Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting
[Display omitted] •Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes using IPCW.•IPCW is a general-purpose approach which can be applied to many ML techniques.•ML with IPCW leads to more accurate predictive pr...
Saved in:
Published in | Journal of biomedical informatics Vol. 61; pp. 119 - 131 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1532-0464 1532-0480 1532-0480 |
DOI | 10.1016/j.jbi.2016.03.009 |
Cover
Abstract | [Display omitted]
•Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes using IPCW.•IPCW is a general-purpose approach which can be applied to many ML techniques.•ML with IPCW leads to more accurate predictive probabilities than ad hoc approaches.
Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system. |
---|---|
AbstractList | Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system. [Display omitted] •Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes using IPCW.•IPCW is a general-purpose approach which can be applied to many ML techniques.•ML with IPCW leads to more accurate predictive probabilities than ad hoc approaches. Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system. Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5 years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc ; for example, common approaches for handling observations in which the event status is unknown include 1) discarding those observations, 2) treating them as non-events, 3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system. Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system. |
Author | Wolfson, Julian Vock, David M. O’Connor, Patrick J. Bandyopadhyay, Sunayan Vazquez-Benitez, Gabriela Adomavicius, Gediminas Johnson, Paul E. |
AuthorAffiliation | a Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN, 55455 d HealthPartners Institute for Education and Research, Mailstop 23301A P.O. Box 1524, Minneapolis, MN 55440 c Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN, 55455 b Department of Computer Science and Engineering, College of Science and Engineering, 200 Union Street, University of Minnesota, Minneapolis, MN, 55455 |
AuthorAffiliation_xml | – name: c Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN, 55455 – name: b Department of Computer Science and Engineering, College of Science and Engineering, 200 Union Street, University of Minnesota, Minneapolis, MN, 55455 – name: d HealthPartners Institute for Education and Research, Mailstop 23301A P.O. Box 1524, Minneapolis, MN 55440 – name: a Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN, 55455 |
Author_xml | – sequence: 1 givenname: David M. surname: Vock fullname: Vock, David M. email: vock@umn.edu organization: Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN 55455, United States – sequence: 2 givenname: Julian surname: Wolfson fullname: Wolfson, Julian email: julianw@umn.edu organization: Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN 55455, United States – sequence: 3 givenname: Sunayan surname: Bandyopadhyay fullname: Bandyopadhyay, Sunayan email: band0064@umn.edu organization: Department of Computer Science and Engineering, College of Science and Engineering, 200 Union Street, University of Minnesota, Minneapolis, MN 55455, United States – sequence: 4 givenname: Gediminas surname: Adomavicius fullname: Adomavicius, Gediminas email: gedas@umn.edu organization: Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN 55455, United States – sequence: 5 givenname: Paul E. surname: Johnson fullname: Johnson, Paul E. email: johns021@umn.edu organization: Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN 55455, United States – sequence: 6 givenname: Gabriela surname: Vazquez-Benitez fullname: Vazquez-Benitez, Gabriela email: gabriela.x.vazquezbenitez@healthpartners.com organization: HealthPartners Institute for Education and Research, Mailstop 23301A, P.O. Box 1524, Minneapolis, MN 55440, United States – sequence: 7 givenname: Patrick J. surname: O’Connor fullname: O’Connor, Patrick J. email: patrick.j.oconnor@healthpartners.com organization: HealthPartners Institute for Education and Research, Mailstop 23301A, P.O. Box 1524, Minneapolis, MN 55440, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26992568$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk2v1CAUJeYZ34f-ADeGpZtWWkoLmphMXvxKXuJG14TS2ymTFiowY96f8bcKmXGiLp5ugFzOORzuPdfowjoLCD2vSFmRqn21K3e9Ket0LAktCRGP0FXFaF2QhpOL87ltLtF1CDtCqoqx9gm6rFshatbyK_RjM6g1GrvFi9KTsYBnUN7mQgQ9WfNtDwFHhzXY4DwMOJoFiugKOICNeAI1xwl70M4PeFBRvcYbvAULXs3FuverC4DVunqX9PE-ZGVjD-BTORV71ZvZxHvsxtMTGfAdzHbKrp6ix6OaAzw77Tfo6_t3X24_FnefP3y63dwVmlVdLHQNI-sJA9p1lCoiOtKLXo_pxx1wIhpNGoBmED3ttW5VrZqWsnEUoxiAq47eoLdH3XXfLzAkJzH5l6s3i_L30ikj_7yxZpJbd5ANF1TwLPDyJOBdblmUiwka5llZcPsgK16zhrO0_AeU8FYQ1tb_hnbpdcI5yQZe_P6Ds_Vfo06A6gjQ3oXgYTxDKiJznOROpjjJHCdJqExxSpzuL442UUXjchPM_CDzzZEJaWoHA14GbcBqGEzKSpSDMw-wfwLL7uj5 |
CitedBy_id | crossref_primary_10_2337_dc21_0878 crossref_primary_10_3389_fonc_2020_551420 crossref_primary_10_1186_s13104_021_05862_8 crossref_primary_10_1093_eurheartj_ehaa648 crossref_primary_10_1016_j_jbi_2016_09_014 crossref_primary_10_1200_CCI_18_00137 crossref_primary_10_1177_03635465231177905 crossref_primary_10_1200_CCI_18_00052 crossref_primary_10_1109_ACCESS_2022_3172348 crossref_primary_10_2337_dc20_1836 crossref_primary_10_1016_j_mayocp_2022_01_016 crossref_primary_10_1161_JAHA_123_029400 crossref_primary_10_1002_qre_2853 crossref_primary_10_1016_j_jbi_2024_104626 crossref_primary_10_1371_journal_pone_0183413 crossref_primary_10_1111_rssc_12448 crossref_primary_10_1007_s00125_022_05799_y crossref_primary_10_1007_s00180_021_01167_3 crossref_primary_10_1177_0272989X211064604 crossref_primary_10_1016_j_semarthrit_2021_07_002 crossref_primary_10_1136_bmj_m3919 crossref_primary_10_1002_cncr_34626 crossref_primary_10_1007_s10143_020_01430_z crossref_primary_10_3389_fonc_2021_772663 crossref_primary_10_2106_JBJS_21_00113 crossref_primary_10_1007_s10472_024_09950_w crossref_primary_10_1016_j_jinf_2021_11_014 crossref_primary_10_1001_jamanetworkopen_2024_2350 crossref_primary_10_1021_acs_molpharmaceut_1c00791 crossref_primary_10_1111_rssa_12611 crossref_primary_10_1002_ksa_12031 crossref_primary_10_1097_MD_0000000000029387 crossref_primary_10_1007_s00167_022_07054_8 crossref_primary_10_1080_19466315_2020_1819404 crossref_primary_10_1186_s12911_021_01408_x crossref_primary_10_1002_sta4_555 crossref_primary_10_3390_math10010152 crossref_primary_10_1161_JAHA_124_035425 crossref_primary_10_3390_jpm11080787 crossref_primary_10_1016_j_ecoinf_2021_101376 crossref_primary_10_47470_0044_197X_2021_65_2_125_134 crossref_primary_10_1371_journal_pone_0318349 crossref_primary_10_1161_JAHA_118_009476 crossref_primary_10_1016_S2213_8587_22_00141_3 crossref_primary_10_1016_j_ijrobp_2021_01_048 crossref_primary_10_1093_ehjdh_ztac061 crossref_primary_10_1111_ejss_13589 crossref_primary_10_1093_jamia_ocaa328 crossref_primary_10_1177_14604582221135427 crossref_primary_10_1371_journal_pone_0241225 crossref_primary_10_1093_jamia_ocac106 crossref_primary_10_1177_21501319211063726 crossref_primary_10_1038_s41598_022_17953_y crossref_primary_10_1155_2021_9307475 crossref_primary_10_2337_dc22_1960 crossref_primary_10_1007_s00167_021_06828_w crossref_primary_10_1200_CCI_19_00031 crossref_primary_10_3390_healthcare6020054 crossref_primary_10_1007_s11095_016_2029_7 crossref_primary_10_1038_s41598_021_92072_8 crossref_primary_10_1007_s10489_021_02311_8 crossref_primary_10_1016_S2352_4642_22_00350_9 crossref_primary_10_1186_s12911_021_01566_y crossref_primary_10_1021_acs_molpharmaceut_8b00083 crossref_primary_10_1080_24709360_2022_2084704 crossref_primary_10_1186_s40425_019_0512_5 crossref_primary_10_1016_j_compbiomed_2021_105012 crossref_primary_10_1016_j_amjms_2020_06_004 crossref_primary_10_2139_ssrn_3273203 crossref_primary_10_3238_arztebl_m2023_0014 |
Cites_doi | 10.1002/sim.1593 10.1016/j.jbi.2007.07.003 10.1097/MLR.0b013e31827da594 10.1097/MLR.0b013e318259c011 10.1016/j.artmed.2009.08.001 10.1016/j.jacc.2009.07.020 10.1016/S0933-3657(98)00024-4 10.1200/JCO.2013.54.7893 10.1136/amiajnl-2013-002512 10.1093/biomet/87.2.329 10.1016/j.eswa.2013.03.029 10.1371/journal.pone.0082349 10.1002/sim.2929 10.1136/bmj.b2584 10.1006/cbmr.1998.1488 10.1080/03610928008827941 10.1016/j.dss.2012.10.007 10.1017/CBO9780511543494.011 10.1038/tpj.2010.56 10.1016/j.jbi.2010.03.005 10.1023/A:1007413511361 10.1002/sim.4085 10.1007/BF00994018 10.1016/j.artmed.2003.11.001 10.1016/j.jbi.2005.05.004 10.1097/MLR.0b013e3181de9e17 10.1093/aje/kwr013 10.1016/j.surg.2014.07.020 10.1214/aos/1176347963 10.7326/0003-4819-151-5-200909010-00139 10.1007/s10916-010-9474-3 10.1001/jama.297.6.611 10.1016/j.jacc.2013.11.005 10.1007/s10618-014-0386-6 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D 10.1214/08-AOAS169 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 KR7 L7M L~C L~D 5PM |
DOI | 10.1016/j.jbi.2016.03.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Public Health |
EISSN | 1532-0480 |
EndPage | 131 |
ExternalDocumentID | PMC4893987 26992568 10_1016_j_jbi_2016_03_009 S1532046416000496 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: AHRQ HHS grantid: R21 HS017622 – fundername: NCATS NIH HHS grantid: UL1 TR000114 – fundername: NHLBI NIH HHS grantid: R01 HL102144 |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LCYCR LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 0SF CGR CUY CVF ECM EIF NPM 7X8 ACLOT 7QO 8FD FR3 P64 7SC JQ2 KR7 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c517t-c2ef5b05e37733a0970b9bcf0017e8094c04ee4d9b3bcc6a2a4635ff9f9de8a73 |
IEDL.DBID | IXB |
ISSN | 1532-0464 1532-0480 |
IngestDate | Thu Aug 21 14:04:02 EDT 2025 Sat Sep 27 22:41:28 EDT 2025 Sat Sep 27 19:00:45 EDT 2025 Sun Sep 28 07:43:55 EDT 2025 Wed Feb 19 02:42:14 EST 2025 Fri Sep 19 03:58:52 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Fri Feb 23 02:33:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Censored data Electronic health data Inverse probability weighting Survival analysis Risk prediction Machine learning |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-c2ef5b05e37733a0970b9bcf0017e8094c04ee4d9b3bcc6a2a4635ff9f9de8a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 julianw@umn.edu (Julian Wolfson), band0064@umn.edu (Sunayan Bandyopadhyay), gedas@umn.edu (Gediminas Adomavicius), johns021@umn.edu (Paul E. Johnson), gabriela.x.vazquezbenitez@healthpartners.com (Gabriela Vazquez-Benitez), patrick.j.oconnor@healthpartners.com (Patrick J. O’Connor) |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1532046416000496 |
PMID | 26992568 |
PQID | 1793908807 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893987 proquest_miscellaneous_1825485254 proquest_miscellaneous_1808690562 proquest_miscellaneous_1793908807 pubmed_primary_26992568 crossref_primary_10_1016_j_jbi_2016_03_009 crossref_citationtrail_10_1016_j_jbi_2016_03_009 elsevier_sciencedirect_doi_10_1016_j_jbi_2016_03_009 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomedical informatics |
PublicationTitleAlternate | J Biomed Inform |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kuhn, Johnson (b0200) 2013 Maro, Platt, Holmes, Strom, Hennessy, Lazarus, Brown (b0260) 2009; 151 Y.-K. Lin, H. Chen, R.A. Brown, S.-H. Li, H.-J. Yang, Predictive analytics for chronic care: a time-to-event modeling framework using electronic health records, Available at SSRN 2444025. Kawaler, Cobian, Peissig, Cross, Yale, Craven (b0045) 2012; vol. 2012 Khan, Zubek (b0110) 2008 Pencina, D’Agostino, D’Agostino, Vasan (b0250) 2008; 27 van Buuren, Groothuis-Oudshoorn (b0265) 2011; 45 Štajduhar, Dalbelo-Bašić, Bogunović (b0130) 2009; 47 Ridker, Paynter, Rifai, Gaziano, Cook (b0025) 2008; 118 Verduijn, Peek, Rosseel, de Jonge, de Mol (b0150) 2007; 40 Cheng, Zhao (b0215) 2014; 21 Collins, Altman (b0035) 2009; 339 Arif, Malagore, Afsar (b0210) 2012; 36 S. Milborrow, Notes on the earth package Cortes, Vapnik (b0220) 1995; 20 Kennedy, Wiitala, Hayward, Sussman (b0055) 2013; 51 Hastie, Tibshirani, Friedman (b0230) 2009; vol. 2 Hosmer, Lemesbow (b0240) 1980; 9 Lucas, van der Gaag, Abu-Hanna (b0085) 2004; 30 Bang, Tsiatis (b0140) 2000; 87 Blanco, Inza, Merino, Quiroga, Larrañaga (b0120) 2005; 38 Shivaswamy, Chu, Jansche (b0105) 2007 Ridker, Buring, Rifai, Cook (b0020) 2007; 297 2014. Domingos, Pazzani (b0175) 1997; 29 Wu, Roy, Stewart (b0040) 2010; 48 Vila-Francés, Sanchis, Soria-Olivas, Serrano, Martínez-Sober, Bonanad, Ventura (b0155) 2013; 40 Ibrahim, Abdul Kudus, Daud, Abu Bakar (b0080) 2008; 3 Ishwaran, Kogalur, Blackstone, Lauer (b0075) 2008 Kalbfleisch, Prentice (b0065) 2002 Tsiatis (b0145) 2006 Desai, Wu, Nichols, Lieu, O’Connor (b0270) 2012; 50 G.H. John, P. Langley, Estimating Continuous Distributions in Bayesian Classifiers, in: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995. Sesen, Nicholson, Banares-Alcantara, Kadir, Brady (b0165) 2013; 8 Hothorn, Lausen, Benner, Radespiel-Tröger (b0070) 2004; 23 Breiman, Friedman, Stone, Olshen (b0195) 1984 Hartney, Liu, Velanovich, Fabri, Marcet, Grieco, Huang, Zayas-Castro (b0185) 2014; 156 Biganzoli, Boracchi, Mariani, Marubini (b0095) 1998; 17 Abdollah, Karnes, Suardi, Cozzarini, Gandaglia, Fossati, Vizziello, Sun, Karakiewicz, Menon, Montorsi, Briganti (b0190) 2014; 32 Harrell (b0245) 2001 Parry, Jones, Stokes, Phan, Moffitt, Fang, Shi, Oberthuer, Fischer, Tong (b0205) 2010; 10 Goff, Lloyd-Jones, Bennett, Coady, D’Agostino, Gibbons, Greenland, Lackland, Levy, O’Donnell, Robinson, Schwartz, Shero, Smith, Sorlie, Stone, Wilson (b0030) 2014; 63 Bandyopadhyay, Wolfson, Vock, Vazquez-Benitez, Adomavicius, Elidrisi, Johnson, O’Connor (b0090) 2015; 29 Pepe (b0275) 2011; 173 D’Agostino, Vasan, Pencina, Wolf, Cobain, Massaro, Kannel (b0015) 2008; 118 Yet, Bastani, Raharjo, Lifvergren, Marsh, Bergman (b0160) 2013; 55 Pencina, D’Agostino, Steyerberg (b0255) 2011; 30 Sun, Hu, Luo, Markatou, Wang, Edabollahi, Steinhubl, Daar, Stewart (b0050) 2012; vol. 2012 Ripley, Ripley (b0100) 2001 M. Matheny, M.L. McPheeters, A. Glasser, N. Mercaldo, R.B. Weaver, R.N. Jerome, R. Walden, J.N. McKoy, J. Pritchett, C. Tsai, Systematic review of cardiovascular disease risk assessment tools, Tech. Rep., Agency for Healthcare Research and Quality (US), 2011. Russell, Norvig (b0170) 2003; vol. 2 Sierra, Larranaga (b0115) 1998; 14 Kattan, Hess, Beck (b0125) 1998; 31 Cooney, Dudina, Graham (b0005) 2009; 54 Štajduhar, Dalbelo-Bašić (b0135) 2010; 43 Friedman (b0225) 1991 Hothorn (10.1016/j.jbi.2016.03.009_b0070) 2004; 23 Pencina (10.1016/j.jbi.2016.03.009_b0255) 2011; 30 10.1016/j.jbi.2016.03.009_b0010 Goff (10.1016/j.jbi.2016.03.009_b0030) 2014; 63 Abdollah (10.1016/j.jbi.2016.03.009_b0190) 2014; 32 Tsiatis (10.1016/j.jbi.2016.03.009_b0145) 2006 Domingos (10.1016/j.jbi.2016.03.009_b0175) 1997; 29 Štajduhar (10.1016/j.jbi.2016.03.009_b0135) 2010; 43 Cooney (10.1016/j.jbi.2016.03.009_b0005) 2009; 54 Vila-Francés (10.1016/j.jbi.2016.03.009_b0155) 2013; 40 Ridker (10.1016/j.jbi.2016.03.009_b0025) 2008; 118 Sun (10.1016/j.jbi.2016.03.009_b0050) 2012; vol. 2012 10.1016/j.jbi.2016.03.009_b0180 10.1016/j.jbi.2016.03.009_b0060 Harrell (10.1016/j.jbi.2016.03.009_b0245) 2001 Maro (10.1016/j.jbi.2016.03.009_b0260) 2009; 151 Kuhn (10.1016/j.jbi.2016.03.009_b0200) 2013 Ridker (10.1016/j.jbi.2016.03.009_b0020) 2007; 297 Bang (10.1016/j.jbi.2016.03.009_b0140) 2000; 87 Kattan (10.1016/j.jbi.2016.03.009_b0125) 1998; 31 Russell (10.1016/j.jbi.2016.03.009_b0170) 2003; vol. 2 Desai (10.1016/j.jbi.2016.03.009_b0270) 2012; 50 Friedman (10.1016/j.jbi.2016.03.009_b0225) 1991 Ripley (10.1016/j.jbi.2016.03.009_b0100) 2001 Cortes (10.1016/j.jbi.2016.03.009_b0220) 1995; 20 Hastie (10.1016/j.jbi.2016.03.009_b0230) 2009; vol. 2 Cheng (10.1016/j.jbi.2016.03.009_b0215) 2014; 21 Yet (10.1016/j.jbi.2016.03.009_b0160) 2013; 55 Collins (10.1016/j.jbi.2016.03.009_b0035) 2009; 339 Parry (10.1016/j.jbi.2016.03.009_b0205) 2010; 10 Pepe (10.1016/j.jbi.2016.03.009_b0275) 2011; 173 Biganzoli (10.1016/j.jbi.2016.03.009_b0095) 1998; 17 Lucas (10.1016/j.jbi.2016.03.009_b0085) 2004; 30 Hartney (10.1016/j.jbi.2016.03.009_b0185) 2014; 156 Sierra (10.1016/j.jbi.2016.03.009_b0115) 1998; 14 Kawaler (10.1016/j.jbi.2016.03.009_b0045) 2012; vol. 2012 Arif (10.1016/j.jbi.2016.03.009_b0210) 2012; 36 Kennedy (10.1016/j.jbi.2016.03.009_b0055) 2013; 51 Shivaswamy (10.1016/j.jbi.2016.03.009_b0105) 2007 Hosmer (10.1016/j.jbi.2016.03.009_b0240) 1980; 9 Khan (10.1016/j.jbi.2016.03.009_b0110) 2008 D’Agostino (10.1016/j.jbi.2016.03.009_b0015) 2008; 118 Štajduhar (10.1016/j.jbi.2016.03.009_b0130) 2009; 47 van Buuren (10.1016/j.jbi.2016.03.009_b0265) 2011; 45 Blanco (10.1016/j.jbi.2016.03.009_b0120) 2005; 38 Bandyopadhyay (10.1016/j.jbi.2016.03.009_b0090) 2015; 29 Ibrahim (10.1016/j.jbi.2016.03.009_b0080) 2008; 3 Ishwaran (10.1016/j.jbi.2016.03.009_b0075) 2008 Kalbfleisch (10.1016/j.jbi.2016.03.009_b0065) 2002 Sesen (10.1016/j.jbi.2016.03.009_b0165) 2013; 8 Wu (10.1016/j.jbi.2016.03.009_b0040) 2010; 48 Breiman (10.1016/j.jbi.2016.03.009_b0195) 1984 Verduijn (10.1016/j.jbi.2016.03.009_b0150) 2007; 40 10.1016/j.jbi.2016.03.009_b0235 Pencina (10.1016/j.jbi.2016.03.009_b0250) 2008; 27 23304314 - AMIA Annu Symp Proc. 2012;2012:436-45 22692256 - Med Care. 2012 Jul;50 Suppl:S30-5 20676068 - Pharmacogenomics J. 2010 Aug;10(4):292-309 24239921 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2935-59 25245445 - J Clin Oncol. 2014 Dec 10;32(35):3939-47 9790741 - Comput Biomed Res. 1998 Oct;31(5):363-73 18997194 - Circulation. 2008 Nov 25;118(22):2243-51, 4p following 2251 15081072 - Artif Intell Med. 2004 Mar;30(3):201-14 17299196 - JAMA. 2007 Feb 14;297(6):611-9 23304365 - AMIA Annu Symp Proc. 2012;2012:901-10 20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13 17704008 - J Biomed Inform. 2007 Dec;40(6):609-18 15967731 - J Biomed Inform. 2005 Oct;38(5):376-88 9779891 - Artif Intell Med. 1998 Sep-Oct;14(1-2):215-30 25239331 - Surgery. 2014 Oct;156(4):842-7 20332035 - J Biomed Inform. 2010 Aug;43(4):613-22 23269109 - Med Care. 2013 Mar;51(3):251-8 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 21555714 - Am J Epidemiol. 2011 Jun 1;173(11):1327-35 19638403 - Ann Intern Med. 2009 Sep 1;151(5):341-4 19584409 - BMJ. 2009 Jul 07;339:b2584 19833488 - Artif Intell Med. 2009 Nov;47(3):199-217 20703720 - J Med Syst. 2012 Feb;36(1):279-89 24644270 - J Am Med Inform Assoc. 2014 Oct;21(e2):e278-86 21204120 - Stat Med. 2011 Jan 15;30(1):11-21 24324773 - PLoS One. 2013 Dec 06;8(12):e82349 9618776 - Stat Med. 1998 May 30;17(10):1169-86 19778661 - J Am Coll Cardiol. 2009 Sep 29;54(14):1209-27 18212285 - Circulation. 2008 Feb 12;117(6):743-53 14695641 - Stat Med. 2004 Jan 15;23(1):77-91 |
References_xml | – start-page: 841 year: 2008 end-page: 860 ident: b0075 article-title: Random survival forests publication-title: Ann. Appl. Stat. – reference: Y.-K. Lin, H. Chen, R.A. Brown, S.-H. Li, H.-J. Yang, Predictive analytics for chronic care: a time-to-event modeling framework using electronic health records, Available at SSRN 2444025. – volume: 54 start-page: 1209 year: 2009 end-page: 1227 ident: b0005 article-title: Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians publication-title: J. Am. Coll. Cardiol. – volume: 10 start-page: 292 year: 2010 end-page: 309 ident: b0205 article-title: k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction publication-title: Pharmacogenomics J. – year: 2013 ident: b0200 article-title: Applied Predictive Modeling – volume: 29 start-page: 1033 year: 2015 end-page: 1069 ident: b0090 article-title: Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data publication-title: Data Min. Knowl. Disc. – year: 1984 ident: b0195 article-title: Classification and Regression Trees – volume: 43 start-page: 613 year: 2010 end-page: 622 ident: b0135 article-title: Learning Bayesian networks from survival data using weighting censored instances publication-title: J. Biomed. Inform. – volume: 151 start-page: 341 year: 2009 end-page: 344 ident: b0260 article-title: Design of a national distributed health data network publication-title: Ann. Intern. Med. – volume: 118 start-page: S1145 year: 2008 ident: b0025 article-title: C-Reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds risk score for men publication-title: Circulation – volume: 38 start-page: 376 year: 2005 end-page: 388 ident: b0120 article-title: Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS publication-title: J. Biomed. Inform. – volume: 40 start-page: 609 year: 2007 end-page: 618 ident: b0150 article-title: Prognostic Bayesian networks I: rationale, learning procedure, and clinical use publication-title: J. Biomed. Inform. – start-page: 1 year: 1991 end-page: 67 ident: b0225 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – reference: G.H. John, P. Langley, Estimating Continuous Distributions in Bayesian Classifiers, in: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995. – volume: 47 start-page: 199 year: 2009 end-page: 217 ident: b0130 article-title: Impact of censoring on learning Bayesian networks in survival modelling publication-title: Artif. Intell. Med. – volume: 3 start-page: 25 year: 2008 end-page: 29 ident: b0080 article-title: Decision tree for competing risks survival probability in breast cancer study publication-title: Int. J. Biol. Med. Sci. – volume: 8 start-page: e82349 year: 2013 ident: b0165 article-title: Bayesian networks for clinical decision support in lung cancer care publication-title: PLoS One – volume: 9 start-page: 1043 year: 1980 end-page: 1069 ident: b0240 article-title: Goodness of fit tests for the multiple logistic regression-model publication-title: Commun. Stat.-Theory Meth. – year: 2002 ident: b0065 article-title: The Statistical Analysis of Failure Time Data – volume: 63 start-page: 2935 year: 2014 end-page: 2959 ident: b0030 article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines publication-title: J. Am. Coll. Cardiol. – volume: 297 start-page: 611 year: 2007 end-page: 619 ident: b0020 article-title: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score publication-title: JAMA: J. Am. Med. Assoc. – volume: 339 start-page: b2584 year: 2009 ident: b0035 article-title: An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study publication-title: Br. Med. J. – volume: 173 start-page: 1327 year: 2011 end-page: 1335 ident: b0275 article-title: Problems with risk reclassification methods for evaluating prediction models publication-title: Am. J. Epidemiol. – reference: >, 2014. – volume: vol. 2 year: 2003 ident: b0170 publication-title: Artificial Intelligence: A Modern Approach – volume: 48 start-page: S106 year: 2010 end-page: S113 ident: b0040 article-title: Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches publication-title: Med. Care – volume: 40 start-page: 5004 year: 2013 end-page: 5010 ident: b0155 article-title: Expert system for predicting unstable angina based on Bayesian networks publication-title: Expert Syst. Appl. – volume: 156 start-page: 842 year: 2014 end-page: 848 ident: b0185 article-title: Bounceback branchpoints: using conditional inference trees to analyze readmissions publication-title: Surgery – volume: 45 start-page: 1 year: 2011 end-page: 67 ident: b0265 article-title: mice: Multivariate imputation by chained equations in R publication-title: J. Stat. Softw. – volume: 21 start-page: e278 year: 2014 end-page: 286 ident: b0215 article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties publication-title: J. Am. Med. Inform. Assoc. – volume: 14 start-page: 215 year: 1998 end-page: 230 ident: b0115 article-title: Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches publication-title: Artif. Intell. Med. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0220 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 36 start-page: 279 year: 2012 end-page: 289 ident: b0210 article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier publication-title: J. Med. Syst. – volume: vol. 2012 start-page: 901 year: 2012 ident: b0050 article-title: Combining knowledge and data driven insights for identifying risk factors using electronic health records publication-title: AMIA Annual Symposium Proceedings – volume: 50 start-page: S30 year: 2012 ident: b0270 article-title: Diabetes and asthma case identification, validation, and representativeness when using electronic health data to construct registries for comparative effectiveness and epidemiologic research publication-title: Med. Care – volume: 17 start-page: 1169 year: 1998 end-page: 1186 ident: b0095 article-title: Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach publication-title: Stat. Med. – reference: S. Milborrow, Notes on the earth package, < – volume: vol. 2012 start-page: 436 year: 2012 ident: b0045 article-title: Learning to predict post-hospitalization VTE risk from EHR data publication-title: AMIA Annual Symposium Proceedings – start-page: 237 year: 2001 end-page: 255 ident: b0100 article-title: Neural networks as statistical methods in survival analysis publication-title: Clin. Appl. Artif. Neural Networks – volume: vol. 2 year: 2009 ident: b0230 publication-title: The Elements of Statistical Learning – volume: 29 start-page: 103 year: 1997 end-page: 130 ident: b0175 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Mach. Learn. – reference: M. Matheny, M.L. McPheeters, A. Glasser, N. Mercaldo, R.B. Weaver, R.N. Jerome, R. Walden, J.N. McKoy, J. Pritchett, C. Tsai, Systematic review of cardiovascular disease risk assessment tools, Tech. Rep., Agency for Healthcare Research and Quality (US), 2011. – volume: 118 start-page: E86 year: 2008 ident: b0015 article-title: General cardiovascular risk profile for use in primary care: the Framingham heart study publication-title: Circulation – volume: 32 start-page: 3939 year: 2014 end-page: 3947 ident: b0190 article-title: Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer publication-title: J. Clin. Oncol. – volume: 30 start-page: 201 year: 2004 end-page: 214 ident: b0085 article-title: Bayesian networks in biomedicine and health-care publication-title: Artif. Intell. Med. – volume: 30 start-page: 11 year: 2011 end-page: 21 ident: b0255 article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers publication-title: Stat. Med. – volume: 51 start-page: 251 year: 2013 end-page: 258 ident: b0055 article-title: Improved cardiovascular risk prediction using nonparametric regression and electronic health record data publication-title: Med. Care – volume: 23 start-page: 77 year: 2004 end-page: 91 ident: b0070 article-title: Bagging survival trees publication-title: Stat. Med. – year: 2006 ident: b0145 article-title: Semiparametric Theory and Missing Data – volume: 87 start-page: 329 year: 2000 end-page: 343 ident: b0140 article-title: Estimating medical costs with censored data publication-title: Biometrika – volume: 55 start-page: 488 year: 2013 end-page: 498 ident: b0160 article-title: Decision support system for Warfarin therapy management using Bayesian networks publication-title: Decis. Support Syst. – volume: 27 start-page: 157 year: 2008 end-page: 172 ident: b0250 article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond publication-title: Stat. Med. – start-page: 863 year: 2008 end-page: 868 ident: b0110 article-title: Support vector regression for censored data (SVRc): a novel tool for survival analysis publication-title: Eighth IEEE International Conference on Data Mining (ICDM 2008) – start-page: 655 year: 2007 end-page: 660 ident: b0105 article-title: A support vector approach to censored targets publication-title: Seventh IEEE International Conference on Data Mining, 2007. ICDM 2007 – year: 2001 ident: b0245 article-title: Regression Modeling Strategies – volume: 31 start-page: 363 year: 1998 end-page: 373 ident: b0125 article-title: Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression publication-title: Comput. Biomed. Res. – volume: 23 start-page: 77 issue: 1 year: 2004 ident: 10.1016/j.jbi.2016.03.009_b0070 article-title: Bagging survival trees publication-title: Stat. Med. doi: 10.1002/sim.1593 – volume: 40 start-page: 609 issue: 6 year: 2007 ident: 10.1016/j.jbi.2016.03.009_b0150 article-title: Prognostic Bayesian networks I: rationale, learning procedure, and clinical use publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2007.07.003 – volume: vol. 2 year: 2003 ident: 10.1016/j.jbi.2016.03.009_b0170 – volume: 51 start-page: 251 issue: 3 year: 2013 ident: 10.1016/j.jbi.2016.03.009_b0055 article-title: Improved cardiovascular risk prediction using nonparametric regression and electronic health record data publication-title: Med. Care doi: 10.1097/MLR.0b013e31827da594 – volume: 50 start-page: S30 year: 2012 ident: 10.1016/j.jbi.2016.03.009_b0270 article-title: Diabetes and asthma case identification, validation, and representativeness when using electronic health data to construct registries for comparative effectiveness and epidemiologic research publication-title: Med. Care doi: 10.1097/MLR.0b013e318259c011 – volume: vol. 2012 start-page: 901 year: 2012 ident: 10.1016/j.jbi.2016.03.009_b0050 article-title: Combining knowledge and data driven insights for identifying risk factors using electronic health records – volume: 47 start-page: 199 issue: 3 year: 2009 ident: 10.1016/j.jbi.2016.03.009_b0130 article-title: Impact of censoring on learning Bayesian networks in survival modelling publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2009.08.001 – year: 2006 ident: 10.1016/j.jbi.2016.03.009_b0145 – volume: 54 start-page: 1209 issue: 14 year: 2009 ident: 10.1016/j.jbi.2016.03.009_b0005 article-title: Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2009.07.020 – volume: 14 start-page: 215 issue: 1-2 year: 1998 ident: 10.1016/j.jbi.2016.03.009_b0115 article-title: Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(98)00024-4 – volume: 32 start-page: 3939 issue: 35 year: 2014 ident: 10.1016/j.jbi.2016.03.009_b0190 article-title: Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2013.54.7893 – year: 2013 ident: 10.1016/j.jbi.2016.03.009_b0200 – ident: 10.1016/j.jbi.2016.03.009_b0060 – volume: 21 start-page: e278 issue: e2 year: 2014 ident: 10.1016/j.jbi.2016.03.009_b0215 article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2013-002512 – volume: 118 start-page: S1145 issue: 18 year: 2008 ident: 10.1016/j.jbi.2016.03.009_b0025 article-title: C-Reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds risk score for men publication-title: Circulation – volume: 87 start-page: 329 issue: 2 year: 2000 ident: 10.1016/j.jbi.2016.03.009_b0140 article-title: Estimating medical costs with censored data publication-title: Biometrika doi: 10.1093/biomet/87.2.329 – volume: 40 start-page: 5004 issue: 12 year: 2013 ident: 10.1016/j.jbi.2016.03.009_b0155 article-title: Expert system for predicting unstable angina based on Bayesian networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.03.029 – volume: 8 start-page: e82349 issue: 12 year: 2013 ident: 10.1016/j.jbi.2016.03.009_b0165 article-title: Bayesian networks for clinical decision support in lung cancer care publication-title: PLoS One doi: 10.1371/journal.pone.0082349 – volume: 27 start-page: 157 issue: 2 year: 2008 ident: 10.1016/j.jbi.2016.03.009_b0250 article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond publication-title: Stat. Med. doi: 10.1002/sim.2929 – volume: 339 start-page: b2584 year: 2009 ident: 10.1016/j.jbi.2016.03.009_b0035 article-title: An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study publication-title: Br. Med. J. doi: 10.1136/bmj.b2584 – volume: 31 start-page: 363 issue: 5 year: 1998 ident: 10.1016/j.jbi.2016.03.009_b0125 article-title: Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1998.1488 – start-page: 863 year: 2008 ident: 10.1016/j.jbi.2016.03.009_b0110 article-title: Support vector regression for censored data (SVRc): a novel tool for survival analysis – volume: 9 start-page: 1043 issue: 10 year: 1980 ident: 10.1016/j.jbi.2016.03.009_b0240 article-title: Goodness of fit tests for the multiple logistic regression-model publication-title: Commun. Stat.-Theory Meth. doi: 10.1080/03610928008827941 – volume: 3 start-page: 25 issue: 1 year: 2008 ident: 10.1016/j.jbi.2016.03.009_b0080 article-title: Decision tree for competing risks survival probability in breast cancer study publication-title: Int. J. Biol. Med. Sci. – volume: 55 start-page: 488 issue: 2 year: 2013 ident: 10.1016/j.jbi.2016.03.009_b0160 article-title: Decision support system for Warfarin therapy management using Bayesian networks publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2012.10.007 – start-page: 237 year: 2001 ident: 10.1016/j.jbi.2016.03.009_b0100 article-title: Neural networks as statistical methods in survival analysis publication-title: Clin. Appl. Artif. Neural Networks doi: 10.1017/CBO9780511543494.011 – volume: 10 start-page: 292 issue: 4 year: 2010 ident: 10.1016/j.jbi.2016.03.009_b0205 article-title: k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction publication-title: Pharmacogenomics J. doi: 10.1038/tpj.2010.56 – volume: vol. 2 year: 2009 ident: 10.1016/j.jbi.2016.03.009_b0230 – year: 2002 ident: 10.1016/j.jbi.2016.03.009_b0065 – volume: 43 start-page: 613 issue: 4 year: 2010 ident: 10.1016/j.jbi.2016.03.009_b0135 article-title: Learning Bayesian networks from survival data using weighting censored instances publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2010.03.005 – volume: 29 start-page: 103 year: 1997 ident: 10.1016/j.jbi.2016.03.009_b0175 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Mach. Learn. doi: 10.1023/A:1007413511361 – volume: 30 start-page: 11 issue: 1 year: 2011 ident: 10.1016/j.jbi.2016.03.009_b0255 article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers publication-title: Stat. Med. doi: 10.1002/sim.4085 – year: 1984 ident: 10.1016/j.jbi.2016.03.009_b0195 – volume: 45 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.jbi.2016.03.009_b0265 article-title: mice: Multivariate imputation by chained equations in R publication-title: J. Stat. Softw. – year: 2001 ident: 10.1016/j.jbi.2016.03.009_b0245 – start-page: 655 year: 2007 ident: 10.1016/j.jbi.2016.03.009_b0105 article-title: A support vector approach to censored targets – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jbi.2016.03.009_b0220 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: 10.1016/j.jbi.2016.03.009_b0010 – volume: 30 start-page: 201 issue: 3 year: 2004 ident: 10.1016/j.jbi.2016.03.009_b0085 article-title: Bayesian networks in biomedicine and health-care publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2003.11.001 – volume: vol. 2012 start-page: 436 year: 2012 ident: 10.1016/j.jbi.2016.03.009_b0045 article-title: Learning to predict post-hospitalization VTE risk from EHR data – ident: 10.1016/j.jbi.2016.03.009_b0180 – ident: 10.1016/j.jbi.2016.03.009_b0235 – volume: 38 start-page: 376 issue: 5 year: 2005 ident: 10.1016/j.jbi.2016.03.009_b0120 article-title: Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2005.05.004 – volume: 48 start-page: S106 issue: 6 year: 2010 ident: 10.1016/j.jbi.2016.03.009_b0040 article-title: Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches publication-title: Med. Care doi: 10.1097/MLR.0b013e3181de9e17 – volume: 118 start-page: E86 issue: 4 year: 2008 ident: 10.1016/j.jbi.2016.03.009_b0015 article-title: General cardiovascular risk profile for use in primary care: the Framingham heart study publication-title: Circulation – volume: 173 start-page: 1327 issue: 11 year: 2011 ident: 10.1016/j.jbi.2016.03.009_b0275 article-title: Problems with risk reclassification methods for evaluating prediction models publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwr013 – volume: 156 start-page: 842 issue: 4 year: 2014 ident: 10.1016/j.jbi.2016.03.009_b0185 article-title: Bounceback branchpoints: using conditional inference trees to analyze readmissions publication-title: Surgery doi: 10.1016/j.surg.2014.07.020 – start-page: 1 year: 1991 ident: 10.1016/j.jbi.2016.03.009_b0225 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. doi: 10.1214/aos/1176347963 – volume: 151 start-page: 341 issue: 5 year: 2009 ident: 10.1016/j.jbi.2016.03.009_b0260 article-title: Design of a national distributed health data network publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-151-5-200909010-00139 – volume: 36 start-page: 279 issue: 1 year: 2012 ident: 10.1016/j.jbi.2016.03.009_b0210 article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9474-3 – volume: 297 start-page: 611 issue: 6 year: 2007 ident: 10.1016/j.jbi.2016.03.009_b0020 article-title: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score publication-title: JAMA: J. Am. Med. Assoc. doi: 10.1001/jama.297.6.611 – volume: 63 start-page: 2935 issue: 25 year: 2014 ident: 10.1016/j.jbi.2016.03.009_b0030 article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.11.005 – volume: 29 start-page: 1033 issue: 4 year: 2015 ident: 10.1016/j.jbi.2016.03.009_b0090 article-title: Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-014-0386-6 – volume: 17 start-page: 1169 issue: 10 year: 1998 ident: 10.1016/j.jbi.2016.03.009_b0095 article-title: Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D – start-page: 841 year: 2008 ident: 10.1016/j.jbi.2016.03.009_b0075 article-title: Random survival forests publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS169 – reference: 23304314 - AMIA Annu Symp Proc. 2012;2012:436-45 – reference: 19638403 - Ann Intern Med. 2009 Sep 1;151(5):341-4 – reference: 15967731 - J Biomed Inform. 2005 Oct;38(5):376-88 – reference: 19778661 - J Am Coll Cardiol. 2009 Sep 29;54(14):1209-27 – reference: 20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13 – reference: 14695641 - Stat Med. 2004 Jan 15;23(1):77-91 – reference: 21204120 - Stat Med. 2011 Jan 15;30(1):11-21 – reference: 18997194 - Circulation. 2008 Nov 25;118(22):2243-51, 4p following 2251 – reference: 25245445 - J Clin Oncol. 2014 Dec 10;32(35):3939-47 – reference: 24239921 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2935-59 – reference: 17299196 - JAMA. 2007 Feb 14;297(6):611-9 – reference: 24644270 - J Am Med Inform Assoc. 2014 Oct;21(e2):e278-86 – reference: 25239331 - Surgery. 2014 Oct;156(4):842-7 – reference: 20703720 - J Med Syst. 2012 Feb;36(1):279-89 – reference: 9618776 - Stat Med. 1998 May 30;17(10):1169-86 – reference: 15081072 - Artif Intell Med. 2004 Mar;30(3):201-14 – reference: 19833488 - Artif Intell Med. 2009 Nov;47(3):199-217 – reference: 9779891 - Artif Intell Med. 1998 Sep-Oct;14(1-2):215-30 – reference: 23304365 - AMIA Annu Symp Proc. 2012;2012:901-10 – reference: 19584409 - BMJ. 2009 Jul 07;339:b2584 – reference: 22692256 - Med Care. 2012 Jul;50 Suppl:S30-5 – reference: 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 – reference: 20676068 - Pharmacogenomics J. 2010 Aug;10(4):292-309 – reference: 24324773 - PLoS One. 2013 Dec 06;8(12):e82349 – reference: 18212285 - Circulation. 2008 Feb 12;117(6):743-53 – reference: 9790741 - Comput Biomed Res. 1998 Oct;31(5):363-73 – reference: 21555714 - Am J Epidemiol. 2011 Jun 1;173(11):1327-35 – reference: 17704008 - J Biomed Inform. 2007 Dec;40(6):609-18 – reference: 20332035 - J Biomed Inform. 2010 Aug;43(4):613-22 – reference: 23269109 - Med Care. 2013 Mar;51(3):251-8 |
SSID | ssj0011556 |
Score | 2.446827 |
Snippet | [Display omitted]
•Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes... Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | Algorithms Bayes Theorem Censored data Cluster Analysis Electronic health data Electronic Health Records Frames Health Health care Humans Inverse Inverse probability weighting Machine Learning Mathematical models Patients Probability Risk prediction Survival analysis Weighting |
Title | Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting |
URI | https://dx.doi.org/10.1016/j.jbi.2016.03.009 https://www.ncbi.nlm.nih.gov/pubmed/26992568 https://www.proquest.com/docview/1793908807 https://www.proquest.com/docview/1808690562 https://www.proquest.com/docview/1825485254 https://pubmed.ncbi.nlm.nih.gov/PMC4893987 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1532-0480 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: ACRLP dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1532-0480 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: AIKHN dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1532-0480 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: IXB dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: .~1 dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-0480 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: AKRWK dateStart: 20010201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIiEQqiC8wiNaJE5ISzb2rtfLLa2oAqi9QKXcVn6sg6vWjhpXiAs_hd_KjNe2GhA5cInyGMt2Zrzz7c633wC8kSYqDMJajmgj4FI6weNZlnGlisKoQgYip4ruyWm0OJOflmq5B0f9XhiiVXZjvx_T29G6-2ba_ZvTdVlOv8yop4GMEFG0OJdkt0Op2018y8OhkoD5MvKaqQHRGGVf2Ww5XudpSeyuyOucmn_lpr-x558Uyhs56fgBHHRgks399T6EPVeN4N4NicER3DnpiucjuO-X6JjfefQIfs3zZE2sZ3bZMiod61pIrNig7LphTc3w7Jv6yuWMGtHzpuat6hPzWyiZX-ZhRDV9z-Zs5XWs-Ro9WG8c60XLGTHsV6ysiAfiGDWy8RLhP1hddKcgg-_tWi2-ewxnxx--Hi14166BZ2qmG54FrlCpUC7UOgwTYbRITZoVlAhdjNPITEjnZG7SMM2yKAkSiWgHQ6IwuYsTHT6B_aqu3DNgWuW5JjAY4XRNpblB4yRxYUqIJRduDKJ3lM06LXNqqXFhe9LauUXfWvKtFaFF347h7XDI2gt57DKWvfftVjRaTDS7DnvdR4rFp5RKL0nl6uuNpWGQGGVC77CJBbUHQ0C6ywYn9LHClzE89RE43E0QGYMANh6D3orNwYCUxLd_qcpvraI4KRCZWD__v9t-AXfpkyfQvYT95uravUKo1qQTuPXu52wCt-cfPy9OJ-2T-Rtq6UJO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NToIhhKAwKD-NxBOSVTex45i3amLq2NoXNmlvVn44JRMk1doJ8c_wt3IXJ9EKog-8VFVzUZLe5fzZ9_k7gPfSRIVBWMsRbQRcSid4PMkyrlRRGFXIQORU0Z0votmF_HypLvfgqNsLQ7TKNvf7nN5k6_aXcftvjldlOf4yoZ4GMkJE0eDc6A7sS4U5eQD705PT2aIvJuCQGXnZ1ICYjLIrbjY0r6u0JIJX5KVOzb-Gp7_h558sylvD0vEjeNjiSTb1t_wY9lw1hPu3VAaHcHfe1s-H8MCv0jG_-egJ_JrmyYqIz-x7Q6p0rO0isWS9uOuabWqGV1_X1y5n1Iueb2reCD8xv4uS-ZUeRmzTj2zKll7Kmq_QifXasU63nBHJfsnKiqggjlEvG68S_pPVRXsJMvjRLNfit6dwcfzp_GjG244NPFMTveFZ4AqVCuVCrcMwEUaL1KRZQWOhi3EmmQnpnMxNGqZZFiVBIhHwYFQUJndxosNDGFR15Z4D0yrPNeHBCGdsKs0NGieJC1MCLblwIxCdo2zWyplTV41vtuOtXVn0rSXfWhFa9O0IPvSnrLyWxy5j2XnfbgWkxbFm12nvukix-KJS9SWpXH2ztpQJiVQm9A6bWFCHMMSku2xwTh8r_BjBMx-B_dMEkTGIYeMR6K3Y7A1ITHz7SFV-bUTFSYTIxPrF_z32W7g3O5-f2bOTxelLOKAjnk_3Cgab6xv3GpHbJn3Tvpm_AZDbQ_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapting+machine+learning+techniques+to+censored+time-to-event+health+record+data%3A+A+general-purpose+approach+using+inverse+probability+of+censoring+weighting&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Vock%2C+David+M.&rft.au=Wolfson%2C+Julian&rft.au=Bandyopadhyay%2C+Sunayan&rft.au=Adomavicius%2C+Gediminas&rft.date=2016-06-01&rft.issn=1532-0464&rft.volume=61&rft.spage=119&rft.epage=131&rft_id=info:doi/10.1016%2Fj.jbi.2016.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2016_03_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |