An efficient coding algorithm for the compression of ECG signals using the wavelet transform
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than o...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 49; no. 4; pp. 355 - 362 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.04.2002
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 |
| DOI | 10.1109/10.991163 |
Cover
| Abstract | A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is-insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%. |
|---|---|
| AbstractList | A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%. A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%. A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. |
| Author | Rajoub, B.A. |
| Author_xml | – sequence: 1 givenname: B.A. surname: Rajoub fullname: Rajoub, B.A. email: bashar@ieee.org;bashar@yu.edu.jo organization: Dept. of Electr. & Commun. Eng., Yarmouk Univ., Irbid, Jordan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13553862$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11942727$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0s1rFDEUAPAgFbutHrx6kCCoeBib70mOZamtUPDSozAk2TfblJnJmmQU_3sz7GqhSPX0Et7vPcJ7OUFHU5wAoZeUfKSUmLMajaFU8SdoRaXUDZOcHqEVIVQ3hhlxjE5yvqtXoYV6ho4pNYK1rF2hr-cThr4PPsBUsI-bMG2xHbYxhXI74j4mXG6hJsZdgpxDnHDs8cX6EuewneyQ8ZyXkgX9sN9hgIJLslOuleNz9LSvBF4c4im6-XRxs75qrr9cfl6fXzde0rY0zhswVjiuqHWtB-eJIM5xviEbTUCRFupJMOOldF47I3sCjnmjKPRc8VP0ft92l-K3GXLpxpA9DIOdIM6505oTxhkxVb57VLZUGqmV-idkWnCpzX9AKhQTklX45gG8i3NaJljfJ6RoKV_Q6wOa3QibbpfCaNPP7ve-Knh7ADZ7O_R10j7ke8el5FotjT7snU8x5wT9PSHd8meWuP8z1Z49sD4UW-qq6yLD8NeKV_uKAAB_Oh-SvwCY3sj_ |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1145_3341559 crossref_primary_10_1109_TBME_2003_814531 crossref_primary_10_1007_s11277_023_10802_9 crossref_primary_10_1016_j_bspc_2014_07_002 crossref_primary_10_1109_TBME_2007_896596 crossref_primary_10_1016_j_medengphy_2010_03_003 crossref_primary_10_1016_j_sigpro_2021_108225 crossref_primary_10_1109_ACCESS_2017_2749758 crossref_primary_10_1109_JBHI_2014_2312374 crossref_primary_10_1109_TBME_2011_2156795 crossref_primary_10_1007_s10772_018_9545_2 crossref_primary_10_1109_JBHI_2014_2357841 crossref_primary_10_1016_j_dsp_2006_07_003 crossref_primary_10_1109_TITB_2005_856854 crossref_primary_10_1016_j_irbm_2020_05_004 crossref_primary_10_1080_03772063_2016_1275988 crossref_primary_10_1089_tmj_2007_0030 crossref_primary_10_1007_s11277_021_08736_1 crossref_primary_10_1109_TIM_2007_894797 crossref_primary_10_1109_TITB_2012_2195322 crossref_primary_10_1016_j_bspc_2020_101960 crossref_primary_10_1016_j_proeng_2012_06_338 crossref_primary_10_1109_ACCESS_2021_3095248 crossref_primary_10_1109_ACCESS_2021_3070604 crossref_primary_10_1016_j_bspc_2007_09_003 crossref_primary_10_1080_02286203_2008_11442493 crossref_primary_10_1007_s10470_012_9984_7 crossref_primary_10_1080_03772063_2014_963173 crossref_primary_10_1007_s10470_018_1323_1 crossref_primary_10_1016_j_medengphy_2005_02_007 crossref_primary_10_1016_j_compeleceng_2012_04_008 crossref_primary_10_1186_1475_925X_5_11 crossref_primary_10_1109_TCSII_2014_2368619 crossref_primary_10_1049_el_20030560 crossref_primary_10_1016_j_compbiomed_2014_08_014 crossref_primary_10_1109_LSP_2015_2476667 crossref_primary_10_3390_app8122379 crossref_primary_10_1007_s11277_023_10371_x crossref_primary_10_1109_JIOT_2021_3053420 crossref_primary_10_1007_s41133_023_00063_3 crossref_primary_10_1016_j_dsp_2021_103140 crossref_primary_10_1080_14639230701231329 crossref_primary_10_1016_j_irbm_2021_10_001 crossref_primary_10_2299_jsp_20_291 crossref_primary_10_4015_S101623720600021X crossref_primary_10_1016_j_irbm_2021_06_007 crossref_primary_10_1016_j_bspc_2021_102773 crossref_primary_10_1109_TSP_2016_2585119 crossref_primary_10_1049_el_20045476 crossref_primary_10_1016_j_compbiomed_2015_07_014 crossref_primary_10_1109_TBME_2006_888820 crossref_primary_10_1007_s10916_009_9314_5 crossref_primary_10_1016_j_bspc_2007_05_001 crossref_primary_10_1155_2007_35641 crossref_primary_10_3390_s19112450 crossref_primary_10_1371_journal_pone_0262219 crossref_primary_10_17230_ingciencia_12_24_6 crossref_primary_10_1016_j_bspc_2006_11_003 crossref_primary_10_1016_j_asoc_2020_106659 crossref_primary_10_1109_TBME_2005_846727 crossref_primary_10_1007_s11277_019_06513_9 crossref_primary_10_1016_j_dsp_2007_08_003 crossref_primary_10_1109_TCE_2005_1561822 crossref_primary_10_1016_j_bspc_2018_06_009 crossref_primary_10_1080_03772063_2021_2012281 crossref_primary_10_1016_j_bspc_2018_08_016 crossref_primary_10_1016_j_sigpro_2016_08_007 crossref_primary_10_1016_j_dsp_2015_06_006 crossref_primary_10_1016_j_cmpb_2007_11_006 crossref_primary_10_3390_s21051638 crossref_primary_10_1016_j_smhl_2021_100208 crossref_primary_10_1016_j_medengphy_2004_04_004 crossref_primary_10_1080_02564602_2020_1831971 crossref_primary_10_1016_j_irbm_2019_06_002 crossref_primary_10_1007_s11517_006_0062_0 crossref_primary_10_1155_2012_742786 crossref_primary_10_1088_2057_1976_acdbd1 crossref_primary_10_4015_S1016237207000343 crossref_primary_10_1109_JIOT_2017_2689164 crossref_primary_10_1016_j_dsp_2008_04_006 crossref_primary_10_1109_ACCESS_2022_3166476 crossref_primary_10_1016_j_aci_2019_12_004 crossref_primary_10_1016_j_medengphy_2022_103865 crossref_primary_10_1016_j_medengphy_2024_104237 crossref_primary_10_1007_s00034_021_01764_z crossref_primary_10_1109_TBME_2005_845226 crossref_primary_10_3390_s20020373 crossref_primary_10_1016_j_mejo_2018_01_025 crossref_primary_10_1109_MPRV_2021_3068183 crossref_primary_10_1109_ACCESS_2021_3119630 crossref_primary_10_1007_s10852_012_9181_9 crossref_primary_10_1109_TIM_2023_3280495 crossref_primary_10_1007_s00034_024_02673_7 crossref_primary_10_1080_03091902_2018_1492039 crossref_primary_10_1016_j_bspc_2015_06_012 crossref_primary_10_1049_iet_cdt_2015_0194 crossref_primary_10_1109_TSP_2019_2961234 |
| Cites_doi | 10.1201/9781420049701-43 10.1007/BF02447104 10.1109/10.52340 10.1109/ICASSP.1998.681812 10.1109/TBME.1982.324962 10.1109/10.568915 10.1109/CIC.1997.647885 10.1109/TCOM.1978.1094199 10.1007/BF02446129 10.1137/1.9781611970104 10.1002/cpa.3160410705 10.1109/34.192463 10.1109/ICM.2000.884846 10.1007/BF02534101 10.1109/10.846678 10.1016/1350-4533(95)00028-3 10.1109/78.258085 10.1109/TBME.1968.4502549 10.1109/ICECS.2000.911611 10.1049/el:19910227 10.1016/0141-5425(93)90067-9 10.1109/10.245608 10.1109/10.58592 10.1007/BF02448926 10.1109/IEMBS.1995.575053 |
| ContentType | Journal Article |
| Copyright | 2002 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
| Copyright_xml | – notice: 2002 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
| DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/10.991163 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database Technology Research Database Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 362 |
| ExternalDocumentID | 604187 2431451331 11942727 13553862 10_1109_10_991163 991163 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c517t-bc9e9a4b361ab7cebc040bb33d0d80e607ed0d429c55bc8b95f0eb2c961ef363 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 |
| IngestDate | Tue Oct 07 09:45:26 EDT 2025 Thu Oct 02 11:11:08 EDT 2025 Sun Sep 28 00:13:16 EDT 2025 Sat Sep 27 22:33:13 EDT 2025 Mon Jun 30 09:06:55 EDT 2025 Wed Feb 19 01:34:10 EST 2025 Wed Apr 02 07:17:11 EDT 2025 Wed Oct 01 06:37:15 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Aug 27 02:53:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Human Electrodiagnosis Signal compression Wavelet transformation Coding Electrocardiography Signal processing Algorithm Comparative study Optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-bc9e9a4b361ab7cebc040bb33d0d80e607ed0d429c55bc8b95f0eb2c961ef363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PMID | 11942727 |
| PQID | 884547132 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | pascalfrancis_primary_13553862 proquest_miscellaneous_21462452 pubmed_primary_11942727 ieee_primary_991163 proquest_miscellaneous_883023209 crossref_citationtrail_10_1109_10_991163 proquest_journals_884547132 crossref_primary_10_1109_10_991163 proquest_miscellaneous_71595866 proquest_miscellaneous_28435896 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2002-04-01 |
| PublicationDateYYYYMMDD | 2002-04-01 |
| PublicationDate_xml | – month: 04 year: 2002 text: 2002-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2002 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 Nakashizuka (ref15) ref11 ref10 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 Tompkins (ref26) 1993 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Mueller (ref2) 1978; 14 12892331 - IEEE Trans Biomed Eng. 2003 Aug;50(8):1034-7 |
| References_xml | – ident: ref17 doi: 10.1201/9781420049701-43 – ident: ref5 doi: 10.1007/BF02447104 – volume-title: Biomedical Digital Signal Processing: C—Language Examples and Laboratory Experiments for the IBM PC year: 1993 ident: ref26 – ident: ref8 doi: 10.1109/10.52340 – ident: ref10 doi: 10.1109/ICASSP.1998.681812 – ident: ref3 doi: 10.1109/TBME.1982.324962 – ident: ref18 doi: 10.1109/10.568915 – ident: ref27 doi: 10.1109/CIC.1997.647885 – ident: ref28 doi: 10.1109/TCOM.1978.1094199 – ident: ref12 doi: 10.1007/BF02446129 – ident: ref20 doi: 10.1137/1.9781611970104 – ident: ref21 doi: 10.1002/cpa.3160410705 – ident: ref19 doi: 10.1109/34.192463 – ident: ref23 doi: 10.1109/ICM.2000.884846 – ident: ref9 doi: 10.1007/BF02534101 – ident: ref24 doi: 10.1109/10.846678 – ident: ref13 doi: 10.1016/1350-4533(95)00028-3 – ident: ref25 doi: 10.1109/78.258085 – ident: ref1 doi: 10.1109/TBME.1968.4502549 – volume: 14 start-page: 81 year: 1978 ident: ref2 article-title: Arrhythmia detection program for an ambulatory ECG monitor publication-title: Biomed. Sci. Instrum. – ident: ref22 doi: 10.1109/ICECS.2000.911611 – ident: ref11 doi: 10.1049/el:19910227 – ident: ref6 doi: 10.1016/0141-5425(93)90067-9 – ident: ref7 doi: 10.1109/10.245608 – ident: ref16 doi: 10.1109/10.58592 – start-page: 57 volume-title: IEICE ident: ref15 article-title: Data compression by wavelet zero-crossing representation—Application of ECG data – ident: ref4 doi: 10.1007/BF02448926 – ident: ref14 doi: 10.1109/IEMBS.1995.575053 – reference: 12892331 - IEEE Trans Biomed Eng. 2003 Aug;50(8):1034-7 |
| SSID | ssj0014846 |
| Score | 2.1476712 |
| Snippet | A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet... A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 355 |
| SubjectTerms | Algorithms Biological and medical sciences Continuous wavelet transforms Data compression Discrete wavelet transforms Electrocardiography Electrocardiography. Vectocardiography Electrodiagnosis. Electric activity recording Encoding Humans Image reconstruction Investigative techniques, diagnostic techniques (general aspects) Medical sciences Root mean square Signal encoding Signal processing Signal Processing, Computer-Assisted Signal reconstruction Testing Wavelet coefficients Wavelet transforms |
| Title | An efficient coding algorithm for the compression of ECG signals using the wavelet transform |
| URI | https://ieeexplore.ieee.org/document/991163 https://www.ncbi.nlm.nih.gov/pubmed/11942727 https://www.proquest.com/docview/884547132 https://www.proquest.com/docview/21462452 https://www.proquest.com/docview/28435896 https://www.proquest.com/docview/71595866 https://www.proquest.com/docview/883023209 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RHhAcCixQQmmxEAcuWeI48cexqloqpHIqUg9IUey1C6JNUDerSvx6ZuzstqBuxSlRMolkZ-x5k5l5A_C-boM3ylZ5KaTOK89N3nLFc4GmSVviDwlU4HzyRR5_rT6f1Wcjz3ashfHex-QzP6XTGMuf9W5Bv8o-IpZB-LABG0rLVKq1ChhUOtXkFBzXb2mqkUSIF4b2hfQgEYSiz14qaiFzywrFtiqUFNnOcV5CamixHnFGy3P0JJV0zyNhISWc_JwuBjt1v_-hc_zPQT2FrRGBsv2kMs_gge8m8PgWL-EEHp6MEffn8G2_Yz7STOBbmOvJ1LH24ry_-jF8v2QIeRlCSEaZ6SmjtmN9YIcHnxhlhqBuM8qsP49C1y11uRjYsATLL-D06PD04DgfOzLkruZqyK0z3rSVFZK3VjlvHe4B1goxK2a68LJQHs_QxLm6tk5bU4cCXXdnJPdBSPESNru-86-AOYu7SbAIJywnCjUtKum5EiYEa2WpM_iw_ECNG9nKqWnGRRO9lsLQMU1dBu9Wor8SRcddQhOa-pXA8ureXx_95nmEYQKdvQx2llrQjIt73mhNLGjoxmfwdnUXVyWFWtrO94t5Q-3SKaZ9j4RGoKqNXC-hEGnWWqIEWyOhibxNlIXJYDtp6M0ARkV_fee4d-BR7GoTM5DewOZwtfC7CK4GuxeX1R-S7x_7 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkXgceCyvUGgtxIFLtnHsOPaxqloW6Pa0SD0gRbHXKYiSoG5WSPx6ZuzstqAu4pQomUSyM_Z8k5n5BuBNUTfelFamuVA6lZ6btOYlTwWaJm2JP6ShAufpiZp8kh9Oi9OBZzvUwnjvQ_KZH9NpiOXPO7ekX2V7iGUQPtyEW4WUsojFWuuQgdSxKifjuIJzIwcaIZ4Z2hnio0QRil57XlITmSt2KDRWobTIeoEz08SWFpsxZ7A9Rw9iUfciUBZSysm38bK3Y_frL0LH_xzWQ7g_YFC2H5XmEdzw7QjuXWEmHMHt6RBzfwyf91vmA9EEvoW5jowdq8_Puouv_ZfvDEEvQxDJKDc95tS2rGvY4cE7RrkhqN2McuvPgtDPmvpc9KxfweUnMDs6nB1M0qEnQ-oKXvapdcabWlqheG1L563DXcBaIebZXGdeZaXHMzRyriis09YUTYbOuzOK-0Yo8RS22q71z4E5i_tJYxFQWE4kalpI5XkpTNNYq3KdwNvVB6rcwFdObTPOq-C3ZIaOceoSeL0W_RFJOq4TGtHUrwVWV3f--OiXzyMQE-juJbC90oJqWN6LSmviQUNHPoHd9V1clxRsqVvfLRcVNUynqPY_JDRCVW3UZokSsWahFUqwDRKa6NtEnpkEnkUNvRzAoOgvrh33LtyZzKbH1fH7k4_bcDf0uAn5SC9hq79Y-lcItXq7E5bYb734I0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+coding+algorithm+for+the+compression+of+ECG+signals+using+the+wavelet+transform&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Rajoub%2C+B.A.&rft.date=2002-04-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=49&rft.issue=4&rft.spage=355&rft.epage=362&rft_id=info:doi/10.1109%2F10.991163&rft_id=info%3Apmid%2F11942727&rft.externalDocID=991163 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |