Sample size for detecting differentially expressed genes in microarray experiments
Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, wi...
Saved in:
| Published in | BMC genomics Vol. 5; no. 1; p. 87 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
BioMed Central
08.11.2004
BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/1471-2164-5-87 |
Cover
| Abstract | Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).
We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile.
Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects. |
|---|---|
| AbstractList | Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).
We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile.
Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects. Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).BACKGROUNDMicroarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile.RESULTSWe hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile.Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects.CONCLUSIONSFactors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects. Abstract Background Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human). Results We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile. Conclusions Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects. |
| ArticleNumber | 87 |
| Author | Li, Jiangning Wei, Caimiao Bumgarner, Roger E |
| AuthorAffiliation | 1 Department of Microbiology, University of Washington, Seattle, WA 98195, USA 2 Department of Pathology, University of Washington, Seattle, WA 98195, USA |
| AuthorAffiliation_xml | – name: 2 Department of Pathology, University of Washington, Seattle, WA 98195, USA – name: 1 Department of Microbiology, University of Washington, Seattle, WA 98195, USA |
| Author_xml | – sequence: 1 givenname: Caimiao surname: Wei fullname: Wei, Caimiao – sequence: 2 givenname: Jiangning surname: Li fullname: Li, Jiangning – sequence: 3 givenname: Roger E surname: Bumgarner fullname: Bumgarner, Roger E |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15533245$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v1TAQjFAR_YArR5QTt7S2Y8f2gQOq-KhUCYmPs7Wx1w9XSRzsPODx63H6nkqLhDjZ2p2Z3Zk9rY6mOGFVPafknFLVXVAuacNoxxvRKPmoOrkrHN37H1enOd8QQqVi4kl1TIVoW8bFSfXxE4zzgHUOv7D2MdUOF7RLmDa1C95jwmkJMAy7Gn_OCXNGV29wwlyHqR6DTRFSgtsupjAWdH5aPfYwZHx2eM-qL2_ffL5831x_eHd1-fq6sYLKpXHMO41WeaZ9q1XriOwlswRVL1AwzkBo7rR0FjqrNfKWcNf1iJ1Dhqxtz6qrva6LcGPmMh3SzkQI5rYQ08ZAWoId0DDqerRa0M5zLgB60B0DKz0lxHOQRetir7WdZtj9KIbvBCkxa9JmDdOsYRph1Mp4tWfM235EZ4vzBMODNR52pvDVbOJ3U5JXkhf-ywM_xW9bzIsZQ7Y4DDBh3GbTSaI7JVUBvrg_6M9ehxsWAN8DyjFyTuiNDQssIa5zw_BvA-d_0f7j-De1f8Bh |
| CitedBy_id | crossref_primary_10_1016_j_cyto_2017_04_024 crossref_primary_10_3389_fimmu_2022_865845 crossref_primary_10_1016_j_nbt_2009_03_013 crossref_primary_10_1093_nar_gkn735 crossref_primary_10_1186_1471_2164_8_370 crossref_primary_10_1038_s41598_020_74973_2 crossref_primary_10_1128_JVI_01373_08 crossref_primary_10_3389_fimmu_2022_871008 crossref_primary_10_1016_j_psyneuen_2011_11_010 crossref_primary_10_1155_2021_5546199 crossref_primary_10_1007_s12035_016_0341_1 crossref_primary_10_1080_09513590_2017_1418851 crossref_primary_10_1128_AEM_02270_08 crossref_primary_10_1002_pmic_201100033 crossref_primary_10_1080_00365520601127166 crossref_primary_10_3389_fimmu_2021_595150 crossref_primary_10_1093_ajcn_nqz012 crossref_primary_10_1111_j_1365_2435_2010_01785_x crossref_primary_10_1016_j_yrtph_2013_06_005 crossref_primary_10_1158_1535_7163_MCT_05_0329 crossref_primary_10_3390_ijms161023463 crossref_primary_10_2353_ajpath_2007_061010 crossref_primary_10_1007_BF02788885 crossref_primary_10_1186_s12859_020_03932_5 crossref_primary_10_1021_pr060362r crossref_primary_10_2353_ajpath_2009_090043 crossref_primary_10_3390_ani13193052 crossref_primary_10_1002_prca_201400137 crossref_primary_10_1159_000511772 crossref_primary_10_1136_bmjopen_2012_001553 crossref_primary_10_1016_j_placenta_2016_02_015 crossref_primary_10_3748_wjg_v12_i22_3481 crossref_primary_10_1371_journal_pone_0013518 crossref_primary_10_1187_cbe_09_09_0067 crossref_primary_10_1007_s44199_024_00095_7 crossref_primary_10_1016_j_ttbdis_2014_04_022 crossref_primary_10_1002_prca_201300070 crossref_primary_10_1152_ajprenal_00619_2009 crossref_primary_10_1093_bioinformatics_btaa607 crossref_primary_10_1111_j_1872_034X_2007_00233_x crossref_primary_10_1186_1471_2164_8_413 crossref_primary_10_1007_s00438_024_02139_0 crossref_primary_10_1038_tpj_2015_48 crossref_primary_10_1167_iovs_18_23944 crossref_primary_10_1186_1471_2393_10_87 crossref_primary_10_1186_s12977_022_00594_4 crossref_primary_10_1093_bioinformatics_btt508 crossref_primary_10_1111_jnc_13884 crossref_primary_10_1186_1743_7075_11_19 crossref_primary_10_1186_1471_2105_10_449 crossref_primary_10_1080_10915810802152111 crossref_primary_10_1016_j_jneuroim_2021_577760 crossref_primary_10_1016_j_trsl_2007_12_010 crossref_primary_10_1099_vir_0_82529_0 crossref_primary_10_1016_j_antiviral_2014_03_003 crossref_primary_10_1038_tp_2014_9 crossref_primary_10_1002_0471142301_ns0428s45 crossref_primary_10_1038_srep30173 crossref_primary_10_1186_s40246_023_00450_2 crossref_primary_10_1016_j_ygeno_2020_05_026 crossref_primary_10_1371_journal_pone_0022859 crossref_primary_10_1158_1078_0432_CCR_07_0670 crossref_primary_10_3390_cancers15215219 crossref_primary_10_1002_etc_5056 crossref_primary_10_1002_art_21196 crossref_primary_10_1016_j_jaci_2009_10_024 crossref_primary_10_1073_pnas_0510485103 crossref_primary_10_1007_s10549_022_06698_x crossref_primary_10_1093_bioinformatics_bti668 crossref_primary_10_1016_j_ccr_2006_05_001 crossref_primary_10_1161_01_ATV_0000219289_06529_f1 crossref_primary_10_1007_s10620_006_9737_5 crossref_primary_10_4018_ijsbbt_2012070101 crossref_primary_10_1152_ajprenal_00023_2007 crossref_primary_10_1186_1472_6947_6_27 crossref_primary_10_1016_j_scr_2020_102047 crossref_primary_10_1371_journal_pone_0120115 crossref_primary_10_3390_ani14060876 crossref_primary_10_1016_j_ijar_2007_03_006 crossref_primary_10_1177_1352458513500553 crossref_primary_10_1038_s41398_022_01905_1 crossref_primary_10_3389_av_2023_11997 crossref_primary_10_1186_1471_2105_11_447 crossref_primary_10_1016_j_ydbio_2007_07_011 crossref_primary_10_1021_tx800008e crossref_primary_10_1586_14737159_6_4_535 crossref_primary_10_1016_S1359_6446_05_03565_8 crossref_primary_10_1186_1471_2105_11_285 crossref_primary_10_1371_journal_pone_0020826 |
| Cites_doi | 10.1091/mbc.02-02-0023. 10.1126/science.270.5235.467 10.1093/bioinformatics/btg227 10.1186/gb-2002-3-4-reports0022 10.2202/1544-6115.1009 10.1017/S0016672301005055 10.1089/10665270360688246 10.1091/mbc.E03-11-0786 10.1093/nar/30.4.e15 10.1002/sim.1335 10.1073/pnas.0304146101 10.1101/gr.10.12.2022 10.1038/nrg863 10.1111/j.2517-6161.1995.tb02031.x 10.1073/pnas.221465998 |
| ContentType | Journal Article |
| Copyright | Copyright © 2004 Wei et al; licensee BioMed Central Ltd. 2004 Wei et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2004 Wei et al; licensee BioMed Central Ltd. 2004 Wei et al; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2164-5-87 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | 87 |
| ExternalDocumentID | oai_doaj_org_article_21dbec9516f445aaba962ac7f100f4a7 10.1186/1471-2164-5-87 PMC533874 15533245 10_1186_1471_2164_5_87 |
| Genre | Research Support, U.S. Gov't, P.H.S Comparative Study Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: 1P50HL07399 – fundername: NHLBI NIH HHS grantid: R01 HL072370 – fundername: NIDDK NIH HHS grantid: 5U24DK058813 – fundername: NIEHS NIH HHS grantid: U19 ES011387 – fundername: NIDA NIH HHS grantid: P30 DA015625 – fundername: NIAID NIH HHS grantid: P01 AI052106 – fundername: NIAID NIH HHS grantid: 5P01AI052106 – fundername: NIEHS NIH HHS grantid: 1U19ES011387 – fundername: NIAID NIH HHS grantid: 1R21AI052028 – fundername: NHLBI NIH HHS grantid: 5R01HL072370 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR IPNFZ ISR KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A W2D WOQ WOW XSB -A0 ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7X8 5PM 2XV 7X7 88E 8AO 8FE 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFFHD AFKRA BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU FYUFA HCIFZ HMCUK INH INR ITC LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY |
| ID | FETCH-LOGICAL-c517t-d2fd9ec8f29f3983d07b72c0e8b5e5242a594d97dca6c99e4304d6bee6de2e233 |
| IEDL.DBID | UNPAY |
| ISSN | 1471-2164 |
| IngestDate | Fri Oct 03 12:39:14 EDT 2025 Wed Oct 29 12:12:02 EDT 2025 Thu Aug 21 18:09:01 EDT 2025 Fri Sep 05 09:12:32 EDT 2025 Thu Jan 02 21:58:33 EST 2025 Wed Oct 01 04:22:07 EDT 2025 Thu Apr 24 23:12:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-d2fd9ec8f29f3983d07b72c0e8b5e5242a594d97dca6c99e4304d6bee6de2e233 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-5-87 |
| PMID | 15533245 |
| PQID | 67096878 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_21dbec9516f445aaba962ac7f100f4a7 unpaywall_primary_10_1186_1471_2164_5_87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_533874 proquest_miscellaneous_67096878 pubmed_primary_15533245 crossref_citationtrail_10_1186_1471_2164_5_87 crossref_primary_10_1186_1471_2164_5_87 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2004-11-08 |
| PublicationDateYYYYMMDD | 2004-11-08 |
| PublicationDate_xml | – month: 11 year: 2004 text: 2004-11-08 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMC genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2004 |
| Publisher | BioMed Central BMC |
| Publisher_xml | – name: BioMed Central – name: BMC |
| References | ML Lee (189_CR3) 2002; 21 X Chen (189_CR8) 2002; 13 YH Yang (189_CR13) 2002; 30 S Dudoit (189_CR11) 2002; 12 A Zien (189_CR4) 2003; 10 P Pavlidis (189_CR5) 2003; 19 MW Smith (189_CR6) 2003; 63 CC Pritchard (189_CR9) 2001; 98 MK Kerr (189_CR16) 2003; 224 MK Kerr (189_CR17) 2001; 77 X Cui (189_CR14) 2003; 2 W Pan (189_CR2) 2002; 3 J Lapointe (189_CR7) 2004; 101 MJ Callow (189_CR12) 2000; 10 H Zhao (189_CR10) 2004; 15 YH Yang (189_CR18) 2002; 3 M Schena (189_CR1) 1995; 270 Y Benjamini (189_CR15) 1995; B 12436455 - Stat Med. 2002 Dec 15;21(23):3543-70 11355567 - Genet Res. 2001 Apr;77(2):123-8 14711987 - Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6 12935350 - J Comput Biol. 2003;10(3-4):653-67 12591738 - Cancer Res. 2003 Feb 15;63(4):859-64 15034139 - Mol Biol Cell. 2004 Jun;15(6):2523-36 12710671 - Methods Mol Biol. 2003;224:137-47 16646782 - Stat Appl Genet Mol Biol. 2003;2:Article4 11698685 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13266-71 12154381 - Nat Rev Genet. 2002 Aug;3(8):579-88 12967957 - Bioinformatics. 2003 Sep 1;19(13):1620-7 11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15 7569999 - Science. 1995 Oct 20;270(5235):467-70 12049663 - Genome Biol. 2002;3(5):research0022 11116096 - Genome Res. 2000 Dec;10(12):2022-9 12058060 - Mol Biol Cell. 2002 Jun;13(6):1929-39 |
| References_xml | – volume: 13 start-page: 1929 year: 2002 ident: 189_CR8 publication-title: Mol Biol Cell doi: 10.1091/mbc.02-02-0023. – volume: 270 start-page: 467 year: 1995 ident: 189_CR1 publication-title: Science doi: 10.1126/science.270.5235.467 – volume: 12 start-page: 111 year: 2002 ident: 189_CR11 publication-title: Statistica Sinica – volume: 19 start-page: 1620 year: 2003 ident: 189_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg227 – volume: 3 start-page: research0022 year: 2002 ident: 189_CR2 publication-title: Genome Biol doi: 10.1186/gb-2002-3-4-reports0022 – volume: 2 start-page: Article 4 year: 2003 ident: 189_CR14 publication-title: Statistical Applications in Genetics and Molecular Biology doi: 10.2202/1544-6115.1009 – volume: 77 start-page: 123 year: 2001 ident: 189_CR17 publication-title: Genet Res doi: 10.1017/S0016672301005055 – volume: 10 start-page: 653 year: 2003 ident: 189_CR4 publication-title: J Comput Biol doi: 10.1089/10665270360688246 – volume: 15 start-page: 2523 year: 2004 ident: 189_CR10 publication-title: Mol Biol Cell doi: 10.1091/mbc.E03-11-0786 – volume: 30 start-page: e15 year: 2002 ident: 189_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.4.e15 – volume: 224 start-page: 137 year: 2003 ident: 189_CR16 publication-title: Methods Mol Biol – volume: 21 start-page: 3543 year: 2002 ident: 189_CR3 publication-title: Stat Med doi: 10.1002/sim.1335 – volume: 63 start-page: 859 year: 2003 ident: 189_CR6 publication-title: Cancer Res – volume: 101 start-page: 811 year: 2004 ident: 189_CR7 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0304146101 – volume: 10 start-page: 2022 year: 2000 ident: 189_CR12 publication-title: Genome Res doi: 10.1101/gr.10.12.2022 – volume: 3 start-page: 579 year: 2002 ident: 189_CR18 publication-title: Nat Rev Genet doi: 10.1038/nrg863 – volume: B start-page: 289 year: 1995 ident: 189_CR15 publication-title: Journal of the Royal Statistical Society Series doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 98 start-page: 13266 year: 2001 ident: 189_CR9 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.221465998 – reference: 11698685 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13266-71 – reference: 11116096 - Genome Res. 2000 Dec;10(12):2022-9 – reference: 12967957 - Bioinformatics. 2003 Sep 1;19(13):1620-7 – reference: 16646782 - Stat Appl Genet Mol Biol. 2003;2:Article4 – reference: 12049663 - Genome Biol. 2002;3(5):research0022 – reference: 12591738 - Cancer Res. 2003 Feb 15;63(4):859-64 – reference: 12710671 - Methods Mol Biol. 2003;224:137-47 – reference: 12154381 - Nat Rev Genet. 2002 Aug;3(8):579-88 – reference: 11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15 – reference: 7569999 - Science. 1995 Oct 20;270(5235):467-70 – reference: 12935350 - J Comput Biol. 2003;10(3-4):653-67 – reference: 12436455 - Stat Med. 2002 Dec 15;21(23):3543-70 – reference: 14711987 - Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6 – reference: 11355567 - Genet Res. 2001 Apr;77(2):123-8 – reference: 12058060 - Mol Biol Cell. 2002 Jun;13(6):1929-39 – reference: 15034139 - Mol Biol Cell. 2004 Jun;15(6):2523-36 |
| SSID | ssj0017825 |
| Score | 2.1499279 |
| Snippet | Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially... Abstract Background Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 87 |
| SubjectTerms | Animals Biomarkers, Tumor - genetics Carcinoma, Hepatocellular - genetics Gene Expression Profiling - methods Genes - genetics Hepacivirus - genetics Humans Liver - chemistry Liver - metabolism Liver - virology Liver Neoplasms - genetics Mice Mice, Inbred Strains Models, Statistical Oligonucleotide Array Sequence Analysis - methods Rats Rats, Inbred Strains RNA - genetics RNA, Neoplasm - genetics Sample Size |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHoR37bPHAS9hE3nnaOKyyLoQV3YW0gnFR1oe5d54M7-epN0zziDyl68Jmk6qap0Vboq34fQS9XloMF4T6gNngjNArExGMJp0FyLYKGS9n38pI5PxIdTebpD9VVqwkZ44FFwh6yN-TU5DlBJCOl9561iPujUUpqEr_fIqbGbw9SUP8h-T9Z7RbolLJ8IJrjG1qjDbRuRpBTS7bijitr_t1Dzz4rJG6vh3K9_-r7fcUdHt9GtKY7Eb8b530HXYLiLro_Mkut76PMXX2B_8WJ2CTjHpThCyRZkP4U3lCh5a_f9GsNFLYWFiL-Vzx6eDfhHKdLz87mvvRMBwOI-Ojl6__XdMZnoE0iQrV6SyFK0EExiNnFreKS6y7qgYDoJMrtmL62IVsfgVbAWBKciqg5ARWDAOH-ADoazAR4hnCIXFnxSkYOIvjO5IaQogRZ0w1Y2iGyk6MKELV4oLnpXzxhGuSJ1V6TupDO6Qa-2489HVI1_jnxblLIdVdCwa0O2ETfZiLvKRhr0YqNSl3dPSYn4Ac5WC1fQ65TRpkEPRwX_no7MgTATeWlqT_V7M9nvGWbfKz53ftBo0aDXWxu5YpGP_8cin6CbIwhl-eX9FB0s5yt4lgOmZfe87o1f-MUTkQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCMEFlWcDBXxAgoshG78PCAGiqpDKAVipt8ixJ2WlNFuyu6LLr2fsZHe7aiuu8ThxPDOecTz5PkJeqQqTBuMcy613TOjCMxu8YTz3mmvhLSTSvqNv6nAsvh7L40390zCBsyu3dpFPatw1b89_Lz-gw79PDm_UuxEusKzAvJ9JdO6b5BZGKRtpHI7E5kQBI6EcQBsv90nkPJj4FPGvpgvxKcH4X5V7Xi6hvLNoz9zyj2uaC_HpYJfcGxJL-rG3hPvkBrQPyO2eanL5kHz_4SIOMJ1N_gLFRJUGiMcHGLjoiiMFfb1plhTOU20sBHoS10E6aelprNpzXedS68AIMHtExgdffn4-ZAOfAvNypOcsFHWw4E1d2Jpbw0OuK1RODqaSIDFWO2lFsDp4p7y1IHgugqoAVIACCs4fk5122sIeoXXgwoKrVeAggqsMXvB1kJBHuMORzAhbzWLpB7DxyHnRlGnTYVQZFVBGBZSyNDojr9fyZz3MxrWSn6JS1lIRHjtdmHYn5eBtKB3QNjF5VLUQ0rnKWVU4r-tRntfC4U1erlRaojvFMxLXwnQxKyOcnTLaZORJr-DNcAYDyYjaUv3WSLZb2smvBNiNHY0WGXmztpH_vOTTa5_-jNztoSbjh-19sjPvFvAc06J59SLZ-z8Vngpp priority: 102 providerName: Scholars Portal |
| Title | Sample size for detecting differentially expressed genes in microarray experiments |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15533245 https://www.proquest.com/docview/67096878 https://pubmed.ncbi.nlm.nih.gov/PMC533874 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-5-87 https://doaj.org/article/21dbec9516f445aaba962ac7f100f4a7 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZKKkQvvCnhUfaABBenm10_jwVRRUitEBCpnFZee9xGbDbRJhGkv57xPkJDQXDgsgd7vNqxZ-xv7fE3hLwUOYIGZQyNtTWUycRS7ayiaWxlKpnVUCftOzkVozF7f8bPdsiouwuTT20gJ51O7GJw9QJ60dxvCPkToDqcO9-4uxKHQ5xeaYKon3J07RtkV3BE5T2yOz79cPSlvlzUCrScjdcbba1JNXX_7_Dm9bDJW6tybtbfTFFcWZOO75BJp00TivJ1sFrmA3v5C9Hj_1D3LrndAtfoqLG0e2QHyvvkZpPKcv2AfPxkAs9wtJhcQoRAOHIQjidwYYy6HCw4lxTFOoLvdewtuOg8zLPRpIymISrQVJWpa9uMA4uHZHz87vPbEW3zNVDLh3JJXeKdBqt8on2qVepimePgx6ByDhyxgOGaOS2dNcJqDSyNmRM5gHCQQJKmj0ivnJXwmETepUyD8cKlwJzJFRZY7zjEgU5xyPuEdiOW2ZbMPOTUKLL6p0aJLPRTFvop45mSffJqIz9vaDz-KPkmGMBGKtBv1wWz6jxrvRmlHdo-glPhGePG5EaLxFjph3HsmcGXvOjMJ0N3DWcwpoTZapEFujyhpOqT_caYfn4OR-SdMFRNbJnZ1pds15STi5oQHBsqyfrk9cYe_6Lkk38XfUr2Gm7LsJP-jPSW1QqeIw5b5gf1_gU-T5g6aN3tB3KWM3o |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBceD_KMwckuLibJn4eF8SqQmKFgErLKXLs8W5EmlZpK-j-esZ5lC0LggPXeBx57Bn7SzzzDSEvRI6gQRlDY20NZTKxVDuraBpbmUpmNTRF-94fi8mUvTvhJ3tk0ufC5DMbyElnhV2OLiagl21-Q6ifAPXBwvnW3ZU4GOP2ShNE_ZSja18h-4IjKh-Q_enxh8MvTXJRJ9BxNl7utHMmNdT9v8Obl8Mmr62rhdl8M2V54Uw6ukmKXps2FOXraL3KR_b8F6LH_6HuLXKjA67RYWtpt8keVHfI1baU5eYu-fjJBJ7haFmcQ4RAOHIQrifwYIz6Giy4l5TlJoLvTewtuOg07LNRUUWzEBVo6to0rV3FgeU9Mj16-_nNhHb1GqjlY7miLvFOg1U-0T7VKnWxzHHxY1A5B45YwHDNnJbOGmG1BpbGzIkcQDhIIEnT-2RQzSt4SCLvUqbBeOFSYM7kCh9Y7zjEgU5xzIeE9iuW2Y7MPNTUKLPmo0aJLMxTFuYp45mSQ_JyK79oaTz-KPk6GMBWKtBvNw_m9WnWeTNKO7R9BKfCM8aNyY0WibHSj-PYM4Mved6bT4buGu5gTAXz9TILdHlCSTUkD1pj-jkcjsg7Yaia2DGznZHstlTFWUMIjh2VZEPyamuPf1Hy0b-LPibXW27L8Cf9CRms6jU8RRy2yp91LvYDGcwxqw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+for+detecting+differentially+expressed+genes+in+microarray+experiments&rft.jtitle=BMC+genomics&rft.au=Wei%2C+Caimiao&rft.au=Li%2C+Jiangning&rft.au=Bumgarner%2C+Roger+E&rft.date=2004-11-08&rft.eissn=1471-2164&rft.volume=5&rft.spage=87&rft_id=info:doi/10.1186%2F1471-2164-5-87&rft_id=info%3Apmid%2F15533245&rft.externalDocID=15533245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |