Alzheimer’s Prediction Methods with Harris Hawks Optimization (HHO) and Deep Learning-Based Approach Using an MLP-LSTM Hybrid Network
Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) method...
        Saved in:
      
    
          | Published in | Diagnostics (Basel) Vol. 15; no. 3; p. 377 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        01.02.2025
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2075-4418 2075-4418  | 
| DOI | 10.3390/diagnostics15030377 | 
Cover
| Abstract | Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer’s disease classification. Method: This proposal methodology involves sourcing Alzheimer’s disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer’s disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer’s disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications. | 
    
|---|---|
| AbstractList | Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer’s disease classification. Method: This proposal methodology involves sourcing Alzheimer’s disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer’s disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer’s disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications. Background/Objective: Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer's disease classification. Method: This proposal methodology involves sourcing Alzheimer's disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer's disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer's disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.Background/Objective: Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer's disease classification. Method: This proposal methodology involves sourcing Alzheimer's disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer's disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer's disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications. Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer's disease classification. This proposal methodology involves sourcing Alzheimer's disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer's disease. The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer's disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.  | 
    
| Audience | Academic | 
    
| Author | Rahebi, Javad Ghadami, Raheleh  | 
    
| AuthorAffiliation | 1 Department of Computer Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye; melisarahebi@topkapi.edu.tr 2 Department of Software Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Computer Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye; melisarahebi@topkapi.edu.tr – name: 2 Department of Software Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye  | 
    
| Author_xml | – sequence: 1 givenname: Raheleh surname: Ghadami fullname: Ghadami, Raheleh – sequence: 2 givenname: Javad orcidid: 0000-0001-9875-4860 surname: Rahebi fullname: Rahebi, Javad  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39941306$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkstuEzEUhkeoiJbSJ0BCltiURYod38YrFMollVJSiXY9cuwziduJPbUnROmKHc_A6_EkOEkpLeoCe3Gs4_989rk8L3Z88FAULwk-olTht9bpqQ-pcyYRjimmUj4p9vpY8h5jpNy5d94tDlK6xHkpQss-f1bsUqUYoVjsFT8Gzc0M3Bzir-8_EzqLYJ3pXPDoFLpZsAktXTdDQx2jS9ksrxIat52buxu9kR0Oh-M3SHuLPgC0aAQ6euenvfc6gUWDto1Bmxm6SNmZZeh0dNYbfT0_RcPVJDqLvkC3DPHqRfG01k2Cg1u7X1x8-nh-POyNxp9PjgejnuFEdj1iObNKKyGUMELVE0yV1oZpqSwIDDW1vCypYILXfUu0EYSXUnBaK1UDpnS_ONlybdCXVRvdXMdVFbSrNo4Qp5WOuaoNVIAN1TVnso85m_CJgrLkJcGETkBiwTKLbVkL3-rVUjfNHZDgat2m6pE25bB327B2MZmDNeC7qJsHf3l4492smoZvFSElEaUsM-HwlhDD9QJSV81dMtA02kNYpIoSIfqCMbnO9_U_0suwiD6XeK3iUkjJxV_VVOfEna9DftisodWgpJiwPt2wjh5R5W1h7kyez9pl_4OAV_czvUvxz_hlAd0KTAwpRaj_q4C_AXf_8Is | 
    
| Cites_doi | 10.1016/j.bspc.2021.103217 10.1016/j.compbiomed.2021.105056 10.1007/s43441-021-00373-x 10.1007/s00521-021-05799-w 10.1007/s11356-021-18165-z 10.1186/s13195-022-01067-8 10.1111/pcn.13713 10.1002/ima.22632 10.1016/S1474-4422(21)00066-1 10.3390/s22103696 10.3390/computation11030052 10.1038/s41593-022-01166-7 10.3390/ijms231710020 10.1109/TNSRE.2021.3101240 10.1016/j.neucom.2020.05.087 10.1109/ACCESS.2022.3196649 10.1038/s41598-020-80312-2 10.54097/v6tn2z03 10.1016/j.chemolab.2021.104316 10.1007/s10619-021-07345-y 10.1109/ACCESS.2022.3174601 10.2174/1381612825666191008103141 10.1007/s11042-022-13935-4 10.3390/s22082911 10.1155/2022/6038996 10.1016/j.cmpb.2019.105242 10.1007/s00521-022-07263-9 10.3390/brainsci10020084 10.1007/s00530-021-00797-3 10.1109/ACCESS.2019.2920448 10.3390/app11052187 10.1002/ibra.12181 10.1007/s11277-022-09594-1 10.1093/jnen/nlab005 10.1088/1742-6596/1892/1/012009 10.1002/hbm.25115 10.3390/s20113243 10.1007/s13369-020-05193-z 10.1109/ACCESS.2019.2913847 10.1016/j.eswa.2019.112829 10.3390/brainsci11040453 10.1016/j.future.2019.02.028 10.1016/B978-0-443-13205-6.00009-1 10.1007/978-981-16-7771-7_12 10.3390/molecules25245789 10.1007/s00259-022-05687-y 10.1155/2022/1854718  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025  | 
    
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/diagnostics15030377 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library Research Library (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journal Directory url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2075-4418 | 
    
| ExternalDocumentID | oai_doaj_org_article_e0c3af5472054b5b9e88581013be7064 10.3390/diagnostics15030377 PMC11816878 A830142373 39941306 10_3390_diagnostics15030377  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c517t-1d54d9a96696c69fb039aac4a79de60ef3d58836465f2d1ac61587653f99fe033 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2075-4418 | 
    
| IngestDate | Fri Oct 03 12:43:37 EDT 2025 Sun Oct 26 03:24:38 EDT 2025 Tue Sep 30 17:04:56 EDT 2025 Thu Oct 02 10:28:43 EDT 2025 Mon Jun 30 12:37:25 EDT 2025 Tue Jun 17 22:00:45 EDT 2025 Mon Oct 20 16:56:38 EDT 2025 Thu Apr 03 07:05:18 EDT 2025 Thu Oct 16 04:41:04 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | magnetic resonance images (MRI) Harris Hawks Optimization (HHO) algorithm Alzheimer’s disease convolutional neural network (CNN) LSTM neural network  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c517t-1d54d9a96696c69fb039aac4a79de60ef3d58836465f2d1ac61587653f99fe033 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9875-4860 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics15030377 | 
    
| PMID | 39941306 | 
    
| PQID | 3165767756 | 
    
| PQPubID | 2032410 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e0c3af5472054b5b9e88581013be7064 unpaywall_primary_10_3390_diagnostics15030377 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11816878 proquest_miscellaneous_3166264473 proquest_journals_3165767756 gale_infotracmisc_A830142373 gale_infotracacademiconefile_A830142373 pubmed_primary_39941306 crossref_primary_10_3390_diagnostics15030377  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-02-01 | 
    
| PublicationDateYYYYMMDD | 2025-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Diagnostics (Basel) | 
    
| PublicationTitleAlternate | Diagnostics (Basel) | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | AbdulAzeem (ref_21) 2021; 33 Zhang (ref_26) 2023; 74 Saleh (ref_10) 2022; 34 Buvaneswari (ref_37) 2021; 46 ref_14 ref_13 Feng (ref_49) 2019; 7 ref_19 ref_15 Suresha (ref_46) 2022; 40 Kadhim (ref_35) 2021; 1892 Kabir (ref_5) 2019; 25 ref_22 Pradhan (ref_33) 2021; 10 ref_29 ref_27 Dubois (ref_4) 2021; 20 Napoleon (ref_43) 2022; 126 Heidari (ref_23) 2019; 97 Su (ref_24) 2024; 10 Jiang (ref_11) 2022; 49 Lanjewar (ref_18) 2023; 82 (ref_28) 2022; 10 Bendl (ref_3) 2022; 25 Eroglu (ref_17) 2022; 32 Naz (ref_44) 2022; 28 ref_36 ref_34 Cheng (ref_9) 2022; 2022 ref_31 Cui (ref_20) 2021; 215 ref_30 ref_38 Zhou (ref_16) 2022; 56 Mimura (ref_25) 2024; 78 Khan (ref_47) 2019; 7 Koga (ref_32) 2021; 80 Abuhmed (ref_39) 2020; 412 Minocha (ref_6) 2022; 2022 Habuza (ref_1) 2022; 10 Li (ref_2) 2021; 29 Kaur (ref_7) 2022; 29 Elboushaki (ref_42) 2020; 139 ref_41 ref_40 ref_48 Popuri (ref_45) 2020; 41 ref_8 Park (ref_12) 2022; 14  | 
    
| References_xml | – ident: ref_14 doi: 10.1016/j.bspc.2021.103217 – ident: ref_15 doi: 10.1016/j.compbiomed.2021.105056 – volume: 56 start-page: 561 year: 2022 ident: ref_16 article-title: Application of 3D whole-brain texture analysis and the feature selection method based on within-class scatter in the classification and diagnosis of Alzheimer’s disease publication-title: Ther. Innov. Regul. Sci. doi: 10.1007/s43441-021-00373-x – volume: 10 start-page: 580 year: 2021 ident: ref_33 article-title: Detection of Alzheimer’s disease (AD) in MRI images using deep learning publication-title: Int. J. Eng. Res. Technol – volume: 33 start-page: 10415 year: 2021 ident: ref_21 article-title: A CNN based framework for classification of Alzheimer’s disease publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05799-w – volume: 29 start-page: 26063 year: 2022 ident: ref_7 article-title: Potential of flavonoids as anti-Alzheimer’s agents: Bench to bedside publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-18165-z – volume: 14 start-page: 129 year: 2022 ident: ref_12 article-title: Predicting conversion of brain β-amyloid positivity in amyloid-negative individuals publication-title: Alzheimers. Res. Ther. doi: 10.1186/s13195-022-01067-8 – volume: 78 start-page: 490 year: 2024 ident: ref_25 article-title: Dementia treatment and prevention in the era of 60 million patients: Advancing disease-modifying therapies faster, wider, and deeper publication-title: Psychiatry Clin. Neurosci. doi: 10.1111/pcn.13713 – volume: 32 start-page: 517 year: 2022 ident: ref_17 article-title: mRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22632 – volume: 20 start-page: 484 year: 2021 ident: ref_4 article-title: Clinical diagnosis of Alzheimer’s disease: Recommendations of the International Working Group publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(21)00066-1 – ident: ref_13 doi: 10.3390/s22103696 – ident: ref_41 doi: 10.3390/computation11030052 – volume: 25 start-page: 1366 year: 2022 ident: ref_3 article-title: The three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s disease publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01166-7 – ident: ref_8 doi: 10.3390/ijms231710020 – volume: 29 start-page: 1557 year: 2021 ident: ref_2 article-title: Feature extraction and identification of Alzheimer’s disease based on latent factor of multi-channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3101240 – volume: 412 start-page: 197 year: 2020 ident: ref_39 article-title: Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.087 – volume: 10 start-page: 82989 year: 2022 ident: ref_28 article-title: Classification of brain volumetric data to determine Alzheimer’s disease using artificial bee colony algorithm as feature selector publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3196649 – ident: ref_36 doi: 10.1038/s41598-020-80312-2 – volume: 74 start-page: 706 year: 2023 ident: ref_26 article-title: A General Understanding in Alzheimer’s Disease publication-title: Highlights Sci. Eng. Technol. doi: 10.54097/v6tn2z03 – volume: 215 start-page: 104316 year: 2021 ident: ref_20 article-title: Adaptive LASSO logistic regression based on particle swarm optimization for Alzheimer’s disease early diagnosis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2021.104316 – volume: 40 start-page: 627 year: 2022 ident: ref_46 article-title: Detection of Alzheimer’s disease using grey wolf optimization based clustering algorithm and deep neural network from magnetic resonance images publication-title: Distrib. Parallel Databases doi: 10.1007/s10619-021-07345-y – volume: 10 start-page: 53234 year: 2022 ident: ref_1 article-title: Deviation from model of normal aging in alzheimer’s disease: Application of deep learning to structural MRI data and cognitive tests publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3174601 – volume: 25 start-page: 3519 year: 2019 ident: ref_5 article-title: Cholinesterase inhibitors for Alzheimer’s disease: Multitargeting strategy based on anti-Alzheimer’s drugs repositioning publication-title: Curr. Pharm. Des. doi: 10.2174/1381612825666191008103141 – volume: 82 start-page: 12699 year: 2023 ident: ref_18 article-title: Development of framework by combining CNN with KNN to detect Alzheimer’s disease using MRI images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13935-4 – ident: ref_48 doi: 10.3390/s22082911 – volume: 2022 start-page: 6038996 year: 2022 ident: ref_6 article-title: Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimer’s disease publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2022/6038996 – ident: ref_38 doi: 10.1016/j.cmpb.2019.105242 – volume: 34 start-page: 14487 year: 2022 ident: ref_10 article-title: Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07263-9 – ident: ref_40 doi: 10.3390/brainsci10020084 – volume: 28 start-page: 85 year: 2022 ident: ref_44 article-title: Transfer learning using freeze features for Alzheimer neurological disorder detection using ADNI dataset publication-title: Multimed. Syst. doi: 10.1007/s00530-021-00797-3 – volume: 7 start-page: 72726 year: 2019 ident: ref_47 article-title: Transfer learning with intelligent training data selection for prediction of Alzheimer’s disease publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920448 – ident: ref_31 doi: 10.3390/app11052187 – volume: 10 start-page: 488 year: 2024 ident: ref_24 article-title: Global, regional, and national burdens of Alzheimer’s disease and other forms of dementia in the elderly population from 1999 to 2019: A trend analysis based on the Global Burden of Disease Study 2019 publication-title: ibrain doi: 10.1002/ibra.12181 – volume: 126 start-page: 167 year: 2022 ident: ref_43 article-title: Classifying lung cancer as benign and malignant nodule using ANN of back-propagation algorithm and GLCM feature extraction on chest X-ray images publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-022-09594-1 – volume: 80 start-page: 306 year: 2021 ident: ref_32 article-title: Deep learning-based image classification in differentiating tufted astrocytes, astrocytic plaques, and neuritic plaques publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/nlab005 – volume: 1892 start-page: 12009 year: 2021 ident: ref_35 article-title: Deep learning: Classification and automated detection earlier of Alzheimer’s disease using brain MRI images publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1892/1/012009 – volume: 41 start-page: 4127 year: 2020 ident: ref_45 article-title: Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer’s disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25115 – ident: ref_30 doi: 10.3390/s20113243 – volume: 46 start-page: 5373 year: 2021 ident: ref_37 article-title: Deep learning-based segmentation in classification of Alzheimer’s disease publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-05193-z – volume: 7 start-page: 63605 year: 2019 ident: ref_49 article-title: Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913847 – volume: 139 start-page: 112829 year: 2020 ident: ref_42 article-title: MultiD-CNN: A multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in RGB-D image sequences publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112829 – ident: ref_19 doi: 10.3390/brainsci11040453 – volume: 97 start-page: 849 year: 2019 ident: ref_23 article-title: Harris hawks optimization: Algorithm and applications publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – ident: ref_27 doi: 10.1016/B978-0-443-13205-6.00009-1 – ident: ref_34 doi: 10.1007/978-981-16-7771-7_12 – ident: ref_29 doi: 10.3390/molecules25245789 – ident: ref_22 – volume: 49 start-page: 2163 year: 2022 ident: ref_11 article-title: Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-022-05687-y – volume: 2022 start-page: 1854718 year: 2022 ident: ref_9 article-title: Alzheimer’s Disease Prediction Algorithm Based on Group Convolution and a Joint Loss Function publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/1854718  | 
    
| SSID | ssj0000913825 | 
    
| Score | 2.2977931 | 
    
| Snippet | Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for... Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical... Background/Objective: Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 377 | 
    
| SubjectTerms | Algorithms Alzheimer's disease Brain research Classification Clinical outcomes convolutional neural network (CNN) Dementia Disease Diseases Feature selection Flavonoids Harris Hawks Optimization (HHO) algorithm Hawks Low income groups LSTM neural network Machine learning magnetic resonance images (MRI) Medical diagnosis Medical imaging Medical imaging equipment Memory Methods Neural networks Neuroimaging Swarm intelligence Tissues  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kC3Ujvo1WGUFQwdDczHt5q5YgTVuwhe7CJDNji7fp5T4odeXO3-Df85d4ziS93KigC1eBnEnIzHnMdyZnviHkBbOA2BxkqooFlXIrRKq1yVLrVCaD4VbHNd1yTxZH_MOxOF476gtrwjp64G7gtnzWMBsEVzmAi1rUxmstkJWK1R5eF5lAM23WkqkYgw1y64mOZohBXr_luso15D4GDASBW6nBVBQZ-3-Py2sT069FkzeW7dReXtjJZG1G2rlNbvVQko67Ltwh13x7l1wv-5_l98i38eTLiT8987MfX7_P6cEMJagHWsZjo-cUF2FpYWfg6HC5-Dyn-xBBzvqtmfRVUey_prZ19J33U9pTsX5Kt2Hmc3Tcs5HTWHUAzWi5e5DufjwsaXGJ-8DoXldifp8c7bw_fFuk_bkLaSNGapGOnODOWEiEjGykCXXGjLUNt8o4LzMfmBNaM8mlCLkb2QZQEQRVwYIxwWeMPSAb7XnrHxEKUl3LjDsRJA9W1Q1kQIYH4XMwkOAS8uZKBdW0o9eoIC1BjVV_0FhCtlFNq6bIjR1vgMVUvcVUf7OYhLxEJVfowaDJxvYbEeCLkQurGmtMM3OmWEI2By3B85qh-MpMqt7z5xUbSUjhlBIyIc9XYnwSq9laf76MbSQCUXzFw86qVl0CwIi4Ap7WA3sb9HkoaU9PIi847iGWWumEpCvT_JdRffw_RvUJuZnj0cixoH2TbCxmS_8U8NqifhZd8ycimj2Y priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VVAIuiDeGghYJCZCw6ni9rwNCCbSyUJNG0Eq9WWvvbluROiEPVeXEjd_A3-OXMGM7oQaEOEXyrK2sZ3b2m_XMN4Q8YwYQm4VIVTIvw8RwHiqlo9BYGQmvE6OqM93BUKSHyfsjfrRBhqtaGEyrXPnEylHbSYFn5NusKwAaS8nFm-nnELtG4dfVVQsN07RWsK8rirErZDNGZqwO2ezvDEcf1qcuyIIJMVFNP8Qg3t-2dUYbciIDNgKHLmVri6qY_P_015c2rN-TKa8ty6m5ODfj8aWdavcmudFATNqrbeIW2XDlbXJ10HxEv0O-9cZfTtzpmZv9-Pp9TkczlKB-6KBqJz2neDhLUzMDBwA_55_mdB88y1lTsklfpOn-S2pKS985N6UNRetx2Icd0dJew1JOq2wEGEYHe6Nw7-PBgKYXWB9Gh3Xq-V1yuLtz8DYNm34MYcG7chF2LU-sNhAgaVEI7fOIaWOKxEhtnYicZ5YrxUQiuI9t1xSAlsDZcua19i5i7B7plJPSPSAUpCoXUWK5F4k3Mi8gMtKJ5y4Gw_E2IK9WKsimNe1GBuEKaiz7i8YC0kc1rYciZ3Z1YTI7zpolmLmoYMbzRMYAU3Oea6cUR34zljswzCQgz1HJGa5s0GRhmgIF-MfIkZX1FIafMZMsIFutkbAii7Z4ZSZZ4xHm2S_7DcjTtRjvxCy30k2W1RiBABUfcb-2qvWUAEgi3oC7VcveWnNuS8rTk4ovHGuLhZIqIOHaNP_nrT789zwekesxNkOuUti3SGcxW7rHgNAW-ZNm2f0EhZQ8vw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYglYAL78dCQUZCAiS2bOL165gC1Qo1aSRaqZxW3rVNq6bbKA9V7Ykbv4G_xy9hZteNsgWkcoqUGUexPZ75ZnfmMyGvmAHEZiFTlczLODWcx0rpJDZWJsLr1Kj6me5gKLK99PM-3w8829gLs_L-nkE6_t42BWdIWQzQBfytlNfJmuAAvDtkbW846n_F6-Mg8MUQ2FXDK_Svka3YU1P0_-mIVyLR5SrJm4tqYs5OzXi8EoK27jS93bOauRArT442FvNiozy_xOt4xdndJbcDFKX9xnbukWuuuk9uDMLL9gfkR398fuAOj9301_efMzqaogT3kQ7qa6dnFB_i0sxMwVHAx-nRjO6ABzoOrZ30TZbtvKWmsvSjcxMaqFy_xZsQOS3tBzZzWlctgBodbI_i7S-7A5qdYR8ZHTYl6g_J3tan3Q9ZHO5tiEvelfO4a3lqtYFESotSaF8kTBtTpkZq60TiPLNcKSZSwX3Pdk0JqAqcMmdea-8Sxh6RTnVSuSeEglQVIkkt9yL1RhYlZFA69dz1wMC8jci7ix3NJw09Rw5pDS5u_pfFjcgm7vpSFbm16y9gU_JwVHOXlMx4nsoewNmCF9opxZEHjRUODDiNyGu0mRw9ABhGaUIjA_xj5NLK-wrT1B6TLCLrLU04uWVbfGF1efAcs5x1BaSAUnIRkZdLMY7EarjKnSxqHYFAFn_icWOkyykB4ERcAqNVy3xbc25LqsODmlcce5CFkioi8dLSr7KqT_9T_xm51cNblOva93XSmU8X7jlAu3nxIhzp3ymuTXY priority: 102 providerName: Unpaywall  | 
    
| Title | Alzheimer’s Prediction Methods with Harris Hawks Optimization (HHO) and Deep Learning-Based Approach Using an MLP-LSTM Hybrid Network | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39941306 https://www.proquest.com/docview/3165767756 https://www.proquest.com/docview/3166264473 https://pubmed.ncbi.nlm.nih.gov/PMC11816878 https://doi.org/10.3390/diagnostics15030377 https://doaj.org/article/e0c3af5472054b5b9e88581013be7064  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Journal Directory customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF6VVgIuiH8MJVokJEDC4Hi9fweEEmhloTqNoJHKyVrb67YidYKTqIQTN56B1-NJmLGdqIYiwcmSZ23ZntmZb9az3xDymBlAbBlkqpLl0g0M565S2nNNJj2R68Coak03GohwFLw75IcbZNUVtfmAswtTO-wnNSrHL758Xr6GCf8KM05I2V9mdVEa0hoDvAGfLOUlsgWhSmMvh6jB-5Vr1ki5h2WNPoRKF6CAqpmI_nafVrSqSP3_dN3nYtfvdZVXFsXULM_MeHwuaO1eJ9catEl7tXncIBu2uEkuR83_9Fvke2_89dienNry57cfMzosUYKqolHVWXpGcZ2WhqYEXwCHs08zug9O5rTZvUmfhuH-M2qKjL61dkobttYjtw_BMaO9hrCcVoUJMIxGe0N378NBRMMlbhWjg7oK_TYZ7e4cvAndpjWDm_KunLvdjAeZNpAraZEKnSce08akgZE6s8KzOcu4UkwEgud-1jUpACfwu5zlWufWY-wO2Swmhb1HKEhVIrwg47kIciOTFJIkHeTc-mBDeeaQ5ysVxNOagSOGzAU1Fl-gMYf0UU3roUifXZ2YlEdxMxtj66XM5DyQPiDWhCfaKsWR6owlFmw0cMgTVHKMZgeaTE2zVwGeGOmy4p7CTNRnkjlkuzUSJmfaFq_MJF7Zdsy6ArI8KblwyKO1GK_EgrfCThbVGIFYFW9xt7aq9SsBpkToAVerlr213rktKU6OK-pw3GYslFQOcdem-S9f9f7_KeEBuepjn-Squn2bbM7LhX0I4G2edMhWf2cwfN-pFj861fSEc6PBsPfxFw6VR3A | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VrUS5IP4xFFgkECBh1fH-eQ8VSmgrlyZpBKnUm1l7121F6oT8KConbjwDL8PD8CTMOE5oACEuPUXyrq2sZ3bmm_XMN4Q8ZQYQm4VIVbFc-dwI4UeRDnxjVSBzzU1Unum22jI-5G-PxNEK-T6vhcG0yrlNLA217Wd4Rr7JahKgsVJCvh588rFrFH5dnbfQMFVrBbtVUoxVhR377nwKIdxoa28b5P0sDHd3um9iv-oy4GeipsZ-zQputQHYr2UmdZ4GTBuTcaO0dTJwObMiipjkUuShrZkMMACYEMFyrXMX4IEouIA1zriG4G-tsdPuvFuc8iDrJsRgM7ojxnSwaWcZdMjBDFgMHIhSSy6x7Bzwp3-44CB_T95cnxQDcz41vd4Fz7h7nVyrIC2tz3TwBllxxU1ypVV9tL9FvtZ7n0_c6Zkb_vjybUQ7QxxBfaCtsn31iOJhMI3NEAwO_Ew_jugBWLKzqkSUvojjg5fUFJZuOzegFSXssd8AD2xpvWJFp2X2A0yjrWbHb77vtmh8jvVotD1Ldb9NDi9FMnfIatEv3D1CYTRKZcCtyCXPjUoziMQ0z4ULQVFz65FXcxEkgxnNRwLhEUos-YvEPNJAMS2mIkd3eaE_PE6qLZ-4IGMmF1yFAItTkWoXRQL51FjqYCNwjzxHISdoSUCSmakKIuAfIydXUo8w3A2ZYh7ZWJoJFiBbHp6rSVJZoFHya7945MliGO_ErLrC9SflHImAGB9xd6ZViyUBcEV8A3dHS_q2tOblkeL0pOQnx1pmGanII_5CNf_nrd7_9zoek_W422omzb32_gNyNcRGzGX6_AZZHQ8n7iGgw3H6qNqClHy47F3_E_w2eRE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqVipcEP8EChgJBEisslmv7d1DhRLSKKVJGkEr9bZ413ZbkW5CfhSVEzeegVfiMXgSZnad0ABCXHqKFHujeOd_PPMNIU-ZAo9NQ6QqmZVeqDj3oij2PaWlL2wcqqjI6XZ7on0Yvj3iR2vk-6IXBssqFzqxUNR6mGGOvMpqAlxjKbmoWlcW0W-2Xo8-eThBCm9aF-M0lBuzoLcLuDHX5LFnzucQzk22d5tA-2dB0No5eNP23MQBL-M1OfVqmoc6VhACxCITsU19FiuVhUrG2gjfWKZ5FDERCm4DXVMZ-AOgTjizcWyNj8lRMAcbePkFSmKjsdPrv1tmfBCBE-KxEvqIsdiv6rKaDvGYwS8DYyLlinkspgj8aSsuGMvfCzmvzPKROp-rweCClWxdJ9ece0vrJT_eIGsmv0k2u-4C_xb5Wh98PjGnZ2b848u3Ce2PcQV5g3aLUdYTiolh2lZjUD7wMf84ofug1c5cuyh90W7vv6Qq17RpzIg6eNhjrwHWWNO6Q0inRSUEbKPdTt_rvD_o0vY59qbRXln2fpscXgpl7pD1fJibe4TCapQKP9TcitAqmWYQlcWh5SYAprW6Ql4tSJCMSsiPBEIlpFjyF4pVSAPJtNyKeN3FF8PxceLEPzF-xpTloQzARU55Gpso4oitxlIDQhFWyHMkcoJaBSiZKdccAf8Y8bmSeoShb8Akq5CtlZ2gDbLV5QWbJE4bTZJfslMhT5bL-CRW2OVmOCv2CHSO8Sfully1PBI4sejrwNPRCr-tnHl1JT89KbDKsa9ZRDKqEG_Jmv_zVu__-xyPySZIf9LZ7e09IFcDnMlcVNJvkfXpeGYegqM4TR85CaTkw2UL_U9zOH1A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYglYAL78dCQUZCAiS2bOL165gC1Qo1aSRaqZxW3rVNq6bbKA9V7Ykbv4G_xy9hZteNsgWkcoqUGUexPZ75ZnfmMyGvmAHEZiFTlczLODWcx0rpJDZWJsLr1Kj6me5gKLK99PM-3w8829gLs_L-nkE6_t42BWdIWQzQBfytlNfJmuAAvDtkbW846n_F6-Mg8MUQ2FXDK_Svka3YU1P0_-mIVyLR5SrJm4tqYs5OzXi8EoK27jS93bOauRArT442FvNiozy_xOt4xdndJbcDFKX9xnbukWuuuk9uDMLL9gfkR398fuAOj9301_efMzqaogT3kQ7qa6dnFB_i0sxMwVHAx-nRjO6ABzoOrZ30TZbtvKWmsvSjcxMaqFy_xZsQOS3tBzZzWlctgBodbI_i7S-7A5qdYR8ZHTYl6g_J3tan3Q9ZHO5tiEvelfO4a3lqtYFESotSaF8kTBtTpkZq60TiPLNcKSZSwX3Pdk0JqAqcMmdea-8Sxh6RTnVSuSeEglQVIkkt9yL1RhYlZFA69dz1wMC8jci7ix3NJw09Rw5pDS5u_pfFjcgm7vpSFbm16y9gU_JwVHOXlMx4nsoewNmCF9opxZEHjRUODDiNyGu0mRw9ABhGaUIjA_xj5NLK-wrT1B6TLCLrLU04uWVbfGF1efAcs5x1BaSAUnIRkZdLMY7EarjKnSxqHYFAFn_icWOkyykB4ERcAqNVy3xbc25LqsODmlcce5CFkioi8dLSr7KqT_9T_xm51cNblOva93XSmU8X7jlAu3nxIhzp3ymuTXY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s+Prediction+Methods+with+Harris+Hawks+Optimization+%28HHO%29+and+Deep+Learning-Based+Approach+Using+an+MLP-LSTM+Hybrid+Network&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Ghadami%2C+Raheleh&rft.au=Rahebi%2C+Javad&rft.date=2025-02-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=3&rft.spage=377&rft_id=info:doi/10.3390%2Fdiagnostics15030377&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics15030377 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |