A Bayesian latent class mixture model with censoring for correlation analysis in antimicrobial resistance across populations

Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 21; no. 1; pp. 1 - 12
Main Authors Zhang, Min, Wang, Chong, O’Connor, Annette M.
Format Journal Article
LanguageEnglish
Published London BioMed Central 20.09.2021
BMC
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/s12874-021-01384-w

Cover

Abstract Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options. Methods In this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data. Results Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations. Conclusions Our proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.
AbstractList Abstract Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options. Methods In this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data. Results Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations. Conclusions Our proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.
Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options. Methods In this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data. Results Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations. Conclusions Our proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.
The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options.BACKGROUNDThe emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options.In this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data.METHODSIn this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data.Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations.RESULTSApplication of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations.Our proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.CONCLUSIONSOur proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.
Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different populations are many, including interest in similar changes in resistance which might provide insight into emergence and control options. Methods In this research, we developed a method to quantify the correlation in antimicrobial resistance across populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges associated with analyzing the minimum inhibitory concentration data. Results Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible populations from Salmonella serotype Typhimurium across food animal and human populations. Conclusions Our proposed approach has been shown to be accurate and superior to the commonly used naïve estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.
ArticleNumber 186
Author O’Connor, Annette M.
Wang, Chong
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: Department of Statistics, Iowa State University
– sequence: 2
  givenname: Chong
  orcidid: 0000-0003-4489-4344
  surname: Wang
  fullname: Wang, Chong
  email: chwang@iastate.edu
  organization: Department of Statistics, Iowa State University, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University
– sequence: 3
  givenname: Annette M.
  surname: O’Connor
  fullname: O’Connor, Annette M.
  organization: Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Department of Large Animal Clinical Sciences, Michigan State University
BookMark eNp9kktv1DAUhSNURB_wB1hZYsMmYDtO7GyQSsWjUiU2sLZuHHvqkWMH22E6Ej8ez6QC2kVXvro-5_PV9TmvTnzwuqpeE_yOENG9T4QKzmpMSY1JI1i9e1adEcZJTakQJ__Vp9V5SluMCRdN96I6bVjLWMPZWfX7En2EvU4WPHKQtc9IOUgJTfYuL1GjKYzaoZ3Nt0hpn0K0foNMiEiFGHWx2OAReHD7ZBOyhzrbyaoYBgsOxYJOGbzSCEqvgOcwL6stvayeG3BJv7o_L6ofnz99v_pa33z7cn11eVOrlvBcc8MFUGoaRgUzbWMEGGa06ZXR3QC96DtquBoAuMKDEKbtTWs6RjT0A4ihuaiuV-4YYCvnaCeIexnAymMjxI2EmK1yWmI9doMhRLGWMIbHnuJO0Yb3pjxDR1xYH1bWvAyTHstOcgT3APrwxttbuQm_pCg7J0wUwNt7QAw_F52ynGxS2jnwOixJ0pa3uGt7zov0zSPpNiyx7PqgEg3mlIu2qOiqOu43avN3GILlIShyDYosQZHHoMhdMYlHJmXz8VfK0NY9bW1Wa5oPYdDx31RPuP4AI-TX0A
CitedBy_id crossref_primary_10_1371_journal_pone_0261528
crossref_primary_10_1089_fpd_2023_0099
Cites_doi 10.1128/AAC.00616-09
10.1214/16-AOAS918
10.1016/S0924-8579(02)00028-6
10.1128/AAC.00307-09
10.1002/sim.2207
10.1128/JCM.00268-17
10.1016/S0732-8893(99)00130-3
10.1002/bimj.201600253
10.1128/AAC.02012-17
10.3201/eid1006.030635
10.1128/AAC.00590-11
10.1080/10705510701575396
10.3201/eid1005.030209
10.1016/j.ijantimicag.2019.11.003
10.1089/fpd.2011.0950
10.4148/2475-7772.1004
10.2174/1381612821666150310103238
10.1056/NEJMcp0904162
10.1089/fpd.2017.2283
10.1016/j.foodres.2011.05.014
10.1016/j.jmva.2009.04.008
10.1053/j.spid.2004.01.010
10.1089/fpd.2016.2180
10.1128/JCM.01260-18
10.1089/fpd.2017.2301
ContentType Journal Article
Copyright The Author(s) 2021
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12874-021-01384-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1471-2288
EndPage 12
ExternalDocumentID oai_doaj_org_article_0ed6bf11c451440d9206c2379f9892d0
PMC8454148
10_1186_s12874_021_01384_w
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institute of Food and Agriculture
  grantid: 2018-67030-28361
  funderid: http://dx.doi.org/10.13039/100005825
– fundername: ;
  grantid: 2018-67030-28361
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c517t-7f78a22f34284f53f8af4fef9cfe6ba98962f7cbaa7c0b88f59f5f641ea9ba8b3
IEDL.DBID M48
ISSN 1471-2288
IngestDate Wed Aug 27 01:24:48 EDT 2025
Thu Aug 21 14:12:44 EDT 2025
Fri Sep 05 10:36:16 EDT 2025
Fri Jul 25 05:36:27 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Tue Jul 01 04:30:58 EDT 2025
Sat Sep 06 07:35:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Correlation
Bayesian latent class model
Antimicrobial resistance
NARMS
Minimum inhibitory concentration
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-7f78a22f34284f53f8af4fef9cfe6ba98962f7cbaa7c0b88f59f5f641ea9ba8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4489-4344
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12874-021-01384-w
PMID 34544374
PQID 2583072785
PQPubID 42579
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0ed6bf11c451440d9206c2379f9892d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8454148
proquest_miscellaneous_2575065977
proquest_journals_2583072785
crossref_primary_10_1186_s12874_021_01384_w
crossref_citationtrail_10_1186_s12874_021_01384_w
springer_journals_10_1186_s12874_021_01384_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-20
PublicationDateYYYYMMDD 2021-09-20
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationYear 2021
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References D Williamson (1384_CR8) 2018; 62
1384_CR40
F Yang (1384_CR29) 2020; 55
K Chew (1384_CR28) 2017; 55
1384_CR5
S Jaspers (1384_CR18) 2016; 10
R Mazloom (1384_CR14) 2018; 15
1384_CR2
1384_CR1
A Vieira (1384_CR21) 2011; 8
H Sader (1384_CR15) 2009; 53
H Wegener (1384_CR12) 2012
A Gelman (1384_CR37) 1992; 7
S Jaspers (1384_CR20) 2018; 60
1384_CR22
1384_CR23
J Hur (1384_CR7) 2012; 45
1384_CR24
T Rabatsky-Ehr (1384_CR11) 2004; 10
M Hoffman (1384_CR35) 2014; 15
D Annis (1384_CR16) 2005; 24
D Lewandowski (1384_CR25) 2009; 100
M Nguyen (1384_CR4) 2019; 57
1384_CR30
B Karp (1384_CR3) 2017; 14
1384_CR10
M Iwamoto (1384_CR13) 2017; 14
1384_CR32
N Patel (1384_CR27) 2009; 53
K Nylund (1384_CR39) 2007; 14
B Craig (1384_CR17) 2000; 36
J Mouton (1384_CR38) 2002; 19
M Zhang (1384_CR19) 2020; 15
A Gupta (1384_CR6) 2004; 10
M Oggioni (1384_CR26) 2015; 21
F Angulo (1384_CR9) 2004; 15
M Sjölund-Karlsson (1384_CR33) 2011; 55
H DuPont (1384_CR31) 2009; 361
1384_CR34
1384_CR36
References_xml – ident: 1384_CR5
– volume: 53
  start-page: 4127
  issue: 10
  year: 2009
  ident: 1384_CR15
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00616-09
– volume: 10
  start-page: 906
  issue: 2
  year: 2016
  ident: 1384_CR18
  publication-title: Ann Appl Stat
  doi: 10.1214/16-AOAS918
– volume: 19
  start-page: 323
  issue: 4
  year: 2002
  ident: 1384_CR38
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/S0924-8579(02)00028-6
– volume: 53
  start-page: 5141
  issue: 12
  year: 2009
  ident: 1384_CR27
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00307-09
– ident: 1384_CR1
– volume-title: Improving Food Safety Through a One Health Approach: Workshop Summary
  year: 2012
  ident: 1384_CR12
– volume: 24
  start-page: 3631
  issue: 23
  year: 2005
  ident: 1384_CR16
  publication-title: Stat Med
  doi: 10.1002/sim.2207
– ident: 1384_CR10
– ident: 1384_CR24
– volume: 55
  start-page: 2609
  issue: 9
  year: 2017
  ident: 1384_CR28
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00268-17
– volume: 36
  start-page: 193
  issue: 3
  year: 2000
  ident: 1384_CR17
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/S0732-8893(99)00130-3
– volume: 60
  start-page: 7
  issue: 1
  year: 2018
  ident: 1384_CR20
  publication-title: Biom J
  doi: 10.1002/bimj.201600253
– ident: 1384_CR22
– volume: 62
  start-page: 02012
  issue: 2
  year: 2018
  ident: 1384_CR8
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02012-17
– volume: 10
  start-page: 1102
  issue: 6
  year: 2004
  ident: 1384_CR6
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1006.030635
– volume: 55
  start-page: 3985
  issue: 9
  year: 2011
  ident: 1384_CR33
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00590-11
– volume: 15
  start-page: 0220427
  issue: 1
  year: 2020
  ident: 1384_CR19
  publication-title: PLOS ONE
– volume: 14
  start-page: 535
  issue: 4
  year: 2007
  ident: 1384_CR39
  publication-title: Struct Equ Model A Multidiscip J
  doi: 10.1080/10705510701575396
– ident: 1384_CR2
– volume: 10
  start-page: 795
  issue: 5
  year: 2004
  ident: 1384_CR11
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1005.030209
– volume: 55
  start-page: 105846
  issue: 2
  year: 2020
  ident: 1384_CR29
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2019.11.003
– ident: 1384_CR36
– volume: 15
  start-page: 1593
  issue: 1
  year: 2014
  ident: 1384_CR35
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 1295
  issue: 12
  year: 2011
  ident: 1384_CR21
  publication-title: Foodborne Pathog Dis
  doi: 10.1089/fpd.2011.0950
– ident: 1384_CR23
  doi: 10.4148/2475-7772.1004
– ident: 1384_CR34
– volume: 21
  start-page: 2054
  issue: 16
  year: 2015
  ident: 1384_CR26
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612821666150310103238
– ident: 1384_CR32
– ident: 1384_CR40
– ident: 1384_CR30
– volume: 361
  start-page: 1560
  issue: 16
  year: 2009
  ident: 1384_CR31
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp0904162
– volume: 14
  start-page: 545
  issue: 10
  year: 2017
  ident: 1384_CR3
  publication-title: Foodborne Pathog Dis
  doi: 10.1089/fpd.2017.2283
– volume: 45
  start-page: 819
  issue: 2
  year: 2012
  ident: 1384_CR7
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2011.05.014
– volume: 100
  start-page: 1989
  issue: 9
  year: 2009
  ident: 1384_CR25
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2009.04.008
– volume: 15
  start-page: 78
  issue: 2
  year: 2004
  ident: 1384_CR9
  publication-title: Semin Pediatr Infect Dis
  doi: 10.1053/j.spid.2004.01.010
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  ident: 1384_CR37
  publication-title: Stat Sci
– volume: 14
  start-page: 74
  issue: 2
  year: 2017
  ident: 1384_CR13
  publication-title: Foodborne Pathog Dis
  doi: 10.1089/fpd.2016.2180
– volume: 57
  start-page: 01260
  issue: 2
  year: 2019
  ident: 1384_CR4
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01260-18
– volume: 15
  start-page: 44
  issue: 1
  year: 2018
  ident: 1384_CR14
  publication-title: Foodborne Pathog Dis
  doi: 10.1089/fpd.2017.2301
SSID ssj0017836
Score 2.3289835
Snippet Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and...
Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and...
The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human and animal...
Abstract Background The emergence of antimicrobial resistance across populations is a global threat to public health. Surveillance programs often monitor human...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Animal populations
Antibiotics
Antimicrobial agents
Antimicrobial resistance
Bacteria
Bayesian latent class model
Censorship
Correlation
Correlation analysis
Data analysis
Drug resistance
Health Sciences
Health surveillance
Latent class analysis
Medical research
Medicine
Medicine & Public Health
Minimum inhibitory concentration
Monitoring systems
NARMS
Public health
Research Article
Salmonella
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Theory of Medicine/Bioethics
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9YwFA6yC_FG_MTqJhG807A2zeflNhxDmFcOdheSvAkWtm74dszBfrznpO2rHczdeFfaNGlyTpLn9Jw8h5CPSek2Ag5iwXjLYMfzLIisWROsQQuEx4T_IY-_qaMT8fVUnv6V6gtjwkZ64HHgduu0UiE3TRQS_ZAry2sVeatttsbyVbHWa1vPxtTkP8CzCfMRGaN21w3SujMMR0DPnGDXi22osPUvIObdAMk7XtKy-Rw-I08n1Ej3xq99Th6l_gV5fDz5xV-S2z26728SHoikZ4Ae-4FGhMX0vPuFLgJaEt5Q_OlKobV1ibqjgFdpxOwcYzwc9RNBCe3weujOu8LSBA2DTY44ExSE-tIherlJ_LV-RU4Ov3w_OGJTXgUWZaMHprM2nvPcgukhsmyz8VnklG3MSQUP46p41jF4r2MdjMnSZpmVaJK3wZvQviZb_UWf3hDqrRAJ6sLEVgDMoFrjZZ1XPOrQtiJUpJmH2cWJdBxzX5y5YnwY5UbROBCNK6Jx1xX5tHnncqTc-GfpfZTepiTSZZcboERuUiL3kBJVZHuWvZvm8NpxaWAB5NrIinzYPIbZhy4V36eLKywDiEshh19F9EJnFh-0fNJ3PwqPtxGYg91U5POsXX8av7_Db_9Hh9-RJ7zMBgvL5DbZGn5epR1AV0N4XybSb9ljI24
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86QQQRncqqUyL4pmFtmubjSTZxDGE-ObhvIUkTvbD1XteOKfjHm5OmHR24t9Lmtsk9J8nvfOT8EHrvuahdxEHESqNI3PEMsSwIUlklwQKhzoMf8vQbPzljX1fNKjvc-pxWOa2JaaFuNw585Ae0kVEdqZDNp-0vAqxREF3NFBr30YMqQhXQarGaDa4KTihMB2UkP-grKO5OICkB4nOMXC82o1SzfwE0b6dJ3oqVpi3o-Cl6krEjPhyF_Qzd890ueniao-O76PHog8Pj0aLn6O8hPjJ_PByTxOcRU3YDdgCW8cX6NwQOcKLBweCKxfHrfcrFwxHFYgecHWOWHDa5bAlew_Wwvlin2k2xI9FSB_QZ1QabNEC8nenA-hfo7PjL988nJLMtENdUYiAiCGkoDXU0SFho6iBNYMEH5YLn1iipOA3CWWOEK62UoVGhCZxV3ihrpK1fop1u0_k9hI1izMd3Ad1VhGvxtdI0ZWipE7aumS1QNf3t2uVS5MCIca6TSSK5HkWlo6h0EpW-LtCH-TfbsRDHna2PQJpzSyiinW5sLn_oPCd16VtuQ1U51kCIu1W05I7WQoU4WNqWBdqfdEHnmd3rGz0s0Lv5cZyTEGgxnd9cQZuIwzhU9iuQWOjQokPLJ936Z6ruLRkws8sCfZy07ebj_x_wq7v7-ho9oknvVVwW99HOcHnl30Q0Ndi3acr8A2feIPk
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA86QXwZ8ws7p0TwTYNtms_H7eIYwnxysLeQ5CZY2Lrh7ZiD_fGek9vb2aGCb6X5anpOkl9yTn6HkPdJ6TYCDmLBeMtgxfMsiKxZE6zBHQiPCc8hj7-qoxPx5VSejjQ5eBfmd_t9Y9SnVYOE7AwdCdCmJtj1Q_JIwsSL7nsLtZgsBngbYXMp5o_lZgtP4eefgcr7LpH37KJluTncIdsjTqT7a8E-JQ9S_4w8Ph4t4c_J7T498DcJr0DSM8CL_UAjAmF63v1EowAtIW4oHrNSaG1V_OwoIFQaMR7H2gOO-pGShHb4PHTnXeFlgoZhF47IElSC-tIhejmF-lq9ICeHn78tjtgYSYFF2eiB6ayN5zy3sNkQWbbZ-CxyyjbmpIK3xiqedQze61gHY7K0WWYlmuRt8Ca0L8lWf9GnV4R6K0SCujCUFUAxqNZ4Wecljzq0rQgVaTa_2cWRZhyjXZy5st0wyq1F40A0rojGXVfkw1Tmck2y8c_cByi9KScSZJcXoDduHG-uTksVctNEIdF8vbS8VpG32mboLF_WFdnbyN6No3bluDQw5XFtZEXeTckw3tCI4vt0cYV5AGMpZO2riJ7pzOyD5il9970wdxuBUddNRT5utOuu8b93ePf_sr8mT3jRewtT4B7ZGn5cpTeAnIbwtgyZXx8HFVQ
  priority: 102
  providerName: Springer Nature
Title A Bayesian latent class mixture model with censoring for correlation analysis in antimicrobial resistance across populations
URI https://link.springer.com/article/10.1186/s12874-021-01384-w
https://www.proquest.com/docview/2583072785
https://www.proquest.com/docview/2575065977
https://pubmed.ncbi.nlm.nih.gov/PMC8454148
https://doaj.org/article/0ed6bf11c451440d9206c2379f9892d0
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6AaUvY5_MWxc02NvmLZZlSX4YowktZZAyygJhL0ZSpC6QOl2S0hb2x-9OsVNSuj3sxfhDtizfnfU7nfQ7gHdeqtwhDkqtNmWKPZ5JrQgqzWypyQPhztM45OBUngzF11Ex2oI23VHzARcPunaUT2o4n368-XX7BQ3-czR4LT8tMiJtT2myAcXdRHq9DbvYM3HS8oG4iyrQioV24cyD9-3DXi6IEU6JjX4q0vlvYND7MyjvhVFj73T8GB41sJIdrvTgCWz5-insDZrA-TP4fch65tbTikk2RXhZL5kj3MwuJjcUQ2AxIw6jUVmGtS3itDyGgJY5St-xmjDHTMNgwia0v5xcTCKNE1aMTjsBUdQgZmKD2OU6M9jiOQyPj773T9Im8ULqikwtUxWUNpyHHH0TEYo8aBNE8KF0wUtrSl1KHpSzxijXtVqHogxFkCLzprRG2_wF7NSz2r8EZkohPD6LMl8hcsPHalN0w5g7ZfNc2ASy9jNXrmElp-QY0yp6J1pWKylVKKUqSqm6TuD9-p7LFSfHP0v3SHrrksSnHU_M5udVY55V14-lDVnmREHR7nHJu9LxXJUBG8vH3QQOWtlXrY5WvND4h-RKFwm8XV9G86SYi6n97IrKICSTRPKXgNrQmY0X2rxST35Gom8tKEm7TuBDq113lf-9wa_-u6LXsM-jNZT48zyAneX8yr9BzLW0HdhWI9WB3d7R6bczPOrLfieOX3SiieH2rPfjD6t5MiE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJgESQjBABAYYCZ4gWuM4sf0woRU2dWytENqkvWW2Y7NKW9q1ncok_jb-Nu6cpFMnsbe9VY3r2L3z-bPvx0fIB5eL1AIOio3UKoYdT8eGexEnRkk8gTDr8B6yP8h7R_z7cXa8Qv62uTAYVtnaxGCoy5HFO_JNlklQRyZk9mV8ESNrFHpXWwoN3VArlFuhxFiT2LHvruZwhJtu7X0DeX9kbHfn8GsvblgGYpslYhYLL6RmzKcAxLnPUi-15955Zb3LjVZS5cwLa7QWtmOk9Jnymc954rQyWpoU-r1H1gB2pLCq1ro7gx8_F34MzJFoU3VkvjlNsLx8jGER6CHk8XxpOwysAUtQ92ag5g1vbdgEd5-Qxw16pdu1uj0lK65aJ_f7jX9-nTyqbwFpndz0jPzZpl195TBRk54Bqq1m1CJcp-fD3-i6oIGIh-JlMIW3T0M0IAUcTS2yhtRxelQ3hVPoED_PhufDUD0KBjKBrhHeWkd1mCAdLwjJps_J0Z1I4gVZrUaVe0moVpw76AsJtwAwQrdSZx1fMitMmnITkaT92wvbFENHTo6zIhyKZF7UoipAVEUQVTGPyKfFb8Z1KZBbW3dRmouWWMY7fDGa_Coaq1B0XJkbnySWZ-hkLxXr5JalQnmYLCs7EdlodaFobMu0uF4JEXm_eAxWAV09unKjS2wDSDDH2oIREUs6tDSg5SfV8DTUF5ccueFlRD632nb98v9P-NXtY31HHvQO-wfFwd5g_zV5yMIaUGCkN8jqbHLp3gC2m5m3zQKi5OSu1-w_do9m1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwELagSBUXxCoCBYzEDaImjtdj--CpLK04UKk3y3bsEqnNe-pLVZD48XicBVIBErco8RJnPPFnz8w3CL3yXFQu4qDcSqPyuOKZ3NIg8tIqCTsQ4jycQx4e8YNj-uGEnfwWxZ-83UeTZB_TACxNbbe7rkOv4pLvbkqgac_BvQAsbTS_uoluAVcXsOcv-GKyI0CMwhgq88d6s-UosfbPoOZ1R8lr1tK0CC3vojsDesR7vbjvoRu-vY-2Dwf7-AP0Yw_vm-8eAiPxmYEBYQfwGJ8338BUgFPiGwyHrzj2tknedzjiVuwgS0fvF4fNQFSCG7jumvMmsTXFjuPeHPBmnCjYpAHh9ZQAbPMQHS_ffVkc5EN-hdyxUnS5CEIaQkIVtyA0sCpIE2jwQbnguTVKKk6CcNYY4QorZWAqsMBp6Y2yRtrqEdpqV61_jLBRlPrYFiS4igAtNisNK0JNnLBVRW2GyvEzazeQj0MOjDOdNiGS6140OopGJ9Hoqwy9nuqse-qNf5beB-lNJYE2O91YXZzqQQt14WtuQ1k6ysCoXStScEcqoUIcLKmLDO2MsteDLm80YTL-CImQLEMvp8dRC8G0Ylq_uoQyEXlx4PLLkJjNmdkLzZ-0zdfE5y0p5GKXGXozzq5fnf99wE_-r_gLtP357VJ_en_08Sm6TZIKqPiP3EFb3cWlfxahVWefJ-35CakyIJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+latent+class+mixture+model+with+censoring+for+correlation+analysis+in+antimicrobial+resistance+across+populations&rft.jtitle=BMC+medical+research+methodology&rft.au=Zhang%2C+Min&rft.au=Wang%2C+Chong&rft.au=O%E2%80%99Connor%2C+Annette+M.&rft.date=2021-09-20&rft.pub=BioMed+Central&rft.eissn=1471-2288&rft.volume=21&rft_id=info:doi/10.1186%2Fs12874-021-01384-w&rft_id=info%3Apmid%2F34544374&rft.externalDocID=PMC8454148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon