Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images

Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an in...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Academy of Dermatology Vol. 78; no. 2; pp. 270 - 277.e1
Main Authors Marchetti, Michael A., Codella, Noel C.F., Dusza, Stephen W., Gutman, David A., Helba, Brian, Kalloo, Aadi, Mishra, Nabin, Carrera, Cristina, Celebi, M. Emre, DeFazio, Jennifer L., Jaimes, Natalia, Marghoob, Ashfaq A., Quigley, Elizabeth, Scope, Alon, Yélamos, Oriol, Halpern, Allan C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2018
Subjects
Online AccessGet full text
ISSN0190-9622
1097-6787
1097-6787
DOI10.1016/j.jaad.2017.08.016

Cover

Abstract Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.
AbstractList Computer vision may aid in melanoma detection.BACKGROUNDComputer vision may aid in melanoma detection.We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images.OBJECTIVEWe sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images.We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into "fusion" algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant.METHODSWe conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into "fusion" algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant.The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001).RESULTSThe average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001).The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice.LIMITATIONSThe dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice.Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.CONCLUSIONDeep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.
Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.
Author Marchetti, Michael A.
Dusza, Stephen W.
Gutman, David A.
Celebi, M. Emre
Codella, Noel C.F.
Mishra, Nabin
Carrera, Cristina
Marghoob, Ashfaq A.
Yélamos, Oriol
Helba, Brian
Jaimes, Natalia
Halpern, Allan C.
Kalloo, Aadi
Scope, Alon
DeFazio, Jennifer L.
Quigley, Elizabeth
Author_xml – sequence: 1
  givenname: Michael A.
  surname: Marchetti
  fullname: Marchetti, Michael A.
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 2
  givenname: Noel C.F.
  surname: Codella
  fullname: Codella, Noel C.F.
  organization: IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York
– sequence: 3
  givenname: Stephen W.
  surname: Dusza
  fullname: Dusza, Stephen W.
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 4
  givenname: David A.
  surname: Gutman
  fullname: Gutman, David A.
  organization: Departments of Neurology, Psychiatry, and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
– sequence: 5
  givenname: Brian
  surname: Helba
  fullname: Helba, Brian
  organization: Kitware Inc, Clifton Park, New York
– sequence: 6
  givenname: Aadi
  surname: Kalloo
  fullname: Kalloo, Aadi
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 7
  givenname: Nabin
  surname: Mishra
  fullname: Mishra, Nabin
  organization: Stoecker & Associates, Rolla, Missouri
– sequence: 8
  givenname: Cristina
  surname: Carrera
  fullname: Carrera, Cristina
  organization: Melanoma Unit, Department of Dermatology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, CIBER de Enfermedades Raras, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain
– sequence: 9
  givenname: M. Emre
  surname: Celebi
  fullname: Celebi, M. Emre
  organization: Department of Computer Science, University of Central Arkansas, Conway, Arkansas
– sequence: 10
  givenname: Jennifer L.
  surname: DeFazio
  fullname: DeFazio, Jennifer L.
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 11
  givenname: Natalia
  surname: Jaimes
  fullname: Jaimes, Natalia
  organization: Dermatology Service, Aurora Centro Especializado en Cáncer de Piel, Medellín, Colombia
– sequence: 12
  givenname: Ashfaq A.
  surname: Marghoob
  fullname: Marghoob, Ashfaq A.
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 13
  givenname: Elizabeth
  surname: Quigley
  fullname: Quigley, Elizabeth
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 14
  givenname: Alon
  surname: Scope
  fullname: Scope, Alon
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 15
  givenname: Oriol
  surname: Yélamos
  fullname: Yélamos, Oriol
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– sequence: 16
  givenname: Allan C.
  surname: Halpern
  fullname: Halpern, Allan C.
  email: halperna@mskcc.org
  organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28969863$$D View this record in MEDLINE/PubMed
BookMark eNqNksuOEzEQRS00iMkM_AAL5CWbBLs76ceIDRPxiDQSEo-1VXFXd5xx243tBuWr-QUqj2GRxcCq1VX3lK_r-opdOO-QsZdSzKSQxZvtbAvQzDIhy5moZlR6wiZS1OW0KKvygk2ErMW0LrLskl3FuBVC1PO8fMYus6ou6qrIJ-z3F4yjTZH7lqcNchpW8JVLGBwk4x1Y_vXeOL7qoTOu40tvLax9ODTPhbt-8NGMPafWrfE9NkZT_YHVG7AWXYc3NKYfIJhIwtPBoPUYQO_2_5q6I03mYDsfTNr0kSfPGww9JG99ZyI5bn04kI2BztG5hzv0aMH5HngbfH8gfNR-MJobcoHxOXvago344vS9Zt8_vP-2_DS9-_xxtXx3N9ULWabpooCFLkHUVVUDtIVuZCGyXK-xzKpWCykrLUVTr0FSGZu2moOGbI4L2dZrKfJrlh_njm6A3S-6uBoCWQg7JYXax6e2ah-f2senRKWoRNTrIzUE_2PEmFRvokZauUM_RiXreTHPFxQeSV-dpOOaFv13-kO0JKiOAh18jAFbpU06RJUCGPu4jewM_S_vb48Q0lp_GgwqaoNO0yMIqJNqvHkcvznDtTVu_37ucfcv-A80qPlx
CitedBy_id crossref_primary_10_1016_S0151_9638_17_31064_5
crossref_primary_10_1007_s10278_021_00483_w
crossref_primary_10_1001_jamadermatol_2018_4378
crossref_primary_10_1002_ima_22890
crossref_primary_10_1007_s10278_023_00924_8
crossref_primary_10_1109_JBHI_2019_2891049
crossref_primary_10_3390_bioengineering11080758
crossref_primary_10_1016_j_ad_2019_01_014
crossref_primary_10_1016_j_jaad_2020_03_121
crossref_primary_10_1016_j_media_2021_102254
crossref_primary_10_1007_s10278_022_00740_6
crossref_primary_10_1136_emermed_2017_207239
crossref_primary_10_24018_ejmed_2020_2_4_401
crossref_primary_10_33166_AETiC_2023_04_004
crossref_primary_10_1136_bmjopen_2021_050203
crossref_primary_10_1109_TMI_2021_3120091
crossref_primary_10_1111_jdv_20055
crossref_primary_10_1016_j_neucom_2021_08_096
crossref_primary_10_1007_s12652_022_04381_z
crossref_primary_10_1002_jso_25604
crossref_primary_10_1016_j_ejca_2020_11_034
crossref_primary_10_1016_j_compbiomed_2018_11_010
crossref_primary_10_1016_j_jaad_2019_07_016
crossref_primary_10_17116_klinderma202423031246
crossref_primary_10_1055_a_1949_3639
crossref_primary_10_3788_CJL231326
crossref_primary_10_1016_j_ejca_2019_02_005
crossref_primary_10_1109_ACCESS_2020_3001507
crossref_primary_10_1089_tmj_2020_0350
crossref_primary_10_1001_jamadermatol_2019_1375
crossref_primary_10_3390_s21196523
crossref_primary_10_1097_CM9_0000000000001023
crossref_primary_10_2196_22934
crossref_primary_10_1007_s11042_021_10858_4
crossref_primary_10_1186_s12976_020_00126_7
crossref_primary_10_1007_s00521_023_08930_1
crossref_primary_10_1007_s40257_020_00574_4
crossref_primary_10_1111_bjd_16924
crossref_primary_10_3390_jcm11175102
crossref_primary_10_1111_pcmr_13027
crossref_primary_10_1007_s15012_019_3009_5
crossref_primary_10_3390_electronics11182918
crossref_primary_10_1111_jdv_15923
crossref_primary_10_3389_fmed_2020_00177
crossref_primary_10_48175_IJARSCT_2975
crossref_primary_10_3788_CJL240724
crossref_primary_10_1111_jdv_16165
crossref_primary_10_1155_2021_7178305
crossref_primary_10_1016_j_engappai_2018_04_028
crossref_primary_10_3390_diagnostics10110969
crossref_primary_10_2147_CCID_S224738
crossref_primary_10_1016_j_annonc_2019_10_013
crossref_primary_10_35784_iapgos_2876
crossref_primary_10_1155_2021_5531585
crossref_primary_10_2196_23483
crossref_primary_10_1515_bmt_2018_0110
crossref_primary_10_1007_s13167_020_00199_x
crossref_primary_10_1016_j_ad_2019_09_002
crossref_primary_10_3389_fmed_2020_00318
crossref_primary_10_5826_dpc_0802a06
crossref_primary_10_3390_life14121602
crossref_primary_10_1016_j_compbiomed_2021_104825
crossref_primary_10_1016_S1470_2045_19_30333_X
crossref_primary_10_1016_j_eclinm_2023_102391
crossref_primary_10_1016_j_dib_2020_106221
crossref_primary_10_1016_j_optlaseng_2023_107667
crossref_primary_10_1016_j_compbiomed_2023_107413
crossref_primary_10_1016_j_ejca_2018_12_016
crossref_primary_10_1016_S2589_7500_22_00021_8
crossref_primary_10_2196_11936
crossref_primary_10_1007_s13671_019_00267_0
crossref_primary_10_1080_09546634_2019_1682500
crossref_primary_10_1007_s00106_019_0665_z
crossref_primary_10_1016_j_jestch_2021_02_002
crossref_primary_10_1038_s41598_021_87064_7
crossref_primary_10_3390_jcm11226826
crossref_primary_10_2196_49613
crossref_primary_10_1515_jisys_2019_0034
crossref_primary_10_1002_ski2_19
crossref_primary_10_55544_jrasb_3_5_26
crossref_primary_10_1016_j_adengl_2019_09_003
crossref_primary_10_18466_cbayarfbe_1513945
crossref_primary_10_4103_idoj_IDOJ_61_20
crossref_primary_10_1109_ACCESS_2020_3037258
crossref_primary_10_1016_j_ejca_2019_04_021
crossref_primary_10_1016_j_jdermsci_2020_11_009
crossref_primary_10_1111_jocd_13846
crossref_primary_10_1016_j_cmpb_2019_105241
crossref_primary_10_1111_exd_14892
crossref_primary_10_3390_a15110438
crossref_primary_10_1038_s41597_024_04104_3
crossref_primary_10_1038_s41591_020_0942_0
crossref_primary_10_1109_ACCESS_2020_2986916
crossref_primary_10_2196_27850
crossref_primary_10_1007_s10278_020_00371_9
crossref_primary_10_1007_s11042_023_14454_6
crossref_primary_10_1016_j_media_2020_101841
crossref_primary_10_1055_a_1514_2013
crossref_primary_10_3389_fpubh_2018_00099
crossref_primary_10_1007_s10278_024_00969_3
crossref_primary_10_1007_s11042_024_19419_x
crossref_primary_10_3389_fmed_2020_00100
crossref_primary_10_1007_s11042_023_17936_9
crossref_primary_10_1038_s41746_020_00376_2
crossref_primary_10_1371_journal_pone_0218713
crossref_primary_10_3390_cancers13215256
crossref_primary_10_1038_s41598_022_07885_y
crossref_primary_10_1109_JBHI_2019_2895803
crossref_primary_10_1111_srt_13150
crossref_primary_10_3389_fsurg_2023_1266399
crossref_primary_10_1007_s10278_023_00819_8
crossref_primary_10_1038_s41746_022_00712_8
crossref_primary_10_1016_j_tranon_2021_101161
crossref_primary_10_1007_s10278_024_01000_5
crossref_primary_10_1063_5_0188187
crossref_primary_10_23736_S2784_8671_20_06753_X
crossref_primary_10_3390_diagnostics13132139
crossref_primary_10_1016_j_ejca_2019_04_001
crossref_primary_10_1038_s41598_022_09047_6
crossref_primary_10_1016_j_adengl_2020_03_005
crossref_primary_10_1016_j_jaad_2020_04_109
crossref_primary_10_1007_s11864_018_0573_6
crossref_primary_10_1038_s41597_024_03387_w
crossref_primary_10_3389_fmed_2021_644327
crossref_primary_10_1016_j_neucom_2022_03_042
crossref_primary_10_1001_jamadermatol_2024_4382
crossref_primary_10_1007_s11042_022_13666_6
crossref_primary_10_1109_TMI_2024_3441012
crossref_primary_10_1016_j_ejca_2021_06_049
crossref_primary_10_1016_j_asoc_2021_107656
crossref_primary_10_1016_j_ejca_2021_06_047
crossref_primary_10_1016_j_lana_2022_100192
crossref_primary_10_3389_fmed_2023_1278232
crossref_primary_10_1111_jdv_16979
crossref_primary_10_1097_CCM_0000000000003739
crossref_primary_10_1016_j_jid_2018_04_040
crossref_primary_10_32604_cmc_2021_016307
crossref_primary_10_3389_fmed_2021_670300
crossref_primary_10_1016_j_jid_2020_02_026
crossref_primary_10_1016_j_clindermatol_2018_06_003
crossref_primary_10_1111_bjd_18038
crossref_primary_10_1007_s12551_018_0449_9
crossref_primary_10_1016_S2589_7500_21_00252_1
crossref_primary_10_35784_iapgos_2963
crossref_primary_10_1016_j_piel_2021_07_001
crossref_primary_10_1109_ACCESS_2020_3016653
crossref_primary_10_1055_a_1899_7021
crossref_primary_10_1016_j_ejca_2019_05_023
crossref_primary_10_3389_fgene_2024_1387875
crossref_primary_10_1089_sur_2022_223
crossref_primary_10_1038_s41598_023_42693_y
crossref_primary_10_1007_s00129_021_04808_2
crossref_primary_10_1016_j_jaad_2020_05_053
crossref_primary_10_1142_S1793545823430010
crossref_primary_10_1093_annonc_mdz015
crossref_primary_10_1093_annonc_mdy166
crossref_primary_10_3390_cancers15194694
crossref_primary_10_1155_2022_1734327
crossref_primary_10_1016_j_iswa_2022_200126
crossref_primary_10_1007_s00405_024_08951_z
crossref_primary_10_1016_j_jaad_2018_11_043
crossref_primary_10_3390_diagnostics15030352
crossref_primary_10_1038_s41746_023_00872_1
crossref_primary_10_1111_jdv_16559
crossref_primary_10_1001_jamadermatol_2019_1735
crossref_primary_10_1016_j_cmpb_2023_107599
crossref_primary_10_1016_j_jid_2019_12_029
crossref_primary_10_1016_j_media_2023_102863
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_1016_j_bspc_2021_102839
crossref_primary_10_1038_s41746_024_01103_x
crossref_primary_10_1007_s10527_021_10104_z
crossref_primary_10_32604_iasc_2023_029549
crossref_primary_10_1016_j_artmed_2024_102934
crossref_primary_10_1007_s11912_023_01407_3
crossref_primary_10_3389_fonc_2023_1222426
crossref_primary_10_1155_2022_4348235
crossref_primary_10_1016_j_ejca_2019_06_012
crossref_primary_10_1049_ipr2_12166
crossref_primary_10_1111_jdv_20479
crossref_primary_10_1016_j_clindermatol_2021_03_011
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1007_s00521_021_05789_y
crossref_primary_10_1111_bjd_18880
crossref_primary_10_35784_iapgos_2804
crossref_primary_10_7759_cureus_69818
crossref_primary_10_1007_s13555_022_00833_8
crossref_primary_10_1038_s41597_024_03743_w
crossref_primary_10_1038_s41467_024_50043_3
crossref_primary_10_1016_j_cmpb_2018_08_009
crossref_primary_10_1002_tbio_201900003
crossref_primary_10_2196_23415
crossref_primary_10_1007_s10462_021_10084_2
Cites_doi 10.1001/jama.2016.8465
10.1097/CMR.0b013e32832a1e41
10.1111/j.1365-2133.2004.06210.x
10.1001/archderm.141.11.1388
10.1145/1961189.1961199
10.1016/j.jaad.2016.03.027
10.1097/00008390-200012000-00007
10.1111/j.1365-2133.2009.09093.x
10.1147/JRD.2017.2708299
10.1038/jid.2008.388
10.1111/bjd.13121
10.1038/nature21056
10.1016/j.compmedimag.2007.01.003
10.1016/j.compmedimag.2008.06.005
10.1097/CMR.0b013e328335a8ff
10.1016/j.artmed.2013.11.006
10.1001/archdermatol.2010.302
10.1016/j.jaad.2015.07.028
10.1002/1097-0142(20000715)89:2<342::AID-CNCR19>3.0.CO;2-P
ContentType Journal Article
Copyright 2017 American Academy of Dermatology, Inc.
Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 American Academy of Dermatology, Inc.
– notice: Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
CorporateAuthor International Skin Imaging Collaboration
CorporateAuthor_xml – name: International Skin Imaging Collaboration
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.jaad.2017.08.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6787
EndPage 277.e1
ExternalDocumentID 10.1016/j.jaad.2017.08.016
28969863
10_1016_j_jaad_2017_08_016
S0190962217322028
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute
  grantid: P30 CA008748
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: National Institutes of Health
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.GJ
.XZ
.~1
0R~
1B1
1CY
1P~
1RT
1~.
1~5
354
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8F7
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
J5H
KOM
LZ2
M27
M41
MO0
N9A
O-L
O9-
OAUVE
OB.
OBH
OHH
OM~
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SJN
SPCBC
SSH
SSZ
T5K
TEORI
UHS
UNMZH
UV1
WOW
WUQ
Y6R
YFH
Z5R
ZCG
ZGI
ZY1
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c517t-56a5c7a09889aaf6cd16023cbe728fc0118c10d9ba1023edf84aca24e51f9b103
IEDL.DBID UNPAY
ISSN 0190-9622
1097-6787
IngestDate Sun Oct 26 04:12:02 EDT 2025
Sun Sep 28 01:23:13 EDT 2025
Mon Jul 21 06:03:48 EDT 2025
Thu Oct 02 04:22:50 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Fri Feb 23 02:32:31 EST 2024
Tue Oct 14 19:34:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords International Symposium on Biomedical Imaging
skin cancer
reader study
dermatologist
ISIC
ROC
melanoma
SVM
machine learning
ISBI
computer vision
International Skin Imaging Collaboration
computer algorithm
Language English
License Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-56a5c7a09889aaf6cd16023cbe728fc0118c10d9ba1023edf84aca24e51f9b103
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.jaad.org/article/S0190962217322028/pdf
PMID 28969863
PQID 1946435969
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_jaad_2017_08_016
proquest_miscellaneous_1946435969
pubmed_primary_28969863
crossref_citationtrail_10_1016_j_jaad_2017_08_016
crossref_primary_10_1016_j_jaad_2017_08_016
elsevier_sciencedirect_doi_10_1016_j_jaad_2017_08_016
elsevier_clinicalkey_doi_10_1016_j_jaad_2017_08_016
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Academy of Dermatology
PublicationTitleAlternate J Am Acad Dermatol
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zortea, Schopf, Thon (bib9) 2014; 60
Marghoob, Scope (bib1) 2009; 129
Accessed September 2, 2016.
Accessed December 21, 2016.
Yan, Fleury, Merler, Natsev, Smith (bib20) 2009
International Skin Imaging Collaboration archive. Available at
Scope, Marchetti, Marghoob (bib19) 2016; 756
International Symposium on Biomedical Imaging website. ISBI 2016: skin lesion analysis towards melanoma detection. Available at
Brady, Oliveria, Christos (bib4) 2000; 89
Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). Available at
Monheit, Cognetta, Ferris (bib3) 2011; 147
Blum, Luedtke, Ellwanger, Schwabe, Rassner, Garbe (bib10) 2004; 151
Rajpara, Botello, Townend, Ormerod (bib12) 2009; 161
Menzies, Bischof, Talbot (bib11) 2005; 141
Ferris, Harkes, Gilbert (bib8) 2015; 73
Dreiseitl, Binder, Hable, Kittler (bib24) 2009; 19
Accessed August 17, 2017.
International Skin Imaging Collaboration 2017: skin lesion analysis towards melanoma detection. Available at
Rubegni, Cevenini, Sbano (bib13) 2010; 20
Chang, Lin (bib21) 2011; 2
Binder, Kittler, Dreiseitl, Ganster, Wolff, Pehamberger (bib23) 2000; 10
Malvehy, Hauschild, Curiel-Lewandrowski (bib2) 2014; 171
International Symposium on Biomedical Imaging website. ISBI 2016 challenges: International Symposium on Biomedical Imaging: from nano to macro. Available at
Bibbins-Domingo, Grossman, Curry (bib5) 2016; 316
Celebi, Kingravi, Uddin (bib6) 2007; 31
Iyatomi, Oka, Celebi (bib7) 2008; 32
Esteva, Kuprel, Novoa (bib22) 2017; 542
Codella, Nguyen, Pankanti (bib17) 2017; 61
Ferris (10.1016/j.jaad.2017.08.016_bib8) 2015; 73
Marghoob (10.1016/j.jaad.2017.08.016_bib1) 2009; 129
Malvehy (10.1016/j.jaad.2017.08.016_bib2) 2014; 171
Codella (10.1016/j.jaad.2017.08.016_bib17) 2017; 61
10.1016/j.jaad.2017.08.016_bib25
Binder (10.1016/j.jaad.2017.08.016_bib23) 2000; 10
Esteva (10.1016/j.jaad.2017.08.016_bib22) 2017; 542
Monheit (10.1016/j.jaad.2017.08.016_bib3) 2011; 147
Scope (10.1016/j.jaad.2017.08.016_bib19) 2016; 756
Rajpara (10.1016/j.jaad.2017.08.016_bib12) 2009; 161
Blum (10.1016/j.jaad.2017.08.016_bib10) 2004; 151
Dreiseitl (10.1016/j.jaad.2017.08.016_bib24) 2009; 19
Zortea (10.1016/j.jaad.2017.08.016_bib9) 2014; 60
10.1016/j.jaad.2017.08.016_bib18
Rubegni (10.1016/j.jaad.2017.08.016_bib13) 2010; 20
Iyatomi (10.1016/j.jaad.2017.08.016_bib7) 2008; 32
Menzies (10.1016/j.jaad.2017.08.016_bib11) 2005; 141
10.1016/j.jaad.2017.08.016_bib16
10.1016/j.jaad.2017.08.016_bib14
Chang (10.1016/j.jaad.2017.08.016_bib21) 2011; 2
10.1016/j.jaad.2017.08.016_bib15
Celebi (10.1016/j.jaad.2017.08.016_bib6) 2007; 31
Yan (10.1016/j.jaad.2017.08.016_bib20) 2009
Brady (10.1016/j.jaad.2017.08.016_bib4) 2000; 89
Bibbins-Domingo (10.1016/j.jaad.2017.08.016_bib5) 2016; 316
References_xml – volume: 20
  start-page: 212
  year: 2010
  end-page: 217
  ident: bib13
  article-title: Evaluation of cutaneous melanoma thickness by digital dermoscopy analysis: a retrospective study
  publication-title: Melanoma Res
– reference: International Skin Imaging Collaboration archive. Available at:
– reference: International Skin Imaging Collaboration 2017: skin lesion analysis towards melanoma detection. Available at:
– year: 2009
  ident: bib20
  article-title: Large-scale multimedia semantic concept modeling using robust subspace bagging and MapReduce
  publication-title: Proceedings of the First ACM Workshop on Large-scale Multimedia Retrieval and Mining
– reference: . Accessed September 2, 2016.
– volume: 147
  start-page: 188
  year: 2011
  end-page: 194
  ident: bib3
  article-title: The performance of MelaFind: a prospective multicenter study
  publication-title: Arch Dermatol
– reference: Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). Available at:
– volume: 129
  start-page: 11
  year: 2009
  end-page: 13
  ident: bib1
  article-title: The complexity of diagnosing melanoma
  publication-title: J Invest Dermatol
– volume: 32
  start-page: 566
  year: 2008
  end-page: 579
  ident: bib7
  article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm
  publication-title: Comput Med Imaging Graph
– reference: . Accessed December 21, 2016.
– volume: 171
  start-page: 1099
  year: 2014
  end-page: 1107
  ident: bib2
  article-title: Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety
  publication-title: Br J Dermatol
– reference: International Symposium on Biomedical Imaging website. ISBI 2016 challenges: International Symposium on Biomedical Imaging: from nano to macro. Available at:
– volume: 161
  start-page: 591
  year: 2009
  end-page: 604
  ident: bib12
  article-title: Systematic review of dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of melanoma
  publication-title: Br J Dermatol
– volume: 60
  start-page: 13
  year: 2014
  end-page: 26
  ident: bib9
  article-title: Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists
  publication-title: Artif Intell Med
– volume: 141
  start-page: 1388
  year: 2005
  end-page: 1396
  ident: bib11
  article-title: The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma
  publication-title: Arch Dermatol
– volume: 73
  start-page: 769
  year: 2015
  end-page: 776
  ident: bib8
  article-title: Computer-aided classification of melanocytic lesions using dermoscopic images
  publication-title: J Am Acad Dermatol
– volume: 151
  start-page: 1029
  year: 2004
  end-page: 1038
  ident: bib10
  article-title: Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions
  publication-title: Br J Dermatol
– volume: 61
  year: 2017
  ident: bib17
  article-title: Deep learning ensembles for melanoma recognition in dermoscopy images
  publication-title: IBM J Res Develop
– volume: 89
  start-page: 342
  year: 2000
  end-page: 347
  ident: bib4
  article-title: Patterns of detection in patients with cutaneous melanoma
  publication-title: Cancer
– volume: 10
  start-page: 556
  year: 2000
  end-page: 561
  ident: bib23
  article-title: Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process
  publication-title: Melanoma Res
– volume: 31
  start-page: 362
  year: 2007
  end-page: 373
  ident: bib6
  article-title: A methodological approach to the classification of dermoscopy images
  publication-title: Comput Med Imaging Graph
– reference: International Symposium on Biomedical Imaging website. ISBI 2016: skin lesion analysis towards melanoma detection. Available at:
– reference: . Accessed August 17, 2017.
– volume: 19
  start-page: 180
  year: 2009
  end-page: 184
  ident: bib24
  article-title: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial
  publication-title: Melanoma Res
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib21
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib22
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 316
  start-page: 429
  year: 2016
  end-page: 435
  ident: bib5
  article-title: Screening for skin cancer: US Preventive Services Task Force recommendation statement
  publication-title: JAMA
– volume: 756
  start-page: 813
  year: 2016
  end-page: 823
  ident: bib19
  article-title: The study of nevi in children: principles learned and implications for melanoma diagnosis
  publication-title: J Am Acad Dermatol
– volume: 316
  start-page: 429
  year: 2016
  ident: 10.1016/j.jaad.2017.08.016_bib5
  article-title: Screening for skin cancer: US Preventive Services Task Force recommendation statement
  publication-title: JAMA
  doi: 10.1001/jama.2016.8465
– volume: 19
  start-page: 180
  year: 2009
  ident: 10.1016/j.jaad.2017.08.016_bib24
  article-title: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial
  publication-title: Melanoma Res
  doi: 10.1097/CMR.0b013e32832a1e41
– volume: 151
  start-page: 1029
  year: 2004
  ident: 10.1016/j.jaad.2017.08.016_bib10
  article-title: Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions
  publication-title: Br J Dermatol
  doi: 10.1111/j.1365-2133.2004.06210.x
– ident: 10.1016/j.jaad.2017.08.016_bib25
– volume: 141
  start-page: 1388
  year: 2005
  ident: 10.1016/j.jaad.2017.08.016_bib11
  article-title: The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma
  publication-title: Arch Dermatol
  doi: 10.1001/archderm.141.11.1388
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.jaad.2017.08.016_bib21
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 756
  start-page: 813
  year: 2016
  ident: 10.1016/j.jaad.2017.08.016_bib19
  article-title: The study of nevi in children: principles learned and implications for melanoma diagnosis
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2016.03.027
– volume: 10
  start-page: 556
  year: 2000
  ident: 10.1016/j.jaad.2017.08.016_bib23
  article-title: Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process
  publication-title: Melanoma Res
  doi: 10.1097/00008390-200012000-00007
– volume: 161
  start-page: 591
  year: 2009
  ident: 10.1016/j.jaad.2017.08.016_bib12
  article-title: Systematic review of dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of melanoma
  publication-title: Br J Dermatol
  doi: 10.1111/j.1365-2133.2009.09093.x
– ident: 10.1016/j.jaad.2017.08.016_bib14
– volume: 61
  year: 2017
  ident: 10.1016/j.jaad.2017.08.016_bib17
  article-title: Deep learning ensembles for melanoma recognition in dermoscopy images
  publication-title: IBM J Res Develop
  doi: 10.1147/JRD.2017.2708299
– ident: 10.1016/j.jaad.2017.08.016_bib16
– volume: 129
  start-page: 11
  year: 2009
  ident: 10.1016/j.jaad.2017.08.016_bib1
  article-title: The complexity of diagnosing melanoma
  publication-title: J Invest Dermatol
  doi: 10.1038/jid.2008.388
– volume: 171
  start-page: 1099
  year: 2014
  ident: 10.1016/j.jaad.2017.08.016_bib2
  article-title: Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.13121
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.jaad.2017.08.016_bib22
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 31
  start-page: 362
  year: 2007
  ident: 10.1016/j.jaad.2017.08.016_bib6
  article-title: A methodological approach to the classification of dermoscopy images
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2007.01.003
– ident: 10.1016/j.jaad.2017.08.016_bib18
– year: 2009
  ident: 10.1016/j.jaad.2017.08.016_bib20
  article-title: Large-scale multimedia semantic concept modeling using robust subspace bagging and MapReduce
– volume: 32
  start-page: 566
  year: 2008
  ident: 10.1016/j.jaad.2017.08.016_bib7
  article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2008.06.005
– volume: 20
  start-page: 212
  year: 2010
  ident: 10.1016/j.jaad.2017.08.016_bib13
  article-title: Evaluation of cutaneous melanoma thickness by digital dermoscopy analysis: a retrospective study
  publication-title: Melanoma Res
  doi: 10.1097/CMR.0b013e328335a8ff
– volume: 60
  start-page: 13
  year: 2014
  ident: 10.1016/j.jaad.2017.08.016_bib9
  article-title: Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2013.11.006
– ident: 10.1016/j.jaad.2017.08.016_bib15
– volume: 147
  start-page: 188
  year: 2011
  ident: 10.1016/j.jaad.2017.08.016_bib3
  article-title: The performance of MelaFind: a prospective multicenter study
  publication-title: Arch Dermatol
  doi: 10.1001/archdermatol.2010.302
– volume: 73
  start-page: 769
  year: 2015
  ident: 10.1016/j.jaad.2017.08.016_bib8
  article-title: Computer-aided classification of melanocytic lesions using dermoscopic images
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2015.07.028
– volume: 89
  start-page: 342
  year: 2000
  ident: 10.1016/j.jaad.2017.08.016_bib4
  article-title: Patterns of detection in patients with cutaneous melanoma
  publication-title: Cancer
  doi: 10.1002/1097-0142(20000715)89:2<342::AID-CNCR19>3.0.CO;2-P
SSID ssj0009437
Score 2.6468632
Snippet Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic...
Computer vision may aid in melanoma detection.BACKGROUNDComputer vision may aid in melanoma detection.We sought to compare melanoma diagnostic accuracy of...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 270
SubjectTerms Algorithms
computer algorithm
computer vision
Congresses as Topic
Cross-Sectional Studies
dermatologist
Dermatologists
Dermoscopy
Diagnosis, Computer-Assisted
Humans
International Skin Imaging Collaboration
International Symposium on Biomedical Imaging
Lentigo - diagnostic imaging
Machine Learning
melanoma
Melanoma - diagnosis
Melanoma - pathology
Nevus - diagnostic imaging
reader study
ROC Curve
skin cancer
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHngcEOW5QJGRuEHY9caxY26woipI5QBU6s2a2A6kymO1SYT2wl_uX6gnL1pABXFM1qOdbL7MTNbzzUfI8yRlOO4UgtABBNyGYZBYZgOZJiCt4rFJkTt89FEcHvMPJ9HJDlmNXBhsqxxifx_Tu2g9nJkPv-Z8nWXzz8iCVmLpa2oPSp8mkcHOJaoYvPrxs81D8XCiTOPqgTjT93idAuC0UCa7MZ6oef7n5PR78XmTXG_LNWy_Q55fSEgHt8mtoZKkb3pn98iOK--Qa0fDXvldcvbJ1W3e1LRKqa_yqHdA0Et_AFJU3qLvi06oiK4uIuLXhdsCu7vagvqP3naMfby5k60ZJVle09UkbDh-MRjTbsBs8dgMIhIU8q_VJmu-FTVtKmoxP3RKuh51NfWFdGdp-z7ArLuGwuVQVgVQZMR0FhVSajJDM--Fq--R44N3X1aHwSDvEJiIySaIBERGwkLFsQJIhbFM-ArCJE4u49QgJdawhVUJ4HgJZ9OYg4EldxFLVcIW4X2yW1ale0ior2F9JQOGh6nkJsS9vmgpbZxIE6skkjPCxvuqzTD7HCU4cj02uZ1qxIJGLGjU5WRiRl5MNut-8seVq8MRLnrktPoorH1iutIqmqwuof6vds9GRGofDnCPB0pXtbVmivsaM1JCzciDHqqT9_7dWqhYhDPycsLuP1zao_908jG54Y_ivsX9CdltNq3b9xVckzztHtFzUEpINA
  priority: 102
  providerName: Elsevier
Title Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0190962217322028
https://dx.doi.org/10.1016/j.jaad.2017.08.016
https://www.ncbi.nlm.nih.gov/pubmed/28969863
https://www.proquest.com/docview/1946435969
http://www.jaad.org/article/S0190962217322028/pdf
UnpaywallVersion publishedVersion
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1097-6787
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009437
  issn: 1097-6787
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1097-6787
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009437
  issn: 1097-6787
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1097-6787
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009437
  issn: 1097-6787
  databaseCode: ACRLP
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1097-6787
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009437
  issn: 1097-6787
  databaseCode: AIKHN
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-6787
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009437
  issn: 1097-6787
  databaseCode: AKRWK
  dateStart: 19790701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZ2WwnEgfejCCojcYPs1s3DMbdSsepSbYUKFcspmtgOdMmjahKhcuAv8xfw5KWFRctyiqrMJHE79nyp55uPkOdhxLDdKVi2BrAcZdtWqJiyeBQCV8LxZYTc4ZOFN1s5b0_d0z3SChdiVeUZgKo7BNff3eF75DsLb2zQswk_kxAPNyraJ33PNfC7R_qrxbvJp5YWjXbVDqfgllmIeUOUqWu6qkublMertp2ocf73ZHQRbN4g18t0A7tvEMfnEtDRLbJsaTx13cnXg7IID-T3i10drz622-RmA0fppLa7Q_Z0epdcO2k23O-Rn0udl3GR0yyiBipSMyqP_vYvIkX5LnqcVGpHdHo-rP403CVYIlYm1Jx6XdH-MUI6X9nquryi004dsb0xSFluQe7ws2yUKCjEn7PtuviS5LTIqMIkU8nxmtDNqUHjlaeqiwnX1RgSHUOaJUCRVlN5ZMjLWUu6Nk-h8_tkdfTmw3RmNRoRlnQZLyzXA1dyGAnfFwCRJxXzDAyRoeZjP5LIq5VspEQI2KNCq8h3QMLY0S6LRMhG9gPSS7NUPyLUAGEDh0A6dsQdaeOGoTvmyg-59EXo8gFhbbAEsmmgjjoecdBWyp0F-PsGGGABinsyb0BedD6bun3IpdZ2G4NBS4w1S3lgstulXm7n1cCmGg790-9ZG-aBWVNwowhSnZV5wIRjgKqZXWJAHtbx3z29eUH3hO_ZA_KymxBXGNrj_zN_QnrFttRPDeArwiHZP_jBhqQ_OZ7PFnicLz_Oh83E_wUrIlwW
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSgcEG-Wp5G4Qdj1xoljbrCiaqHbA7RSb9bEdiBVHqtNIrQX_jJ_AU9etIAK4riJRzvZfJn5sp6Zj5DnccJw3Cl4vgXwuPF9LzbMeCKJQRjJI51g7_DyMNw75u9PgpMtshh6YbCsso_9XUxvo3V_ZNr_mtNVmk4_YRe0DOeOUztQujR5iVzmwVzgG9irbz_rPCT3x55pXN53znRFXqcAOC6UiXaOJ4qe_zk7_c4-r5GdpljB5itk2ZmMtHuDXO-pJH3TeXuTbNniFrmy7DfLb5PvH23VZHVFy4Q6mkedAyE99w8gRektup-3SkV0cRYSvy7c5Fje1eTUnXrbtuzj3R1t9aDJ8pouRmXD4YtB62YNeoOfda8iQSH7XK7T-kte0bqkBhNEK6XrYFdRx6RbS9MVAqbtNeQ2g6LMgWJLTGtRYk9NqmnqvLDVHXK8--5osef1-g6eDpiovSCEQAuYySiSAEmoDQsdhdCxFfMo0dgTq9nMyBhwvoQ1ScRBw5zbgCUyZjP_LtkuysLeJ9SRWEdlQHM_EVz7uNnnoGCiWOhIxoGYEDbcV6X74eeowZGpocrtVCEWFGJBoTAnCyfkxWiz6kZ_XLjaH-CihqZWF4aVy0wXWgWj1TnY_9Xu2YBI5eIBbvJAYcumUkxyRzIDGcoJuddBdfTevVyHMgr9CXk5YvcfLu3Bfzr5lOzsHS0P1MH-4YeH5Ko7E3X17o_Idr1u7GNH5-r4Sfu4_gDMQktX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELXKVgLxwP2yqEVG4g3SrjcXx30rq1YFqRUqrFSeoontlC25rDaJ0PLT_AIzualQVMpjlJkkTsaes-s5cxh7HSeC2p2C41oAxzOu68RGGEcmMUijvFAnxB0-PgmO5t6HM_9sg_XChVRVeQFg2g7B7bvb_UR8ZxVMET1j-GFC3F2a5BbbDHyE3yO2OT_5uP-lp0WTXbPDqaSDC7HsiDJtTVdzaUx5smnbSRrnf09GV8HmXXanzpew_g5peikBHd5npz2Np607-bZTV_GO_nG1q-PNx_aA3evgKN9v7R6yDZs_YrePuw33x-znqS3rtCp5kXCEihxHFfDf_kXkJN_F32eN2hGfXQ6rPw3XGZWI1RnHU-8a2j9FyOCre12XPT4b1BH7G4PW9Qr0mo51p0TBIT0vVovqa1byquCGkkwjx4uhW3JE442naYsJF80YMptCXmTAiVbTeBTEy1lovsCnsOUTNj88-Dw7cjqNCEf7QlaOH4CvJUxUGCqAJNBGBAhDdGzlNEw08Wq1mBgVA_WosCYJPdAw9awvEhWLifuUjfIit88ZRyCMcAi05ybS0y5tGPpTacJY6lDFvhwz0QdLpLsG6qTjkUZ9pdxFRN83ogCLSNxTBGP2ZvBZtu1DrrV2-xiMemIsLuURZrdrvfzBq4NNLRz6p9-rPswjXFNoowhyW9RlJJSHQBVnlxqzZ238D0-PP9ADFQbumL0dJsQNhvbi_8y32Kha1XYbAV8Vv-ym-C93DVfn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Results+of+the+2016+International+Skin+Imaging+Collaboration+International+Symposium+on+Biomedical+Imaging+challenge%3A+Comparison+of+the+accuracy+of+computer+algorithms+to+dermatologists+for+the+diagnosis+of+melanoma+from+dermoscopic+images&rft.jtitle=Journal+of+the+American+Academy+of+Dermatology&rft.au=Marchetti%2C+Michael+A&rft.au=Codella%2C+Noel+C+F&rft.au=Dusza%2C+Stephen+W&rft.au=Gutman%2C+David+A&rft.date=2018-02-01&rft.eissn=1097-6787&rft.volume=78&rft.issue=2&rft.spage=270&rft_id=info:doi/10.1016%2Fj.jaad.2017.08.016&rft_id=info%3Apmid%2F28969863&rft.externalDocID=28969863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0190-9622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0190-9622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0190-9622&client=summon