Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting

[Display omitted] •Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes using IPCW.•IPCW is a general-purpose approach which can be applied to many ML techniques.•ML with IPCW leads to more accurate predictive pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 61; pp. 119 - 131
Main Authors Vock, David M., Wolfson, Julian, Bandyopadhyay, Sunayan, Adomavicius, Gediminas, Johnson, Paul E., Vazquez-Benitez, Gabriela, O’Connor, Patrick J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2016
Subjects
Online AccessGet full text
ISSN1532-0464
1532-0480
1532-0480
DOI10.1016/j.jbi.2016.03.009

Cover

Abstract [Display omitted] •Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes using IPCW.•IPCW is a general-purpose approach which can be applied to many ML techniques.•ML with IPCW leads to more accurate predictive probabilities than ad hoc approaches. Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.
AbstractList Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.
[Display omitted] •Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes using IPCW.•IPCW is a general-purpose approach which can be applied to many ML techniques.•ML with IPCW leads to more accurate predictive probabilities than ad hoc approaches. Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.
Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5 years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc ; for example, common approaches for handling observations in which the event status is unknown include 1) discarding those observations, 2) treating them as non-events, 3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.
Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system.
Author Wolfson, Julian
Vock, David M.
O’Connor, Patrick J.
Bandyopadhyay, Sunayan
Vazquez-Benitez, Gabriela
Adomavicius, Gediminas
Johnson, Paul E.
AuthorAffiliation a Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN, 55455
d HealthPartners Institute for Education and Research, Mailstop 23301A P.O. Box 1524, Minneapolis, MN 55440
c Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN, 55455
b Department of Computer Science and Engineering, College of Science and Engineering, 200 Union Street, University of Minnesota, Minneapolis, MN, 55455
AuthorAffiliation_xml – name: c Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN, 55455
– name: b Department of Computer Science and Engineering, College of Science and Engineering, 200 Union Street, University of Minnesota, Minneapolis, MN, 55455
– name: d HealthPartners Institute for Education and Research, Mailstop 23301A P.O. Box 1524, Minneapolis, MN 55440
– name: a Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN, 55455
Author_xml – sequence: 1
  givenname: David M.
  surname: Vock
  fullname: Vock, David M.
  email: vock@umn.edu
  organization: Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN 55455, United States
– sequence: 2
  givenname: Julian
  surname: Wolfson
  fullname: Wolfson, Julian
  email: julianw@umn.edu
  organization: Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street S.E., MMC 303, Minneapolis, MN 55455, United States
– sequence: 3
  givenname: Sunayan
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Sunayan
  email: band0064@umn.edu
  organization: Department of Computer Science and Engineering, College of Science and Engineering, 200 Union Street, University of Minnesota, Minneapolis, MN 55455, United States
– sequence: 4
  givenname: Gediminas
  surname: Adomavicius
  fullname: Adomavicius, Gediminas
  email: gedas@umn.edu
  organization: Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN 55455, United States
– sequence: 5
  givenname: Paul E.
  surname: Johnson
  fullname: Johnson, Paul E.
  email: johns021@umn.edu
  organization: Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, MN 55455, United States
– sequence: 6
  givenname: Gabriela
  surname: Vazquez-Benitez
  fullname: Vazquez-Benitez, Gabriela
  email: gabriela.x.vazquezbenitez@healthpartners.com
  organization: HealthPartners Institute for Education and Research, Mailstop 23301A, P.O. Box 1524, Minneapolis, MN 55440, United States
– sequence: 7
  givenname: Patrick J.
  surname: O’Connor
  fullname: O’Connor, Patrick J.
  email: patrick.j.oconnor@healthpartners.com
  organization: HealthPartners Institute for Education and Research, Mailstop 23301A, P.O. Box 1524, Minneapolis, MN 55440, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26992568$$D View this record in MEDLINE/PubMed
BookMark eNqNUk2v1CAUJeYZ34f-ADeGpZtWWkoLmphMXvxKXuJG14TS2ymTFiowY96f8bcKmXGiLp5ugFzOORzuPdfowjoLCD2vSFmRqn21K3e9Ket0LAktCRGP0FXFaF2QhpOL87ltLtF1CDtCqoqx9gm6rFshatbyK_RjM6g1GrvFi9KTsYBnUN7mQgQ9WfNtDwFHhzXY4DwMOJoFiugKOICNeAI1xwl70M4PeFBRvcYbvAULXs3FuverC4DVunqX9PE-ZGVjD-BTORV71ZvZxHvsxtMTGfAdzHbKrp6ix6OaAzw77Tfo6_t3X24_FnefP3y63dwVmlVdLHQNI-sJA9p1lCoiOtKLXo_pxx1wIhpNGoBmED3ttW5VrZqWsnEUoxiAq47eoLdH3XXfLzAkJzH5l6s3i_L30ikj_7yxZpJbd5ANF1TwLPDyJOBdblmUiwka5llZcPsgK16zhrO0_AeU8FYQ1tb_hnbpdcI5yQZe_P6Ds_Vfo06A6gjQ3oXgYTxDKiJznOROpjjJHCdJqExxSpzuL442UUXjchPM_CDzzZEJaWoHA14GbcBqGEzKSpSDMw-wfwLL7uj5
CitedBy_id crossref_primary_10_2337_dc21_0878
crossref_primary_10_3389_fonc_2020_551420
crossref_primary_10_1186_s13104_021_05862_8
crossref_primary_10_1093_eurheartj_ehaa648
crossref_primary_10_1016_j_jbi_2016_09_014
crossref_primary_10_1200_CCI_18_00137
crossref_primary_10_1177_03635465231177905
crossref_primary_10_1200_CCI_18_00052
crossref_primary_10_1109_ACCESS_2022_3172348
crossref_primary_10_2337_dc20_1836
crossref_primary_10_1016_j_mayocp_2022_01_016
crossref_primary_10_1161_JAHA_123_029400
crossref_primary_10_1002_qre_2853
crossref_primary_10_1016_j_jbi_2024_104626
crossref_primary_10_1371_journal_pone_0183413
crossref_primary_10_1111_rssc_12448
crossref_primary_10_1007_s00125_022_05799_y
crossref_primary_10_1007_s00180_021_01167_3
crossref_primary_10_1177_0272989X211064604
crossref_primary_10_1016_j_semarthrit_2021_07_002
crossref_primary_10_1136_bmj_m3919
crossref_primary_10_1002_cncr_34626
crossref_primary_10_1007_s10143_020_01430_z
crossref_primary_10_3389_fonc_2021_772663
crossref_primary_10_2106_JBJS_21_00113
crossref_primary_10_1007_s10472_024_09950_w
crossref_primary_10_1016_j_jinf_2021_11_014
crossref_primary_10_1001_jamanetworkopen_2024_2350
crossref_primary_10_1021_acs_molpharmaceut_1c00791
crossref_primary_10_1111_rssa_12611
crossref_primary_10_1002_ksa_12031
crossref_primary_10_1097_MD_0000000000029387
crossref_primary_10_1007_s00167_022_07054_8
crossref_primary_10_1080_19466315_2020_1819404
crossref_primary_10_1186_s12911_021_01408_x
crossref_primary_10_1002_sta4_555
crossref_primary_10_3390_math10010152
crossref_primary_10_1161_JAHA_124_035425
crossref_primary_10_3390_jpm11080787
crossref_primary_10_1016_j_ecoinf_2021_101376
crossref_primary_10_47470_0044_197X_2021_65_2_125_134
crossref_primary_10_1371_journal_pone_0318349
crossref_primary_10_1161_JAHA_118_009476
crossref_primary_10_1016_S2213_8587_22_00141_3
crossref_primary_10_1016_j_ijrobp_2021_01_048
crossref_primary_10_1093_ehjdh_ztac061
crossref_primary_10_1111_ejss_13589
crossref_primary_10_1093_jamia_ocaa328
crossref_primary_10_1177_14604582221135427
crossref_primary_10_1371_journal_pone_0241225
crossref_primary_10_1093_jamia_ocac106
crossref_primary_10_1177_21501319211063726
crossref_primary_10_1038_s41598_022_17953_y
crossref_primary_10_1155_2021_9307475
crossref_primary_10_2337_dc22_1960
crossref_primary_10_1007_s00167_021_06828_w
crossref_primary_10_1200_CCI_19_00031
crossref_primary_10_3390_healthcare6020054
crossref_primary_10_1007_s11095_016_2029_7
crossref_primary_10_1038_s41598_021_92072_8
crossref_primary_10_1007_s10489_021_02311_8
crossref_primary_10_1016_S2352_4642_22_00350_9
crossref_primary_10_1186_s12911_021_01566_y
crossref_primary_10_1021_acs_molpharmaceut_8b00083
crossref_primary_10_1080_24709360_2022_2084704
crossref_primary_10_1186_s40425_019_0512_5
crossref_primary_10_1016_j_compbiomed_2021_105012
crossref_primary_10_1016_j_amjms_2020_06_004
crossref_primary_10_2139_ssrn_3273203
crossref_primary_10_3238_arztebl_m2023_0014
Cites_doi 10.1002/sim.1593
10.1016/j.jbi.2007.07.003
10.1097/MLR.0b013e31827da594
10.1097/MLR.0b013e318259c011
10.1016/j.artmed.2009.08.001
10.1016/j.jacc.2009.07.020
10.1016/S0933-3657(98)00024-4
10.1200/JCO.2013.54.7893
10.1136/amiajnl-2013-002512
10.1093/biomet/87.2.329
10.1016/j.eswa.2013.03.029
10.1371/journal.pone.0082349
10.1002/sim.2929
10.1136/bmj.b2584
10.1006/cbmr.1998.1488
10.1080/03610928008827941
10.1016/j.dss.2012.10.007
10.1017/CBO9780511543494.011
10.1038/tpj.2010.56
10.1016/j.jbi.2010.03.005
10.1023/A:1007413511361
10.1002/sim.4085
10.1007/BF00994018
10.1016/j.artmed.2003.11.001
10.1016/j.jbi.2005.05.004
10.1097/MLR.0b013e3181de9e17
10.1093/aje/kwr013
10.1016/j.surg.2014.07.020
10.1214/aos/1176347963
10.7326/0003-4819-151-5-200909010-00139
10.1007/s10916-010-9474-3
10.1001/jama.297.6.611
10.1016/j.jacc.2013.11.005
10.1007/s10618-014-0386-6
10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D
10.1214/08-AOAS169
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
KR7
L7M
L~C
L~D
5PM
DOI 10.1016/j.jbi.2016.03.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Engineering Research Database


MEDLINE - Academic
MEDLINE
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
EndPage 131
ExternalDocumentID PMC4893987
26992568
10_1016_j_jbi_2016_03_009
S1532046416000496
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: AHRQ HHS
  grantid: R21 HS017622
– fundername: NCATS NIH HHS
  grantid: UL1 TR000114
– fundername: NHLBI NIH HHS
  grantid: R01 HL102144
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
7QO
8FD
FR3
P64
7SC
JQ2
KR7
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c517t-c2ef5b05e37733a0970b9bcf0017e8094c04ee4d9b3bcc6a2a4635ff9f9de8a73
IEDL.DBID IXB
ISSN 1532-0464
1532-0480
IngestDate Thu Aug 21 14:04:02 EDT 2025
Sat Sep 27 22:41:28 EDT 2025
Sat Sep 27 19:00:45 EDT 2025
Sun Sep 28 07:43:55 EDT 2025
Wed Feb 19 02:42:14 EST 2025
Fri Sep 19 03:58:52 EDT 2025
Thu Apr 24 23:10:50 EDT 2025
Fri Feb 23 02:33:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Censored data
Electronic health data
Inverse probability weighting
Survival analysis
Risk prediction
Machine learning
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-c2ef5b05e37733a0970b9bcf0017e8094c04ee4d9b3bcc6a2a4635ff9f9de8a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
julianw@umn.edu (Julian Wolfson), band0064@umn.edu (Sunayan Bandyopadhyay), gedas@umn.edu (Gediminas Adomavicius), johns021@umn.edu (Paul E. Johnson), gabriela.x.vazquezbenitez@healthpartners.com (Gabriela Vazquez-Benitez), patrick.j.oconnor@healthpartners.com (Patrick J. O’Connor)
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1532046416000496
PMID 26992568
PQID 1793908807
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4893987
proquest_miscellaneous_1825485254
proquest_miscellaneous_1808690562
proquest_miscellaneous_1793908807
pubmed_primary_26992568
crossref_primary_10_1016_j_jbi_2016_03_009
crossref_citationtrail_10_1016_j_jbi_2016_03_009
elsevier_sciencedirect_doi_10_1016_j_jbi_2016_03_009
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kuhn, Johnson (b0200) 2013
Maro, Platt, Holmes, Strom, Hennessy, Lazarus, Brown (b0260) 2009; 151
Y.-K. Lin, H. Chen, R.A. Brown, S.-H. Li, H.-J. Yang, Predictive analytics for chronic care: a time-to-event modeling framework using electronic health records, Available at SSRN 2444025.
Kawaler, Cobian, Peissig, Cross, Yale, Craven (b0045) 2012; vol. 2012
Khan, Zubek (b0110) 2008
Pencina, D’Agostino, D’Agostino, Vasan (b0250) 2008; 27
van Buuren, Groothuis-Oudshoorn (b0265) 2011; 45
Štajduhar, Dalbelo-Bašić, Bogunović (b0130) 2009; 47
Ridker, Paynter, Rifai, Gaziano, Cook (b0025) 2008; 118
Verduijn, Peek, Rosseel, de Jonge, de Mol (b0150) 2007; 40
Cheng, Zhao (b0215) 2014; 21
Collins, Altman (b0035) 2009; 339
Arif, Malagore, Afsar (b0210) 2012; 36
S. Milborrow, Notes on the earth package
Cortes, Vapnik (b0220) 1995; 20
Kennedy, Wiitala, Hayward, Sussman (b0055) 2013; 51
Hastie, Tibshirani, Friedman (b0230) 2009; vol. 2
Hosmer, Lemesbow (b0240) 1980; 9
Lucas, van der Gaag, Abu-Hanna (b0085) 2004; 30
Bang, Tsiatis (b0140) 2000; 87
Blanco, Inza, Merino, Quiroga, Larrañaga (b0120) 2005; 38
Shivaswamy, Chu, Jansche (b0105) 2007
Ridker, Buring, Rifai, Cook (b0020) 2007; 297
2014.
Domingos, Pazzani (b0175) 1997; 29
Wu, Roy, Stewart (b0040) 2010; 48
Vila-Francés, Sanchis, Soria-Olivas, Serrano, Martínez-Sober, Bonanad, Ventura (b0155) 2013; 40
Ibrahim, Abdul Kudus, Daud, Abu Bakar (b0080) 2008; 3
Ishwaran, Kogalur, Blackstone, Lauer (b0075) 2008
Kalbfleisch, Prentice (b0065) 2002
Tsiatis (b0145) 2006
Desai, Wu, Nichols, Lieu, O’Connor (b0270) 2012; 50
G.H. John, P. Langley, Estimating Continuous Distributions in Bayesian Classifiers, in: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995.
Sesen, Nicholson, Banares-Alcantara, Kadir, Brady (b0165) 2013; 8
Hothorn, Lausen, Benner, Radespiel-Tröger (b0070) 2004; 23
Breiman, Friedman, Stone, Olshen (b0195) 1984
Hartney, Liu, Velanovich, Fabri, Marcet, Grieco, Huang, Zayas-Castro (b0185) 2014; 156
Biganzoli, Boracchi, Mariani, Marubini (b0095) 1998; 17
Abdollah, Karnes, Suardi, Cozzarini, Gandaglia, Fossati, Vizziello, Sun, Karakiewicz, Menon, Montorsi, Briganti (b0190) 2014; 32
Harrell (b0245) 2001
Parry, Jones, Stokes, Phan, Moffitt, Fang, Shi, Oberthuer, Fischer, Tong (b0205) 2010; 10
Goff, Lloyd-Jones, Bennett, Coady, D’Agostino, Gibbons, Greenland, Lackland, Levy, O’Donnell, Robinson, Schwartz, Shero, Smith, Sorlie, Stone, Wilson (b0030) 2014; 63
Bandyopadhyay, Wolfson, Vock, Vazquez-Benitez, Adomavicius, Elidrisi, Johnson, O’Connor (b0090) 2015; 29
Pepe (b0275) 2011; 173
D’Agostino, Vasan, Pencina, Wolf, Cobain, Massaro, Kannel (b0015) 2008; 118
Yet, Bastani, Raharjo, Lifvergren, Marsh, Bergman (b0160) 2013; 55
Pencina, D’Agostino, Steyerberg (b0255) 2011; 30
Sun, Hu, Luo, Markatou, Wang, Edabollahi, Steinhubl, Daar, Stewart (b0050) 2012; vol. 2012
Ripley, Ripley (b0100) 2001
M. Matheny, M.L. McPheeters, A. Glasser, N. Mercaldo, R.B. Weaver, R.N. Jerome, R. Walden, J.N. McKoy, J. Pritchett, C. Tsai, Systematic review of cardiovascular disease risk assessment tools, Tech. Rep., Agency for Healthcare Research and Quality (US), 2011.
Russell, Norvig (b0170) 2003; vol. 2
Sierra, Larranaga (b0115) 1998; 14
Kattan, Hess, Beck (b0125) 1998; 31
Cooney, Dudina, Graham (b0005) 2009; 54
Štajduhar, Dalbelo-Bašić (b0135) 2010; 43
Friedman (b0225) 1991
Hothorn (10.1016/j.jbi.2016.03.009_b0070) 2004; 23
Pencina (10.1016/j.jbi.2016.03.009_b0255) 2011; 30
10.1016/j.jbi.2016.03.009_b0010
Goff (10.1016/j.jbi.2016.03.009_b0030) 2014; 63
Abdollah (10.1016/j.jbi.2016.03.009_b0190) 2014; 32
Tsiatis (10.1016/j.jbi.2016.03.009_b0145) 2006
Domingos (10.1016/j.jbi.2016.03.009_b0175) 1997; 29
Štajduhar (10.1016/j.jbi.2016.03.009_b0135) 2010; 43
Cooney (10.1016/j.jbi.2016.03.009_b0005) 2009; 54
Vila-Francés (10.1016/j.jbi.2016.03.009_b0155) 2013; 40
Ridker (10.1016/j.jbi.2016.03.009_b0025) 2008; 118
Sun (10.1016/j.jbi.2016.03.009_b0050) 2012; vol. 2012
10.1016/j.jbi.2016.03.009_b0180
10.1016/j.jbi.2016.03.009_b0060
Harrell (10.1016/j.jbi.2016.03.009_b0245) 2001
Maro (10.1016/j.jbi.2016.03.009_b0260) 2009; 151
Kuhn (10.1016/j.jbi.2016.03.009_b0200) 2013
Ridker (10.1016/j.jbi.2016.03.009_b0020) 2007; 297
Bang (10.1016/j.jbi.2016.03.009_b0140) 2000; 87
Kattan (10.1016/j.jbi.2016.03.009_b0125) 1998; 31
Russell (10.1016/j.jbi.2016.03.009_b0170) 2003; vol. 2
Desai (10.1016/j.jbi.2016.03.009_b0270) 2012; 50
Friedman (10.1016/j.jbi.2016.03.009_b0225) 1991
Ripley (10.1016/j.jbi.2016.03.009_b0100) 2001
Cortes (10.1016/j.jbi.2016.03.009_b0220) 1995; 20
Hastie (10.1016/j.jbi.2016.03.009_b0230) 2009; vol. 2
Cheng (10.1016/j.jbi.2016.03.009_b0215) 2014; 21
Yet (10.1016/j.jbi.2016.03.009_b0160) 2013; 55
Collins (10.1016/j.jbi.2016.03.009_b0035) 2009; 339
Parry (10.1016/j.jbi.2016.03.009_b0205) 2010; 10
Pepe (10.1016/j.jbi.2016.03.009_b0275) 2011; 173
Biganzoli (10.1016/j.jbi.2016.03.009_b0095) 1998; 17
Lucas (10.1016/j.jbi.2016.03.009_b0085) 2004; 30
Hartney (10.1016/j.jbi.2016.03.009_b0185) 2014; 156
Sierra (10.1016/j.jbi.2016.03.009_b0115) 1998; 14
Kawaler (10.1016/j.jbi.2016.03.009_b0045) 2012; vol. 2012
Arif (10.1016/j.jbi.2016.03.009_b0210) 2012; 36
Kennedy (10.1016/j.jbi.2016.03.009_b0055) 2013; 51
Shivaswamy (10.1016/j.jbi.2016.03.009_b0105) 2007
Hosmer (10.1016/j.jbi.2016.03.009_b0240) 1980; 9
Khan (10.1016/j.jbi.2016.03.009_b0110) 2008
D’Agostino (10.1016/j.jbi.2016.03.009_b0015) 2008; 118
Štajduhar (10.1016/j.jbi.2016.03.009_b0130) 2009; 47
van Buuren (10.1016/j.jbi.2016.03.009_b0265) 2011; 45
Blanco (10.1016/j.jbi.2016.03.009_b0120) 2005; 38
Bandyopadhyay (10.1016/j.jbi.2016.03.009_b0090) 2015; 29
Ibrahim (10.1016/j.jbi.2016.03.009_b0080) 2008; 3
Ishwaran (10.1016/j.jbi.2016.03.009_b0075) 2008
Kalbfleisch (10.1016/j.jbi.2016.03.009_b0065) 2002
Sesen (10.1016/j.jbi.2016.03.009_b0165) 2013; 8
Wu (10.1016/j.jbi.2016.03.009_b0040) 2010; 48
Breiman (10.1016/j.jbi.2016.03.009_b0195) 1984
Verduijn (10.1016/j.jbi.2016.03.009_b0150) 2007; 40
10.1016/j.jbi.2016.03.009_b0235
Pencina (10.1016/j.jbi.2016.03.009_b0250) 2008; 27
23304314 - AMIA Annu Symp Proc. 2012;2012:436-45
22692256 - Med Care. 2012 Jul;50 Suppl:S30-5
20676068 - Pharmacogenomics J. 2010 Aug;10(4):292-309
24239921 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2935-59
25245445 - J Clin Oncol. 2014 Dec 10;32(35):3939-47
9790741 - Comput Biomed Res. 1998 Oct;31(5):363-73
18997194 - Circulation. 2008 Nov 25;118(22):2243-51, 4p following 2251
15081072 - Artif Intell Med. 2004 Mar;30(3):201-14
17299196 - JAMA. 2007 Feb 14;297(6):611-9
23304365 - AMIA Annu Symp Proc. 2012;2012:901-10
20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13
17704008 - J Biomed Inform. 2007 Dec;40(6):609-18
15967731 - J Biomed Inform. 2005 Oct;38(5):376-88
9779891 - Artif Intell Med. 1998 Sep-Oct;14(1-2):215-30
25239331 - Surgery. 2014 Oct;156(4):842-7
20332035 - J Biomed Inform. 2010 Aug;43(4):613-22
23269109 - Med Care. 2013 Mar;51(3):251-8
17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12
21555714 - Am J Epidemiol. 2011 Jun 1;173(11):1327-35
19638403 - Ann Intern Med. 2009 Sep 1;151(5):341-4
19584409 - BMJ. 2009 Jul 07;339:b2584
19833488 - Artif Intell Med. 2009 Nov;47(3):199-217
20703720 - J Med Syst. 2012 Feb;36(1):279-89
24644270 - J Am Med Inform Assoc. 2014 Oct;21(e2):e278-86
21204120 - Stat Med. 2011 Jan 15;30(1):11-21
24324773 - PLoS One. 2013 Dec 06;8(12):e82349
9618776 - Stat Med. 1998 May 30;17(10):1169-86
19778661 - J Am Coll Cardiol. 2009 Sep 29;54(14):1209-27
18212285 - Circulation. 2008 Feb 12;117(6):743-53
14695641 - Stat Med. 2004 Jan 15;23(1):77-91
References_xml – start-page: 841
  year: 2008
  end-page: 860
  ident: b0075
  article-title: Random survival forests
  publication-title: Ann. Appl. Stat.
– reference: Y.-K. Lin, H. Chen, R.A. Brown, S.-H. Li, H.-J. Yang, Predictive analytics for chronic care: a time-to-event modeling framework using electronic health records, Available at SSRN 2444025.
– volume: 54
  start-page: 1209
  year: 2009
  end-page: 1227
  ident: b0005
  article-title: Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians
  publication-title: J. Am. Coll. Cardiol.
– volume: 10
  start-page: 292
  year: 2010
  end-page: 309
  ident: b0205
  article-title: k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction
  publication-title: Pharmacogenomics J.
– year: 2013
  ident: b0200
  article-title: Applied Predictive Modeling
– volume: 29
  start-page: 1033
  year: 2015
  end-page: 1069
  ident: b0090
  article-title: Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data
  publication-title: Data Min. Knowl. Disc.
– year: 1984
  ident: b0195
  article-title: Classification and Regression Trees
– volume: 43
  start-page: 613
  year: 2010
  end-page: 622
  ident: b0135
  article-title: Learning Bayesian networks from survival data using weighting censored instances
  publication-title: J. Biomed. Inform.
– volume: 151
  start-page: 341
  year: 2009
  end-page: 344
  ident: b0260
  article-title: Design of a national distributed health data network
  publication-title: Ann. Intern. Med.
– volume: 118
  start-page: S1145
  year: 2008
  ident: b0025
  article-title: C-Reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds risk score for men
  publication-title: Circulation
– volume: 38
  start-page: 376
  year: 2005
  end-page: 388
  ident: b0120
  article-title: Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
  publication-title: J. Biomed. Inform.
– volume: 40
  start-page: 609
  year: 2007
  end-page: 618
  ident: b0150
  article-title: Prognostic Bayesian networks I: rationale, learning procedure, and clinical use
  publication-title: J. Biomed. Inform.
– start-page: 1
  year: 1991
  end-page: 67
  ident: b0225
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– reference: G.H. John, P. Langley, Estimating Continuous Distributions in Bayesian Classifiers, in: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995.
– volume: 47
  start-page: 199
  year: 2009
  end-page: 217
  ident: b0130
  article-title: Impact of censoring on learning Bayesian networks in survival modelling
  publication-title: Artif. Intell. Med.
– volume: 3
  start-page: 25
  year: 2008
  end-page: 29
  ident: b0080
  article-title: Decision tree for competing risks survival probability in breast cancer study
  publication-title: Int. J. Biol. Med. Sci.
– volume: 8
  start-page: e82349
  year: 2013
  ident: b0165
  article-title: Bayesian networks for clinical decision support in lung cancer care
  publication-title: PLoS One
– volume: 9
  start-page: 1043
  year: 1980
  end-page: 1069
  ident: b0240
  article-title: Goodness of fit tests for the multiple logistic regression-model
  publication-title: Commun. Stat.-Theory Meth.
– year: 2002
  ident: b0065
  article-title: The Statistical Analysis of Failure Time Data
– volume: 63
  start-page: 2935
  year: 2014
  end-page: 2959
  ident: b0030
  article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines
  publication-title: J. Am. Coll. Cardiol.
– volume: 297
  start-page: 611
  year: 2007
  end-page: 619
  ident: b0020
  article-title: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score
  publication-title: JAMA: J. Am. Med. Assoc.
– volume: 339
  start-page: b2584
  year: 2009
  ident: b0035
  article-title: An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study
  publication-title: Br. Med. J.
– volume: 173
  start-page: 1327
  year: 2011
  end-page: 1335
  ident: b0275
  article-title: Problems with risk reclassification methods for evaluating prediction models
  publication-title: Am. J. Epidemiol.
– reference: >, 2014.
– volume: vol. 2
  year: 2003
  ident: b0170
  publication-title: Artificial Intelligence: A Modern Approach
– volume: 48
  start-page: S106
  year: 2010
  end-page: S113
  ident: b0040
  article-title: Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
  publication-title: Med. Care
– volume: 40
  start-page: 5004
  year: 2013
  end-page: 5010
  ident: b0155
  article-title: Expert system for predicting unstable angina based on Bayesian networks
  publication-title: Expert Syst. Appl.
– volume: 156
  start-page: 842
  year: 2014
  end-page: 848
  ident: b0185
  article-title: Bounceback branchpoints: using conditional inference trees to analyze readmissions
  publication-title: Surgery
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  ident: b0265
  article-title: mice: Multivariate imputation by chained equations in R
  publication-title: J. Stat. Softw.
– volume: 21
  start-page: e278
  year: 2014
  end-page: 286
  ident: b0215
  article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 14
  start-page: 215
  year: 1998
  end-page: 230
  ident: b0115
  article-title: Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches
  publication-title: Artif. Intell. Med.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0220
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 36
  start-page: 279
  year: 2012
  end-page: 289
  ident: b0210
  article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier
  publication-title: J. Med. Syst.
– volume: vol. 2012
  start-page: 901
  year: 2012
  ident: b0050
  article-title: Combining knowledge and data driven insights for identifying risk factors using electronic health records
  publication-title: AMIA Annual Symposium Proceedings
– volume: 50
  start-page: S30
  year: 2012
  ident: b0270
  article-title: Diabetes and asthma case identification, validation, and representativeness when using electronic health data to construct registries for comparative effectiveness and epidemiologic research
  publication-title: Med. Care
– volume: 17
  start-page: 1169
  year: 1998
  end-page: 1186
  ident: b0095
  article-title: Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach
  publication-title: Stat. Med.
– reference: S. Milborrow, Notes on the earth package, <
– volume: vol. 2012
  start-page: 436
  year: 2012
  ident: b0045
  article-title: Learning to predict post-hospitalization VTE risk from EHR data
  publication-title: AMIA Annual Symposium Proceedings
– start-page: 237
  year: 2001
  end-page: 255
  ident: b0100
  article-title: Neural networks as statistical methods in survival analysis
  publication-title: Clin. Appl. Artif. Neural Networks
– volume: vol. 2
  year: 2009
  ident: b0230
  publication-title: The Elements of Statistical Learning
– volume: 29
  start-page: 103
  year: 1997
  end-page: 130
  ident: b0175
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Mach. Learn.
– reference: M. Matheny, M.L. McPheeters, A. Glasser, N. Mercaldo, R.B. Weaver, R.N. Jerome, R. Walden, J.N. McKoy, J. Pritchett, C. Tsai, Systematic review of cardiovascular disease risk assessment tools, Tech. Rep., Agency for Healthcare Research and Quality (US), 2011.
– volume: 118
  start-page: E86
  year: 2008
  ident: b0015
  article-title: General cardiovascular risk profile for use in primary care: the Framingham heart study
  publication-title: Circulation
– volume: 32
  start-page: 3939
  year: 2014
  end-page: 3947
  ident: b0190
  article-title: Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer
  publication-title: J. Clin. Oncol.
– volume: 30
  start-page: 201
  year: 2004
  end-page: 214
  ident: b0085
  article-title: Bayesian networks in biomedicine and health-care
  publication-title: Artif. Intell. Med.
– volume: 30
  start-page: 11
  year: 2011
  end-page: 21
  ident: b0255
  article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
  publication-title: Stat. Med.
– volume: 51
  start-page: 251
  year: 2013
  end-page: 258
  ident: b0055
  article-title: Improved cardiovascular risk prediction using nonparametric regression and electronic health record data
  publication-title: Med. Care
– volume: 23
  start-page: 77
  year: 2004
  end-page: 91
  ident: b0070
  article-title: Bagging survival trees
  publication-title: Stat. Med.
– year: 2006
  ident: b0145
  article-title: Semiparametric Theory and Missing Data
– volume: 87
  start-page: 329
  year: 2000
  end-page: 343
  ident: b0140
  article-title: Estimating medical costs with censored data
  publication-title: Biometrika
– volume: 55
  start-page: 488
  year: 2013
  end-page: 498
  ident: b0160
  article-title: Decision support system for Warfarin therapy management using Bayesian networks
  publication-title: Decis. Support Syst.
– volume: 27
  start-page: 157
  year: 2008
  end-page: 172
  ident: b0250
  article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond
  publication-title: Stat. Med.
– start-page: 863
  year: 2008
  end-page: 868
  ident: b0110
  article-title: Support vector regression for censored data (SVRc): a novel tool for survival analysis
  publication-title: Eighth IEEE International Conference on Data Mining (ICDM 2008)
– start-page: 655
  year: 2007
  end-page: 660
  ident: b0105
  article-title: A support vector approach to censored targets
  publication-title: Seventh IEEE International Conference on Data Mining, 2007. ICDM 2007
– year: 2001
  ident: b0245
  article-title: Regression Modeling Strategies
– volume: 31
  start-page: 363
  year: 1998
  end-page: 373
  ident: b0125
  article-title: Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
  publication-title: Comput. Biomed. Res.
– volume: 23
  start-page: 77
  issue: 1
  year: 2004
  ident: 10.1016/j.jbi.2016.03.009_b0070
  article-title: Bagging survival trees
  publication-title: Stat. Med.
  doi: 10.1002/sim.1593
– volume: 40
  start-page: 609
  issue: 6
  year: 2007
  ident: 10.1016/j.jbi.2016.03.009_b0150
  article-title: Prognostic Bayesian networks I: rationale, learning procedure, and clinical use
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2007.07.003
– volume: vol. 2
  year: 2003
  ident: 10.1016/j.jbi.2016.03.009_b0170
– volume: 51
  start-page: 251
  issue: 3
  year: 2013
  ident: 10.1016/j.jbi.2016.03.009_b0055
  article-title: Improved cardiovascular risk prediction using nonparametric regression and electronic health record data
  publication-title: Med. Care
  doi: 10.1097/MLR.0b013e31827da594
– volume: 50
  start-page: S30
  year: 2012
  ident: 10.1016/j.jbi.2016.03.009_b0270
  article-title: Diabetes and asthma case identification, validation, and representativeness when using electronic health data to construct registries for comparative effectiveness and epidemiologic research
  publication-title: Med. Care
  doi: 10.1097/MLR.0b013e318259c011
– volume: vol. 2012
  start-page: 901
  year: 2012
  ident: 10.1016/j.jbi.2016.03.009_b0050
  article-title: Combining knowledge and data driven insights for identifying risk factors using electronic health records
– volume: 47
  start-page: 199
  issue: 3
  year: 2009
  ident: 10.1016/j.jbi.2016.03.009_b0130
  article-title: Impact of censoring on learning Bayesian networks in survival modelling
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2009.08.001
– year: 2006
  ident: 10.1016/j.jbi.2016.03.009_b0145
– volume: 54
  start-page: 1209
  issue: 14
  year: 2009
  ident: 10.1016/j.jbi.2016.03.009_b0005
  article-title: Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2009.07.020
– volume: 14
  start-page: 215
  issue: 1-2
  year: 1998
  ident: 10.1016/j.jbi.2016.03.009_b0115
  article-title: Predicting survival in malignant skill melanoma using Bayesian networks automatically induced by genetic algorithms: an empirical comparison between different approaches
  publication-title: Artif. Intell. Med.
  doi: 10.1016/S0933-3657(98)00024-4
– volume: 32
  start-page: 3939
  issue: 35
  year: 2014
  ident: 10.1016/j.jbi.2016.03.009_b0190
  article-title: Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.54.7893
– year: 2013
  ident: 10.1016/j.jbi.2016.03.009_b0200
– ident: 10.1016/j.jbi.2016.03.009_b0060
– volume: 21
  start-page: e278
  issue: e2
  year: 2014
  ident: 10.1016/j.jbi.2016.03.009_b0215
  article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/amiajnl-2013-002512
– volume: 118
  start-page: S1145
  issue: 18
  year: 2008
  ident: 10.1016/j.jbi.2016.03.009_b0025
  article-title: C-Reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds risk score for men
  publication-title: Circulation
– volume: 87
  start-page: 329
  issue: 2
  year: 2000
  ident: 10.1016/j.jbi.2016.03.009_b0140
  article-title: Estimating medical costs with censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/87.2.329
– volume: 40
  start-page: 5004
  issue: 12
  year: 2013
  ident: 10.1016/j.jbi.2016.03.009_b0155
  article-title: Expert system for predicting unstable angina based on Bayesian networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.03.029
– volume: 8
  start-page: e82349
  issue: 12
  year: 2013
  ident: 10.1016/j.jbi.2016.03.009_b0165
  article-title: Bayesian networks for clinical decision support in lung cancer care
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082349
– volume: 27
  start-page: 157
  issue: 2
  year: 2008
  ident: 10.1016/j.jbi.2016.03.009_b0250
  article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond
  publication-title: Stat. Med.
  doi: 10.1002/sim.2929
– volume: 339
  start-page: b2584
  year: 2009
  ident: 10.1016/j.jbi.2016.03.009_b0035
  article-title: An independent external validation and evaluation of QRISK cardiovascular risk prediction: a prospective open cohort study
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.b2584
– volume: 31
  start-page: 363
  issue: 5
  year: 1998
  ident: 10.1016/j.jbi.2016.03.009_b0125
  article-title: Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1998.1488
– start-page: 863
  year: 2008
  ident: 10.1016/j.jbi.2016.03.009_b0110
  article-title: Support vector regression for censored data (SVRc): a novel tool for survival analysis
– volume: 9
  start-page: 1043
  issue: 10
  year: 1980
  ident: 10.1016/j.jbi.2016.03.009_b0240
  article-title: Goodness of fit tests for the multiple logistic regression-model
  publication-title: Commun. Stat.-Theory Meth.
  doi: 10.1080/03610928008827941
– volume: 3
  start-page: 25
  issue: 1
  year: 2008
  ident: 10.1016/j.jbi.2016.03.009_b0080
  article-title: Decision tree for competing risks survival probability in breast cancer study
  publication-title: Int. J. Biol. Med. Sci.
– volume: 55
  start-page: 488
  issue: 2
  year: 2013
  ident: 10.1016/j.jbi.2016.03.009_b0160
  article-title: Decision support system for Warfarin therapy management using Bayesian networks
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2012.10.007
– start-page: 237
  year: 2001
  ident: 10.1016/j.jbi.2016.03.009_b0100
  article-title: Neural networks as statistical methods in survival analysis
  publication-title: Clin. Appl. Artif. Neural Networks
  doi: 10.1017/CBO9780511543494.011
– volume: 10
  start-page: 292
  issue: 4
  year: 2010
  ident: 10.1016/j.jbi.2016.03.009_b0205
  article-title: k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction
  publication-title: Pharmacogenomics J.
  doi: 10.1038/tpj.2010.56
– volume: vol. 2
  year: 2009
  ident: 10.1016/j.jbi.2016.03.009_b0230
– year: 2002
  ident: 10.1016/j.jbi.2016.03.009_b0065
– volume: 43
  start-page: 613
  issue: 4
  year: 2010
  ident: 10.1016/j.jbi.2016.03.009_b0135
  article-title: Learning Bayesian networks from survival data using weighting censored instances
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2010.03.005
– volume: 29
  start-page: 103
  year: 1997
  ident: 10.1016/j.jbi.2016.03.009_b0175
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007413511361
– volume: 30
  start-page: 11
  issue: 1
  year: 2011
  ident: 10.1016/j.jbi.2016.03.009_b0255
  article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
  publication-title: Stat. Med.
  doi: 10.1002/sim.4085
– year: 1984
  ident: 10.1016/j.jbi.2016.03.009_b0195
– volume: 45
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.jbi.2016.03.009_b0265
  article-title: mice: Multivariate imputation by chained equations in R
  publication-title: J. Stat. Softw.
– year: 2001
  ident: 10.1016/j.jbi.2016.03.009_b0245
– start-page: 655
  year: 2007
  ident: 10.1016/j.jbi.2016.03.009_b0105
  article-title: A support vector approach to censored targets
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jbi.2016.03.009_b0220
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: 10.1016/j.jbi.2016.03.009_b0010
– volume: 30
  start-page: 201
  issue: 3
  year: 2004
  ident: 10.1016/j.jbi.2016.03.009_b0085
  article-title: Bayesian networks in biomedicine and health-care
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2003.11.001
– volume: vol. 2012
  start-page: 436
  year: 2012
  ident: 10.1016/j.jbi.2016.03.009_b0045
  article-title: Learning to predict post-hospitalization VTE risk from EHR data
– ident: 10.1016/j.jbi.2016.03.009_b0180
– ident: 10.1016/j.jbi.2016.03.009_b0235
– volume: 38
  start-page: 376
  issue: 5
  year: 2005
  ident: 10.1016/j.jbi.2016.03.009_b0120
  article-title: Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2005.05.004
– volume: 48
  start-page: S106
  issue: 6
  year: 2010
  ident: 10.1016/j.jbi.2016.03.009_b0040
  article-title: Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
  publication-title: Med. Care
  doi: 10.1097/MLR.0b013e3181de9e17
– volume: 118
  start-page: E86
  issue: 4
  year: 2008
  ident: 10.1016/j.jbi.2016.03.009_b0015
  article-title: General cardiovascular risk profile for use in primary care: the Framingham heart study
  publication-title: Circulation
– volume: 173
  start-page: 1327
  issue: 11
  year: 2011
  ident: 10.1016/j.jbi.2016.03.009_b0275
  article-title: Problems with risk reclassification methods for evaluating prediction models
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwr013
– volume: 156
  start-page: 842
  issue: 4
  year: 2014
  ident: 10.1016/j.jbi.2016.03.009_b0185
  article-title: Bounceback branchpoints: using conditional inference trees to analyze readmissions
  publication-title: Surgery
  doi: 10.1016/j.surg.2014.07.020
– start-page: 1
  year: 1991
  ident: 10.1016/j.jbi.2016.03.009_b0225
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347963
– volume: 151
  start-page: 341
  issue: 5
  year: 2009
  ident: 10.1016/j.jbi.2016.03.009_b0260
  article-title: Design of a national distributed health data network
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-151-5-200909010-00139
– volume: 36
  start-page: 279
  issue: 1
  year: 2012
  ident: 10.1016/j.jbi.2016.03.009_b0210
  article-title: Detection and localization of myocardial infarction using K-nearest neighbor classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9474-3
– volume: 297
  start-page: 611
  issue: 6
  year: 2007
  ident: 10.1016/j.jbi.2016.03.009_b0020
  article-title: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score
  publication-title: JAMA: J. Am. Med. Assoc.
  doi: 10.1001/jama.297.6.611
– volume: 63
  start-page: 2935
  issue: 25
  year: 2014
  ident: 10.1016/j.jbi.2016.03.009_b0030
  article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.11.005
– volume: 29
  start-page: 1033
  issue: 4
  year: 2015
  ident: 10.1016/j.jbi.2016.03.009_b0090
  article-title: Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-014-0386-6
– volume: 17
  start-page: 1169
  issue: 10
  year: 1998
  ident: 10.1016/j.jbi.2016.03.009_b0095
  article-title: Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D
– start-page: 841
  year: 2008
  ident: 10.1016/j.jbi.2016.03.009_b0075
  article-title: Random survival forests
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS169
– reference: 23304314 - AMIA Annu Symp Proc. 2012;2012:436-45
– reference: 19638403 - Ann Intern Med. 2009 Sep 1;151(5):341-4
– reference: 15967731 - J Biomed Inform. 2005 Oct;38(5):376-88
– reference: 19778661 - J Am Coll Cardiol. 2009 Sep 29;54(14):1209-27
– reference: 20473190 - Med Care. 2010 Jun;48(6 Suppl):S106-13
– reference: 14695641 - Stat Med. 2004 Jan 15;23(1):77-91
– reference: 21204120 - Stat Med. 2011 Jan 15;30(1):11-21
– reference: 18997194 - Circulation. 2008 Nov 25;118(22):2243-51, 4p following 2251
– reference: 25245445 - J Clin Oncol. 2014 Dec 10;32(35):3939-47
– reference: 24239921 - J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2935-59
– reference: 17299196 - JAMA. 2007 Feb 14;297(6):611-9
– reference: 24644270 - J Am Med Inform Assoc. 2014 Oct;21(e2):e278-86
– reference: 25239331 - Surgery. 2014 Oct;156(4):842-7
– reference: 20703720 - J Med Syst. 2012 Feb;36(1):279-89
– reference: 9618776 - Stat Med. 1998 May 30;17(10):1169-86
– reference: 15081072 - Artif Intell Med. 2004 Mar;30(3):201-14
– reference: 19833488 - Artif Intell Med. 2009 Nov;47(3):199-217
– reference: 9779891 - Artif Intell Med. 1998 Sep-Oct;14(1-2):215-30
– reference: 23304365 - AMIA Annu Symp Proc. 2012;2012:901-10
– reference: 19584409 - BMJ. 2009 Jul 07;339:b2584
– reference: 22692256 - Med Care. 2012 Jul;50 Suppl:S30-5
– reference: 17569110 - Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12
– reference: 20676068 - Pharmacogenomics J. 2010 Aug;10(4):292-309
– reference: 24324773 - PLoS One. 2013 Dec 06;8(12):e82349
– reference: 18212285 - Circulation. 2008 Feb 12;117(6):743-53
– reference: 9790741 - Comput Biomed Res. 1998 Oct;31(5):363-73
– reference: 21555714 - Am J Epidemiol. 2011 Jun 1;173(11):1327-35
– reference: 17704008 - J Biomed Inform. 2007 Dec;40(6):609-18
– reference: 20332035 - J Biomed Inform. 2010 Aug;43(4):613-22
– reference: 23269109 - Med Care. 2013 Mar;51(3):251-8
SSID ssj0011556
Score 2.446827
Snippet [Display omitted] •Right-censored outcomes are common in biomedical prediction problems.•We discuss adapting machine learning (ML) algorithms to these outcomes...
Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Algorithms
Bayes Theorem
Censored data
Cluster Analysis
Electronic health data
Electronic Health Records
Frames
Health
Health care
Humans
Inverse
Inverse probability weighting
Machine Learning
Mathematical models
Patients
Probability
Risk prediction
Survival analysis
Weighting
Title Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting
URI https://dx.doi.org/10.1016/j.jbi.2016.03.009
https://www.ncbi.nlm.nih.gov/pubmed/26992568
https://www.proquest.com/docview/1793908807
https://www.proquest.com/docview/1808690562
https://www.proquest.com/docview/1825485254
https://pubmed.ncbi.nlm.nih.gov/PMC4893987
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: ACRLP
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: AIKHN
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: IXB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: .~1
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: AKRWK
  dateStart: 20010201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIiEQqiC8wiNaJE5ISzb2rtfLLa2oAqi9QKXcVn6sg6vWjhpXiAs_hd_KjNe2GhA5cInyGMt2Zrzz7c633wC8kSYqDMJajmgj4FI6weNZlnGlisKoQgYip4ruyWm0OJOflmq5B0f9XhiiVXZjvx_T29G6-2ba_ZvTdVlOv8yop4GMEFG0OJdkt0Op2018y8OhkoD5MvKaqQHRGGVf2Ww5XudpSeyuyOucmn_lpr-x558Uyhs56fgBHHRgks399T6EPVeN4N4NicER3DnpiucjuO-X6JjfefQIfs3zZE2sZ3bZMiod61pIrNig7LphTc3w7Jv6yuWMGtHzpuat6hPzWyiZX-ZhRDV9z-Zs5XWs-Ro9WG8c60XLGTHsV6ysiAfiGDWy8RLhP1hddKcgg-_tWi2-ewxnxx--Hi14166BZ2qmG54FrlCpUC7UOgwTYbRITZoVlAhdjNPITEjnZG7SMM2yKAkSiWgHQ6IwuYsTHT6B_aqu3DNgWuW5JjAY4XRNpblB4yRxYUqIJRduDKJ3lM06LXNqqXFhe9LauUXfWvKtFaFF347h7XDI2gt57DKWvfftVjRaTDS7DnvdR4rFp5RKL0nl6uuNpWGQGGVC77CJBbUHQ0C6ywYn9LHClzE89RE43E0QGYMANh6D3orNwYCUxLd_qcpvraI4KRCZWD__v9t-AXfpkyfQvYT95uravUKo1qQTuPXu52wCt-cfPy9OJ-2T-Rtq6UJO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NToIhhKAwKD-NxBOSVTex45i3amLq2NoXNmlvVn44JRMk1doJ8c_wt3IXJ9EKog-8VFVzUZLe5fzZ9_k7gPfSRIVBWMsRbQRcSid4PMkyrlRRGFXIQORU0Z0votmF_HypLvfgqNsLQ7TKNvf7nN5k6_aXcftvjldlOf4yoZ4GMkJE0eDc6A7sS4U5eQD705PT2aIvJuCQGXnZ1ICYjLIrbjY0r6u0JIJX5KVOzb-Gp7_h558sylvD0vEjeNjiSTb1t_wY9lw1hPu3VAaHcHfe1s-H8MCv0jG_-egJ_JrmyYqIz-x7Q6p0rO0isWS9uOuabWqGV1_X1y5n1Iueb2reCD8xv4uS-ZUeRmzTj2zKll7Kmq_QifXasU63nBHJfsnKiqggjlEvG68S_pPVRXsJMvjRLNfit6dwcfzp_GjG244NPFMTveFZ4AqVCuVCrcMwEUaL1KRZQWOhi3EmmQnpnMxNGqZZFiVBIhHwYFQUJndxosNDGFR15Z4D0yrPNeHBCGdsKs0NGieJC1MCLblwIxCdo2zWyplTV41vtuOtXVn0rSXfWhFa9O0IPvSnrLyWxy5j2XnfbgWkxbFm12nvukix-KJS9SWpXH2ztpQJiVQm9A6bWFCHMMSku2xwTh8r_BjBMx-B_dMEkTGIYeMR6K3Y7A1ITHz7SFV-bUTFSYTIxPrF_z32W7g3O5-f2bOTxelLOKAjnk_3Cgab6xv3GpHbJn3Tvpm_AZDbQ_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapting+machine+learning+techniques+to+censored+time-to-event+health+record+data%3A+A+general-purpose+approach+using+inverse+probability+of+censoring+weighting&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Vock%2C+David+M.&rft.au=Wolfson%2C+Julian&rft.au=Bandyopadhyay%2C+Sunayan&rft.au=Adomavicius%2C+Gediminas&rft.date=2016-06-01&rft.issn=1532-0464&rft.volume=61&rft.spage=119&rft.epage=131&rft_id=info:doi/10.1016%2Fj.jbi.2016.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2016_03_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon