The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures
As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells...
Saved in:
Published in | Molecular biology of the cell Vol. 22; no. 7; pp. 988 - 998 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Cell Biology
01.04.2011
The American Society for Cell Biology |
Subjects | |
Online Access | Get full text |
ISSN | 1059-1524 1939-4586 1939-4586 |
DOI | 10.1091/mbc.e10-06-0499 |
Cover
Abstract | As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. |
---|---|
AbstractList | As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. Starved yeast cultures differentiate into quiescent (Q) and nonquiescent (NQ) cell fractions. The yeast GFP-fusion library (4159 strains) and high-throughput flow cytometry were used to study this process. This showed significant metabolic and physiologic differences between Q/NQ cells and provided new tools for studying their differentiation. As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. |
Author | Joe, Ray M. Young, Susan Tapia, Phillip H. Sklar, Larry Davidson, George S. Chakraborty, Swagata Dodson, Anne E. Wilson, Melissa R. Allen, Chris P. Edwards, Bruce Carter, Mark Werner-Washburne, Margaret Roy, Sushmita Manzanilla, Elaine E. Meirelles, Osorio |
Author_xml | – sequence: 1 givenname: George S. surname: Davidson fullname: Davidson, George S. organization: Biology Department, University of New Mexico, Albuquerque, NM 87131, Sandia National Laboratories, Albuquerque, NM 81185 – sequence: 2 givenname: Ray M. surname: Joe fullname: Joe, Ray M. organization: Biology Department, University of New Mexico, Albuquerque, NM 87131 – sequence: 3 givenname: Sushmita surname: Roy fullname: Roy, Sushmita organization: Computer Science Department, University of New Mexico, Albuquerque, NM 87131 – sequence: 4 givenname: Osorio surname: Meirelles fullname: Meirelles, Osorio organization: Biology Department, University of New Mexico, Albuquerque, NM 87131 – sequence: 5 givenname: Chris P. surname: Allen fullname: Allen, Chris P. organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131 – sequence: 6 givenname: Melissa R. surname: Wilson fullname: Wilson, Melissa R. organization: Biology Department, University of New Mexico, Albuquerque, NM 87131 – sequence: 7 givenname: Phillip H. surname: Tapia fullname: Tapia, Phillip H. organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131 – sequence: 8 givenname: Elaine E. surname: Manzanilla fullname: Manzanilla, Elaine E. organization: Biology Department, University of New Mexico, Albuquerque, NM 87131 – sequence: 9 givenname: Anne E. surname: Dodson fullname: Dodson, Anne E. organization: Biology Department, University of New Mexico, Albuquerque, NM 87131 – sequence: 10 givenname: Swagata surname: Chakraborty fullname: Chakraborty, Swagata organization: Biology Department, University of New Mexico, Albuquerque, NM 87131 – sequence: 11 givenname: Mark surname: Carter fullname: Carter, Mark organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131 – sequence: 12 givenname: Susan surname: Young fullname: Young, Susan organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131 – sequence: 13 givenname: Bruce surname: Edwards fullname: Edwards, Bruce organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131 – sequence: 14 givenname: Larry surname: Sklar fullname: Sklar, Larry organization: Department of Cytometry, University of New Mexico, Albuquerque, NM 87131, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 – sequence: 15 givenname: Margaret surname: Werner-Washburne fullname: Werner-Washburne, Margaret organization: Biology Department, University of New Mexico, Albuquerque, NM 87131 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21289090$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1625222$$D View this record in Osti.gov |
BookMark | eNqFUs9PHiEQJY1N_dVzb4b00tPqwLK7cDFpTG1NTHrRM2HZ2X40u_AJrIn_vXx-aquJMRyA4b2ZN8zbJzs-eCTkC4NjBoqdzL09RgYVtBUIpT6QPaZqVYlGtjvlDI2qWMPFLtlP6S8AE6LtPpFdzrhUoGCPDFcrpOsYMobZ2UTDSG8Wh8miz9T4gZaC_wIWp4kObhwxlqsz2QVPnad3aFKmKT8ETLyr1iuTkNplykvEdEg-jmZK-PlxPyDX5z-uzn5Vl79_Xpx9v6xsw7pc9dKyhqlR9Qb7vh_qWlo7AKJBxQ0ag0LA0AKX0sq6FS1vbAGBUcoKgKE-IKfbvOuln3HYSI5m0uvo5iJKB-P0yxfvVvpPuNU1tAp4XRJ83SYIKTudrMtoVzZ4jzZrVupxzgvo22OVGG4WTFnPLm1-xngMS9KKSRBl1e8iZaO60k7XFeTR_8qfJT8NqgBOtgAbQ0oRx2cIA72xgi5W0MUKGlq9sUJhNK8YpZ2HAZXW3fQm7x77L7v1 |
CitedBy_id | crossref_primary_10_1073_pnas_1323918111 crossref_primary_10_1016_j_jprot_2012_06_005 crossref_primary_10_1038_s41467_024_50602_8 crossref_primary_10_1021_cb200452r crossref_primary_10_1074_jbc_M111_251371 crossref_primary_10_3390_ijms21134717 crossref_primary_10_1016_j_tim_2019_01_006 crossref_primary_10_1021_acsomega_2c02176 crossref_primary_10_3389_fmolb_2019_00097 crossref_primary_10_1038_srep32031 crossref_primary_10_1093_database_baaa008 crossref_primary_10_1371_journal_pone_0248382 crossref_primary_10_1093_bioinformatics_btr270 crossref_primary_10_1371_journal_pbio_2005903 crossref_primary_10_3390_ijms23158532 crossref_primary_10_1016_j_molcel_2012_04_001 crossref_primary_10_1016_j_exger_2018_04_020 crossref_primary_10_1016_j_bbamcr_2016_11_002 crossref_primary_10_1111_febs_16759 crossref_primary_10_1016_j_bbabio_2018_03_011 crossref_primary_10_1016_j_cels_2017_12_004 crossref_primary_10_3390_cells12121608 crossref_primary_10_7554_eLife_35685 crossref_primary_10_1038_s41598_024_54300_9 crossref_primary_10_1002_yea_3545 crossref_primary_10_1534_g3_112_005397 crossref_primary_10_3897_biorisk_17_77320 crossref_primary_10_1146_annurev_genet_080320_023632 crossref_primary_10_1021_acs_analchem_5b00264 crossref_primary_10_1111_mmi_13020 crossref_primary_10_1021_pr5003388 crossref_primary_10_3389_fmicb_2022_816622 crossref_primary_10_1016_j_isci_2023_108727 crossref_primary_10_1038_s41559_022_01671_9 crossref_primary_10_1242_jcs_213025 crossref_primary_10_1126_scisignal_abb5235 crossref_primary_10_1016_j_semcdb_2014_11_009 crossref_primary_10_18632_oncotarget_20614 crossref_primary_10_1021_pr400027m crossref_primary_10_1091_mbc_e13_05_0241 crossref_primary_10_1128_MCB_00811_15 crossref_primary_10_3390_biom10081193 crossref_primary_10_1002_yea_3536 crossref_primary_10_1172_JCI136223 crossref_primary_10_1534_g3_117_041749 crossref_primary_10_3390_nu14091690 crossref_primary_10_1091_mbc_e12_08_0620 |
Cites_doi | 10.1016/S0021-9258(18)34554-X 10.1371/journal.pgen.1000921 10.1038/nature00935 10.1177/1087057105274532 10.1186/gb-2006-7-4-107 10.1016/j.bmcl.2010.03.093 10.1091/mbc.e03-11-0856 10.1007/BF03195688 10.1016/j.bbamcr.2008.03.017 10.1371/journal.pbio.1000514 10.1128/jb.176.18.5802-5813.1994 10.1002/yea.320081207 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 10.1021/pr050477f 10.1007/BF00425515 10.1093/emboj/cdg349 10.1126/science.1098641 10.4155/fmc.09.122 10.1186/gb-2006-7-8-403 10.1016/j.molcel.2007.06.025 10.1091/mbc.e10-01-0056 10.1126/science.1120499 10.1002/j.1460-2075.1984.tb02045.x 10.1038/332800a0 10.1111/j.1567-1364.2009.00553.x 10.1074/jbc.274.8.4537 10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U 10.1073/pnas.242624799 10.1042/bj3300811 10.1083/jcb.200604072 10.1091/mbc.e09-04-0347 10.1038/nature04785 10.1146/annurev.cellbio.13.1.779 10.1146/annurev.cellbio.24.110707.175415 10.1016/j.febslet.2008.11.028 10.1006/bbrc.1995.2675 10.1128/MCB.01913-05 10.1128/JB.143.3.1384-1394.1980 10.1128/MCB.9.6.2695 10.1073/pnas.97.7.3254 10.1099/00221287-137-4-765 10.1126/science.1105891 10.1074/jbc.M100266200 10.1091/mbc.e05-04-0333 10.1002/j.1460-2075.1984.tb02295.x 10.1091/mbc.e07-07-0666 10.1016/S0005-2736(99)00215-1 10.1371/journal.pgen.1001024 10.1128/MCB.6.6.1936 10.1038/nrmicro1557 10.1093/molbev/msm256 10.1016/j.mad.2004.10.007 10.1038/nature02026 10.1016/j.cbpa.2004.06.007 10.1016/S0021-9258(18)47639-9 |
ContentType | Journal Article |
Copyright | 2011 Davidson This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). |
Copyright_xml | – notice: 2011 Davidson This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). |
CorporateAuthor | Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 M7N OIOZB OTOTI 5PM |
DOI | 10.1091/mbc.e10-06-0499 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1939-4586 |
EndPage | 998 |
ExternalDocumentID | PMC3069023 1625222 21289090 10_1091_mbc_e10_06_0499 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-060201 – fundername: NIMH NIH HHS grantid: U54 MH084690 – fundername: NIGMS NIH HHS grantid: R25 GM060201 – fundername: NIGMS NIH HHS grantid: GM-0975149 |
GroupedDBID | --- .GJ 123 18M 29M 2WC 34G 39C 3O- 4.4 53G 5RE 5VS AAYXX ABDNZ ABSQV ACGFO ACYGS ADBBV ADNWM AEILP AENEX AFFNX AFHIN AFOSN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL C1A CITATION CS3 D0L DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HH5 HYE IAO IGS IH2 IHR INIJC ITC KQ8 OHT R0Z RPM SJN TCB TR2 W8F WOQ YHG YKV YNT YQT YWH ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 M7N ABLYK ABSGY ADDZX OIOZB OK1 OTOTI RHF VQA ZA5 5PM |
ID | FETCH-LOGICAL-c517t-b8c1519f9baebbbd338ccd0eeae92aeaae440d60288c8364625cd330a99c400d3 |
ISSN | 1059-1524 1939-4586 |
IngestDate | Thu Aug 21 18:22:21 EDT 2025 Mon Jul 10 02:30:34 EDT 2023 Fri Sep 05 03:17:53 EDT 2025 Thu Sep 04 16:39:43 EDT 2025 Mon Jul 21 05:55:02 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Tue Jul 01 02:18:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | ASCB®,“ “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c517t-b8c1519f9baebbbd338ccd0eeae92aeaae440d60288c8364625cd330a99c400d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 AC04-94AL85000 USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division |
OpenAccessLink | https://www.osti.gov/servlets/purl/1625222 |
PMID | 21289090 |
PQID | 859760277 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3069023 osti_scitechconnect_1625222 proquest_miscellaneous_918040403 proquest_miscellaneous_859760277 pubmed_primary_21289090 crossref_primary_10_1091_mbc_e10_06_0499 crossref_citationtrail_10_1091_mbc_e10_06_0499 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-01 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular biology of the cell |
PublicationTitleAlternate | Mol Biol Cell |
PublicationYear | 2011 |
Publisher | American Society for Cell Biology The American Society for Cell Biology |
Publisher_xml | – name: American Society for Cell Biology – name: The American Society for Cell Biology |
References | Tajbakhsh S (B53) 2009; 25 Stevens TH (B51) 1997; 13 Le Tallec B (B29a) 2007; 27 Li W (B32) 2010; 20 Horton LE (B22) 2001; 276 Izawa S (B24) 1998; 330 DeVirgilio C (B13) 1992; 8 Young SM (B57) 2005; 10 Lemons JMS (B29) 2010; 8 Imai J (B23a) 2003; 22 Aragon AD (B4) 2006; 7 Aguilera A (B2) 1986; 204 Raser JM (B44) 2005; 309 Tu BP (B54) 2005; 310 Lillie SH (B34) 1980; 143 Repetto B (B46) 1989; 9 Dickinson JR (B14) 1991; 137 B31 B33 Brachmann CB (B10) 1998; 14 B36 Dunham MJ (B15) 2002; 99 Giaever G (B21) 2002; 418 B5 Deshaies RJ (B12) 1988; 332 Raser JM (B43) 2004; 304 Sales K (B47) 2000; 1463 Lewis K (B30) 2007; 5 Edwards BS (B16) 2004; 8 Huh W-K (B23) 2003; 425 Auesukaree C (B6) 2009; 50 Reinders J (B45) 2006; 5 Allen C (B3) 2006; 174 Planta RJ (B41) 1998; 14 Lee J (B26a) 1999; 274 Futcher B (B20) 2006; 7 Newman JRS (B40) 2006; 441 Schirmaier F (B48) 1984; 3 Kaeberlein M (B25) 2005; 126 Fabrizio P (B17) 2010; 6 Matecic M (B37) 2010; 6 B50 Wright RM (B56) 1995; 216 Aerts AM (B1) 2009; 583 Kim KS (B26) 1986; 6 Qin SL (B42) 1987; 262 Bagnat M (B7) 2000; 97 Fuge EK (B19) 1994; 176 Fabrizio P (B18) 2008; 1783 Benbadis L (B9) 2009; 9 Segal SP (B49) 2006; 26 McAlister L (B38) 1982; 257 Lindqvist L (B35) 2009; 1 Coyle S (B11) 2008; 25 Suissa M (B52) 1984; 3 16699522 - Nature. 2006 Jun 15;441(7095):840-6 21049082 - PLoS Biol. 2010;8(10):e1000514 16823961 - J Proteome Res. 2006 Jul;5(7):1543-54 20409710 - Bioorg Med Chem Lett. 2010 May 15;20(10):3112-5 20427572 - Mol Biol Cell. 2010 Jun 15;21(12):1982-90 19059240 - FEBS Lett. 2009 Jan 5;583(1):113-7 12853471 - EMBO J. 2003 Jul 15;22(14):3557-67 19575640 - Annu Rev Cell Dev Biol. 2009;25:671-99 18445486 - Biochim Biophys Acta. 2008 Jul;1783(7):1280-5 17707236 - Mol Cell. 2007 Aug 17;27(4):660-74 6396088 - EMBO J. 1984 Dec 20;3(13):3311-5 16179466 - Science. 2005 Sep 23;309(5743):2010-3 9483801 - Yeast. 1998 Jan 30;14(2):115-32 17143318 - Nat Rev Microbiol. 2007 Jan;5(1):48-56 6997270 - J Bacteriol. 1980 Sep;143(3):1384-94 16436509 - Mol Biol Cell. 2006 Apr;17(4):1802-11 7488164 - Biochem Biophys Res Commun. 1995 Nov 13;216(2):676-85 2503710 - Mol Cell Biol. 1989 Jun;9(6):2695-705 15166317 - Science. 2004 Jun 18;304(5678):1811-4 20421943 - PLoS Genet. 2010 Apr;6(4):e1000921 21425987 - Future Med Chem. 2009 Dec;1(9):1709-22 15288249 - Curr Opin Chem Biol. 2004 Aug;8(4):392-8 12140549 - Nature. 2002 Jul 25;418(6896):387-91 9442887 - Annu Rev Cell Dev Biol. 1997;13:779-808 18032404 - Mol Biol Evol. 2008 Feb;25(2):310-8 19570907 - Mol Biol Cell. 2009 Sep;20(17):3851-64 11279042 - J Biol Chem. 2001 Apr 27;276(17):14426-33 20657825 - PLoS Genet. 2010 Jul;6(7):e1001024 14562095 - Nature. 2003 Oct 16;425(6959):686-91 15456898 - Mol Biol Cell. 2004 Dec;15(12):5295-305 16677426 - Genome Biol. 2006;7(4):107 18199684 - Mol Biol Cell. 2008 Mar;19(3):1271-80 3282178 - Nature. 1988 Apr 28;332(6167):800-5 19638689 - J Appl Genet. 2009;50(3):301-10 9559554 - Yeast. 1998 Mar 30;14(5):471-7 10675505 - Biochim Biophys Acta. 2000 Feb 15;1463(2):267-78 12446845 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16144-9 3020369 - Mol Gen Genet. 1986 Aug;204(2):310-6 16782896 - Mol Cell Biol. 2006 Jul;26(13):5120-30 3034906 - J Biol Chem. 1987 Jun 5;262(16):7802-7 9988687 - J Biol Chem. 1999 Feb 19;274(8):4537-44 15722108 - Mech Ageing Dev. 2005 Apr;126(4):491-504 16254148 - Science. 2005 Nov 18;310(5751):1152-8 19686340 - FEMS Yeast Res. 2009 Dec;9(8):1172-86 16507144 - Genome Biol. 2006;7(2):R9 1856676 - J Gen Microbiol. 1991 Apr;137(4):765-70 16818721 - J Cell Biol. 2006 Jul 3;174(1):89-100 10716729 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254-9 6282834 - J Biol Chem. 1982 Jun 25;257(12):7181-8 15964939 - J Biomol Screen. 2005 Jun;10(4):374-82 8083172 - J Bacteriol. 1994 Sep;176(18):5802-13 3023912 - Mol Cell Biol. 1986 Jun;6(6):1936-42 1363452 - Yeast. 1992 Dec;8(12):1043-51 6090126 - EMBO J. 1984 Aug;3(8):1773-81 9480895 - Biochem J. 1998 Mar 1;330 ( Pt 2):811-7 |
References_xml | – volume: 257 start-page: 7181 year: 1982 ident: B38 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)34554-X – volume: 6 start-page: e1000921 year: 2010 ident: B37 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000921 – volume: 418 start-page: 387 year: 2002 ident: B21 publication-title: Nature doi: 10.1038/nature00935 – volume: 10 start-page: 374 year: 2005 ident: B57 publication-title: J Biomol Screen doi: 10.1177/1087057105274532 – volume: 7 start-page: 107 year: 2006 ident: B20 publication-title: Genome Biol doi: 10.1186/gb-2006-7-4-107 – volume: 20 start-page: 3112 year: 2010 ident: B32 publication-title: Bioorg Med Chem doi: 10.1016/j.bmcl.2010.03.093 – ident: B36 doi: 10.1091/mbc.e03-11-0856 – volume: 50 start-page: 301 year: 2009 ident: B6 publication-title: J Appl Genet doi: 10.1007/BF03195688 – volume: 1783 start-page: 1280 year: 2008 ident: B18 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2008.03.017 – volume: 8 start-page: e1000514 year: 2010 ident: B29 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000514 – volume: 176 start-page: 5802 year: 1994 ident: B19 publication-title: J Bact doi: 10.1128/jb.176.18.5802-5813.1994 – volume: 8 start-page: 1043 year: 1992 ident: B13 publication-title: Yeast doi: 10.1002/yea.320081207 – volume: 14 start-page: 115 year: 1998 ident: B10 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 – volume: 5 start-page: 1543 year: 2006 ident: B45 publication-title: J Proteome Res doi: 10.1021/pr050477f – volume: 204 start-page: 310 year: 1986 ident: B2 publication-title: Mol Gen Genet doi: 10.1007/BF00425515 – volume: 22 start-page: 3557 year: 2003 ident: B23a publication-title: EMBO J doi: 10.1093/emboj/cdg349 – volume: 304 start-page: 1811 year: 2004 ident: B43 publication-title: Science doi: 10.1126/science.1098641 – volume: 1 start-page: 1709 year: 2009 ident: B35 publication-title: Future Med Chem doi: 10.4155/fmc.09.122 – volume: 7 start-page: 403 year: 2006 ident: B4 publication-title: Genome Biol doi: 10.1186/gb-2006-7-8-403 – volume: 27 start-page: 660 year: 2007 ident: B29a publication-title: Mol Cell doi: 10.1016/j.molcel.2007.06.025 – ident: B50 doi: 10.1091/mbc.e10-01-0056 – volume: 310 start-page: 1152 year: 2005 ident: B54 publication-title: Science doi: 10.1126/science.1120499 – volume: 3 start-page: 1773 year: 1984 ident: B52 publication-title: EMBO J doi: 10.1002/j.1460-2075.1984.tb02045.x – volume: 332 start-page: 800 year: 1988 ident: B12 publication-title: Nature doi: 10.1038/332800a0 – volume: 9 start-page: 1172 year: 2009 ident: B9 publication-title: Fems Yeast Res doi: 10.1111/j.1567-1364.2009.00553.x – volume: 274 start-page: 4537 year: 1999 ident: B26a publication-title: J Biol Chem doi: 10.1074/jbc.274.8.4537 – volume: 14 start-page: 471 year: 1998 ident: B41 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U – volume: 99 start-page: 16144 year: 2002 ident: B15 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.242624799 – volume: 330 start-page: 811 year: 1998 ident: B24 publication-title: Biochem J doi: 10.1042/bj3300811 – volume: 174 start-page: 89 year: 2006 ident: B3 publication-title: J Cell Biol doi: 10.1083/jcb.200604072 – ident: B31 doi: 10.1091/mbc.e09-04-0347 – volume: 441 start-page: 840 year: 2006 ident: B40 publication-title: Nature doi: 10.1038/nature04785 – volume: 13 start-page: 779 year: 1997 ident: B51 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.13.1.779 – volume: 25 start-page: 671 year: 2009 ident: B53 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.24.110707.175415 – volume: 583 start-page: 113 year: 2009 ident: B1 publication-title: FEBS Lett doi: 10.1016/j.febslet.2008.11.028 – volume: 216 start-page: 676 year: 1995 ident: B56 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1995.2675 – volume: 26 start-page: 5120 year: 2006 ident: B49 publication-title: Mol Cell Biol doi: 10.1128/MCB.01913-05 – volume: 143 start-page: 1384 year: 1980 ident: B34 publication-title: J Bacteriol doi: 10.1128/JB.143.3.1384-1394.1980 – volume: 9 start-page: 2695 year: 1989 ident: B46 publication-title: Mol Cell Biol doi: 10.1128/MCB.9.6.2695 – volume: 97 start-page: 3254 year: 2000 ident: B7 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.7.3254 – volume: 137 start-page: 765 year: 1991 ident: B14 publication-title: J Gen Microbiol doi: 10.1099/00221287-137-4-765 – volume: 309 start-page: 2010 year: 2005 ident: B44 publication-title: Science doi: 10.1126/science.1105891 – volume: 276 start-page: 14426 year: 2001 ident: B22 publication-title: J Biol Chem doi: 10.1074/jbc.M100266200 – ident: B33 doi: 10.1091/mbc.e05-04-0333 – volume: 3 start-page: 3311 year: 1984 ident: B48 publication-title: EMBO J doi: 10.1002/j.1460-2075.1984.tb02295.x – ident: B5 doi: 10.1091/mbc.e07-07-0666 – volume: 1463 start-page: 267 year: 2000 ident: B47 publication-title: Biochim Biophys Acta doi: 10.1016/S0005-2736(99)00215-1 – volume: 6 start-page: e1001024 year: 2010 ident: B17 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001024 – volume: 6 start-page: 1936 year: 1986 ident: B26 publication-title: Mol Cell Biol doi: 10.1128/MCB.6.6.1936 – volume: 5 start-page: 48 year: 2007 ident: B30 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1557 – volume: 25 start-page: 310 year: 2008 ident: B11 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm256 – volume: 126 start-page: 491 year: 2005 ident: B25 publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2004.10.007 – volume: 425 start-page: 686 year: 2003 ident: B23 publication-title: Nature doi: 10.1038/nature02026 – volume: 8 start-page: 392 year: 2004 ident: B16 publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2004.06.007 – volume: 262 start-page: 7802 year: 1987 ident: B42 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)47639-9 – reference: 7488164 - Biochem Biophys Res Commun. 1995 Nov 13;216(2):676-85 – reference: 9480895 - Biochem J. 1998 Mar 1;330 ( Pt 2):811-7 – reference: 18445486 - Biochim Biophys Acta. 2008 Jul;1783(7):1280-5 – reference: 3034906 - J Biol Chem. 1987 Jun 5;262(16):7802-7 – reference: 20409710 - Bioorg Med Chem Lett. 2010 May 15;20(10):3112-5 – reference: 16823961 - J Proteome Res. 2006 Jul;5(7):1543-54 – reference: 16254148 - Science. 2005 Nov 18;310(5751):1152-8 – reference: 16179466 - Science. 2005 Sep 23;309(5743):2010-3 – reference: 3020369 - Mol Gen Genet. 1986 Aug;204(2):310-6 – reference: 16699522 - Nature. 2006 Jun 15;441(7095):840-6 – reference: 8083172 - J Bacteriol. 1994 Sep;176(18):5802-13 – reference: 15722108 - Mech Ageing Dev. 2005 Apr;126(4):491-504 – reference: 15964939 - J Biomol Screen. 2005 Jun;10(4):374-82 – reference: 19638689 - J Appl Genet. 2009;50(3):301-10 – reference: 14562095 - Nature. 2003 Oct 16;425(6959):686-91 – reference: 3023912 - Mol Cell Biol. 1986 Jun;6(6):1936-42 – reference: 3282178 - Nature. 1988 Apr 28;332(6167):800-5 – reference: 19059240 - FEBS Lett. 2009 Jan 5;583(1):113-7 – reference: 2503710 - Mol Cell Biol. 1989 Jun;9(6):2695-705 – reference: 12140549 - Nature. 2002 Jul 25;418(6896):387-91 – reference: 19575640 - Annu Rev Cell Dev Biol. 2009;25:671-99 – reference: 15166317 - Science. 2004 Jun 18;304(5678):1811-4 – reference: 12853471 - EMBO J. 2003 Jul 15;22(14):3557-67 – reference: 10716729 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254-9 – reference: 15288249 - Curr Opin Chem Biol. 2004 Aug;8(4):392-8 – reference: 11279042 - J Biol Chem. 2001 Apr 27;276(17):14426-33 – reference: 9559554 - Yeast. 1998 Mar 30;14(5):471-7 – reference: 18199684 - Mol Biol Cell. 2008 Mar;19(3):1271-80 – reference: 19686340 - FEMS Yeast Res. 2009 Dec;9(8):1172-86 – reference: 16818721 - J Cell Biol. 2006 Jul 3;174(1):89-100 – reference: 6997270 - J Bacteriol. 1980 Sep;143(3):1384-94 – reference: 20427572 - Mol Biol Cell. 2010 Jun 15;21(12):1982-90 – reference: 16677426 - Genome Biol. 2006;7(4):107 – reference: 1363452 - Yeast. 1992 Dec;8(12):1043-51 – reference: 1856676 - J Gen Microbiol. 1991 Apr;137(4):765-70 – reference: 6396088 - EMBO J. 1984 Dec 20;3(13):3311-5 – reference: 15456898 - Mol Biol Cell. 2004 Dec;15(12):5295-305 – reference: 6282834 - J Biol Chem. 1982 Jun 25;257(12):7181-8 – reference: 6090126 - EMBO J. 1984 Aug;3(8):1773-81 – reference: 9483801 - Yeast. 1998 Jan 30;14(2):115-32 – reference: 21049082 - PLoS Biol. 2010;8(10):e1000514 – reference: 20421943 - PLoS Genet. 2010 Apr;6(4):e1000921 – reference: 17143318 - Nat Rev Microbiol. 2007 Jan;5(1):48-56 – reference: 19570907 - Mol Biol Cell. 2009 Sep;20(17):3851-64 – reference: 16782896 - Mol Cell Biol. 2006 Jul;26(13):5120-30 – reference: 18032404 - Mol Biol Evol. 2008 Feb;25(2):310-8 – reference: 17707236 - Mol Cell. 2007 Aug 17;27(4):660-74 – reference: 20657825 - PLoS Genet. 2010 Jul;6(7):e1001024 – reference: 9988687 - J Biol Chem. 1999 Feb 19;274(8):4537-44 – reference: 16436509 - Mol Biol Cell. 2006 Apr;17(4):1802-11 – reference: 21425987 - Future Med Chem. 2009 Dec;1(9):1709-22 – reference: 16507144 - Genome Biol. 2006;7(2):R9 – reference: 12446845 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16144-9 – reference: 10675505 - Biochim Biophys Acta. 2000 Feb 15;1463(2):267-78 – reference: 9442887 - Annu Rev Cell Dev Biol. 1997;13:779-808 |
SSID | ssj0014467 |
Score | 2.3240476 |
Snippet | As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and... Starved yeast cultures differentiate into quiescent (Q) and nonquiescent (NQ) cell fractions. The yeast GFP-fusion library (4159 strains) and high-throughput... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 988 |
SubjectTerms | BASIC BIOLOGICAL SCIENCES Cell Biology Cell Cycle - physiology Flow Cytometry Gene Expression Regulation, Fungal Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Oxygen Consumption Proteomics Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
Title | The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21289090 https://www.proquest.com/docview/859760277 https://www.proquest.com/docview/918040403 https://www.osti.gov/servlets/purl/1625222 https://pubmed.ncbi.nlm.nih.gov/PMC3069023 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbxmAvY99zuw097GEwnNmWP6THMVpK6Qd0CfRNWLJCAm3SJc4g_et3J1m2k7Xs48UERZGFfpfT3emnO0I-ToxJKjDUw6w0GLrhUaiSXISwORVK86LiCV5OPj3Lj8bp8WXWO2i3t0tqNdS3d94r-R9UoQ1wxVuy_4BsOyg0wGfAF56AMDz_GmObaAGvFltOxo_1zOVnsocC4Np3DRiib-uh1A4RjHZssHoPhhRsVHC5CW-mJXLYbUqOhmHoSz75Wrqffe6mhmGAY3cx758zf4_LRdy78OqxIx5elJsuCnvhooHf16vp9axud4lTA8r4qqnIfb5aLB1hzEcoMOTaElucUgUTLgQ7Ie1r3STpSVfRU6HClflrdmPhalT_pujBzAF0rpUeGjzNz0N03bo9zZ_jn53Lw_HJiRwdXI4ekkdJAQaW1d6tj4T-sK3A4yfp8z-J-MvO8Fumy2ABKvgut2SXXdszV0bPyNPGz6BfndA8Jw_M_AV57CqPbl6SCkSHdqJDFxPaSgoF0aF90aEIL90RHTqbUys6dFd0qBedV2R8eDD6dhQ2BTdCncVFHSquwQAUE6FKo5SqGONaV5ExpRFJacrSpGlU5WCScs1ZnoLvrKFTVAqhYS-o2GsygOmZtwQmZhjLqpzrDAvNK0upYyZjqaoqLvKADP1aSt1ko8eiKFfSsSJiCYsvYfEl8i5h8QPyqf3BjUvEcn_XfQRHgg2JiZA1MsZ0LWOYLljDAaEeMwmqFFewnJvFeiU5ONc5chru7yJiDrteGrGAvHEot5MBG5CLSEQBKbbwbztgIvftb-azqU3ozjBdeML2_vzaffKk-4e9I4N6uTbvwSqu1Qcr1b8AaF3AKA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+proteomics+of+quiescent+and+nonquiescent+cell+differentiation+in+yeast+stationary-phase+cultures&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Davidson%2C+George+S&rft.au=Joe%2C+Ray+M&rft.au=Roy%2C+Sushmita&rft.au=Meirelles%2C+Osorio&rft.date=2011-04-01&rft.issn=1059-1524&rft.volume=22&rft.issue=7&rft.spage=988&rft.epage=998&rft_id=info:doi/10.1091%2Fmbc.e10-06-0499&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon |