An efficient coding algorithm for the compression of ECG signals using the wavelet transform

A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 49; no. 4; pp. 355 - 362
Main Author Rajoub, B.A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/10.991163

Cover

Abstract A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is-insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.
AbstractList A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper.
Author Rajoub, B.A.
Author_xml – sequence: 1
  givenname: B.A.
  surname: Rajoub
  fullname: Rajoub, B.A.
  email: bashar@ieee.org;bashar@yu.edu.jo
  organization: Dept. of Electr. & Commun. Eng., Yarmouk Univ., Irbid, Jordan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13553862$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11942727$$D View this record in MEDLINE/PubMed
BookMark eNqN0s1rFDEUAPAgFbutHrx6kCCoeBib70mOZamtUPDSozAk2TfblJnJmmQU_3sz7GqhSPX0Et7vPcJ7OUFHU5wAoZeUfKSUmLMajaFU8SdoRaXUDZOcHqEVIVQ3hhlxjE5yvqtXoYV6ho4pNYK1rF2hr-cThr4PPsBUsI-bMG2xHbYxhXI74j4mXG6hJsZdgpxDnHDs8cX6EuewneyQ8ZyXkgX9sN9hgIJLslOuleNz9LSvBF4c4im6-XRxs75qrr9cfl6fXzde0rY0zhswVjiuqHWtB-eJIM5xviEbTUCRFupJMOOldF47I3sCjnmjKPRc8VP0ft92l-K3GXLpxpA9DIOdIM6505oTxhkxVb57VLZUGqmV-idkWnCpzX9AKhQTklX45gG8i3NaJljfJ6RoKV_Q6wOa3QibbpfCaNPP7ve-Knh7ADZ7O_R10j7ke8el5FotjT7snU8x5wT9PSHd8meWuP8z1Z49sD4UW-qq6yLD8NeKV_uKAAB_Oh-SvwCY3sj_
CODEN IEBEAX
CitedBy_id crossref_primary_10_1145_3341559
crossref_primary_10_1109_TBME_2003_814531
crossref_primary_10_1007_s11277_023_10802_9
crossref_primary_10_1016_j_bspc_2014_07_002
crossref_primary_10_1109_TBME_2007_896596
crossref_primary_10_1016_j_medengphy_2010_03_003
crossref_primary_10_1016_j_sigpro_2021_108225
crossref_primary_10_1109_ACCESS_2017_2749758
crossref_primary_10_1109_JBHI_2014_2312374
crossref_primary_10_1109_TBME_2011_2156795
crossref_primary_10_1007_s10772_018_9545_2
crossref_primary_10_1109_JBHI_2014_2357841
crossref_primary_10_1016_j_dsp_2006_07_003
crossref_primary_10_1109_TITB_2005_856854
crossref_primary_10_1016_j_irbm_2020_05_004
crossref_primary_10_1080_03772063_2016_1275988
crossref_primary_10_1089_tmj_2007_0030
crossref_primary_10_1007_s11277_021_08736_1
crossref_primary_10_1109_TIM_2007_894797
crossref_primary_10_1109_TITB_2012_2195322
crossref_primary_10_1016_j_bspc_2020_101960
crossref_primary_10_1016_j_proeng_2012_06_338
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_1109_ACCESS_2021_3070604
crossref_primary_10_1016_j_bspc_2007_09_003
crossref_primary_10_1080_02286203_2008_11442493
crossref_primary_10_1007_s10470_012_9984_7
crossref_primary_10_1080_03772063_2014_963173
crossref_primary_10_1007_s10470_018_1323_1
crossref_primary_10_1016_j_medengphy_2005_02_007
crossref_primary_10_1016_j_compeleceng_2012_04_008
crossref_primary_10_1186_1475_925X_5_11
crossref_primary_10_1109_TCSII_2014_2368619
crossref_primary_10_1049_el_20030560
crossref_primary_10_1016_j_compbiomed_2014_08_014
crossref_primary_10_1109_LSP_2015_2476667
crossref_primary_10_3390_app8122379
crossref_primary_10_1007_s11277_023_10371_x
crossref_primary_10_1109_JIOT_2021_3053420
crossref_primary_10_1007_s41133_023_00063_3
crossref_primary_10_1016_j_dsp_2021_103140
crossref_primary_10_1080_14639230701231329
crossref_primary_10_1016_j_irbm_2021_10_001
crossref_primary_10_2299_jsp_20_291
crossref_primary_10_4015_S101623720600021X
crossref_primary_10_1016_j_irbm_2021_06_007
crossref_primary_10_1016_j_bspc_2021_102773
crossref_primary_10_1109_TSP_2016_2585119
crossref_primary_10_1049_el_20045476
crossref_primary_10_1016_j_compbiomed_2015_07_014
crossref_primary_10_1109_TBME_2006_888820
crossref_primary_10_1007_s10916_009_9314_5
crossref_primary_10_1016_j_bspc_2007_05_001
crossref_primary_10_1155_2007_35641
crossref_primary_10_3390_s19112450
crossref_primary_10_1371_journal_pone_0262219
crossref_primary_10_17230_ingciencia_12_24_6
crossref_primary_10_1016_j_bspc_2006_11_003
crossref_primary_10_1016_j_asoc_2020_106659
crossref_primary_10_1109_TBME_2005_846727
crossref_primary_10_1007_s11277_019_06513_9
crossref_primary_10_1016_j_dsp_2007_08_003
crossref_primary_10_1109_TCE_2005_1561822
crossref_primary_10_1016_j_bspc_2018_06_009
crossref_primary_10_1080_03772063_2021_2012281
crossref_primary_10_1016_j_bspc_2018_08_016
crossref_primary_10_1016_j_sigpro_2016_08_007
crossref_primary_10_1016_j_dsp_2015_06_006
crossref_primary_10_1016_j_cmpb_2007_11_006
crossref_primary_10_3390_s21051638
crossref_primary_10_1016_j_smhl_2021_100208
crossref_primary_10_1016_j_medengphy_2004_04_004
crossref_primary_10_1080_02564602_2020_1831971
crossref_primary_10_1016_j_irbm_2019_06_002
crossref_primary_10_1007_s11517_006_0062_0
crossref_primary_10_1155_2012_742786
crossref_primary_10_1088_2057_1976_acdbd1
crossref_primary_10_4015_S1016237207000343
crossref_primary_10_1109_JIOT_2017_2689164
crossref_primary_10_1016_j_dsp_2008_04_006
crossref_primary_10_1109_ACCESS_2022_3166476
crossref_primary_10_1016_j_aci_2019_12_004
crossref_primary_10_1016_j_medengphy_2022_103865
crossref_primary_10_1016_j_medengphy_2024_104237
crossref_primary_10_1007_s00034_021_01764_z
crossref_primary_10_1109_TBME_2005_845226
crossref_primary_10_3390_s20020373
crossref_primary_10_1016_j_mejo_2018_01_025
crossref_primary_10_1109_MPRV_2021_3068183
crossref_primary_10_1109_ACCESS_2021_3119630
crossref_primary_10_1007_s10852_012_9181_9
crossref_primary_10_1109_TIM_2023_3280495
crossref_primary_10_1007_s00034_024_02673_7
crossref_primary_10_1080_03091902_2018_1492039
crossref_primary_10_1016_j_bspc_2015_06_012
crossref_primary_10_1049_iet_cdt_2015_0194
crossref_primary_10_1109_TSP_2019_2961234
Cites_doi 10.1201/9781420049701-43
10.1007/BF02447104
10.1109/10.52340
10.1109/ICASSP.1998.681812
10.1109/TBME.1982.324962
10.1109/10.568915
10.1109/CIC.1997.647885
10.1109/TCOM.1978.1094199
10.1007/BF02446129
10.1137/1.9781611970104
10.1002/cpa.3160410705
10.1109/34.192463
10.1109/ICM.2000.884846
10.1007/BF02534101
10.1109/10.846678
10.1016/1350-4533(95)00028-3
10.1109/78.258085
10.1109/TBME.1968.4502549
10.1109/ICECS.2000.911611
10.1049/el:19910227
10.1016/0141-5425(93)90067-9
10.1109/10.245608
10.1109/10.58592
10.1007/BF02448926
10.1109/IEMBS.1995.575053
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/10.991163
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Technology Research Database
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 362
ExternalDocumentID 604187
2431451331
11942727
13553862
10_1109_10_991163
991163
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c517t-bc9e9a4b361ab7cebc040bb33d0d80e607ed0d429c55bc8b95f0eb2c961ef363
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Tue Oct 07 09:45:26 EDT 2025
Thu Oct 02 11:11:08 EDT 2025
Sun Sep 28 00:13:16 EDT 2025
Sat Sep 27 22:33:13 EDT 2025
Mon Jun 30 09:06:55 EDT 2025
Wed Feb 19 01:34:10 EST 2025
Wed Apr 02 07:17:11 EDT 2025
Wed Oct 01 06:37:15 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Aug 27 02:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
Electrodiagnosis
Signal compression
Wavelet transformation
Coding
Electrocardiography
Signal processing
Algorithm
Comparative study
Optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-bc9e9a4b361ab7cebc040bb33d0d80e607ed0d429c55bc8b95f0eb2c961ef363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 11942727
PQID 884547132
PQPubID 23462
PageCount 8
ParticipantIDs pascalfrancis_primary_13553862
proquest_miscellaneous_21462452
pubmed_primary_11942727
ieee_primary_991163
proquest_miscellaneous_883023209
crossref_citationtrail_10_1109_10_991163
proquest_journals_884547132
crossref_primary_10_1109_10_991163
proquest_miscellaneous_71595866
proquest_miscellaneous_28435896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-04-01
PublicationDateYYYYMMDD 2002-04-01
PublicationDate_xml – month: 04
  year: 2002
  text: 2002-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2002
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
Nakashizuka (ref15)
ref11
ref10
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
Tompkins (ref26) 1993
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Mueller (ref2) 1978; 14
12892331 - IEEE Trans Biomed Eng. 2003 Aug;50(8):1034-7
References_xml – ident: ref17
  doi: 10.1201/9781420049701-43
– ident: ref5
  doi: 10.1007/BF02447104
– volume-title: Biomedical Digital Signal Processing: C—Language Examples and Laboratory Experiments for the IBM PC
  year: 1993
  ident: ref26
– ident: ref8
  doi: 10.1109/10.52340
– ident: ref10
  doi: 10.1109/ICASSP.1998.681812
– ident: ref3
  doi: 10.1109/TBME.1982.324962
– ident: ref18
  doi: 10.1109/10.568915
– ident: ref27
  doi: 10.1109/CIC.1997.647885
– ident: ref28
  doi: 10.1109/TCOM.1978.1094199
– ident: ref12
  doi: 10.1007/BF02446129
– ident: ref20
  doi: 10.1137/1.9781611970104
– ident: ref21
  doi: 10.1002/cpa.3160410705
– ident: ref19
  doi: 10.1109/34.192463
– ident: ref23
  doi: 10.1109/ICM.2000.884846
– ident: ref9
  doi: 10.1007/BF02534101
– ident: ref24
  doi: 10.1109/10.846678
– ident: ref13
  doi: 10.1016/1350-4533(95)00028-3
– ident: ref25
  doi: 10.1109/78.258085
– ident: ref1
  doi: 10.1109/TBME.1968.4502549
– volume: 14
  start-page: 81
  year: 1978
  ident: ref2
  article-title: Arrhythmia detection program for an ambulatory ECG monitor
  publication-title: Biomed. Sci. Instrum.
– ident: ref22
  doi: 10.1109/ICECS.2000.911611
– ident: ref11
  doi: 10.1049/el:19910227
– ident: ref6
  doi: 10.1016/0141-5425(93)90067-9
– ident: ref7
  doi: 10.1109/10.245608
– ident: ref16
  doi: 10.1109/10.58592
– start-page: 57
  volume-title: IEICE
  ident: ref15
  article-title: Data compression by wavelet zero-crossing representation—Application of ECG data
– ident: ref4
  doi: 10.1007/BF02448926
– ident: ref14
  doi: 10.1109/IEMBS.1995.575053
– reference: 12892331 - IEEE Trans Biomed Eng. 2003 Aug;50(8):1034-7
SSID ssj0014846
Score 2.1476712
Snippet A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet...
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper.
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355
SubjectTerms Algorithms
Biological and medical sciences
Continuous wavelet transforms
Data compression
Discrete wavelet transforms
Electrocardiography
Electrocardiography. Vectocardiography
Electrodiagnosis. Electric activity recording
Encoding
Humans
Image reconstruction
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Root mean square
Signal encoding
Signal processing
Signal Processing, Computer-Assisted
Signal reconstruction
Testing
Wavelet coefficients
Wavelet transforms
Title An efficient coding algorithm for the compression of ECG signals using the wavelet transform
URI https://ieeexplore.ieee.org/document/991163
https://www.ncbi.nlm.nih.gov/pubmed/11942727
https://www.proquest.com/docview/884547132
https://www.proquest.com/docview/21462452
https://www.proquest.com/docview/28435896
https://www.proquest.com/docview/71595866
https://www.proquest.com/docview/883023209
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RHhAcCixQQmmxEAcuWeI48cexqloqpHIqUg9IUey1C6JNUDerSvx6ZuzstqBuxSlRMolkZ-x5k5l5A_C-boM3ylZ5KaTOK89N3nLFc4GmSVviDwlU4HzyRR5_rT6f1Wcjz3ashfHex-QzP6XTGMuf9W5Bv8o-IpZB-LABG0rLVKq1ChhUOtXkFBzXb2mqkUSIF4b2hfQgEYSiz14qaiFzywrFtiqUFNnOcV5CamixHnFGy3P0JJV0zyNhISWc_JwuBjt1v_-hc_zPQT2FrRGBsv2kMs_gge8m8PgWL-EEHp6MEffn8G2_Yz7STOBbmOvJ1LH24ry_-jF8v2QIeRlCSEaZ6SmjtmN9YIcHnxhlhqBuM8qsP49C1y11uRjYsATLL-D06PD04DgfOzLkruZqyK0z3rSVFZK3VjlvHe4B1goxK2a68LJQHs_QxLm6tk5bU4cCXXdnJPdBSPESNru-86-AOYu7SbAIJywnCjUtKum5EiYEa2WpM_iw_ECNG9nKqWnGRRO9lsLQMU1dBu9Wor8SRcddQhOa-pXA8ureXx_95nmEYQKdvQx2llrQjIt73mhNLGjoxmfwdnUXVyWFWtrO94t5Q-3SKaZ9j4RGoKqNXC-hEGnWWqIEWyOhibxNlIXJYDtp6M0ARkV_fee4d-BR7GoTM5DewOZwtfC7CK4GuxeX1R-S7x_7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkXgceCyvUGgtxIFLtnHsOPaxqloW6Pa0SD0gRbHXKYiSoG5WSPx6ZuzstqAu4pQomUSyM_Z8k5n5BuBNUTfelFamuVA6lZ6btOYlTwWaJm2JP6ShAufpiZp8kh9Oi9OBZzvUwnjvQ_KZH9NpiOXPO7ekX2V7iGUQPtyEW4WUsojFWuuQgdSxKifjuIJzIwcaIZ4Z2hnio0QRil57XlITmSt2KDRWobTIeoEz08SWFpsxZ7A9Rw9iUfciUBZSysm38bK3Y_frL0LH_xzWQ7g_YFC2H5XmEdzw7QjuXWEmHMHt6RBzfwyf91vmA9EEvoW5jowdq8_Puouv_ZfvDEEvQxDJKDc95tS2rGvY4cE7RrkhqN2McuvPgtDPmvpc9KxfweUnMDs6nB1M0qEnQ-oKXvapdcabWlqheG1L563DXcBaIebZXGdeZaXHMzRyriis09YUTYbOuzOK-0Yo8RS22q71z4E5i_tJYxFQWE4kalpI5XkpTNNYq3KdwNvVB6rcwFdObTPOq-C3ZIaOceoSeL0W_RFJOq4TGtHUrwVWV3f--OiXzyMQE-juJbC90oJqWN6LSmviQUNHPoHd9V1clxRsqVvfLRcVNUynqPY_JDRCVW3UZokSsWahFUqwDRKa6NtEnpkEnkUNvRzAoOgvrh33LtyZzKbH1fH7k4_bcDf0uAn5SC9hq79Y-lcItXq7E5bYb734I0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+coding+algorithm+for+the+compression+of+ECG+signals+using+the+wavelet+transform&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Rajoub%2C+B.A.&rft.date=2002-04-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=49&rft.issue=4&rft.spage=355&rft.epage=362&rft_id=info:doi/10.1109%2F10.991163&rft_id=info%3Apmid%2F11942727&rft.externalDocID=991163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon