The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures

As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology of the cell Vol. 22; no. 7; pp. 988 - 998
Main Authors Davidson, George S., Joe, Ray M., Roy, Sushmita, Meirelles, Osorio, Allen, Chris P., Wilson, Melissa R., Tapia, Phillip H., Manzanilla, Elaine E., Dodson, Anne E., Chakraborty, Swagata, Carter, Mark, Young, Susan, Edwards, Bruce, Sklar, Larry, Werner-Washburne, Margaret
Format Journal Article
LanguageEnglish
Published United States American Society for Cell Biology 01.04.2011
The American Society for Cell Biology
Subjects
Online AccessGet full text
ISSN1059-1524
1939-4586
1939-4586
DOI10.1091/mbc.e10-06-0499

Cover

Abstract As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.
AbstractList As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.
As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.
Starved yeast cultures differentiate into quiescent (Q) and nonquiescent (NQ) cell fractions. The yeast GFP-fusion library (4159 strains) and high-throughput flow cytometry were used to study this process. This showed significant metabolic and physiologic differences between Q/NQ cells and provided new tools for studying their differentiation. As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.
Author Joe, Ray M.
Young, Susan
Tapia, Phillip H.
Sklar, Larry
Davidson, George S.
Chakraborty, Swagata
Dodson, Anne E.
Wilson, Melissa R.
Allen, Chris P.
Edwards, Bruce
Carter, Mark
Werner-Washburne, Margaret
Roy, Sushmita
Manzanilla, Elaine E.
Meirelles, Osorio
Author_xml – sequence: 1
  givenname: George S.
  surname: Davidson
  fullname: Davidson, George S.
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131, Sandia National Laboratories, Albuquerque, NM 81185
– sequence: 2
  givenname: Ray M.
  surname: Joe
  fullname: Joe, Ray M.
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131
– sequence: 3
  givenname: Sushmita
  surname: Roy
  fullname: Roy, Sushmita
  organization: Computer Science Department, University of New Mexico, Albuquerque, NM 87131
– sequence: 4
  givenname: Osorio
  surname: Meirelles
  fullname: Meirelles, Osorio
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131
– sequence: 5
  givenname: Chris P.
  surname: Allen
  fullname: Allen, Chris P.
  organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131
– sequence: 6
  givenname: Melissa R.
  surname: Wilson
  fullname: Wilson, Melissa R.
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131
– sequence: 7
  givenname: Phillip H.
  surname: Tapia
  fullname: Tapia, Phillip H.
  organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131
– sequence: 8
  givenname: Elaine E.
  surname: Manzanilla
  fullname: Manzanilla, Elaine E.
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131
– sequence: 9
  givenname: Anne E.
  surname: Dodson
  fullname: Dodson, Anne E.
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131
– sequence: 10
  givenname: Swagata
  surname: Chakraborty
  fullname: Chakraborty, Swagata
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131
– sequence: 11
  givenname: Mark
  surname: Carter
  fullname: Carter, Mark
  organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131
– sequence: 12
  givenname: Susan
  surname: Young
  fullname: Young, Susan
  organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131
– sequence: 13
  givenname: Bruce
  surname: Edwards
  fullname: Edwards, Bruce
  organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131
– sequence: 14
  givenname: Larry
  surname: Sklar
  fullname: Sklar, Larry
  organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
– sequence: 15
  givenname: Margaret
  surname: Werner-Washburne
  fullname: Werner-Washburne, Margaret
  organization: Biology Department, University of New Mexico, Albuquerque, NM 87131
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21289090$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1625222$$D View this record in Osti.gov
BookMark eNqFUs9PHiEQJY1N_dVzb4b00tPqwLK7cDFpTG1NTHrRM2HZ2X40u_AJrIn_vXx-aquJMRyA4b2ZN8zbJzs-eCTkC4NjBoqdzL09RgYVtBUIpT6QPaZqVYlGtjvlDI2qWMPFLtlP6S8AE6LtPpFdzrhUoGCPDFcrpOsYMobZ2UTDSG8Wh8miz9T4gZaC_wIWp4kObhwxlqsz2QVPnad3aFKmKT8ETLyr1iuTkNplykvEdEg-jmZK-PlxPyDX5z-uzn5Vl79_Xpx9v6xsw7pc9dKyhqlR9Qb7vh_qWlo7AKJBxQ0ag0LA0AKX0sq6FS1vbAGBUcoKgKE-IKfbvOuln3HYSI5m0uvo5iJKB-P0yxfvVvpPuNU1tAp4XRJ83SYIKTudrMtoVzZ4jzZrVupxzgvo22OVGG4WTFnPLm1-xngMS9KKSRBl1e8iZaO60k7XFeTR_8qfJT8NqgBOtgAbQ0oRx2cIA72xgi5W0MUKGlq9sUJhNK8YpZ2HAZXW3fQm7x77L7v1
CitedBy_id crossref_primary_10_1073_pnas_1323918111
crossref_primary_10_1016_j_jprot_2012_06_005
crossref_primary_10_1038_s41467_024_50602_8
crossref_primary_10_1021_cb200452r
crossref_primary_10_1074_jbc_M111_251371
crossref_primary_10_3390_ijms21134717
crossref_primary_10_1016_j_tim_2019_01_006
crossref_primary_10_1021_acsomega_2c02176
crossref_primary_10_3389_fmolb_2019_00097
crossref_primary_10_1038_srep32031
crossref_primary_10_1093_database_baaa008
crossref_primary_10_1371_journal_pone_0248382
crossref_primary_10_1093_bioinformatics_btr270
crossref_primary_10_1371_journal_pbio_2005903
crossref_primary_10_3390_ijms23158532
crossref_primary_10_1016_j_molcel_2012_04_001
crossref_primary_10_1016_j_exger_2018_04_020
crossref_primary_10_1016_j_bbamcr_2016_11_002
crossref_primary_10_1111_febs_16759
crossref_primary_10_1016_j_bbabio_2018_03_011
crossref_primary_10_1016_j_cels_2017_12_004
crossref_primary_10_3390_cells12121608
crossref_primary_10_7554_eLife_35685
crossref_primary_10_1038_s41598_024_54300_9
crossref_primary_10_1002_yea_3545
crossref_primary_10_1534_g3_112_005397
crossref_primary_10_3897_biorisk_17_77320
crossref_primary_10_1146_annurev_genet_080320_023632
crossref_primary_10_1021_acs_analchem_5b00264
crossref_primary_10_1111_mmi_13020
crossref_primary_10_1021_pr5003388
crossref_primary_10_3389_fmicb_2022_816622
crossref_primary_10_1016_j_isci_2023_108727
crossref_primary_10_1038_s41559_022_01671_9
crossref_primary_10_1242_jcs_213025
crossref_primary_10_1126_scisignal_abb5235
crossref_primary_10_1016_j_semcdb_2014_11_009
crossref_primary_10_18632_oncotarget_20614
crossref_primary_10_1021_pr400027m
crossref_primary_10_1091_mbc_e13_05_0241
crossref_primary_10_1128_MCB_00811_15
crossref_primary_10_3390_biom10081193
crossref_primary_10_1002_yea_3536
crossref_primary_10_1172_JCI136223
crossref_primary_10_1534_g3_117_041749
crossref_primary_10_3390_nu14091690
crossref_primary_10_1091_mbc_e12_08_0620
Cites_doi 10.1016/S0021-9258(18)34554-X
10.1371/journal.pgen.1000921
10.1038/nature00935
10.1177/1087057105274532
10.1186/gb-2006-7-4-107
10.1016/j.bmcl.2010.03.093
10.1091/mbc.e03-11-0856
10.1007/BF03195688
10.1016/j.bbamcr.2008.03.017
10.1371/journal.pbio.1000514
10.1128/jb.176.18.5802-5813.1994
10.1002/yea.320081207
10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
10.1021/pr050477f
10.1007/BF00425515
10.1093/emboj/cdg349
10.1126/science.1098641
10.4155/fmc.09.122
10.1186/gb-2006-7-8-403
10.1016/j.molcel.2007.06.025
10.1091/mbc.e10-01-0056
10.1126/science.1120499
10.1002/j.1460-2075.1984.tb02045.x
10.1038/332800a0
10.1111/j.1567-1364.2009.00553.x
10.1074/jbc.274.8.4537
10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U
10.1073/pnas.242624799
10.1042/bj3300811
10.1083/jcb.200604072
10.1091/mbc.e09-04-0347
10.1038/nature04785
10.1146/annurev.cellbio.13.1.779
10.1146/annurev.cellbio.24.110707.175415
10.1016/j.febslet.2008.11.028
10.1006/bbrc.1995.2675
10.1128/MCB.01913-05
10.1128/JB.143.3.1384-1394.1980
10.1128/MCB.9.6.2695
10.1073/pnas.97.7.3254
10.1099/00221287-137-4-765
10.1126/science.1105891
10.1074/jbc.M100266200
10.1091/mbc.e05-04-0333
10.1002/j.1460-2075.1984.tb02295.x
10.1091/mbc.e07-07-0666
10.1016/S0005-2736(99)00215-1
10.1371/journal.pgen.1001024
10.1128/MCB.6.6.1936
10.1038/nrmicro1557
10.1093/molbev/msm256
10.1016/j.mad.2004.10.007
10.1038/nature02026
10.1016/j.cbpa.2004.06.007
10.1016/S0021-9258(18)47639-9
ContentType Journal Article
Copyright 2011 Davidson This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ).
Copyright_xml – notice: 2011 Davidson This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ).
CorporateAuthor Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
OIOZB
OTOTI
5PM
DOI 10.1091/mbc.e10-06-0499
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList MEDLINE - Academic

Algology Mycology and Protozoology Abstracts (Microbiology C)
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1939-4586
EndPage 998
ExternalDocumentID PMC3069023
1625222
21289090
10_1091_mbc_e10_06_0499
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM-060201
– fundername: NIMH NIH HHS
  grantid: U54 MH084690
– fundername: NIGMS NIH HHS
  grantid: R25 GM060201
– fundername: NIGMS NIH HHS
  grantid: GM-0975149
GroupedDBID ---
.GJ
123
18M
29M
2WC
34G
39C
3O-
4.4
53G
5RE
5VS
AAYXX
ABDNZ
ABSQV
ACGFO
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AFFNX
AFHIN
AFOSN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
C1A
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HH5
HYE
IAO
IGS
IH2
IHR
INIJC
ITC
KQ8
OHT
R0Z
RPM
SJN
TCB
TR2
W8F
WOQ
YHG
YKV
YNT
YQT
YWH
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
ABLYK
ABSGY
ADDZX
OIOZB
OK1
OTOTI
RHF
VQA
ZA5
5PM
ID FETCH-LOGICAL-c517t-b8c1519f9baebbbd338ccd0eeae92aeaae440d60288c8364625cd330a99c400d3
ISSN 1059-1524
1939-4586
IngestDate Thu Aug 21 18:22:21 EDT 2025
Mon Jul 10 02:30:34 EDT 2023
Fri Sep 05 03:17:53 EDT 2025
Thu Sep 04 16:39:43 EDT 2025
Mon Jul 21 05:55:02 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Tue Jul 01 02:18:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License ASCB®,“ “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c517t-b8c1519f9baebbbd338ccd0eeae92aeaae440d60288c8364625cd330a99c400d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
AC04-94AL85000
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
OpenAccessLink https://www.osti.gov/servlets/purl/1625222
PMID 21289090
PQID 859760277
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3069023
osti_scitechconnect_1625222
proquest_miscellaneous_918040403
proquest_miscellaneous_859760277
pubmed_primary_21289090
crossref_primary_10_1091_mbc_e10_06_0499
crossref_citationtrail_10_1091_mbc_e10_06_0499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular biology of the cell
PublicationTitleAlternate Mol Biol Cell
PublicationYear 2011
Publisher American Society for Cell Biology
The American Society for Cell Biology
Publisher_xml – name: American Society for Cell Biology
– name: The American Society for Cell Biology
References Tajbakhsh S (B53) 2009; 25
Stevens TH (B51) 1997; 13
Le Tallec B (B29a) 2007; 27
Li W (B32) 2010; 20
Horton LE (B22) 2001; 276
Izawa S (B24) 1998; 330
DeVirgilio C (B13) 1992; 8
Young SM (B57) 2005; 10
Lemons JMS (B29) 2010; 8
Imai J (B23a) 2003; 22
Aragon AD (B4) 2006; 7
Aguilera A (B2) 1986; 204
Raser JM (B44) 2005; 309
Tu BP (B54) 2005; 310
Lillie SH (B34) 1980; 143
Repetto B (B46) 1989; 9
Dickinson JR (B14) 1991; 137
B31
B33
Brachmann CB (B10) 1998; 14
B36
Dunham MJ (B15) 2002; 99
Giaever G (B21) 2002; 418
B5
Deshaies RJ (B12) 1988; 332
Raser JM (B43) 2004; 304
Sales K (B47) 2000; 1463
Lewis K (B30) 2007; 5
Edwards BS (B16) 2004; 8
Huh W-K (B23) 2003; 425
Auesukaree C (B6) 2009; 50
Reinders J (B45) 2006; 5
Allen C (B3) 2006; 174
Planta RJ (B41) 1998; 14
Lee J (B26a) 1999; 274
Futcher B (B20) 2006; 7
Newman JRS (B40) 2006; 441
Schirmaier F (B48) 1984; 3
Kaeberlein M (B25) 2005; 126
Fabrizio P (B17) 2010; 6
Matecic M (B37) 2010; 6
B50
Wright RM (B56) 1995; 216
Aerts AM (B1) 2009; 583
Kim KS (B26) 1986; 6
Qin SL (B42) 1987; 262
Bagnat M (B7) 2000; 97
Fuge EK (B19) 1994; 176
Fabrizio P (B18) 2008; 1783
Benbadis L (B9) 2009; 9
Segal SP (B49) 2006; 26
McAlister L (B38) 1982; 257
Lindqvist L (B35) 2009; 1
Coyle S (B11) 2008; 25
Suissa M (B52) 1984; 3
16699522 - Nature. 2006 Jun 15;441(7095):840-6
21049082 - PLoS Biol. 2010;8(10):e1000514
16823961 - J Proteome Res. 2006 Jul;5(7):1543-54
20409710 - Bioorg Med Chem Lett. 2010 May 15;20(10):3112-5
20427572 - Mol Biol Cell. 2010 Jun 15;21(12):1982-90
19059240 - FEBS Lett. 2009 Jan 5;583(1):113-7
12853471 - EMBO J. 2003 Jul 15;22(14):3557-67
19575640 - Annu Rev Cell Dev Biol. 2009;25:671-99
18445486 - Biochim Biophys Acta. 2008 Jul;1783(7):1280-5
17707236 - Mol Cell. 2007 Aug 17;27(4):660-74
6396088 - EMBO J. 1984 Dec 20;3(13):3311-5
16179466 - Science. 2005 Sep 23;309(5743):2010-3
9483801 - Yeast. 1998 Jan 30;14(2):115-32
17143318 - Nat Rev Microbiol. 2007 Jan;5(1):48-56
6997270 - J Bacteriol. 1980 Sep;143(3):1384-94
16436509 - Mol Biol Cell. 2006 Apr;17(4):1802-11
7488164 - Biochem Biophys Res Commun. 1995 Nov 13;216(2):676-85
2503710 - Mol Cell Biol. 1989 Jun;9(6):2695-705
15166317 - Science. 2004 Jun 18;304(5678):1811-4
20421943 - PLoS Genet. 2010 Apr;6(4):e1000921
21425987 - Future Med Chem. 2009 Dec;1(9):1709-22
15288249 - Curr Opin Chem Biol. 2004 Aug;8(4):392-8
12140549 - Nature. 2002 Jul 25;418(6896):387-91
9442887 - Annu Rev Cell Dev Biol. 1997;13:779-808
18032404 - Mol Biol Evol. 2008 Feb;25(2):310-8
19570907 - Mol Biol Cell. 2009 Sep;20(17):3851-64
11279042 - J Biol Chem. 2001 Apr 27;276(17):14426-33
20657825 - PLoS Genet. 2010 Jul;6(7):e1001024
14562095 - Nature. 2003 Oct 16;425(6959):686-91
15456898 - Mol Biol Cell. 2004 Dec;15(12):5295-305
16677426 - Genome Biol. 2006;7(4):107
18199684 - Mol Biol Cell. 2008 Mar;19(3):1271-80
3282178 - Nature. 1988 Apr 28;332(6167):800-5
19638689 - J Appl Genet. 2009;50(3):301-10
9559554 - Yeast. 1998 Mar 30;14(5):471-7
10675505 - Biochim Biophys Acta. 2000 Feb 15;1463(2):267-78
12446845 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16144-9
3020369 - Mol Gen Genet. 1986 Aug;204(2):310-6
16782896 - Mol Cell Biol. 2006 Jul;26(13):5120-30
3034906 - J Biol Chem. 1987 Jun 5;262(16):7802-7
9988687 - J Biol Chem. 1999 Feb 19;274(8):4537-44
15722108 - Mech Ageing Dev. 2005 Apr;126(4):491-504
16254148 - Science. 2005 Nov 18;310(5751):1152-8
19686340 - FEMS Yeast Res. 2009 Dec;9(8):1172-86
16507144 - Genome Biol. 2006;7(2):R9
1856676 - J Gen Microbiol. 1991 Apr;137(4):765-70
16818721 - J Cell Biol. 2006 Jul 3;174(1):89-100
10716729 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254-9
6282834 - J Biol Chem. 1982 Jun 25;257(12):7181-8
15964939 - J Biomol Screen. 2005 Jun;10(4):374-82
8083172 - J Bacteriol. 1994 Sep;176(18):5802-13
3023912 - Mol Cell Biol. 1986 Jun;6(6):1936-42
1363452 - Yeast. 1992 Dec;8(12):1043-51
6090126 - EMBO J. 1984 Aug;3(8):1773-81
9480895 - Biochem J. 1998 Mar 1;330 ( Pt 2):811-7
References_xml – volume: 257
  start-page: 7181
  year: 1982
  ident: B38
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)34554-X
– volume: 6
  start-page: e1000921
  year: 2010
  ident: B37
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000921
– volume: 418
  start-page: 387
  year: 2002
  ident: B21
  publication-title: Nature
  doi: 10.1038/nature00935
– volume: 10
  start-page: 374
  year: 2005
  ident: B57
  publication-title: J Biomol Screen
  doi: 10.1177/1087057105274532
– volume: 7
  start-page: 107
  year: 2006
  ident: B20
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-4-107
– volume: 20
  start-page: 3112
  year: 2010
  ident: B32
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmcl.2010.03.093
– ident: B36
  doi: 10.1091/mbc.e03-11-0856
– volume: 50
  start-page: 301
  year: 2009
  ident: B6
  publication-title: J Appl Genet
  doi: 10.1007/BF03195688
– volume: 1783
  start-page: 1280
  year: 2008
  ident: B18
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2008.03.017
– volume: 8
  start-page: e1000514
  year: 2010
  ident: B29
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000514
– volume: 176
  start-page: 5802
  year: 1994
  ident: B19
  publication-title: J Bact
  doi: 10.1128/jb.176.18.5802-5813.1994
– volume: 8
  start-page: 1043
  year: 1992
  ident: B13
  publication-title: Yeast
  doi: 10.1002/yea.320081207
– volume: 14
  start-page: 115
  year: 1998
  ident: B10
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
– volume: 5
  start-page: 1543
  year: 2006
  ident: B45
  publication-title: J Proteome Res
  doi: 10.1021/pr050477f
– volume: 204
  start-page: 310
  year: 1986
  ident: B2
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00425515
– volume: 22
  start-page: 3557
  year: 2003
  ident: B23a
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg349
– volume: 304
  start-page: 1811
  year: 2004
  ident: B43
  publication-title: Science
  doi: 10.1126/science.1098641
– volume: 1
  start-page: 1709
  year: 2009
  ident: B35
  publication-title: Future Med Chem
  doi: 10.4155/fmc.09.122
– volume: 7
  start-page: 403
  year: 2006
  ident: B4
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-8-403
– volume: 27
  start-page: 660
  year: 2007
  ident: B29a
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.06.025
– ident: B50
  doi: 10.1091/mbc.e10-01-0056
– volume: 310
  start-page: 1152
  year: 2005
  ident: B54
  publication-title: Science
  doi: 10.1126/science.1120499
– volume: 3
  start-page: 1773
  year: 1984
  ident: B52
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1984.tb02045.x
– volume: 332
  start-page: 800
  year: 1988
  ident: B12
  publication-title: Nature
  doi: 10.1038/332800a0
– volume: 9
  start-page: 1172
  year: 2009
  ident: B9
  publication-title: Fems Yeast Res
  doi: 10.1111/j.1567-1364.2009.00553.x
– volume: 274
  start-page: 4537
  year: 1999
  ident: B26a
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.8.4537
– volume: 14
  start-page: 471
  year: 1998
  ident: B41
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U
– volume: 99
  start-page: 16144
  year: 2002
  ident: B15
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.242624799
– volume: 330
  start-page: 811
  year: 1998
  ident: B24
  publication-title: Biochem J
  doi: 10.1042/bj3300811
– volume: 174
  start-page: 89
  year: 2006
  ident: B3
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200604072
– ident: B31
  doi: 10.1091/mbc.e09-04-0347
– volume: 441
  start-page: 840
  year: 2006
  ident: B40
  publication-title: Nature
  doi: 10.1038/nature04785
– volume: 13
  start-page: 779
  year: 1997
  ident: B51
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.13.1.779
– volume: 25
  start-page: 671
  year: 2009
  ident: B53
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.24.110707.175415
– volume: 583
  start-page: 113
  year: 2009
  ident: B1
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2008.11.028
– volume: 216
  start-page: 676
  year: 1995
  ident: B56
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.2675
– volume: 26
  start-page: 5120
  year: 2006
  ident: B49
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01913-05
– volume: 143
  start-page: 1384
  year: 1980
  ident: B34
  publication-title: J Bacteriol
  doi: 10.1128/JB.143.3.1384-1394.1980
– volume: 9
  start-page: 2695
  year: 1989
  ident: B46
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.9.6.2695
– volume: 97
  start-page: 3254
  year: 2000
  ident: B7
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.7.3254
– volume: 137
  start-page: 765
  year: 1991
  ident: B14
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-137-4-765
– volume: 309
  start-page: 2010
  year: 2005
  ident: B44
  publication-title: Science
  doi: 10.1126/science.1105891
– volume: 276
  start-page: 14426
  year: 2001
  ident: B22
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M100266200
– ident: B33
  doi: 10.1091/mbc.e05-04-0333
– volume: 3
  start-page: 3311
  year: 1984
  ident: B48
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1984.tb02295.x
– ident: B5
  doi: 10.1091/mbc.e07-07-0666
– volume: 1463
  start-page: 267
  year: 2000
  ident: B47
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0005-2736(99)00215-1
– volume: 6
  start-page: e1001024
  year: 2010
  ident: B17
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001024
– volume: 6
  start-page: 1936
  year: 1986
  ident: B26
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.6.6.1936
– volume: 5
  start-page: 48
  year: 2007
  ident: B30
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1557
– volume: 25
  start-page: 310
  year: 2008
  ident: B11
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm256
– volume: 126
  start-page: 491
  year: 2005
  ident: B25
  publication-title: Mech Ageing Dev
  doi: 10.1016/j.mad.2004.10.007
– volume: 425
  start-page: 686
  year: 2003
  ident: B23
  publication-title: Nature
  doi: 10.1038/nature02026
– volume: 8
  start-page: 392
  year: 2004
  ident: B16
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2004.06.007
– volume: 262
  start-page: 7802
  year: 1987
  ident: B42
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)47639-9
– reference: 7488164 - Biochem Biophys Res Commun. 1995 Nov 13;216(2):676-85
– reference: 9480895 - Biochem J. 1998 Mar 1;330 ( Pt 2):811-7
– reference: 18445486 - Biochim Biophys Acta. 2008 Jul;1783(7):1280-5
– reference: 3034906 - J Biol Chem. 1987 Jun 5;262(16):7802-7
– reference: 20409710 - Bioorg Med Chem Lett. 2010 May 15;20(10):3112-5
– reference: 16823961 - J Proteome Res. 2006 Jul;5(7):1543-54
– reference: 16254148 - Science. 2005 Nov 18;310(5751):1152-8
– reference: 16179466 - Science. 2005 Sep 23;309(5743):2010-3
– reference: 3020369 - Mol Gen Genet. 1986 Aug;204(2):310-6
– reference: 16699522 - Nature. 2006 Jun 15;441(7095):840-6
– reference: 8083172 - J Bacteriol. 1994 Sep;176(18):5802-13
– reference: 15722108 - Mech Ageing Dev. 2005 Apr;126(4):491-504
– reference: 15964939 - J Biomol Screen. 2005 Jun;10(4):374-82
– reference: 19638689 - J Appl Genet. 2009;50(3):301-10
– reference: 14562095 - Nature. 2003 Oct 16;425(6959):686-91
– reference: 3023912 - Mol Cell Biol. 1986 Jun;6(6):1936-42
– reference: 3282178 - Nature. 1988 Apr 28;332(6167):800-5
– reference: 19059240 - FEBS Lett. 2009 Jan 5;583(1):113-7
– reference: 2503710 - Mol Cell Biol. 1989 Jun;9(6):2695-705
– reference: 12140549 - Nature. 2002 Jul 25;418(6896):387-91
– reference: 19575640 - Annu Rev Cell Dev Biol. 2009;25:671-99
– reference: 15166317 - Science. 2004 Jun 18;304(5678):1811-4
– reference: 12853471 - EMBO J. 2003 Jul 15;22(14):3557-67
– reference: 10716729 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254-9
– reference: 15288249 - Curr Opin Chem Biol. 2004 Aug;8(4):392-8
– reference: 11279042 - J Biol Chem. 2001 Apr 27;276(17):14426-33
– reference: 9559554 - Yeast. 1998 Mar 30;14(5):471-7
– reference: 18199684 - Mol Biol Cell. 2008 Mar;19(3):1271-80
– reference: 19686340 - FEMS Yeast Res. 2009 Dec;9(8):1172-86
– reference: 16818721 - J Cell Biol. 2006 Jul 3;174(1):89-100
– reference: 6997270 - J Bacteriol. 1980 Sep;143(3):1384-94
– reference: 20427572 - Mol Biol Cell. 2010 Jun 15;21(12):1982-90
– reference: 16677426 - Genome Biol. 2006;7(4):107
– reference: 1363452 - Yeast. 1992 Dec;8(12):1043-51
– reference: 1856676 - J Gen Microbiol. 1991 Apr;137(4):765-70
– reference: 6396088 - EMBO J. 1984 Dec 20;3(13):3311-5
– reference: 15456898 - Mol Biol Cell. 2004 Dec;15(12):5295-305
– reference: 6282834 - J Biol Chem. 1982 Jun 25;257(12):7181-8
– reference: 6090126 - EMBO J. 1984 Aug;3(8):1773-81
– reference: 9483801 - Yeast. 1998 Jan 30;14(2):115-32
– reference: 21049082 - PLoS Biol. 2010;8(10):e1000514
– reference: 20421943 - PLoS Genet. 2010 Apr;6(4):e1000921
– reference: 17143318 - Nat Rev Microbiol. 2007 Jan;5(1):48-56
– reference: 19570907 - Mol Biol Cell. 2009 Sep;20(17):3851-64
– reference: 16782896 - Mol Cell Biol. 2006 Jul;26(13):5120-30
– reference: 18032404 - Mol Biol Evol. 2008 Feb;25(2):310-8
– reference: 17707236 - Mol Cell. 2007 Aug 17;27(4):660-74
– reference: 20657825 - PLoS Genet. 2010 Jul;6(7):e1001024
– reference: 9988687 - J Biol Chem. 1999 Feb 19;274(8):4537-44
– reference: 16436509 - Mol Biol Cell. 2006 Apr;17(4):1802-11
– reference: 21425987 - Future Med Chem. 2009 Dec;1(9):1709-22
– reference: 16507144 - Genome Biol. 2006;7(2):R9
– reference: 12446845 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16144-9
– reference: 10675505 - Biochim Biophys Acta. 2000 Feb 15;1463(2):267-78
– reference: 9442887 - Annu Rev Cell Dev Biol. 1997;13:779-808
SSID ssj0014467
Score 2.3240476
Snippet As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and...
Starved yeast cultures differentiate into quiescent (Q) and nonquiescent (NQ) cell fractions. The yeast GFP-fusion library (4159 strains) and high-throughput...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 988
SubjectTerms BASIC BIOLOGICAL SCIENCES
Cell Biology
Cell Cycle - physiology
Flow Cytometry
Gene Expression Regulation, Fungal
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Oxygen Consumption
Proteomics
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Title The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures
URI https://www.ncbi.nlm.nih.gov/pubmed/21289090
https://www.proquest.com/docview/859760277
https://www.proquest.com/docview/918040403
https://www.osti.gov/servlets/purl/1625222
https://pubmed.ncbi.nlm.nih.gov/PMC3069023
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbxmAvY99zuw097GEwnNmWP6THMVpK6Qd0CfRNWLJCAm3SJc4g_et3J1m2k7Xs48UERZGFfpfT3emnO0I-ToxJKjDUw6w0GLrhUaiSXISwORVK86LiCV5OPj3Lj8bp8WXWO2i3t0tqNdS3d94r-R9UoQ1wxVuy_4BsOyg0wGfAF56AMDz_GmObaAGvFltOxo_1zOVnsocC4Np3DRiib-uh1A4RjHZssHoPhhRsVHC5CW-mJXLYbUqOhmHoSz75Wrqffe6mhmGAY3cx758zf4_LRdy78OqxIx5elJsuCnvhooHf16vp9axud4lTA8r4qqnIfb5aLB1hzEcoMOTaElucUgUTLgQ7Ie1r3STpSVfRU6HClflrdmPhalT_pujBzAF0rpUeGjzNz0N03bo9zZ_jn53Lw_HJiRwdXI4ekkdJAQaW1d6tj4T-sK3A4yfp8z-J-MvO8Fumy2ABKvgut2SXXdszV0bPyNPGz6BfndA8Jw_M_AV57CqPbl6SCkSHdqJDFxPaSgoF0aF90aEIL90RHTqbUys6dFd0qBedV2R8eDD6dhQ2BTdCncVFHSquwQAUE6FKo5SqGONaV5ExpRFJacrSpGlU5WCScs1ZnoLvrKFTVAqhYS-o2GsygOmZtwQmZhjLqpzrDAvNK0upYyZjqaoqLvKADP1aSt1ko8eiKFfSsSJiCYsvYfEl8i5h8QPyqf3BjUvEcn_XfQRHgg2JiZA1MsZ0LWOYLljDAaEeMwmqFFewnJvFeiU5ONc5chru7yJiDrteGrGAvHEot5MBG5CLSEQBKbbwbztgIvftb-azqU3ozjBdeML2_vzaffKk-4e9I4N6uTbvwSqu1Qcr1b8AaF3AKA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+proteomics+of+quiescent+and+nonquiescent+cell+differentiation+in+yeast+stationary-phase+cultures&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Davidson%2C+George+S&rft.au=Joe%2C+Ray+M&rft.au=Roy%2C+Sushmita&rft.au=Meirelles%2C+Osorio&rft.date=2011-04-01&rft.issn=1059-1524&rft.volume=22&rft.issue=7&rft.spage=988&rft.epage=998&rft_id=info:doi/10.1091%2Fmbc.e10-06-0499&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon