Sample size for detecting differentially expressed genes in microarray experiments

Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, wi...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 5; no. 1; p. 87
Main Authors Wei, Caimiao, Li, Jiangning, Bumgarner, Roger E
Format Journal Article
LanguageEnglish
Published England BioMed Central 08.11.2004
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-5-87

Cover

Abstract Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human). We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile. Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects.
AbstractList Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human). We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile. Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects.
Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).BACKGROUNDMicroarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile.RESULTSWe hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile.Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects.CONCLUSIONSFactors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects.
Abstract Background Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human). Results We hypothesize that if all other factors (assay protocol, microarray platform, data pre-processing) were equal, fewer individuals would be needed for the same statistical power using inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will be removed in the inbred populations. We apply the same normalization algorithm and estimate the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats) comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a function of false positive rate, power and percentage of genes that have a standard deviation below a given percentile. Conclusions Factors that affect power and sample size calculations include variability of the population, the desired detectable differences, the power to detect the differences, and an acceptable error rate. In addition, experimental design, technical variability and data pre-processing play a role in the power of the statistical tests in microarrays. We show that the number of samples required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much larger than the number of samples commonly used in present day studies, and that far fewer individuals are needed for the same statistical power when using inbred animals rather than unrelated human subjects.
ArticleNumber 87
Author Li, Jiangning
Wei, Caimiao
Bumgarner, Roger E
AuthorAffiliation 1 Department of Microbiology, University of Washington, Seattle, WA 98195, USA
2 Department of Pathology, University of Washington, Seattle, WA 98195, USA
AuthorAffiliation_xml – name: 2 Department of Pathology, University of Washington, Seattle, WA 98195, USA
– name: 1 Department of Microbiology, University of Washington, Seattle, WA 98195, USA
Author_xml – sequence: 1
  givenname: Caimiao
  surname: Wei
  fullname: Wei, Caimiao
– sequence: 2
  givenname: Jiangning
  surname: Li
  fullname: Li, Jiangning
– sequence: 3
  givenname: Roger E
  surname: Bumgarner
  fullname: Bumgarner, Roger E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15533245$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1TAQjFAR_YArR5QTt7S2Y8f2gQOq-KhUCYmPs7Wx1w9XSRzsPODx63H6nkqLhDjZ2p2Z3Zk9rY6mOGFVPafknFLVXVAuacNoxxvRKPmoOrkrHN37H1enOd8QQqVi4kl1TIVoW8bFSfXxE4zzgHUOv7D2MdUOF7RLmDa1C95jwmkJMAy7Gn_OCXNGV29wwlyHqR6DTRFSgtsupjAWdH5aPfYwZHx2eM-qL2_ffL5831x_eHd1-fq6sYLKpXHMO41WeaZ9q1XriOwlswRVL1AwzkBo7rR0FjqrNfKWcNf1iJ1Dhqxtz6qrva6LcGPmMh3SzkQI5rYQ08ZAWoId0DDqerRa0M5zLgB60B0DKz0lxHOQRetir7WdZtj9KIbvBCkxa9JmDdOsYRph1Mp4tWfM235EZ4vzBMODNR52pvDVbOJ3U5JXkhf-ywM_xW9bzIsZQ7Y4DDBh3GbTSaI7JVUBvrg_6M9ehxsWAN8DyjFyTuiNDQssIa5zw_BvA-d_0f7j-De1f8Bh
CitedBy_id crossref_primary_10_1016_j_cyto_2017_04_024
crossref_primary_10_3389_fimmu_2022_865845
crossref_primary_10_1016_j_nbt_2009_03_013
crossref_primary_10_1093_nar_gkn735
crossref_primary_10_1186_1471_2164_8_370
crossref_primary_10_1038_s41598_020_74973_2
crossref_primary_10_1128_JVI_01373_08
crossref_primary_10_3389_fimmu_2022_871008
crossref_primary_10_1016_j_psyneuen_2011_11_010
crossref_primary_10_1155_2021_5546199
crossref_primary_10_1007_s12035_016_0341_1
crossref_primary_10_1080_09513590_2017_1418851
crossref_primary_10_1128_AEM_02270_08
crossref_primary_10_1002_pmic_201100033
crossref_primary_10_1080_00365520601127166
crossref_primary_10_3389_fimmu_2021_595150
crossref_primary_10_1093_ajcn_nqz012
crossref_primary_10_1111_j_1365_2435_2010_01785_x
crossref_primary_10_1016_j_yrtph_2013_06_005
crossref_primary_10_1158_1535_7163_MCT_05_0329
crossref_primary_10_3390_ijms161023463
crossref_primary_10_2353_ajpath_2007_061010
crossref_primary_10_1007_BF02788885
crossref_primary_10_1186_s12859_020_03932_5
crossref_primary_10_1021_pr060362r
crossref_primary_10_2353_ajpath_2009_090043
crossref_primary_10_3390_ani13193052
crossref_primary_10_1002_prca_201400137
crossref_primary_10_1159_000511772
crossref_primary_10_1136_bmjopen_2012_001553
crossref_primary_10_1016_j_placenta_2016_02_015
crossref_primary_10_3748_wjg_v12_i22_3481
crossref_primary_10_1371_journal_pone_0013518
crossref_primary_10_1187_cbe_09_09_0067
crossref_primary_10_1007_s44199_024_00095_7
crossref_primary_10_1016_j_ttbdis_2014_04_022
crossref_primary_10_1002_prca_201300070
crossref_primary_10_1152_ajprenal_00619_2009
crossref_primary_10_1093_bioinformatics_btaa607
crossref_primary_10_1111_j_1872_034X_2007_00233_x
crossref_primary_10_1186_1471_2164_8_413
crossref_primary_10_1007_s00438_024_02139_0
crossref_primary_10_1038_tpj_2015_48
crossref_primary_10_1167_iovs_18_23944
crossref_primary_10_1186_1471_2393_10_87
crossref_primary_10_1186_s12977_022_00594_4
crossref_primary_10_1093_bioinformatics_btt508
crossref_primary_10_1111_jnc_13884
crossref_primary_10_1186_1743_7075_11_19
crossref_primary_10_1186_1471_2105_10_449
crossref_primary_10_1080_10915810802152111
crossref_primary_10_1016_j_jneuroim_2021_577760
crossref_primary_10_1016_j_trsl_2007_12_010
crossref_primary_10_1099_vir_0_82529_0
crossref_primary_10_1016_j_antiviral_2014_03_003
crossref_primary_10_1038_tp_2014_9
crossref_primary_10_1002_0471142301_ns0428s45
crossref_primary_10_1038_srep30173
crossref_primary_10_1186_s40246_023_00450_2
crossref_primary_10_1016_j_ygeno_2020_05_026
crossref_primary_10_1371_journal_pone_0022859
crossref_primary_10_1158_1078_0432_CCR_07_0670
crossref_primary_10_3390_cancers15215219
crossref_primary_10_1002_etc_5056
crossref_primary_10_1002_art_21196
crossref_primary_10_1016_j_jaci_2009_10_024
crossref_primary_10_1073_pnas_0510485103
crossref_primary_10_1007_s10549_022_06698_x
crossref_primary_10_1093_bioinformatics_bti668
crossref_primary_10_1016_j_ccr_2006_05_001
crossref_primary_10_1161_01_ATV_0000219289_06529_f1
crossref_primary_10_1007_s10620_006_9737_5
crossref_primary_10_4018_ijsbbt_2012070101
crossref_primary_10_1152_ajprenal_00023_2007
crossref_primary_10_1186_1472_6947_6_27
crossref_primary_10_1016_j_scr_2020_102047
crossref_primary_10_1371_journal_pone_0120115
crossref_primary_10_3390_ani14060876
crossref_primary_10_1016_j_ijar_2007_03_006
crossref_primary_10_1177_1352458513500553
crossref_primary_10_1038_s41398_022_01905_1
crossref_primary_10_3389_av_2023_11997
crossref_primary_10_1186_1471_2105_11_447
crossref_primary_10_1016_j_ydbio_2007_07_011
crossref_primary_10_1021_tx800008e
crossref_primary_10_1586_14737159_6_4_535
crossref_primary_10_1016_S1359_6446_05_03565_8
crossref_primary_10_1186_1471_2105_11_285
crossref_primary_10_1371_journal_pone_0020826
Cites_doi 10.1091/mbc.02-02-0023.
10.1126/science.270.5235.467
10.1093/bioinformatics/btg227
10.1186/gb-2002-3-4-reports0022
10.2202/1544-6115.1009
10.1017/S0016672301005055
10.1089/10665270360688246
10.1091/mbc.E03-11-0786
10.1093/nar/30.4.e15
10.1002/sim.1335
10.1073/pnas.0304146101
10.1101/gr.10.12.2022
10.1038/nrg863
10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.221465998
ContentType Journal Article
Copyright Copyright © 2004 Wei et al; licensee BioMed Central Ltd. 2004 Wei et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2004 Wei et al; licensee BioMed Central Ltd. 2004 Wei et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2164-5-87
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 87
ExternalDocumentID oai_doaj_org_article_21dbec9516f445aaba962ac7f100f4a7
10.1186/1471-2164-5-87
PMC533874
15533245
10_1186_1471_2164_5_87
Genre Research Support, U.S. Gov't, P.H.S
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: 1P50HL07399
– fundername: NHLBI NIH HHS
  grantid: R01 HL072370
– fundername: NIDDK NIH HHS
  grantid: 5U24DK058813
– fundername: NIEHS NIH HHS
  grantid: U19 ES011387
– fundername: NIDA NIH HHS
  grantid: P30 DA015625
– fundername: NIAID NIH HHS
  grantid: P01 AI052106
– fundername: NIAID NIH HHS
  grantid: 5P01AI052106
– fundername: NIEHS NIH HHS
  grantid: 1U19ES011387
– fundername: NIAID NIH HHS
  grantid: 1R21AI052028
– fundername: NHLBI NIH HHS
  grantid: 5R01HL072370
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
IPNFZ
ISR
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
W2D
WOQ
WOW
XSB
-A0
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
2XV
7X7
88E
8AO
8FE
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFFHD
AFKRA
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
FYUFA
HCIFZ
HMCUK
INH
INR
ITC
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c517t-d2fd9ec8f29f3983d07b72c0e8b5e5242a594d97dca6c99e4304d6bee6de2e233
IEDL.DBID UNPAY
ISSN 1471-2164
IngestDate Fri Oct 03 12:39:14 EDT 2025
Wed Oct 29 12:12:02 EDT 2025
Thu Aug 21 18:09:01 EDT 2025
Fri Sep 05 09:12:32 EDT 2025
Thu Jan 02 21:58:33 EST 2025
Wed Oct 01 04:22:07 EDT 2025
Thu Apr 24 23:12:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-d2fd9ec8f29f3983d07b72c0e8b5e5242a594d97dca6c99e4304d6bee6de2e233
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-5-87
PMID 15533245
PQID 67096878
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_21dbec9516f445aaba962ac7f100f4a7
unpaywall_primary_10_1186_1471_2164_5_87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_533874
proquest_miscellaneous_67096878
pubmed_primary_15533245
crossref_citationtrail_10_1186_1471_2164_5_87
crossref_primary_10_1186_1471_2164_5_87
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-11-08
PublicationDateYYYYMMDD 2004-11-08
PublicationDate_xml – month: 11
  year: 2004
  text: 2004-11-08
  day: 08
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2004
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References ML Lee (189_CR3) 2002; 21
X Chen (189_CR8) 2002; 13
YH Yang (189_CR13) 2002; 30
S Dudoit (189_CR11) 2002; 12
A Zien (189_CR4) 2003; 10
P Pavlidis (189_CR5) 2003; 19
MW Smith (189_CR6) 2003; 63
CC Pritchard (189_CR9) 2001; 98
MK Kerr (189_CR16) 2003; 224
MK Kerr (189_CR17) 2001; 77
X Cui (189_CR14) 2003; 2
W Pan (189_CR2) 2002; 3
J Lapointe (189_CR7) 2004; 101
MJ Callow (189_CR12) 2000; 10
H Zhao (189_CR10) 2004; 15
YH Yang (189_CR18) 2002; 3
M Schena (189_CR1) 1995; 270
Y Benjamini (189_CR15) 1995; B
12436455 - Stat Med. 2002 Dec 15;21(23):3543-70
11355567 - Genet Res. 2001 Apr;77(2):123-8
14711987 - Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6
12935350 - J Comput Biol. 2003;10(3-4):653-67
12591738 - Cancer Res. 2003 Feb 15;63(4):859-64
15034139 - Mol Biol Cell. 2004 Jun;15(6):2523-36
12710671 - Methods Mol Biol. 2003;224:137-47
16646782 - Stat Appl Genet Mol Biol. 2003;2:Article4
11698685 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13266-71
12154381 - Nat Rev Genet. 2002 Aug;3(8):579-88
12967957 - Bioinformatics. 2003 Sep 1;19(13):1620-7
11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15
7569999 - Science. 1995 Oct 20;270(5235):467-70
12049663 - Genome Biol. 2002;3(5):research0022
11116096 - Genome Res. 2000 Dec;10(12):2022-9
12058060 - Mol Biol Cell. 2002 Jun;13(6):1929-39
References_xml – volume: 13
  start-page: 1929
  year: 2002
  ident: 189_CR8
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.02-02-0023.
– volume: 270
  start-page: 467
  year: 1995
  ident: 189_CR1
  publication-title: Science
  doi: 10.1126/science.270.5235.467
– volume: 12
  start-page: 111
  year: 2002
  ident: 189_CR11
  publication-title: Statistica Sinica
– volume: 19
  start-page: 1620
  year: 2003
  ident: 189_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg227
– volume: 3
  start-page: research0022
  year: 2002
  ident: 189_CR2
  publication-title: Genome Biol
  doi: 10.1186/gb-2002-3-4-reports0022
– volume: 2
  start-page: Article 4
  year: 2003
  ident: 189_CR14
  publication-title: Statistical Applications in Genetics and Molecular Biology
  doi: 10.2202/1544-6115.1009
– volume: 77
  start-page: 123
  year: 2001
  ident: 189_CR17
  publication-title: Genet Res
  doi: 10.1017/S0016672301005055
– volume: 10
  start-page: 653
  year: 2003
  ident: 189_CR4
  publication-title: J Comput Biol
  doi: 10.1089/10665270360688246
– volume: 15
  start-page: 2523
  year: 2004
  ident: 189_CR10
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E03-11-0786
– volume: 30
  start-page: e15
  year: 2002
  ident: 189_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.4.e15
– volume: 224
  start-page: 137
  year: 2003
  ident: 189_CR16
  publication-title: Methods Mol Biol
– volume: 21
  start-page: 3543
  year: 2002
  ident: 189_CR3
  publication-title: Stat Med
  doi: 10.1002/sim.1335
– volume: 63
  start-page: 859
  year: 2003
  ident: 189_CR6
  publication-title: Cancer Res
– volume: 101
  start-page: 811
  year: 2004
  ident: 189_CR7
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0304146101
– volume: 10
  start-page: 2022
  year: 2000
  ident: 189_CR12
  publication-title: Genome Res
  doi: 10.1101/gr.10.12.2022
– volume: 3
  start-page: 579
  year: 2002
  ident: 189_CR18
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg863
– volume: B
  start-page: 289
  year: 1995
  ident: 189_CR15
  publication-title: Journal of the Royal Statistical Society Series
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 98
  start-page: 13266
  year: 2001
  ident: 189_CR9
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.221465998
– reference: 11698685 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13266-71
– reference: 11116096 - Genome Res. 2000 Dec;10(12):2022-9
– reference: 12967957 - Bioinformatics. 2003 Sep 1;19(13):1620-7
– reference: 16646782 - Stat Appl Genet Mol Biol. 2003;2:Article4
– reference: 12049663 - Genome Biol. 2002;3(5):research0022
– reference: 12591738 - Cancer Res. 2003 Feb 15;63(4):859-64
– reference: 12710671 - Methods Mol Biol. 2003;224:137-47
– reference: 12154381 - Nat Rev Genet. 2002 Aug;3(8):579-88
– reference: 11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15
– reference: 7569999 - Science. 1995 Oct 20;270(5235):467-70
– reference: 12935350 - J Comput Biol. 2003;10(3-4):653-67
– reference: 12436455 - Stat Med. 2002 Dec 15;21(23):3543-70
– reference: 14711987 - Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6
– reference: 11355567 - Genet Res. 2001 Apr;77(2):123-8
– reference: 12058060 - Mol Biol Cell. 2002 Jun;13(6):1929-39
– reference: 15034139 - Mol Biol Cell. 2004 Jun;15(6):2523-36
SSID ssj0017825
Score 2.1499279
Snippet Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially...
Abstract Background Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 87
SubjectTerms Animals
Biomarkers, Tumor - genetics
Carcinoma, Hepatocellular - genetics
Gene Expression Profiling - methods
Genes - genetics
Hepacivirus - genetics
Humans
Liver - chemistry
Liver - metabolism
Liver - virology
Liver Neoplasms - genetics
Mice
Mice, Inbred Strains
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Rats
Rats, Inbred Strains
RNA - genetics
RNA, Neoplasm - genetics
Sample Size
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHoR37bPHAS9hE3nnaOKyyLoQV3YW0gnFR1oe5d54M7-epN0zziDyl68Jmk6qap0Vboq34fQS9XloMF4T6gNngjNArExGMJp0FyLYKGS9n38pI5PxIdTebpD9VVqwkZ44FFwh6yN-TU5DlBJCOl9561iPujUUpqEr_fIqbGbw9SUP8h-T9Z7RbolLJ8IJrjG1qjDbRuRpBTS7bijitr_t1Dzz4rJG6vh3K9_-r7fcUdHt9GtKY7Eb8b530HXYLiLro_Mkut76PMXX2B_8WJ2CTjHpThCyRZkP4U3lCh5a_f9GsNFLYWFiL-Vzx6eDfhHKdLz87mvvRMBwOI-Ojl6__XdMZnoE0iQrV6SyFK0EExiNnFreKS6y7qgYDoJMrtmL62IVsfgVbAWBKciqg5ARWDAOH-ADoazAR4hnCIXFnxSkYOIvjO5IaQogRZ0w1Y2iGyk6MKELV4oLnpXzxhGuSJ1V6TupDO6Qa-2489HVI1_jnxblLIdVdCwa0O2ETfZiLvKRhr0YqNSl3dPSYn4Ac5WC1fQ65TRpkEPRwX_no7MgTATeWlqT_V7M9nvGWbfKz53ftBo0aDXWxu5YpGP_8cin6CbIwhl-eX9FB0s5yt4lgOmZfe87o1f-MUTkQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCMEFlWcDBXxAgoshG78PCAGiqpDKAVipt8ixJ2WlNFuyu6LLr2fsZHe7aiuu8ThxPDOecTz5PkJeqQqTBuMcy613TOjCMxu8YTz3mmvhLSTSvqNv6nAsvh7L40390zCBsyu3dpFPatw1b89_Lz-gw79PDm_UuxEusKzAvJ9JdO6b5BZGKRtpHI7E5kQBI6EcQBsv90nkPJj4FPGvpgvxKcH4X5V7Xi6hvLNoz9zyj2uaC_HpYJfcGxJL-rG3hPvkBrQPyO2eanL5kHz_4SIOMJ1N_gLFRJUGiMcHGLjoiiMFfb1plhTOU20sBHoS10E6aelprNpzXedS68AIMHtExgdffn4-ZAOfAvNypOcsFHWw4E1d2Jpbw0OuK1RODqaSIDFWO2lFsDp4p7y1IHgugqoAVIACCs4fk5122sIeoXXgwoKrVeAggqsMXvB1kJBHuMORzAhbzWLpB7DxyHnRlGnTYVQZFVBGBZSyNDojr9fyZz3MxrWSn6JS1lIRHjtdmHYn5eBtKB3QNjF5VLUQ0rnKWVU4r-tRntfC4U1erlRaojvFMxLXwnQxKyOcnTLaZORJr-DNcAYDyYjaUv3WSLZb2smvBNiNHY0WGXmztpH_vOTTa5_-jNztoSbjh-19sjPvFvAc06J59SLZ-z8Vngpp
  priority: 102
  providerName: Scholars Portal
Title Sample size for detecting differentially expressed genes in microarray experiments
URI https://www.ncbi.nlm.nih.gov/pubmed/15533245
https://www.proquest.com/docview/67096878
https://pubmed.ncbi.nlm.nih.gov/PMC533874
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-5-87
https://doaj.org/article/21dbec9516f445aaba962ac7f100f4a7
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZKKkQvvCnhUfaABBenm10_jwVRRUitEBCpnFZee9xGbDbRJhGkv57xPkJDQXDgsgd7vNqxZ-xv7fE3hLwUOYIGZQyNtTWUycRS7ayiaWxlKpnVUCftOzkVozF7f8bPdsiouwuTT20gJ51O7GJw9QJ60dxvCPkToDqcO9-4uxKHQ5xeaYKon3J07RtkV3BE5T2yOz79cPSlvlzUCrScjdcbba1JNXX_7_Dm9bDJW6tybtbfTFFcWZOO75BJp00TivJ1sFrmA3v5C9Hj_1D3LrndAtfoqLG0e2QHyvvkZpPKcv2AfPxkAs9wtJhcQoRAOHIQjidwYYy6HCw4lxTFOoLvdewtuOg8zLPRpIymISrQVJWpa9uMA4uHZHz87vPbEW3zNVDLh3JJXeKdBqt8on2qVepimePgx6ByDhyxgOGaOS2dNcJqDSyNmRM5gHCQQJKmj0ivnJXwmETepUyD8cKlwJzJFRZY7zjEgU5xyPuEdiOW2ZbMPOTUKLL6p0aJLPRTFvop45mSffJqIz9vaDz-KPkmGMBGKtBv1wWz6jxrvRmlHdo-glPhGePG5EaLxFjph3HsmcGXvOjMJ0N3DWcwpoTZapEFujyhpOqT_caYfn4OR-SdMFRNbJnZ1pds15STi5oQHBsqyfrk9cYe_6Lkk38XfUr2Gm7LsJP-jPSW1QqeIw5b5gf1_gU-T5g6aN3tB3KWM3o
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBceD_KMwckuLibJn4eF8SqQmKFgErLKXLs8W5EmlZpK-j-esZ5lC0LggPXeBx57Bn7SzzzDSEvRI6gQRlDY20NZTKxVDuraBpbmUpmNTRF-94fi8mUvTvhJ3tk0ufC5DMbyElnhV2OLiagl21-Q6ifAPXBwvnW3ZU4GOP2ShNE_ZSja18h-4IjKh-Q_enxh8MvTXJRJ9BxNl7utHMmNdT9v8Obl8Mmr62rhdl8M2V54Uw6ukmKXps2FOXraL3KR_b8F6LH_6HuLXKjA67RYWtpt8keVHfI1baU5eYu-fjJBJ7haFmcQ4RAOHIQrifwYIz6Giy4l5TlJoLvTewtuOg07LNRUUWzEBVo6to0rV3FgeU9Mj16-_nNhHb1GqjlY7miLvFOg1U-0T7VKnWxzHHxY1A5B45YwHDNnJbOGmG1BpbGzIkcQDhIIEnT-2RQzSt4SCLvUqbBeOFSYM7kCh9Y7zjEgU5xzIeE9iuW2Y7MPNTUKLPmo0aJLMxTFuYp45mSQ_JyK79oaTz-KPk6GMBWKtBvNw_m9WnWeTNKO7R9BKfCM8aNyY0WibHSj-PYM4Mved6bT4buGu5gTAXz9TILdHlCSTUkD1pj-jkcjsg7Yaia2DGznZHstlTFWUMIjh2VZEPyamuPf1Hy0b-LPibXW27L8Cf9CRms6jU8RRy2yp91LvYDGcwxqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+for+detecting+differentially+expressed+genes+in+microarray+experiments&rft.jtitle=BMC+genomics&rft.au=Wei%2C+Caimiao&rft.au=Li%2C+Jiangning&rft.au=Bumgarner%2C+Roger+E&rft.date=2004-11-08&rft.eissn=1471-2164&rft.volume=5&rft.spage=87&rft_id=info:doi/10.1186%2F1471-2164-5-87&rft_id=info%3Apmid%2F15533245&rft.externalDocID=15533245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon