrMZ8NYyLcuTDwwxVdWJcMWLFz_43S7F21t8nNRTmD5TkUxV_acHiX3GnNWPq-4bt7ZCMv75PrTWHL5QNihlDNKZSGVo4HMDuLFuPTvBgjiDKdwMV40uZ_Umc0092L2bTEsCX3yu_uqemEfkIgbYqV2oqK4mUxrbUuzdCexbIW8-ohObqS1X5ENks3nceE8kAIwYDx2EAYWa0A8ijXoLRVglnjEdatbJq1YOc4uSKtne4iSRtqpI4aaU2NNPTIm_6ZWQP1sXb0ByRYPxJhuuuG6dnPtJX6NAissonRQjozSnKhpQVQwHSsotCEmUe2OnKn7d5RpZec7pGXfbeTenTlQJlPF80YhO2JEo_IFTZZmdBqTzk-qfHDE-HOyAnzyHbHUJcfX_fD2z3T_cf6PFn_ay_IDSe-6Zf9w4On5BZHoQikz-UW2ZyfLfJnztKb6-e1SFFyfNUy_AemXWWC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwBs1UJCRuNFsYzuJ42NBXSokKoRYUU7ROI5h1Wx21WRFy6_HzgtSoYpe43Hix9j-Jp75BuC1jk2QKJP5ijPth1Khj3GcuQCfwCQ8l6rJRfDxJD6ehx9Oo9MtiPtYmMZpv6G0bLbp3jvsoLIHjQsGcw4F1qgK_HC61uYWbMeRxeAT2J6ffDr85jLJWYziW5jAugiZgCf_qDw6hRqy_hHCvOofOVyS3oU7m3KNlz-xKP46h2b34Wvfg9b95Gy6qdU0-3WF3PHmXXwA9zpoSg5byYewlZeP4HabrPLyMegZVjXBUpPKzquLuCLF4iwvFo4YmSzxYrHsYjqJBcLk6GK9Kp0rkn3lZ1trtSTvHTk2cdnXioq4H8CkOUlJ5jCqS1VRV09gPjv68u7Y73I0-FlERe3nTMkgl9LiGG4i5FQLx_nl0ncoipIjNdI-iwxqqRUTiIxnOkehEyOE3RyewqS0zdkFwgLOOUXKYo1hZJREzKNcoVRGcmq0B7SfszTrCMxd44q0uUjnSdqOYGpHMG1GMA09eDPUWbf0HddKv3WqMEg66u3mwer8e9rNUxoERppEKy4sNBKMK2EQJVIVyyjUYebBXq9IabcfVKk13KxpyCPOPHg1FNuV7K5nsMxXm1bGUfFEiQdipICjBo1LysWPhhM84dbuTagH-72q_vn4dR3eH9T5P8bn2c3En8MOc9ocCJ-JPZjU55v8hYVwtXrZrdff5SRBuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+scalable+likelihood+maximization+for+Exponential+Random+Graph+Models+with+local+constraints&rft.jtitle=Scientific+reports&rft.au=Nicol%C3%B2+Vallarano&rft.au=Matteo+Bruno&rft.au=Emiliano+Marchese&rft.au=Giuseppe+Trapani&rft.date=2021-07-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1038%2Fs41598-021-93830-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_00f9f8db37124723b7faa9a1b6954d4c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon