Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution
Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of c...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 5460 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.09.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-022-33211-1 |
Cover
Abstract | Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m
−2
h
−1
in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis.
The introduction of hydrophilic segments into the main-chain of polymer photocatalysts allows water to efficiently enter the interior through these hydrophilic segments, and results in effective water/polymer interfaces for hydrogen evolution. |
---|---|
AbstractList | Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m−2 h−1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis.The introduction of hydrophilic segments into the main-chain of polymer photocatalysts allows water to efficiently enter the interior through these hydrophilic segments, and results in effective water/polymer interfaces for hydrogen evolution. Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m-2 h-1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis.Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m-2 h-1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis. Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m −2 h −1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis. The introduction of hydrophilic segments into the main-chain of polymer photocatalysts allows water to efficiently enter the interior through these hydrophilic segments, and results in effective water/polymer interfaces for hydrogen evolution. The introduction of hydrophilic segments into the main-chain of polymer photocatalysts allows water to efficiently enter the interior through these hydrophilic segments, and results in effective water/polymer interfaces for hydrogen evolution. Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m −2 h −1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis. |
ArticleNumber | 5460 |
Author | Jao, Wen-Yang Chou, Ho-Hsiu Jayakumar, Jayachandran Hu, Chi-Chang Huang, Tse-Fu Chen, Chin-Wen Yu, Chi-Hua Chu, Che-Yi Tai, Chen-Wei Mochizuki, Takehisa Lu, Yu-Jung Tateno, Hiroyuki Shih, Chin-Hsuan Elewa, Ahmed M. Lin, Wei-Cheng Chang, Chih-Li Ting, Li-Yu Chen, Shih-Yuan |
Author_xml | – sequence: 1 givenname: Chih-Li orcidid: 0000-0001-9497-7186 surname: Chang fullname: Chang, Chih-Li organization: Department of Chemical Engineering, National Tsing Hua University, Research Center for Applied Sciences, Academia Sinica – sequence: 2 givenname: Wei-Cheng surname: Lin fullname: Lin, Wei-Cheng organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 3 givenname: Li-Yu surname: Ting fullname: Ting, Li-Yu organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 4 givenname: Chin-Hsuan surname: Shih fullname: Shih, Chin-Hsuan organization: Department of Engineering Science, National Cheng Kung University – sequence: 5 givenname: Shih-Yuan orcidid: 0000-0002-7093-2511 surname: Chen fullname: Chen, Shih-Yuan organization: Energy Catalyst Technology Group, Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology – sequence: 6 givenname: Tse-Fu surname: Huang fullname: Huang, Tse-Fu organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 7 givenname: Hiroyuki orcidid: 0000-0003-2395-2197 surname: Tateno fullname: Tateno, Hiroyuki organization: Energy Catalyst Technology Group, Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology – sequence: 8 givenname: Jayachandran surname: Jayakumar fullname: Jayakumar, Jayachandran organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 9 givenname: Wen-Yang surname: Jao fullname: Jao, Wen-Yang organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 10 givenname: Chen-Wei surname: Tai fullname: Tai, Chen-Wei organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 11 givenname: Che-Yi surname: Chu fullname: Chu, Che-Yi organization: Department of Chemical Engineering, National Chung Hsing University – sequence: 12 givenname: Chin-Wen orcidid: 0000-0001-6966-7573 surname: Chen fullname: Chen, Chin-Wen organization: Department of Molecular Science and Engineering, National Taipei University of Technology – sequence: 13 givenname: Chi-Hua orcidid: 0000-0001-9445-3358 surname: Yu fullname: Yu, Chi-Hua organization: Department of Engineering Science, National Cheng Kung University – sequence: 14 givenname: Yu-Jung orcidid: 0000-0002-3932-653X surname: Lu fullname: Lu, Yu-Jung organization: Research Center for Applied Sciences, Academia Sinica – sequence: 15 givenname: Chi-Chang orcidid: 0000-0002-4308-8474 surname: Hu fullname: Hu, Chi-Chang organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 16 givenname: Ahmed M. orcidid: 0000-0001-8943-5710 surname: Elewa fullname: Elewa, Ahmed M. organization: Department of Chemical Engineering, National Tsing Hua University – sequence: 17 givenname: Takehisa surname: Mochizuki fullname: Mochizuki, Takehisa organization: Energy Catalyst Technology Group, Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology – sequence: 18 givenname: Ho-Hsiu orcidid: 0000-0003-3777-2277 surname: Chou fullname: Chou, Ho-Hsiu email: hhchou@mx.nthu.edu.tw organization: Department of Chemical Engineering, National Tsing Hua University |
BookMark | eNqNUs1u1DAYjFARLaUvwCkSFy4B_8WxL0ioKlCpiAucLcf5knjltYOdbLUPwHvj3ayA9lCRg_PJnhmNZ_yyOPPBQ1G8xugdRlS8Twwz3lSIkIpSgnGFnxUXBLE8NISe_TOfF1cpbVD-qMSCsRfFOeUY16JuLopfX7X1lRnzWoIfrAeI1g9l6MspuP0WYjmNYQ5Gz9rt05zKezuP5bjvYphG66wps7HKBL9ZBj1DVyYYtuAzsA-x3NlkWweVs8M4V120O_ArecgD7IJbZhv8q-J5r12Cq9P_svjx6eb79Zfq7tvn2-uPd5WpcZP5uq81EZ1hUjImkcGIEYoRUM050cAaI7muW8ooMx1giYhhOSUEhDYMN_SyuF11u6A3aop2q-NeBW3VcSPEQek4W-NANQ2ntehRzbhkFHEhWMtlQ2vacdmLNmvRVWvxk97fa-f-CGKkDh2ptSOVO1LHjhTOrA8ra1raLXQmJxW1e2Dl4Ym3oxrCTkkmCMcyC7w9CcTwc4E0q61NBpzTHsKSFGlwzRgSDGXom0fQTViizwEfUZhziuuMIivKxJBShP7_riEekYyd9aHKbNq6p6mn3NJ0eGkQ_7p6gvUbLFPn7A |
CitedBy_id | crossref_primary_10_1039_D4TA03584D crossref_primary_10_1002_asia_202400559 crossref_primary_10_1021_jacs_3c06923 crossref_primary_10_1038_s41428_024_00945_2 crossref_primary_10_1016_j_surfin_2024_104676 crossref_primary_10_1016_j_cej_2024_154280 crossref_primary_10_1021_acscatal_4c00918 crossref_primary_10_1002_anie_202313787 crossref_primary_10_1016_j_jcis_2024_01_202 crossref_primary_10_3233_MGC_240018 crossref_primary_10_1016_j_jcis_2024_01_028 crossref_primary_10_3390_nano12234299 crossref_primary_10_1039_D4SC04320K crossref_primary_10_1002_cctc_202201287 crossref_primary_10_1016_j_surfin_2023_102809 crossref_primary_10_1021_acsapm_4c00545 crossref_primary_10_1021_acsapm_4c01950 crossref_primary_10_1002_solr_202300994 crossref_primary_10_1002_anie_202407702 crossref_primary_10_1039_D3TA05389J crossref_primary_10_1002_cjoc_202401245 crossref_primary_10_1002_smll_202302682 crossref_primary_10_1016_j_apcatb_2024_124043 crossref_primary_10_1002_smll_202304743 crossref_primary_10_1021_acs_macromol_2c02130 crossref_primary_10_1021_jacs_4c13856 crossref_primary_10_1002_advs_202308322 crossref_primary_10_1002_ange_202303785 crossref_primary_10_1109_ACCESS_2024_3363869 crossref_primary_10_1002_ange_202313787 crossref_primary_10_1016_j_jcat_2023_08_007 crossref_primary_10_1021_jacs_2c11893 crossref_primary_10_1039_D4MH00482E crossref_primary_10_1002_cctc_202400981 crossref_primary_10_1016_j_jcis_2024_12_048 crossref_primary_10_1126_science_adp9314 crossref_primary_10_1016_j_jcis_2024_06_087 crossref_primary_10_1002_ange_202407702 crossref_primary_10_1016_j_micromeso_2023_112824 crossref_primary_10_1039_D3TA06807B crossref_primary_10_1021_jacsau_4c00409 crossref_primary_10_1039_D2TA09970E crossref_primary_10_1039_D4EE01808G crossref_primary_10_1002_aenm_202300986 crossref_primary_10_1002_anie_202303785 crossref_primary_10_1002_advs_202309786 crossref_primary_10_1021_acsaem_3c03152 |
Cites_doi | 10.1021/jacs.6b03472 10.1039/C9TA06219J 10.1038/ncomms9508 10.1021/acs.macromol.9b00551 10.1039/B802262N 10.1038/ncomms12165 10.1002/cctc.201901725 10.1021/ja511552k 10.1021/cr1001645 10.1016/j.apsusc.2019.143865 10.1039/B800489G 10.1021/acscatal.8b01678 10.1038/s41557-018-0141-5 10.1016/0022-0728(86)80570-8 10.1038/nmat2317 10.1038/nphoton.2012.175 10.1039/C7SC01747B 10.1039/c39850000474 10.1038/s41560-019-0456-5 10.1038/s41467-018-07420-6 10.1039/C7EE00751E 10.1039/C8TA11383A 10.1016/j.isci.2019.02.007 10.1016/j.ces.2017.06.045 10.1039/C9TA06425G 10.1039/C9PY01404G 10.1038/s41563-019-0591-1 10.1039/D0SE00928H 10.1016/j.ijhydene.2020.08.288 10.1016/0001-8686(80)87003-5 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1038/s41467-022-33211-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_776358f054694306884b697353d69f8b 10.1038/s41467-022-33211-1 PMC9482619 10_1038_s41467_022_33211_1 |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan) grantid: MOST 111-2628-E-007-009-; MOST 111-2221-E-007-004-; MOST 110-2622-8-007-011- funderid: https://doi.org/10.13039/501100004663 – fundername: ; grantid: MOST 111-2628-E-007-009-; MOST 111-2221-E-007-004-; MOST 110-2622-8-007-011- |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM 4.4 ABAWZ ADTOC BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH UNPAY |
ID | FETCH-LOGICAL-c517t-daf5a28dc4994490c1042310e3a662ae47c96a5b3434cde1902c44670e2374173 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:03 EDT 2025 Wed Aug 20 00:20:51 EDT 2025 Tue Sep 30 17:19:16 EDT 2025 Thu Sep 04 23:11:53 EDT 2025 Wed Aug 13 09:30:20 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Oct 01 01:43:25 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-daf5a28dc4994490c1042310e3a662ae47c96a5b3434cde1902c44670e2374173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9445-3358 0000-0001-9497-7186 0000-0003-3777-2277 0000-0002-4308-8474 0000-0001-8943-5710 0000-0002-3932-653X 0000-0003-2395-2197 0000-0002-7093-2511 0000-0001-6966-7573 |
OpenAccessLink | https://doaj.org/article/776358f054694306884b697353d69f8b |
PMID | 36115857 |
PQID | 2715166315 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_776358f054694306884b697353d69f8b unpaywall_primary_10_1038_s41467_022_33211_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9482619 proquest_miscellaneous_2715440840 proquest_journals_2715166315 crossref_primary_10_1038_s41467_022_33211_1 crossref_citationtrail_10_1038_s41467_022_33211_1 springer_journals_10_1038_s41467_022_33211_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-17 |
PublicationDateYYYYMMDD | 2022-09-17 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang (CR14) 2018; 10 Diao (CR23) 2019; 10 Trasatti (CR32) 1986; 209 Kosco (CR18) 2020; 19 Chen, Shen, Guo, Mao (CR7) 2010; 110 Zhao (CR16) 2019; 52 CR30 Pati (CR19) 2017; 10 Lin (CR22) 2020; 45 Ting (CR15) 2019; 7 Wang (CR9) 2009; 8 Tseng (CR20) 2018; 8 Kudo, Miseki (CR6) 2009; 38 Lau (CR31) 2016; 7 Wang (CR5) 2019; 4 Ugelstad, Mork, Herder Kaggerud, Ellingsen, Berge (CR28) 1980; 12 Zhang, Lan, Wang (CR4) 2017; 8 Barber (CR2) 2009; 38 Tachibana, Vayssieres, Durrant (CR1) 2012; 6 Sprick (CR10) 2015; 137 Jayakumar, Chou (CR3) 2020; 12 Sachs (CR13) 2018; 9 CR21 Yanagida, Kabumoto, Mizumoto, Pac, Yoshino (CR8) 1985; 8 Aitchison, Sprick, Cooper (CR17) 2019; 7 Chen, Yang, Wang, Xiang, Chen (CR24) 2020; 499 Hu (CR26) 2019; 13 Vyas (CR11) 2015; 6 Wang (CR27) 2020; 4 Li (CR12) 2016; 138 Lin (CR25) 2019; 7 Sweijen, van Duijn, Hassanizadeh (CR29) 2017; 172 VS Vyas (33211_CR11) 2015; 6 W-H Wang (33211_CR27) 2020; 4 Y Tachibana (33211_CR1) 2012; 6 L Li (33211_CR12) 2016; 138 Z Hu (33211_CR26) 2019; 13 G Zhang (33211_CR4) 2017; 8 J Jayakumar (33211_CR3) 2020; 12 M Sachs (33211_CR13) 2018; 9 R Diao (33211_CR23) 2019; 10 PB Pati (33211_CR19) 2017; 10 A Kudo (33211_CR6) 2009; 38 X Chen (33211_CR7) 2010; 110 B Chen (33211_CR24) 2020; 499 X Wang (33211_CR9) 2009; 8 RS Sprick (33211_CR10) 2015; 137 CM Aitchison (33211_CR17) 2019; 7 33211_CR21 S Yanagida (33211_CR8) 1985; 8 T Sweijen (33211_CR29) 2017; 172 VW-H Lau (33211_CR31) 2016; 7 J Kosco (33211_CR18) 2020; 19 P-J Tseng (33211_CR20) 2018; 8 K Lin (33211_CR25) 2019; 7 J Ugelstad (33211_CR28) 1980; 12 Y Wang (33211_CR5) 2019; 4 L-Y Ting (33211_CR15) 2019; 7 P Zhao (33211_CR16) 2019; 52 W-C Lin (33211_CR22) 2020; 45 X Wang (33211_CR14) 2018; 10 S Trasatti (33211_CR32) 1986; 209 33211_CR30 J Barber (33211_CR2) 2009; 38 |
References_xml | – volume: 138 start-page: 7681 year: 2016 end-page: 7686 ident: CR12 article-title: Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03472 – volume: 7 start-page: 19087 year: 2019 end-page: 19093 ident: CR25 article-title: Amino-functionalised conjugated porous polymers for improved photocatalytic hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06219J – volume: 6 year: 2015 ident: CR11 article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation publication-title: Nat. Commun. doi: 10.1038/ncomms9508 – volume: 52 start-page: 4376 year: 2019 end-page: 4384 ident: CR16 article-title: Hyperbranched conjugated polymer dots: the enhanced photocatalytic activity for visible light-driven hydrogen production publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00551 – volume: 38 start-page: 185 year: 2009 end-page: 196 ident: CR2 article-title: Photosynthetic energy conversion: natural and artificial publication-title: Chem. Soc. Rev. doi: 10.1039/B802262N – ident: CR30 – volume: 7 year: 2016 ident: CR31 article-title: Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites publication-title: Nat. Commun. doi: 10.1038/ncomms12165 – volume: 12 start-page: 689 year: 2020 end-page: 704 ident: CR3 article-title: Recent advances in visible-light-driven hydrogen evolution from water using polymer photocatalysts publication-title: ChemCatChem doi: 10.1002/cctc.201901725 – volume: 137 start-page: 3265 year: 2015 end-page: 3270 ident: CR10 article-title: Tunable organic photocatalysts for visible-light-driven hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511552k – volume: 110 start-page: 6503 year: 2010 end-page: 6570 ident: CR7 article-title: Semiconductor-based photocatalytic hydrogen generation publication-title: Chem. Rev. doi: 10.1021/cr1001645 – volume: 499 start-page: 143865 year: 2020 ident: CR24 article-title: Post-side chain engineering of difluorinated benzothiadiazole-based conjugated microporous polymer for enhanced photocatalytic H evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143865 – volume: 38 start-page: 253 year: 2009 end-page: 278 ident: CR6 article-title: Heterogeneous photocatalyst materials for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 8 start-page: 7766 year: 2018 end-page: 7772 ident: CR20 article-title: Design and synthesis of cycloplatinated polymer dots as photocatalysts for visible-light-driven hydrogen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.8b01678 – volume: 10 start-page: 1180 year: 2018 end-page: 1189 ident: CR14 article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 209 start-page: 417 year: 1986 end-page: 428 ident: CR32 article-title: The absolute electrode potential: an explanatory note (Recommendations 1986) publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(86)80570-8 – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: CR9 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 6 start-page: 511 year: 2012 end-page: 518 ident: CR1 article-title: Artificial photosynthesis for solar water-splitting publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.175 – ident: CR21 – volume: 8 start-page: 5261 year: 2017 end-page: 5274 ident: CR4 article-title: Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting publication-title: Chem. Sci. doi: 10.1039/C7SC01747B – volume: 8 start-page: 474 year: 1985 end-page: 475 ident: CR8 article-title: Poly(p-phenylene)-catalysed photoreduction of water to hydrogen publication-title: Chem. Commun. doi: 10.1039/c39850000474 – volume: 4 start-page: 746 year: 2019 end-page: 760 ident: CR5 article-title: Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts publication-title: Nat. Energy doi: 10.1038/s41560-019-0456-5 – volume: 9 year: 2018 ident: CR13 article-title: Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-018-07420-6 – volume: 10 start-page: 1372 year: 2017 end-page: 1376 ident: CR19 article-title: An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00751E – volume: 7 start-page: 2490 year: 2019 end-page: 2496 ident: CR17 article-title: Emulsion polymerization derived organic photocatalysts for improved light-driven hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11383A – volume: 13 start-page: 33 year: 2019 end-page: 42 ident: CR26 article-title: Conjugated polymers with oligoethylene glycol side chains for improved photocatalytic hydrogen evolution publication-title: iScience doi: 10.1016/j.isci.2019.02.007 – volume: 172 start-page: 407 year: 2017 end-page: 413 ident: CR29 article-title: A model for diffusion of water into a swelling particle with a free boundary: application to a super absorbent polymer particle publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.06.045 – volume: 7 start-page: 22924 year: 2019 end-page: 22929 ident: CR15 article-title: Effect of controlling the number of fused rings on polymer photocatalysts for visible-light-driven hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06425G – volume: 10 start-page: 6473 year: 2019 end-page: 6480 ident: CR23 article-title: Significant improvement of photocatalytic hydrogen evolution of diketopyrrolopyrrole-based donor–acceptor conjugated polymers through side-chain engineering publication-title: Polym. Chem. doi: 10.1039/C9PY01404G – volume: 19 start-page: 559 year: 2020 end-page: 565 ident: CR18 article-title: Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles publication-title: Nat. Mater. doi: 10.1038/s41563-019-0591-1 – volume: 4 start-page: 5264 year: 2020 end-page: 5270 ident: CR27 article-title: Design and synthesis of phenylphosphine oxide-based polymer photocatalysts for highly efficient visible-light-driven hydrogen evolution publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE00928H – volume: 45 start-page: 32072 year: 2020 end-page: 32081 ident: CR22 article-title: Design and synthesis of cyclometalated iridium-based polymer dots as photocatalysts for visible light-driven hydrogen evolution publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.08.288 – volume: 12 start-page: 101 year: 1980 end-page: 140 ident: CR28 article-title: Swelling of oligomer-polymer particles. New methods of preparation publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(80)87003-5 – volume: 8 start-page: 5261 year: 2017 ident: 33211_CR4 publication-title: Chem. Sci. doi: 10.1039/C7SC01747B – volume: 209 start-page: 417 year: 1986 ident: 33211_CR32 publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(86)80570-8 – volume: 45 start-page: 32072 year: 2020 ident: 33211_CR22 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.08.288 – ident: 33211_CR30 – volume: 138 start-page: 7681 year: 2016 ident: 33211_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03472 – volume: 52 start-page: 4376 year: 2019 ident: 33211_CR16 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00551 – volume: 10 start-page: 1372 year: 2017 ident: 33211_CR19 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00751E – volume: 12 start-page: 101 year: 1980 ident: 33211_CR28 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(80)87003-5 – volume: 9 year: 2018 ident: 33211_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07420-6 – volume: 110 start-page: 6503 year: 2010 ident: 33211_CR7 publication-title: Chem. Rev. doi: 10.1021/cr1001645 – volume: 10 start-page: 1180 year: 2018 ident: 33211_CR14 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 4 start-page: 5264 year: 2020 ident: 33211_CR27 publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE00928H – volume: 6 start-page: 511 year: 2012 ident: 33211_CR1 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.175 – volume: 7 start-page: 2490 year: 2019 ident: 33211_CR17 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11383A – volume: 137 start-page: 3265 year: 2015 ident: 33211_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511552k – volume: 7 year: 2016 ident: 33211_CR31 publication-title: Nat. Commun. doi: 10.1038/ncomms12165 – volume: 38 start-page: 185 year: 2009 ident: 33211_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/B802262N – volume: 6 year: 2015 ident: 33211_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms9508 – volume: 499 start-page: 143865 year: 2020 ident: 33211_CR24 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143865 – volume: 7 start-page: 19087 year: 2019 ident: 33211_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06219J – volume: 38 start-page: 253 year: 2009 ident: 33211_CR6 publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 4 start-page: 746 year: 2019 ident: 33211_CR5 publication-title: Nat. Energy doi: 10.1038/s41560-019-0456-5 – volume: 19 start-page: 559 year: 2020 ident: 33211_CR18 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0591-1 – volume: 12 start-page: 689 year: 2020 ident: 33211_CR3 publication-title: ChemCatChem doi: 10.1002/cctc.201901725 – volume: 7 start-page: 22924 year: 2019 ident: 33211_CR15 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06425G – volume: 172 start-page: 407 year: 2017 ident: 33211_CR29 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.06.045 – volume: 8 start-page: 7766 year: 2018 ident: 33211_CR20 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01678 – volume: 13 start-page: 33 year: 2019 ident: 33211_CR26 publication-title: iScience doi: 10.1016/j.isci.2019.02.007 – ident: 33211_CR21 – volume: 8 start-page: 76 year: 2009 ident: 33211_CR9 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 10 start-page: 6473 year: 2019 ident: 33211_CR23 publication-title: Polym. Chem. doi: 10.1039/C9PY01404G – volume: 8 start-page: 474 year: 1985 ident: 33211_CR8 publication-title: Chem. Commun. doi: 10.1039/c39850000474 |
SSID | ssj0000391844 |
Score | 2.5928693 |
Snippet | Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission... The introduction of hydrophilic segments into the main-chain of polymer photocatalysts allows water to efficiently enter the interior through these hydrophilic... |
SourceID | doaj unpaywall pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5460 |
SubjectTerms | 140/131 147/135 639/301/299/890 639/4077/909/4086/4087 639/638/224/909/4086 639/638/455/954 639/638/77/890 Chains (polymeric) Conjugation Evolution Humanities and Social Sciences Hydrogen Hydrogen evolution Hydrogen-based energy Hydrophilicity Interfaces Irradiation Light irradiation Molecular dynamics multidisciplinary Photocatalysis Photocatalysts Polymers Science Science (multidisciplinary) Segments Solar energy Solar energy conversion Thin films Water splitting |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nj5UwEG90jVEPxs-IrqYm3lyy0C_KyajxuTFZT26yN1JK2adBQHhPwx_g_-1M4fHEw4sXDrTlozPT_jqd_oaQV8IpkyLzI9dWhELwPMTcVqGWwmiA1yp26Bo4_6zOLsSnS3k5Odz6KaxyNyb6gbpoLPrIT1kCcxNMj7F80_4IMWsU7q5OKTSukxsxA03Ck-Krj7OPBdnPtRDTWZmI69Ne-JHBh7BzhtFci_nI0_YvsOa_kZLzdukdcmtbt2b4ZarqrxlpdY_cnaAkfTvK_j655uoH5OaYXHJ4SH6fw6I_tGu4UrdnHaRNSdumGr67jrbrZtN4B87Qb3qKPlm6HoquadHNYmndwAOa-tsWfW0F7d2VPxBHAehSPJSeVy6sPBNJ0eGoOTYGlaTu56TSj8jF6sOX92fhlHQhtDJOoL4ppWG6sLAUEiKNbIyRM3HkuFGKGScSmyojcy64sIUDPMEsLCmTyDEO6CThj8kRfJ17QmipC2aZkqVMS-j3RBsO4FSxUksGPWoDEu-6PrMTIzkmxqgyvzPOdTaKKwNxZV5cWRyQ13ObduTjOFj7HUp0rolc2v5G011lk2lmCXLy6RKwq0IueqW1yFWacMkLlZY6D8jxTh-yycD7bK-OAXk5F4Np4n6LqV2zHetgQm8RBSRZ6NHig5Yl9de1J_lOhcbFbUBOdhq3f_mhHz6ZtfI_-ufp4V97Rm4zNBXMmJEck6NNt3XPAYNt8hfe0P4AFU8tbw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKEQIOiE8RKMhI3GhgYzu2c0AIEFWFtJxYqbfIcZxuUUhCsgvkB_C_mXGSLUFVxYHLHjb2bjJ-E78Z228IeS6cNAkqP3JtRSgEz0KsbRXqWBgN9FpGDlMDy0_yeCU-nsQne2QqdzQasLswtMN6Uqu2fPnzW_8GHP71cGRcv-qEd3e_L50z3KJ1hVyFmYkhypcj3fdvZp5AQCPGszMXd53NT17Gf8Y9_945uVs-vUmub6vG9D9MWf4xQx3dJrdGaknfDli4Q_ZcdZdcG4pN9vfIr6U5q0K7hk_qzlUIaV3Qpi77r66lzbre1D6h03ebjmKOlq77vK0bTLtYWtXwA3X1ZYu5t5x27tQfkKNAfCkeUs9KF5ZemSRv8S06dAaIUvd9hPh9sjr68Pn9cTgWYQhtHClob4rYMJ1bCI2ESBY2wp000cJxIyUzTiibSBNnXHBhcwf8glkIMdXCMQ5sRfEHZB_uzj0ktNA5s0zGRZwUYHelDQeyKlmhYwYWtQGJJtOndlQox0IZZepXyrlOh-FKYbhSP1xpFJAXuz7NoM9xaet3OKK7lqit7b-o29N0dNVUoUafLoDLStSml1qLTCaKxzyXSaGzgBxMeEgnvKZMAXUC9hbFAXm2uwyuiusvpnL1dmiDBb7FIiBqhqPZDc2vVGdrL_qdCI3BbkAOJ8Sd__llD3y4Q-U_2OfR_7DPY3KDoUNhnQ11QPY37dY9Aea2yZ56d_wNgws8gg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtUwELVKEQIWiKcIFGQkdjQisR3bWcIVVYVUVlTqLnIcpxcUkii5F5QP4L-ZcR4lCFWwySJ-xLFn7OPx-Awhr4WTJkXmR66tCIXgeYixrUKdCKMBXsvYoWng7JM8PRcfL5KLA8LmuzDead9TWvppevYOe9sLr9Le95wzdMO6QW5qxWN049vIzWJXQcZzLcR0Pybi-i9FV2uQp-pf4cs_vSOXI9K75Pa-bs3ww1TVb6vQyX1yb4KP9N3Y4AfkwNUPya0xoOTwiPw8g41-aLfwpO6KaZA2JW2bavjmOtpum13jjTZDv-sp2mHpdii6pkXTiqV1AxU09dc92tcK2rtLfwmOArileBE9r1xYefaRosOZciwMYkjd90mMH5Pzkw-fN6fhFGghtEmsIL8pE8N0YWH7I0Qa2Ri9ZeLIcSMlM04om0qT5FxwYQsHGIJZ2EaqyDEOiETxJ-QQWueeElrqglkmkzJJS-h3pQ0HQCpZqRMGPWoDEs9dn9mJhRyDYVSZPw3nOhuHK4PhyvxwZXFA3ixl2pGD49rc73FEl5zIn-1fNN1lNslTppCHT5eAVyXyz0utRS5TxRNeyLTUeUCOZnnIJqXuM6YAHgFCi5OAvFqSQR3xjMXUrtmPeTCIt4gColZytGrQOqX-svXE3qnQuKENyPEscVcfv-6Hjxep_If-efZ_tT8ndxiqDkbNUEfkcNft3QvAYbv8pVe8X-tsKyQ priority: 102 providerName: Springer Nature |
Title | Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution |
URI | https://link.springer.com/article/10.1038/s41467-022-33211-1 https://www.proquest.com/docview/2715166315 https://www.proquest.com/docview/2715440840 https://pubmed.ncbi.nlm.nih.gov/PMC9482619 https://www.nature.com/articles/s41467-022-33211-1.pdf https://doaj.org/article/776358f054694306884b697353d69f8b |
UnpaywallVersion | publishedVersion |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: ADMLS dateStart: 20121101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: NAO dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 8FG dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2041-1723 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M48 dateStart: 20101001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: AAJSJ dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: C6C dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgEQIOiKcILJWRuLHRNrZjO8dutWVVqSsErNRb5DgOBYWk6gPUH8D_ZsZJsw2HhQMXR0qc1B2P7W_G428IeSucNAkyP3JtRSgEz0LMbRXqWBgN8FpGDl0Ds0t5cSWm83h-kOoLY8IaeuBGcKcKGdN0AchCIlO41FpkMlE85rlMCp3h7AvL2IEx5edgnoDpItpTMkOuT9fCzwk-eJ0zjOPqrUSesL-HMv-Mkew2Sh-Qe9tqaXY_TVkerEWTR-RhCyLpqGn8Y3LLVU_I3Sat5O4p-TUDcz-0Cyipu-YbpHVBl3W5--5WdLmoN7V33ezWmzVFbyxd7PJVvUQHi6VVDR-oq29b9LLldO2--KNwFCAuxePoWenC0nOQ5CucL5uXQRmp-9Eq8zNyNTn_PL4I23QLoY0jBfVNERumcwtGkBDJ0EYYMxMNHTdSMuOEsok0ccYFFzZ3gCSYBWNSDR3jgEsUf06OoHXuBaGFzpllMi7ipAC5K204wFLJCh0zkKgNSLQXfWpbLnJMiVGmfk-c67TprhS6K_XdlUYBede9s2yYOG6sfYY92tVEFm1_A3QrbXUr_ZtuBeR4rw9pO7TXKVMAkgCnRXFA3nSPYVDiToupXL1t6mAqbzEMiOrpUa9B_SfV14Wn906ERrM2ICd7jbv-8Zv-8Emnlf8gn5f_Qz6vyH2GAwozaqhjcrRZbd1rwGibbEBuq7mCUk_eD8id0Wj6aQrXs_PLDx_h7liOB37AQjkT-jeuCzps |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEK-KQAEjwYlGTWzHdg4I8aq2tNtTK-0tOI7TLQpJ2OxS5Qfwd_iNeJxsluWw4tJLDomT2J6nx-NvEHrFDFcxID9SqZnPGE19qG3ly4gpad1rHhoIDYxP-eicfZlEky30e3kWBtIqlzrRKeqs0hAjPyDC2iZrHsPoXf3Dh6pRsLu6LKHRscWxaa_skq15e_TJ0vc1IYefzz6O_L6qgK-jUMz9TOWRIjLT1tdnLA50CKkhYWCo4pwow4SOuYpSyijTmbEGk2i7ZhKBIdSaX0Htd2-gm4wGDLD6xUQMMR1AW5eM9WdzAioPGuY0kUuZpwSyx9bsnysTsObb_puZOWzP3kE7i7JW7ZUqir8s4OE9dLd3XfH7jtfuoy1TPkC3umKW7UP0a6wuS19P7RWbFcohrnJcV0X73cxwPa3mlQsYtc28wRADxtM2m1U1hHU0Liv7gar8toDYXoYbc-EO4GHrWGM4BJ8Wxi8c8kk2Ay3dvWxFAJufvQg9QufXQo5dtG17Zx4jnMuMaMKjPIpzO-9CKmqdYU5yGRE7o9pD4XLqE90joEMhjiJxO_FUJh25EkuuxJErCT30Znin7vA_Nrb-ABQdWgJ2t7tRzS6SXhUkAjAAZW59ZQ7Y91xKlvJY0IhmPM5l6qG9JT8kvUJpkhX7e-jl8NiqAtjfUaWpFl0bKCDOAg-JNT5a69D6k_Jy6kDFYyZhMe2h_SXHrX6-acD7A1f-x_w82Ty0F2hndDY-SU6OTo-fotsExAaqdYg9tD2fLcwz6__N0-dO6DD6et1S_gfaZ2gV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4ikCBYwEJxrtxnZs54AQUFYtpRUHKu0tdRynWxSSsNmlyg_gT_Hr8DiPZTmsuPSSQ-wkjufp8fgbhF4yw1UEyI9UauYzRhMfalv5MmRKWveaBwZCA0fHfP-EfZqG0y30uz8LA2mVvU50ijotNcTIR0RY22TNYxCOsi4t4sve5G31w4cKUrDT2pfTaFnk0DQXdvlWvznYs7R-Rcjk49cP-35XYcDXYSAWfqqyUBGZauv3MxaNdQBpIsHYUMU5UYYJHXEVJpRRplNjjSfRdv0kxoZQa4oFte-9gq4K2w7pZGIqhvgOIK9LxrpzOmMqRzVzWsmlz1MCmWRrttCVDFjzc__N0hy2am-hG8uiUs2FyvO_rOHkDrrdubH4Xct3d9GWKe6ha21hy-Y--nWkzgtfz-wVmxXiIS4zXJV5893McTUrF6ULHjX1osYQD8azJp2XFYR4NC5K-4Ky-LaEOF-Ka3PmDuNh62RjOBCf5MbPHQpKOgeN3T5sxQGbn504PUAnl0KOh2jbjs48QjiTKdGEh1kYZXbehVTUOsacZDIkdka1h4J-6mPdoaFDUY48drvyVMYtuWJLrtiRKw489Hp4pmqxQDb2fg8UHXoCjre7Uc7P4k4txALwAGVm_WYOOPhcSpbwSNCQpjzKZOKhnZ4f4k651PFKFDz0Ymi2agH2elRhymXbB4qJs7GHxBofrQ1ovaU4nzmA8YhJWFh7aLfnuNXHN_3w7sCV_zE_jzf_2nN03cp3_Png-PAJuklAaqBwh9hB24v50jy1ruAieeZkDqPTyxbyP_jZbFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Main-chain+engineering+of+polymer+photocatalysts+with+hydrophilic+non-conjugated+segments+for+visible-light-driven+hydrogen+evolution&rft.jtitle=Nature+communications&rft.au=Chih-Li+Chang&rft.au=Wei-Cheng+Lin&rft.au=Li-Yu+Ting&rft.au=Chin-Hsuan+Shih&rft.date=2022-09-17&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-022-33211-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_776358f054694306884b697353d69f8b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |