Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images
Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an in...
Saved in:
| Published in | Journal of the American Academy of Dermatology Vol. 78; no. 2; pp. 270 - 277.e1 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.02.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0190-9622 1097-6787 1097-6787 |
| DOI | 10.1016/j.jaad.2017.08.016 |
Cover
| Abstract | Computer vision may aid in melanoma detection.
We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images.
We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant.
The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001).
The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice.
Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists. |
|---|---|
| AbstractList | Computer vision may aid in melanoma detection.BACKGROUNDComputer vision may aid in melanoma detection.We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images.OBJECTIVEWe sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images.We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into "fusion" algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant.METHODSWe conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into "fusion" algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant.The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001).RESULTSThe average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001).The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice.LIMITATIONSThe dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice.Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.CONCLUSIONDeep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists. Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into “fusion” algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists. |
| Author | Marchetti, Michael A. Dusza, Stephen W. Gutman, David A. Celebi, M. Emre Codella, Noel C.F. Mishra, Nabin Carrera, Cristina Marghoob, Ashfaq A. Yélamos, Oriol Helba, Brian Jaimes, Natalia Halpern, Allan C. Kalloo, Aadi Scope, Alon DeFazio, Jennifer L. Quigley, Elizabeth |
| Author_xml | – sequence: 1 givenname: Michael A. surname: Marchetti fullname: Marchetti, Michael A. organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 2 givenname: Noel C.F. surname: Codella fullname: Codella, Noel C.F. organization: IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York – sequence: 3 givenname: Stephen W. surname: Dusza fullname: Dusza, Stephen W. organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 4 givenname: David A. surname: Gutman fullname: Gutman, David A. organization: Departments of Neurology, Psychiatry, and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia – sequence: 5 givenname: Brian surname: Helba fullname: Helba, Brian organization: Kitware Inc, Clifton Park, New York – sequence: 6 givenname: Aadi surname: Kalloo fullname: Kalloo, Aadi organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 7 givenname: Nabin surname: Mishra fullname: Mishra, Nabin organization: Stoecker & Associates, Rolla, Missouri – sequence: 8 givenname: Cristina surname: Carrera fullname: Carrera, Cristina organization: Melanoma Unit, Department of Dermatology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, CIBER de Enfermedades Raras, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain – sequence: 9 givenname: M. Emre surname: Celebi fullname: Celebi, M. Emre organization: Department of Computer Science, University of Central Arkansas, Conway, Arkansas – sequence: 10 givenname: Jennifer L. surname: DeFazio fullname: DeFazio, Jennifer L. organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 11 givenname: Natalia surname: Jaimes fullname: Jaimes, Natalia organization: Dermatology Service, Aurora Centro Especializado en Cáncer de Piel, Medellín, Colombia – sequence: 12 givenname: Ashfaq A. surname: Marghoob fullname: Marghoob, Ashfaq A. organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 13 givenname: Elizabeth surname: Quigley fullname: Quigley, Elizabeth organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 14 givenname: Alon surname: Scope fullname: Scope, Alon organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 15 givenname: Oriol surname: Yélamos fullname: Yélamos, Oriol organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York – sequence: 16 givenname: Allan C. surname: Halpern fullname: Halpern, Allan C. email: halperna@mskcc.org organization: Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28969863$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNksuOEzEQRS00iMkM_AAL5CWbBLs76ceIDRPxiDQSEo-1VXFXd5xx243tBuWr-QUqj2GRxcCq1VX3lK_r-opdOO-QsZdSzKSQxZvtbAvQzDIhy5moZlR6wiZS1OW0KKvygk2ErMW0LrLskl3FuBVC1PO8fMYus6ou6qrIJ-z3F4yjTZH7lqcNchpW8JVLGBwk4x1Y_vXeOL7qoTOu40tvLax9ODTPhbt-8NGMPafWrfE9NkZT_YHVG7AWXYc3NKYfIJhIwtPBoPUYQO_2_5q6I03mYDsfTNr0kSfPGww9JG99ZyI5bn04kI2BztG5hzv0aMH5HngbfH8gfNR-MJobcoHxOXvago344vS9Zt8_vP-2_DS9-_xxtXx3N9ULWabpooCFLkHUVVUDtIVuZCGyXK-xzKpWCykrLUVTr0FSGZu2moOGbI4L2dZrKfJrlh_njm6A3S-6uBoCWQg7JYXax6e2ah-f2senRKWoRNTrIzUE_2PEmFRvokZauUM_RiXreTHPFxQeSV-dpOOaFv13-kO0JKiOAh18jAFbpU06RJUCGPu4jewM_S_vb48Q0lp_GgwqaoNO0yMIqJNqvHkcvznDtTVu_37ucfcv-A80qPlx |
| CitedBy_id | crossref_primary_10_1016_S0151_9638_17_31064_5 crossref_primary_10_1007_s10278_021_00483_w crossref_primary_10_1001_jamadermatol_2018_4378 crossref_primary_10_1002_ima_22890 crossref_primary_10_1007_s10278_023_00924_8 crossref_primary_10_1109_JBHI_2019_2891049 crossref_primary_10_3390_bioengineering11080758 crossref_primary_10_1016_j_ad_2019_01_014 crossref_primary_10_1016_j_jaad_2020_03_121 crossref_primary_10_1016_j_media_2021_102254 crossref_primary_10_1007_s10278_022_00740_6 crossref_primary_10_1136_emermed_2017_207239 crossref_primary_10_24018_ejmed_2020_2_4_401 crossref_primary_10_33166_AETiC_2023_04_004 crossref_primary_10_1136_bmjopen_2021_050203 crossref_primary_10_1109_TMI_2021_3120091 crossref_primary_10_1111_jdv_20055 crossref_primary_10_1016_j_neucom_2021_08_096 crossref_primary_10_1007_s12652_022_04381_z crossref_primary_10_1002_jso_25604 crossref_primary_10_1016_j_ejca_2020_11_034 crossref_primary_10_1016_j_compbiomed_2018_11_010 crossref_primary_10_1016_j_jaad_2019_07_016 crossref_primary_10_17116_klinderma202423031246 crossref_primary_10_1055_a_1949_3639 crossref_primary_10_3788_CJL231326 crossref_primary_10_1016_j_ejca_2019_02_005 crossref_primary_10_1109_ACCESS_2020_3001507 crossref_primary_10_1089_tmj_2020_0350 crossref_primary_10_1001_jamadermatol_2019_1375 crossref_primary_10_3390_s21196523 crossref_primary_10_1097_CM9_0000000000001023 crossref_primary_10_2196_22934 crossref_primary_10_1007_s11042_021_10858_4 crossref_primary_10_1186_s12976_020_00126_7 crossref_primary_10_1007_s00521_023_08930_1 crossref_primary_10_1007_s40257_020_00574_4 crossref_primary_10_1111_bjd_16924 crossref_primary_10_3390_jcm11175102 crossref_primary_10_1111_pcmr_13027 crossref_primary_10_1007_s15012_019_3009_5 crossref_primary_10_3390_electronics11182918 crossref_primary_10_1111_jdv_15923 crossref_primary_10_3389_fmed_2020_00177 crossref_primary_10_48175_IJARSCT_2975 crossref_primary_10_3788_CJL240724 crossref_primary_10_1111_jdv_16165 crossref_primary_10_1155_2021_7178305 crossref_primary_10_1016_j_engappai_2018_04_028 crossref_primary_10_3390_diagnostics10110969 crossref_primary_10_2147_CCID_S224738 crossref_primary_10_1016_j_annonc_2019_10_013 crossref_primary_10_35784_iapgos_2876 crossref_primary_10_1155_2021_5531585 crossref_primary_10_2196_23483 crossref_primary_10_1515_bmt_2018_0110 crossref_primary_10_1007_s13167_020_00199_x crossref_primary_10_1016_j_ad_2019_09_002 crossref_primary_10_3389_fmed_2020_00318 crossref_primary_10_5826_dpc_0802a06 crossref_primary_10_3390_life14121602 crossref_primary_10_1016_j_compbiomed_2021_104825 crossref_primary_10_1016_S1470_2045_19_30333_X crossref_primary_10_1016_j_eclinm_2023_102391 crossref_primary_10_1016_j_dib_2020_106221 crossref_primary_10_1016_j_optlaseng_2023_107667 crossref_primary_10_1016_j_compbiomed_2023_107413 crossref_primary_10_1016_j_ejca_2018_12_016 crossref_primary_10_1016_S2589_7500_22_00021_8 crossref_primary_10_2196_11936 crossref_primary_10_1007_s13671_019_00267_0 crossref_primary_10_1080_09546634_2019_1682500 crossref_primary_10_1007_s00106_019_0665_z crossref_primary_10_1016_j_jestch_2021_02_002 crossref_primary_10_1038_s41598_021_87064_7 crossref_primary_10_3390_jcm11226826 crossref_primary_10_2196_49613 crossref_primary_10_1515_jisys_2019_0034 crossref_primary_10_1002_ski2_19 crossref_primary_10_55544_jrasb_3_5_26 crossref_primary_10_1016_j_adengl_2019_09_003 crossref_primary_10_18466_cbayarfbe_1513945 crossref_primary_10_4103_idoj_IDOJ_61_20 crossref_primary_10_1109_ACCESS_2020_3037258 crossref_primary_10_1016_j_ejca_2019_04_021 crossref_primary_10_1016_j_jdermsci_2020_11_009 crossref_primary_10_1111_jocd_13846 crossref_primary_10_1016_j_cmpb_2019_105241 crossref_primary_10_1111_exd_14892 crossref_primary_10_3390_a15110438 crossref_primary_10_1038_s41597_024_04104_3 crossref_primary_10_1038_s41591_020_0942_0 crossref_primary_10_1109_ACCESS_2020_2986916 crossref_primary_10_2196_27850 crossref_primary_10_1007_s10278_020_00371_9 crossref_primary_10_1007_s11042_023_14454_6 crossref_primary_10_1016_j_media_2020_101841 crossref_primary_10_1055_a_1514_2013 crossref_primary_10_3389_fpubh_2018_00099 crossref_primary_10_1007_s10278_024_00969_3 crossref_primary_10_1007_s11042_024_19419_x crossref_primary_10_3389_fmed_2020_00100 crossref_primary_10_1007_s11042_023_17936_9 crossref_primary_10_1038_s41746_020_00376_2 crossref_primary_10_1371_journal_pone_0218713 crossref_primary_10_3390_cancers13215256 crossref_primary_10_1038_s41598_022_07885_y crossref_primary_10_1109_JBHI_2019_2895803 crossref_primary_10_1111_srt_13150 crossref_primary_10_3389_fsurg_2023_1266399 crossref_primary_10_1007_s10278_023_00819_8 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_1016_j_tranon_2021_101161 crossref_primary_10_1007_s10278_024_01000_5 crossref_primary_10_1063_5_0188187 crossref_primary_10_23736_S2784_8671_20_06753_X crossref_primary_10_3390_diagnostics13132139 crossref_primary_10_1016_j_ejca_2019_04_001 crossref_primary_10_1038_s41598_022_09047_6 crossref_primary_10_1016_j_adengl_2020_03_005 crossref_primary_10_1016_j_jaad_2020_04_109 crossref_primary_10_1007_s11864_018_0573_6 crossref_primary_10_1038_s41597_024_03387_w crossref_primary_10_3389_fmed_2021_644327 crossref_primary_10_1016_j_neucom_2022_03_042 crossref_primary_10_1001_jamadermatol_2024_4382 crossref_primary_10_1007_s11042_022_13666_6 crossref_primary_10_1109_TMI_2024_3441012 crossref_primary_10_1016_j_ejca_2021_06_049 crossref_primary_10_1016_j_asoc_2021_107656 crossref_primary_10_1016_j_ejca_2021_06_047 crossref_primary_10_1016_j_lana_2022_100192 crossref_primary_10_3389_fmed_2023_1278232 crossref_primary_10_1111_jdv_16979 crossref_primary_10_1097_CCM_0000000000003739 crossref_primary_10_1016_j_jid_2018_04_040 crossref_primary_10_32604_cmc_2021_016307 crossref_primary_10_3389_fmed_2021_670300 crossref_primary_10_1016_j_jid_2020_02_026 crossref_primary_10_1016_j_clindermatol_2018_06_003 crossref_primary_10_1111_bjd_18038 crossref_primary_10_1007_s12551_018_0449_9 crossref_primary_10_1016_S2589_7500_21_00252_1 crossref_primary_10_35784_iapgos_2963 crossref_primary_10_1016_j_piel_2021_07_001 crossref_primary_10_1109_ACCESS_2020_3016653 crossref_primary_10_1055_a_1899_7021 crossref_primary_10_1016_j_ejca_2019_05_023 crossref_primary_10_3389_fgene_2024_1387875 crossref_primary_10_1089_sur_2022_223 crossref_primary_10_1038_s41598_023_42693_y crossref_primary_10_1007_s00129_021_04808_2 crossref_primary_10_1016_j_jaad_2020_05_053 crossref_primary_10_1142_S1793545823430010 crossref_primary_10_1093_annonc_mdz015 crossref_primary_10_1093_annonc_mdy166 crossref_primary_10_3390_cancers15194694 crossref_primary_10_1155_2022_1734327 crossref_primary_10_1016_j_iswa_2022_200126 crossref_primary_10_1007_s00405_024_08951_z crossref_primary_10_1016_j_jaad_2018_11_043 crossref_primary_10_3390_diagnostics15030352 crossref_primary_10_1038_s41746_023_00872_1 crossref_primary_10_1111_jdv_16559 crossref_primary_10_1001_jamadermatol_2019_1735 crossref_primary_10_1016_j_cmpb_2023_107599 crossref_primary_10_1016_j_jid_2019_12_029 crossref_primary_10_1016_j_media_2023_102863 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_1038_s41568_020_00327_9 crossref_primary_10_1016_j_bspc_2021_102839 crossref_primary_10_1038_s41746_024_01103_x crossref_primary_10_1007_s10527_021_10104_z crossref_primary_10_32604_iasc_2023_029549 crossref_primary_10_1016_j_artmed_2024_102934 crossref_primary_10_1007_s11912_023_01407_3 crossref_primary_10_3389_fonc_2023_1222426 crossref_primary_10_1155_2022_4348235 crossref_primary_10_1016_j_ejca_2019_06_012 crossref_primary_10_1049_ipr2_12166 crossref_primary_10_1111_jdv_20479 crossref_primary_10_1016_j_clindermatol_2021_03_011 crossref_primary_10_1080_14737167_2023_2279107 crossref_primary_10_1007_s00521_021_05789_y crossref_primary_10_1111_bjd_18880 crossref_primary_10_35784_iapgos_2804 crossref_primary_10_7759_cureus_69818 crossref_primary_10_1007_s13555_022_00833_8 crossref_primary_10_1038_s41597_024_03743_w crossref_primary_10_1038_s41467_024_50043_3 crossref_primary_10_1016_j_cmpb_2018_08_009 crossref_primary_10_1002_tbio_201900003 crossref_primary_10_2196_23415 crossref_primary_10_1007_s10462_021_10084_2 |
| Cites_doi | 10.1001/jama.2016.8465 10.1097/CMR.0b013e32832a1e41 10.1111/j.1365-2133.2004.06210.x 10.1001/archderm.141.11.1388 10.1145/1961189.1961199 10.1016/j.jaad.2016.03.027 10.1097/00008390-200012000-00007 10.1111/j.1365-2133.2009.09093.x 10.1147/JRD.2017.2708299 10.1038/jid.2008.388 10.1111/bjd.13121 10.1038/nature21056 10.1016/j.compmedimag.2007.01.003 10.1016/j.compmedimag.2008.06.005 10.1097/CMR.0b013e328335a8ff 10.1016/j.artmed.2013.11.006 10.1001/archdermatol.2010.302 10.1016/j.jaad.2015.07.028 10.1002/1097-0142(20000715)89:2<342::AID-CNCR19>3.0.CO;2-P |
| ContentType | Journal Article |
| Copyright | 2017 American Academy of Dermatology, Inc. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2017 American Academy of Dermatology, Inc. – notice: Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved. |
| CorporateAuthor | International Skin Imaging Collaboration |
| CorporateAuthor_xml | – name: International Skin Imaging Collaboration |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.jaad.2017.08.016 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1097-6787 |
| EndPage | 277.e1 |
| ExternalDocumentID | 10.1016/j.jaad.2017.08.016 28969863 10_1016_j_jaad_2017_08_016 S0190962217322028 |
| Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Cancer Institute grantid: P30 CA008748 funderid: http://dx.doi.org/10.13039/100000054 – fundername: National Institutes of Health funderid: http://dx.doi.org/10.13039/100000002 – fundername: NCI NIH HHS grantid: P30 CA008748 |
| GroupedDBID | --- --K --M -RU .1- .FO .GJ .XZ .~1 0R~ 1B1 1CY 1P~ 1RT 1~. 1~5 354 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8F7 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HMK HMO HVGLF HX~ HZ~ IHE J1W J5H KOM LZ2 M27 M41 MO0 N9A O-L O9- OAUVE OB. OBH OHH OM~ OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SJN SPCBC SSH SSZ T5K TEORI UHS UNMZH UV1 WOW WUQ Y6R YFH Z5R ZCG ZGI ZY1 ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c517t-56a5c7a09889aaf6cd16023cbe728fc0118c10d9ba1023edf84aca24e51f9b103 |
| IEDL.DBID | UNPAY |
| ISSN | 0190-9622 1097-6787 |
| IngestDate | Sun Oct 26 04:12:02 EDT 2025 Sun Sep 28 01:23:13 EDT 2025 Mon Jul 21 06:03:48 EDT 2025 Thu Oct 02 04:22:50 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Fri Feb 23 02:32:31 EST 2024 Tue Oct 14 19:34:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | International Symposium on Biomedical Imaging skin cancer reader study dermatologist ISIC ROC melanoma SVM machine learning ISBI computer vision International Skin Imaging Collaboration computer algorithm |
| Language | English |
| License | Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-56a5c7a09889aaf6cd16023cbe728fc0118c10d9ba1023edf84aca24e51f9b103 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.jaad.org/article/S0190962217322028/pdf |
| PMID | 28969863 |
| PQID | 1946435969 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jaad_2017_08_016 proquest_miscellaneous_1946435969 pubmed_primary_28969863 crossref_citationtrail_10_1016_j_jaad_2017_08_016 crossref_primary_10_1016_j_jaad_2017_08_016 elsevier_sciencedirect_doi_10_1016_j_jaad_2017_08_016 elsevier_clinicalkey_doi_10_1016_j_jaad_2017_08_016 |
| PublicationCentury | 2000 |
| PublicationDate | February 2018 2018-02-00 20180201 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American Academy of Dermatology |
| PublicationTitleAlternate | J Am Acad Dermatol |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zortea, Schopf, Thon (bib9) 2014; 60 Marghoob, Scope (bib1) 2009; 129 Accessed September 2, 2016. Accessed December 21, 2016. Yan, Fleury, Merler, Natsev, Smith (bib20) 2009 International Skin Imaging Collaboration archive. Available at Scope, Marchetti, Marghoob (bib19) 2016; 756 International Symposium on Biomedical Imaging website. ISBI 2016: skin lesion analysis towards melanoma detection. Available at Brady, Oliveria, Christos (bib4) 2000; 89 Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). Available at Monheit, Cognetta, Ferris (bib3) 2011; 147 Blum, Luedtke, Ellwanger, Schwabe, Rassner, Garbe (bib10) 2004; 151 Rajpara, Botello, Townend, Ormerod (bib12) 2009; 161 Menzies, Bischof, Talbot (bib11) 2005; 141 Ferris, Harkes, Gilbert (bib8) 2015; 73 Dreiseitl, Binder, Hable, Kittler (bib24) 2009; 19 Accessed August 17, 2017. International Skin Imaging Collaboration 2017: skin lesion analysis towards melanoma detection. Available at Rubegni, Cevenini, Sbano (bib13) 2010; 20 Chang, Lin (bib21) 2011; 2 Binder, Kittler, Dreiseitl, Ganster, Wolff, Pehamberger (bib23) 2000; 10 Malvehy, Hauschild, Curiel-Lewandrowski (bib2) 2014; 171 International Symposium on Biomedical Imaging website. ISBI 2016 challenges: International Symposium on Biomedical Imaging: from nano to macro. Available at Bibbins-Domingo, Grossman, Curry (bib5) 2016; 316 Celebi, Kingravi, Uddin (bib6) 2007; 31 Iyatomi, Oka, Celebi (bib7) 2008; 32 Esteva, Kuprel, Novoa (bib22) 2017; 542 Codella, Nguyen, Pankanti (bib17) 2017; 61 Ferris (10.1016/j.jaad.2017.08.016_bib8) 2015; 73 Marghoob (10.1016/j.jaad.2017.08.016_bib1) 2009; 129 Malvehy (10.1016/j.jaad.2017.08.016_bib2) 2014; 171 Codella (10.1016/j.jaad.2017.08.016_bib17) 2017; 61 10.1016/j.jaad.2017.08.016_bib25 Binder (10.1016/j.jaad.2017.08.016_bib23) 2000; 10 Esteva (10.1016/j.jaad.2017.08.016_bib22) 2017; 542 Monheit (10.1016/j.jaad.2017.08.016_bib3) 2011; 147 Scope (10.1016/j.jaad.2017.08.016_bib19) 2016; 756 Rajpara (10.1016/j.jaad.2017.08.016_bib12) 2009; 161 Blum (10.1016/j.jaad.2017.08.016_bib10) 2004; 151 Dreiseitl (10.1016/j.jaad.2017.08.016_bib24) 2009; 19 Zortea (10.1016/j.jaad.2017.08.016_bib9) 2014; 60 10.1016/j.jaad.2017.08.016_bib18 Rubegni (10.1016/j.jaad.2017.08.016_bib13) 2010; 20 Iyatomi (10.1016/j.jaad.2017.08.016_bib7) 2008; 32 Menzies (10.1016/j.jaad.2017.08.016_bib11) 2005; 141 10.1016/j.jaad.2017.08.016_bib16 10.1016/j.jaad.2017.08.016_bib14 Chang (10.1016/j.jaad.2017.08.016_bib21) 2011; 2 10.1016/j.jaad.2017.08.016_bib15 Celebi (10.1016/j.jaad.2017.08.016_bib6) 2007; 31 Yan (10.1016/j.jaad.2017.08.016_bib20) 2009 Brady (10.1016/j.jaad.2017.08.016_bib4) 2000; 89 Bibbins-Domingo (10.1016/j.jaad.2017.08.016_bib5) 2016; 316 |
| References_xml | – volume: 20 start-page: 212 year: 2010 end-page: 217 ident: bib13 article-title: Evaluation of cutaneous melanoma thickness by digital dermoscopy analysis: a retrospective study publication-title: Melanoma Res – reference: International Skin Imaging Collaboration archive. Available at: – reference: International Skin Imaging Collaboration 2017: skin lesion analysis towards melanoma detection. Available at: – year: 2009 ident: bib20 article-title: Large-scale multimedia semantic concept modeling using robust subspace bagging and MapReduce publication-title: Proceedings of the First ACM Workshop on Large-scale Multimedia Retrieval and Mining – reference: . Accessed September 2, 2016. – volume: 147 start-page: 188 year: 2011 end-page: 194 ident: bib3 article-title: The performance of MelaFind: a prospective multicenter study publication-title: Arch Dermatol – reference: Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). Available at: – volume: 129 start-page: 11 year: 2009 end-page: 13 ident: bib1 article-title: The complexity of diagnosing melanoma publication-title: J Invest Dermatol – volume: 32 start-page: 566 year: 2008 end-page: 579 ident: bib7 article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm publication-title: Comput Med Imaging Graph – reference: . Accessed December 21, 2016. – volume: 171 start-page: 1099 year: 2014 end-page: 1107 ident: bib2 article-title: Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety publication-title: Br J Dermatol – reference: International Symposium on Biomedical Imaging website. ISBI 2016 challenges: International Symposium on Biomedical Imaging: from nano to macro. Available at: – volume: 161 start-page: 591 year: 2009 end-page: 604 ident: bib12 article-title: Systematic review of dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of melanoma publication-title: Br J Dermatol – volume: 60 start-page: 13 year: 2014 end-page: 26 ident: bib9 article-title: Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists publication-title: Artif Intell Med – volume: 141 start-page: 1388 year: 2005 end-page: 1396 ident: bib11 article-title: The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma publication-title: Arch Dermatol – volume: 73 start-page: 769 year: 2015 end-page: 776 ident: bib8 article-title: Computer-aided classification of melanocytic lesions using dermoscopic images publication-title: J Am Acad Dermatol – volume: 151 start-page: 1029 year: 2004 end-page: 1038 ident: bib10 article-title: Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions publication-title: Br J Dermatol – volume: 61 year: 2017 ident: bib17 article-title: Deep learning ensembles for melanoma recognition in dermoscopy images publication-title: IBM J Res Develop – volume: 89 start-page: 342 year: 2000 end-page: 347 ident: bib4 article-title: Patterns of detection in patients with cutaneous melanoma publication-title: Cancer – volume: 10 start-page: 556 year: 2000 end-page: 561 ident: bib23 article-title: Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process publication-title: Melanoma Res – volume: 31 start-page: 362 year: 2007 end-page: 373 ident: bib6 article-title: A methodological approach to the classification of dermoscopy images publication-title: Comput Med Imaging Graph – reference: International Symposium on Biomedical Imaging website. ISBI 2016: skin lesion analysis towards melanoma detection. Available at: – reference: . Accessed August 17, 2017. – volume: 19 start-page: 180 year: 2009 end-page: 184 ident: bib24 article-title: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial publication-title: Melanoma Res – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: bib21 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib22 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 316 start-page: 429 year: 2016 end-page: 435 ident: bib5 article-title: Screening for skin cancer: US Preventive Services Task Force recommendation statement publication-title: JAMA – volume: 756 start-page: 813 year: 2016 end-page: 823 ident: bib19 article-title: The study of nevi in children: principles learned and implications for melanoma diagnosis publication-title: J Am Acad Dermatol – volume: 316 start-page: 429 year: 2016 ident: 10.1016/j.jaad.2017.08.016_bib5 article-title: Screening for skin cancer: US Preventive Services Task Force recommendation statement publication-title: JAMA doi: 10.1001/jama.2016.8465 – volume: 19 start-page: 180 year: 2009 ident: 10.1016/j.jaad.2017.08.016_bib24 article-title: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial publication-title: Melanoma Res doi: 10.1097/CMR.0b013e32832a1e41 – volume: 151 start-page: 1029 year: 2004 ident: 10.1016/j.jaad.2017.08.016_bib10 article-title: Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions publication-title: Br J Dermatol doi: 10.1111/j.1365-2133.2004.06210.x – ident: 10.1016/j.jaad.2017.08.016_bib25 – volume: 141 start-page: 1388 year: 2005 ident: 10.1016/j.jaad.2017.08.016_bib11 article-title: The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma publication-title: Arch Dermatol doi: 10.1001/archderm.141.11.1388 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.jaad.2017.08.016_bib21 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 756 start-page: 813 year: 2016 ident: 10.1016/j.jaad.2017.08.016_bib19 article-title: The study of nevi in children: principles learned and implications for melanoma diagnosis publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2016.03.027 – volume: 10 start-page: 556 year: 2000 ident: 10.1016/j.jaad.2017.08.016_bib23 article-title: Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process publication-title: Melanoma Res doi: 10.1097/00008390-200012000-00007 – volume: 161 start-page: 591 year: 2009 ident: 10.1016/j.jaad.2017.08.016_bib12 article-title: Systematic review of dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of melanoma publication-title: Br J Dermatol doi: 10.1111/j.1365-2133.2009.09093.x – ident: 10.1016/j.jaad.2017.08.016_bib14 – volume: 61 year: 2017 ident: 10.1016/j.jaad.2017.08.016_bib17 article-title: Deep learning ensembles for melanoma recognition in dermoscopy images publication-title: IBM J Res Develop doi: 10.1147/JRD.2017.2708299 – ident: 10.1016/j.jaad.2017.08.016_bib16 – volume: 129 start-page: 11 year: 2009 ident: 10.1016/j.jaad.2017.08.016_bib1 article-title: The complexity of diagnosing melanoma publication-title: J Invest Dermatol doi: 10.1038/jid.2008.388 – volume: 171 start-page: 1099 year: 2014 ident: 10.1016/j.jaad.2017.08.016_bib2 article-title: Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety publication-title: Br J Dermatol doi: 10.1111/bjd.13121 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.jaad.2017.08.016_bib22 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 31 start-page: 362 year: 2007 ident: 10.1016/j.jaad.2017.08.016_bib6 article-title: A methodological approach to the classification of dermoscopy images publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2007.01.003 – ident: 10.1016/j.jaad.2017.08.016_bib18 – year: 2009 ident: 10.1016/j.jaad.2017.08.016_bib20 article-title: Large-scale multimedia semantic concept modeling using robust subspace bagging and MapReduce – volume: 32 start-page: 566 year: 2008 ident: 10.1016/j.jaad.2017.08.016_bib7 article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2008.06.005 – volume: 20 start-page: 212 year: 2010 ident: 10.1016/j.jaad.2017.08.016_bib13 article-title: Evaluation of cutaneous melanoma thickness by digital dermoscopy analysis: a retrospective study publication-title: Melanoma Res doi: 10.1097/CMR.0b013e328335a8ff – volume: 60 start-page: 13 year: 2014 ident: 10.1016/j.jaad.2017.08.016_bib9 article-title: Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists publication-title: Artif Intell Med doi: 10.1016/j.artmed.2013.11.006 – ident: 10.1016/j.jaad.2017.08.016_bib15 – volume: 147 start-page: 188 year: 2011 ident: 10.1016/j.jaad.2017.08.016_bib3 article-title: The performance of MelaFind: a prospective multicenter study publication-title: Arch Dermatol doi: 10.1001/archdermatol.2010.302 – volume: 73 start-page: 769 year: 2015 ident: 10.1016/j.jaad.2017.08.016_bib8 article-title: Computer-aided classification of melanocytic lesions using dermoscopic images publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2015.07.028 – volume: 89 start-page: 342 year: 2000 ident: 10.1016/j.jaad.2017.08.016_bib4 article-title: Patterns of detection in patients with cutaneous melanoma publication-title: Cancer doi: 10.1002/1097-0142(20000715)89:2<342::AID-CNCR19>3.0.CO;2-P |
| SSID | ssj0009437 |
| Score | 2.6468632 |
| Snippet | Computer vision may aid in melanoma detection.
We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic... Computer vision may aid in melanoma detection.BACKGROUNDComputer vision may aid in melanoma detection.We sought to compare melanoma diagnostic accuracy of... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 270 |
| SubjectTerms | Algorithms computer algorithm computer vision Congresses as Topic Cross-Sectional Studies dermatologist Dermatologists Dermoscopy Diagnosis, Computer-Assisted Humans International Skin Imaging Collaboration International Symposium on Biomedical Imaging Lentigo - diagnostic imaging Machine Learning melanoma Melanoma - diagnosis Melanoma - pathology Nevus - diagnostic imaging reader study ROC Curve skin cancer Skin Neoplasms - diagnostic imaging Skin Neoplasms - pathology |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHngcEOW5QJGRuEHY9caxY26woipI5QBU6s2a2A6kymO1SYT2wl_uX6gnL1pABXFM1qOdbL7MTNbzzUfI8yRlOO4UgtABBNyGYZBYZgOZJiCt4rFJkTt89FEcHvMPJ9HJDlmNXBhsqxxifx_Tu2g9nJkPv-Z8nWXzz8iCVmLpa2oPSp8mkcHOJaoYvPrxs81D8XCiTOPqgTjT93idAuC0UCa7MZ6oef7n5PR78XmTXG_LNWy_Q55fSEgHt8mtoZKkb3pn98iOK--Qa0fDXvldcvbJ1W3e1LRKqa_yqHdA0Et_AFJU3qLvi06oiK4uIuLXhdsCu7vagvqP3naMfby5k60ZJVle09UkbDh-MRjTbsBs8dgMIhIU8q_VJmu-FTVtKmoxP3RKuh51NfWFdGdp-z7ArLuGwuVQVgVQZMR0FhVSajJDM--Fq--R44N3X1aHwSDvEJiIySaIBERGwkLFsQJIhbFM-ArCJE4u49QgJdawhVUJ4HgJZ9OYg4EldxFLVcIW4X2yW1ale0ior2F9JQOGh6nkJsS9vmgpbZxIE6skkjPCxvuqzTD7HCU4cj02uZ1qxIJGLGjU5WRiRl5MNut-8seVq8MRLnrktPoorH1iutIqmqwuof6vds9GRGofDnCPB0pXtbVmivsaM1JCzciDHqqT9_7dWqhYhDPycsLuP1zao_908jG54Y_ivsX9CdltNq3b9xVckzztHtFzUEpINA priority: 102 providerName: Elsevier |
| Title | Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0190962217322028 https://dx.doi.org/10.1016/j.jaad.2017.08.016 https://www.ncbi.nlm.nih.gov/pubmed/28969863 https://www.proquest.com/docview/1946435969 http://www.jaad.org/article/S0190962217322028/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1097-6787 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009437 issn: 1097-6787 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1097-6787 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009437 issn: 1097-6787 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1097-6787 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009437 issn: 1097-6787 databaseCode: ACRLP dateStart: 20170601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1097-6787 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009437 issn: 1097-6787 databaseCode: AIKHN dateStart: 20170601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-6787 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009437 issn: 1097-6787 databaseCode: AKRWK dateStart: 19790701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZ2WwnEgfejCCojcYPs1s3DMbdSsepSbYUKFcspmtgOdMmjahKhcuAv8xfw5KWFRctyiqrMJHE79nyp55uPkOdhxLDdKVi2BrAcZdtWqJiyeBQCV8LxZYTc4ZOFN1s5b0_d0z3SChdiVeUZgKo7BNff3eF75DsLb2zQswk_kxAPNyraJ33PNfC7R_qrxbvJp5YWjXbVDqfgllmIeUOUqWu6qkublMertp2ocf73ZHQRbN4g18t0A7tvEMfnEtDRLbJsaTx13cnXg7IID-T3i10drz622-RmA0fppLa7Q_Z0epdcO2k23O-Rn0udl3GR0yyiBipSMyqP_vYvIkX5LnqcVGpHdHo-rP403CVYIlYm1Jx6XdH-MUI6X9nquryi004dsb0xSFluQe7ws2yUKCjEn7PtuviS5LTIqMIkU8nxmtDNqUHjlaeqiwnX1RgSHUOaJUCRVlN5ZMjLWUu6Nk-h8_tkdfTmw3RmNRoRlnQZLyzXA1dyGAnfFwCRJxXzDAyRoeZjP5LIq5VspEQI2KNCq8h3QMLY0S6LRMhG9gPSS7NUPyLUAGEDh0A6dsQdaeOGoTvmyg-59EXo8gFhbbAEsmmgjjoecdBWyp0F-PsGGGABinsyb0BedD6bun3IpdZ2G4NBS4w1S3lgstulXm7n1cCmGg790-9ZG-aBWVNwowhSnZV5wIRjgKqZXWJAHtbx3z29eUH3hO_ZA_KymxBXGNrj_zN_QnrFttRPDeArwiHZP_jBhqQ_OZ7PFnicLz_Oh83E_wUrIlwW |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSgcEG-Wp5G4Qdj1xoljbrCiaqHbA7RSb9bEdiBVHqtNIrQX_jJ_AU9etIAK4riJRzvZfJn5sp6Zj5DnccJw3Cl4vgXwuPF9LzbMeCKJQRjJI51g7_DyMNw75u9PgpMtshh6YbCsso_9XUxvo3V_ZNr_mtNVmk4_YRe0DOeOUztQujR5iVzmwVzgG9irbz_rPCT3x55pXN53znRFXqcAOC6UiXaOJ4qe_zk7_c4-r5GdpljB5itk2ZmMtHuDXO-pJH3TeXuTbNniFrmy7DfLb5PvH23VZHVFy4Q6mkedAyE99w8gRektup-3SkV0cRYSvy7c5Fje1eTUnXrbtuzj3R1t9aDJ8pouRmXD4YtB62YNeoOfda8iQSH7XK7T-kte0bqkBhNEK6XrYFdRx6RbS9MVAqbtNeQ2g6LMgWJLTGtRYk9NqmnqvLDVHXK8--5osef1-g6eDpiovSCEQAuYySiSAEmoDQsdhdCxFfMo0dgTq9nMyBhwvoQ1ScRBw5zbgCUyZjP_LtkuysLeJ9SRWEdlQHM_EVz7uNnnoGCiWOhIxoGYEDbcV6X74eeowZGpocrtVCEWFGJBoTAnCyfkxWiz6kZ_XLjaH-CihqZWF4aVy0wXWgWj1TnY_9Xu2YBI5eIBbvJAYcumUkxyRzIDGcoJuddBdfTevVyHMgr9CXk5YvcfLu3Bfzr5lOzsHS0P1MH-4YeH5Ko7E3X17o_Idr1u7GNH5-r4Sfu4_gDMQktX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELXKVgLxwP2yqEVG4g3SrjcXx30rq1YFqRUqrFSeoontlC25rDaJ0PLT_AIzualQVMpjlJkkTsaes-s5cxh7HSeC2p2C41oAxzOu68RGGEcmMUijvFAnxB0-PgmO5t6HM_9sg_XChVRVeQFg2g7B7bvb_UR8ZxVMET1j-GFC3F2a5BbbDHyE3yO2OT_5uP-lp0WTXbPDqaSDC7HsiDJtTVdzaUx5smnbSRrnf09GV8HmXXanzpew_g5peikBHd5npz2Np607-bZTV_GO_nG1q-PNx_aA3evgKN9v7R6yDZs_YrePuw33x-znqS3rtCp5kXCEihxHFfDf_kXkJN_F32eN2hGfXQ6rPw3XGZWI1RnHU-8a2j9FyOCre12XPT4b1BH7G4PW9Qr0mo51p0TBIT0vVovqa1byquCGkkwjx4uhW3JE442naYsJF80YMptCXmTAiVbTeBTEy1lovsCnsOUTNj88-Dw7cjqNCEf7QlaOH4CvJUxUGCqAJNBGBAhDdGzlNEw08Wq1mBgVA_WosCYJPdAw9awvEhWLifuUjfIit88ZRyCMcAi05ybS0y5tGPpTacJY6lDFvhwz0QdLpLsG6qTjkUZ9pdxFRN83ogCLSNxTBGP2ZvBZtu1DrrV2-xiMemIsLuURZrdrvfzBq4NNLRz6p9-rPswjXFNoowhyW9RlJJSHQBVnlxqzZ238D0-PP9ADFQbumL0dJsQNhvbi_8y32Kha1XYbAV8Vv-ym-C93DVfn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Results+of+the+2016+International+Skin+Imaging+Collaboration+International+Symposium+on+Biomedical+Imaging+challenge%3A+Comparison+of+the+accuracy+of+computer+algorithms+to+dermatologists+for+the+diagnosis+of+melanoma+from+dermoscopic+images&rft.jtitle=Journal+of+the+American+Academy+of+Dermatology&rft.au=Marchetti%2C+Michael+A&rft.au=Codella%2C+Noel+C+F&rft.au=Dusza%2C+Stephen+W&rft.au=Gutman%2C+David+A&rft.date=2018-02-01&rft.eissn=1097-6787&rft.volume=78&rft.issue=2&rft.spage=270&rft_id=info:doi/10.1016%2Fj.jaad.2017.08.016&rft_id=info%3Apmid%2F28969863&rft.externalDocID=28969863 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0190-9622&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0190-9622&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0190-9622&client=summon |