Alzheimer’s Prediction Methods with Harris Hawks Optimization (HHO) and Deep Learning-Based Approach Using an MLP-LSTM Hybrid Network

Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) method...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 15; no. 3; p. 377
Main Authors Ghadami, Raheleh, Rahebi, Javad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2025
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics15030377

Cover

Abstract Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer’s disease classification. Method: This proposal methodology involves sourcing Alzheimer’s disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer’s disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer’s disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.
AbstractList Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer’s disease classification. Method: This proposal methodology involves sourcing Alzheimer’s disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer’s disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer’s disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.
Background/Objective: Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer's disease classification. Method: This proposal methodology involves sourcing Alzheimer's disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer's disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer's disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.Background/Objective: Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer's disease classification. Method: This proposal methodology involves sourcing Alzheimer's disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer's disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer's disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.
Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer's disease classification. This proposal methodology involves sourcing Alzheimer's disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer's disease. The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer's disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.
Audience Academic
Author Rahebi, Javad
Ghadami, Raheleh
AuthorAffiliation 1 Department of Computer Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye; melisarahebi@topkapi.edu.tr
2 Department of Software Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye
AuthorAffiliation_xml – name: 1 Department of Computer Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye; melisarahebi@topkapi.edu.tr
– name: 2 Department of Software Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye
Author_xml – sequence: 1
  givenname: Raheleh
  surname: Ghadami
  fullname: Ghadami, Raheleh
– sequence: 2
  givenname: Javad
  orcidid: 0000-0001-9875-4860
  surname: Rahebi
  fullname: Rahebi, Javad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39941306$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhkeoiJbSJ0BCltiURYod38YrFMollVJSiXY9cuwziduJPbUnROmKHc_A6_EkOEkpLeoCe3Gs4_989rk8L3Z88FAULwk-olTht9bpqQ-pcyYRjimmUj4p9vpY8h5jpNy5d94tDlK6xHkpQss-f1bsUqUYoVjsFT8Gzc0M3Bzir-8_EzqLYJ3pXPDoFLpZsAktXTdDQx2jS9ksrxIat52buxu9kR0Oh-M3SHuLPgC0aAQ6euenvfc6gUWDto1Bmxm6SNmZZeh0dNYbfT0_RcPVJDqLvkC3DPHqRfG01k2Cg1u7X1x8-nh-POyNxp9PjgejnuFEdj1iObNKKyGUMELVE0yV1oZpqSwIDDW1vCypYILXfUu0EYSXUnBaK1UDpnS_ONlybdCXVRvdXMdVFbSrNo4Qp5WOuaoNVIAN1TVnso85m_CJgrLkJcGETkBiwTKLbVkL3-rVUjfNHZDgat2m6pE25bB327B2MZmDNeC7qJsHf3l4492smoZvFSElEaUsM-HwlhDD9QJSV81dMtA02kNYpIoSIfqCMbnO9_U_0suwiD6XeK3iUkjJxV_VVOfEna9DftisodWgpJiwPt2wjh5R5W1h7kyez9pl_4OAV_czvUvxz_hlAd0KTAwpRaj_q4C_AXf_8Is
Cites_doi 10.1016/j.bspc.2021.103217
10.1016/j.compbiomed.2021.105056
10.1007/s43441-021-00373-x
10.1007/s00521-021-05799-w
10.1007/s11356-021-18165-z
10.1186/s13195-022-01067-8
10.1111/pcn.13713
10.1002/ima.22632
10.1016/S1474-4422(21)00066-1
10.3390/s22103696
10.3390/computation11030052
10.1038/s41593-022-01166-7
10.3390/ijms231710020
10.1109/TNSRE.2021.3101240
10.1016/j.neucom.2020.05.087
10.1109/ACCESS.2022.3196649
10.1038/s41598-020-80312-2
10.54097/v6tn2z03
10.1016/j.chemolab.2021.104316
10.1007/s10619-021-07345-y
10.1109/ACCESS.2022.3174601
10.2174/1381612825666191008103141
10.1007/s11042-022-13935-4
10.3390/s22082911
10.1155/2022/6038996
10.1016/j.cmpb.2019.105242
10.1007/s00521-022-07263-9
10.3390/brainsci10020084
10.1007/s00530-021-00797-3
10.1109/ACCESS.2019.2920448
10.3390/app11052187
10.1002/ibra.12181
10.1007/s11277-022-09594-1
10.1093/jnen/nlab005
10.1088/1742-6596/1892/1/012009
10.1002/hbm.25115
10.3390/s20113243
10.1007/s13369-020-05193-z
10.1109/ACCESS.2019.2913847
10.1016/j.eswa.2019.112829
10.3390/brainsci11040453
10.1016/j.future.2019.02.028
10.1016/B978-0-443-13205-6.00009-1
10.1007/978-981-16-7771-7_12
10.3390/molecules25245789
10.1007/s00259-022-05687-y
10.1155/2022/1854718
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics15030377
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journal Directory
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_e0c3af5472054b5b9e88581013be7064
10.3390/diagnostics15030377
PMC11816878
A830142373
39941306
10_3390_diagnostics15030377
Genre Journal Article
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c517t-1d54d9a96696c69fb039aac4a79de60ef3d58836465f2d1ac61587653f99fe033
IEDL.DBID M48
ISSN 2075-4418
IngestDate Fri Oct 03 12:43:37 EDT 2025
Sun Oct 26 03:24:38 EDT 2025
Tue Sep 30 17:04:56 EDT 2025
Thu Oct 02 10:28:43 EDT 2025
Mon Jun 30 12:37:25 EDT 2025
Tue Jun 17 22:00:45 EDT 2025
Mon Oct 20 16:56:38 EDT 2025
Thu Apr 03 07:05:18 EDT 2025
Thu Oct 16 04:41:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords magnetic resonance images (MRI)
Harris Hawks Optimization (HHO) algorithm
Alzheimer’s disease
convolutional neural network (CNN)
LSTM neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-1d54d9a96696c69fb039aac4a79de60ef3d58836465f2d1ac61587653f99fe033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9875-4860
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics15030377
PMID 39941306
PQID 3165767756
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_e0c3af5472054b5b9e88581013be7064
unpaywall_primary_10_3390_diagnostics15030377
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11816878
proquest_miscellaneous_3166264473
proquest_journals_3165767756
gale_infotracmisc_A830142373
gale_infotracacademiconefile_A830142373
pubmed_primary_39941306
crossref_primary_10_3390_diagnostics15030377
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References AbdulAzeem (ref_21) 2021; 33
Zhang (ref_26) 2023; 74
Saleh (ref_10) 2022; 34
Buvaneswari (ref_37) 2021; 46
ref_14
ref_13
Feng (ref_49) 2019; 7
ref_19
ref_15
Suresha (ref_46) 2022; 40
Kadhim (ref_35) 2021; 1892
Kabir (ref_5) 2019; 25
ref_22
Pradhan (ref_33) 2021; 10
ref_29
ref_27
Dubois (ref_4) 2021; 20
Napoleon (ref_43) 2022; 126
Heidari (ref_23) 2019; 97
Su (ref_24) 2024; 10
Jiang (ref_11) 2022; 49
Lanjewar (ref_18) 2023; 82
(ref_28) 2022; 10
Bendl (ref_3) 2022; 25
Eroglu (ref_17) 2022; 32
Naz (ref_44) 2022; 28
ref_36
ref_34
Cheng (ref_9) 2022; 2022
ref_31
Cui (ref_20) 2021; 215
ref_30
ref_38
Zhou (ref_16) 2022; 56
Mimura (ref_25) 2024; 78
Khan (ref_47) 2019; 7
Koga (ref_32) 2021; 80
Abuhmed (ref_39) 2020; 412
Minocha (ref_6) 2022; 2022
Habuza (ref_1) 2022; 10
Li (ref_2) 2021; 29
Kaur (ref_7) 2022; 29
Elboushaki (ref_42) 2020; 139
ref_41
ref_40
ref_48
Popuri (ref_45) 2020; 41
ref_8
Park (ref_12) 2022; 14
References_xml – ident: ref_14
  doi: 10.1016/j.bspc.2021.103217
– ident: ref_15
  doi: 10.1016/j.compbiomed.2021.105056
– volume: 56
  start-page: 561
  year: 2022
  ident: ref_16
  article-title: Application of 3D whole-brain texture analysis and the feature selection method based on within-class scatter in the classification and diagnosis of Alzheimer’s disease
  publication-title: Ther. Innov. Regul. Sci.
  doi: 10.1007/s43441-021-00373-x
– volume: 10
  start-page: 580
  year: 2021
  ident: ref_33
  article-title: Detection of Alzheimer’s disease (AD) in MRI images using deep learning
  publication-title: Int. J. Eng. Res. Technol
– volume: 33
  start-page: 10415
  year: 2021
  ident: ref_21
  article-title: A CNN based framework for classification of Alzheimer’s disease
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05799-w
– volume: 29
  start-page: 26063
  year: 2022
  ident: ref_7
  article-title: Potential of flavonoids as anti-Alzheimer’s agents: Bench to bedside
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-18165-z
– volume: 14
  start-page: 129
  year: 2022
  ident: ref_12
  article-title: Predicting conversion of brain β-amyloid positivity in amyloid-negative individuals
  publication-title: Alzheimers. Res. Ther.
  doi: 10.1186/s13195-022-01067-8
– volume: 78
  start-page: 490
  year: 2024
  ident: ref_25
  article-title: Dementia treatment and prevention in the era of 60 million patients: Advancing disease-modifying therapies faster, wider, and deeper
  publication-title: Psychiatry Clin. Neurosci.
  doi: 10.1111/pcn.13713
– volume: 32
  start-page: 517
  year: 2022
  ident: ref_17
  article-title: mRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22632
– volume: 20
  start-page: 484
  year: 2021
  ident: ref_4
  article-title: Clinical diagnosis of Alzheimer’s disease: Recommendations of the International Working Group
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(21)00066-1
– ident: ref_13
  doi: 10.3390/s22103696
– ident: ref_41
  doi: 10.3390/computation11030052
– volume: 25
  start-page: 1366
  year: 2022
  ident: ref_3
  article-title: The three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s disease
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01166-7
– ident: ref_8
  doi: 10.3390/ijms231710020
– volume: 29
  start-page: 1557
  year: 2021
  ident: ref_2
  article-title: Feature extraction and identification of Alzheimer’s disease based on latent factor of multi-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3101240
– volume: 412
  start-page: 197
  year: 2020
  ident: ref_39
  article-title: Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.087
– volume: 10
  start-page: 82989
  year: 2022
  ident: ref_28
  article-title: Classification of brain volumetric data to determine Alzheimer’s disease using artificial bee colony algorithm as feature selector
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196649
– ident: ref_36
  doi: 10.1038/s41598-020-80312-2
– volume: 74
  start-page: 706
  year: 2023
  ident: ref_26
  article-title: A General Understanding in Alzheimer’s Disease
  publication-title: Highlights Sci. Eng. Technol.
  doi: 10.54097/v6tn2z03
– volume: 215
  start-page: 104316
  year: 2021
  ident: ref_20
  article-title: Adaptive LASSO logistic regression based on particle swarm optimization for Alzheimer’s disease early diagnosis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104316
– volume: 40
  start-page: 627
  year: 2022
  ident: ref_46
  article-title: Detection of Alzheimer’s disease using grey wolf optimization based clustering algorithm and deep neural network from magnetic resonance images
  publication-title: Distrib. Parallel Databases
  doi: 10.1007/s10619-021-07345-y
– volume: 10
  start-page: 53234
  year: 2022
  ident: ref_1
  article-title: Deviation from model of normal aging in alzheimer’s disease: Application of deep learning to structural MRI data and cognitive tests
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3174601
– volume: 25
  start-page: 3519
  year: 2019
  ident: ref_5
  article-title: Cholinesterase inhibitors for Alzheimer’s disease: Multitargeting strategy based on anti-Alzheimer’s drugs repositioning
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612825666191008103141
– volume: 82
  start-page: 12699
  year: 2023
  ident: ref_18
  article-title: Development of framework by combining CNN with KNN to detect Alzheimer’s disease using MRI images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13935-4
– ident: ref_48
  doi: 10.3390/s22082911
– volume: 2022
  start-page: 6038996
  year: 2022
  ident: ref_6
  article-title: Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimer’s disease
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2022/6038996
– ident: ref_38
  doi: 10.1016/j.cmpb.2019.105242
– volume: 34
  start-page: 14487
  year: 2022
  ident: ref_10
  article-title: Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07263-9
– ident: ref_40
  doi: 10.3390/brainsci10020084
– volume: 28
  start-page: 85
  year: 2022
  ident: ref_44
  article-title: Transfer learning using freeze features for Alzheimer neurological disorder detection using ADNI dataset
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-021-00797-3
– volume: 7
  start-page: 72726
  year: 2019
  ident: ref_47
  article-title: Transfer learning with intelligent training data selection for prediction of Alzheimer’s disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920448
– ident: ref_31
  doi: 10.3390/app11052187
– volume: 10
  start-page: 488
  year: 2024
  ident: ref_24
  article-title: Global, regional, and national burdens of Alzheimer’s disease and other forms of dementia in the elderly population from 1999 to 2019: A trend analysis based on the Global Burden of Disease Study 2019
  publication-title: ibrain
  doi: 10.1002/ibra.12181
– volume: 126
  start-page: 167
  year: 2022
  ident: ref_43
  article-title: Classifying lung cancer as benign and malignant nodule using ANN of back-propagation algorithm and GLCM feature extraction on chest X-ray images
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-022-09594-1
– volume: 80
  start-page: 306
  year: 2021
  ident: ref_32
  article-title: Deep learning-based image classification in differentiating tufted astrocytes, astrocytic plaques, and neuritic plaques
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/nlab005
– volume: 1892
  start-page: 12009
  year: 2021
  ident: ref_35
  article-title: Deep learning: Classification and automated detection earlier of Alzheimer’s disease using brain MRI images
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1892/1/012009
– volume: 41
  start-page: 4127
  year: 2020
  ident: ref_45
  article-title: Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer’s disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25115
– ident: ref_30
  doi: 10.3390/s20113243
– volume: 46
  start-page: 5373
  year: 2021
  ident: ref_37
  article-title: Deep learning-based segmentation in classification of Alzheimer’s disease
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-05193-z
– volume: 7
  start-page: 63605
  year: 2019
  ident: ref_49
  article-title: Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913847
– volume: 139
  start-page: 112829
  year: 2020
  ident: ref_42
  article-title: MultiD-CNN: A multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in RGB-D image sequences
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112829
– ident: ref_19
  doi: 10.3390/brainsci11040453
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_23
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– ident: ref_27
  doi: 10.1016/B978-0-443-13205-6.00009-1
– ident: ref_34
  doi: 10.1007/978-981-16-7771-7_12
– ident: ref_29
  doi: 10.3390/molecules25245789
– ident: ref_22
– volume: 49
  start-page: 2163
  year: 2022
  ident: ref_11
  article-title: Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-022-05687-y
– volume: 2022
  start-page: 1854718
  year: 2022
  ident: ref_9
  article-title: Alzheimer’s Disease Prediction Algorithm Based on Group Convolution and a Joint Loss Function
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/1854718
SSID ssj0000913825
Score 2.2977931
Snippet Background/Objective: Alzheimer’s disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for...
Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical...
Background/Objective: Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 377
SubjectTerms Algorithms
Alzheimer's disease
Brain research
Classification
Clinical outcomes
convolutional neural network (CNN)
Dementia
Disease
Diseases
Feature selection
Flavonoids
Harris Hawks Optimization (HHO) algorithm
Hawks
Low income groups
LSTM neural network
Machine learning
magnetic resonance images (MRI)
Medical diagnosis
Medical imaging
Medical imaging equipment
Memory
Methods
Neural networks
Neuroimaging
Swarm intelligence
Tissues
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kC3Ujvo1WGUFQwdDczHt5q5YgTVuwhe7CJDNji7fp5T4odeXO3-Df85d4ziS93KigC1eBnEnIzHnMdyZnviHkBbOA2BxkqooFlXIrRKq1yVLrVCaD4VbHNd1yTxZH_MOxOF476gtrwjp64G7gtnzWMBsEVzmAi1rUxmstkJWK1R5eF5lAM23WkqkYgw1y64mOZohBXr_luso15D4GDASBW6nBVBQZ-3-Py2sT069FkzeW7dReXtjJZG1G2rlNbvVQko67Ltwh13x7l1wv-5_l98i38eTLiT8987MfX7_P6cEMJagHWsZjo-cUF2FpYWfg6HC5-Dyn-xBBzvqtmfRVUey_prZ19J33U9pTsX5Kt2Hmc3Tcs5HTWHUAzWi5e5DufjwsaXGJ-8DoXldifp8c7bw_fFuk_bkLaSNGapGOnODOWEiEjGykCXXGjLUNt8o4LzMfmBNaM8mlCLkb2QZQEQRVwYIxwWeMPSAb7XnrHxEKUl3LjDsRJA9W1Q1kQIYH4XMwkOAS8uZKBdW0o9eoIC1BjVV_0FhCtlFNq6bIjR1vgMVUvcVUf7OYhLxEJVfowaDJxvYbEeCLkQurGmtMM3OmWEI2By3B85qh-MpMqt7z5xUbSUjhlBIyIc9XYnwSq9laf76MbSQCUXzFw86qVl0CwIi4Ap7WA3sb9HkoaU9PIi847iGWWumEpCvT_JdRffw_RvUJuZnj0cixoH2TbCxmS_8U8NqifhZd8ycimj2Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VVAIuiDeGghYJCZCw6ni9rwNCCbSyUJNG0Eq9WWvvbluROiEPVeXEjd_A3-OXMGM7oQaEOEXyrK2sZ3b2m_XMN4Q8YwYQm4VIVTIvw8RwHiqlo9BYGQmvE6OqM93BUKSHyfsjfrRBhqtaGEyrXPnEylHbSYFn5NusKwAaS8nFm-nnELtG4dfVVQsN07RWsK8rirErZDNGZqwO2ezvDEcf1qcuyIIJMVFNP8Qg3t-2dUYbciIDNgKHLmVri6qY_P_015c2rN-TKa8ty6m5ODfj8aWdavcmudFATNqrbeIW2XDlbXJ10HxEv0O-9cZfTtzpmZv9-Pp9TkczlKB-6KBqJz2neDhLUzMDBwA_55_mdB88y1lTsklfpOn-S2pKS985N6UNRetx2Icd0dJew1JOq2wEGEYHe6Nw7-PBgKYXWB9Gh3Xq-V1yuLtz8DYNm34MYcG7chF2LU-sNhAgaVEI7fOIaWOKxEhtnYicZ5YrxUQiuI9t1xSAlsDZcua19i5i7B7plJPSPSAUpCoXUWK5F4k3Mi8gMtKJ5y4Gw_E2IK9WKsimNe1GBuEKaiz7i8YC0kc1rYciZ3Z1YTI7zpolmLmoYMbzRMYAU3Oea6cUR34zljswzCQgz1HJGa5s0GRhmgIF-MfIkZX1FIafMZMsIFutkbAii7Z4ZSZZ4xHm2S_7DcjTtRjvxCy30k2W1RiBABUfcb-2qvWUAEgi3oC7VcveWnNuS8rTk4ovHGuLhZIqIOHaNP_nrT789zwekesxNkOuUti3SGcxW7rHgNAW-ZNm2f0EhZQ8vw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYglYAL78dCQUZCAiS2bOL165gC1Qo1aSRaqZxW3rVNq6bbKA9V7Ykbv4G_xy9hZteNsgWkcoqUGUexPZ75ZnfmMyGvmAHEZiFTlczLODWcx0rpJDZWJsLr1Kj6me5gKLK99PM-3w8829gLs_L-nkE6_t42BWdIWQzQBfytlNfJmuAAvDtkbW846n_F6-Mg8MUQ2FXDK_Svka3YU1P0_-mIVyLR5SrJm4tqYs5OzXi8EoK27jS93bOauRArT442FvNiozy_xOt4xdndJbcDFKX9xnbukWuuuk9uDMLL9gfkR398fuAOj9301_efMzqaogT3kQ7qa6dnFB_i0sxMwVHAx-nRjO6ABzoOrZ30TZbtvKWmsvSjcxMaqFy_xZsQOS3tBzZzWlctgBodbI_i7S-7A5qdYR8ZHTYl6g_J3tan3Q9ZHO5tiEvelfO4a3lqtYFESotSaF8kTBtTpkZq60TiPLNcKSZSwX3Pdk0JqAqcMmdea-8Sxh6RTnVSuSeEglQVIkkt9yL1RhYlZFA69dz1wMC8jci7ix3NJw09Rw5pDS5u_pfFjcgm7vpSFbm16y9gU_JwVHOXlMx4nsoewNmCF9opxZEHjRUODDiNyGu0mRw9ABhGaUIjA_xj5NLK-wrT1B6TLCLrLU04uWVbfGF1efAcs5x1BaSAUnIRkZdLMY7EarjKnSxqHYFAFn_icWOkyykB4ERcAqNVy3xbc25LqsODmlcce5CFkioi8dLSr7KqT_9T_xm51cNblOva93XSmU8X7jlAu3nxIhzp3ymuTXY
  priority: 102
  providerName: Unpaywall
Title Alzheimer’s Prediction Methods with Harris Hawks Optimization (HHO) and Deep Learning-Based Approach Using an MLP-LSTM Hybrid Network
URI https://www.ncbi.nlm.nih.gov/pubmed/39941306
https://www.proquest.com/docview/3165767756
https://www.proquest.com/docview/3166264473
https://pubmed.ncbi.nlm.nih.gov/PMC11816878
https://doi.org/10.3390/diagnostics15030377
https://doaj.org/article/e0c3af5472054b5b9e88581013be7064
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Journal Directory
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF6VVgIuiH8MJVokJEDC4Hi9fweEEmhloTqNoJHKyVrb67YidYKTqIQTN56B1-NJmLGdqIYiwcmSZ23ZntmZb9az3xDymBlAbBlkqpLl0g0M565S2nNNJj2R68Coak03GohwFLw75IcbZNUVtfmAswtTO-wnNSrHL758Xr6GCf8KM05I2V9mdVEa0hoDvAGfLOUlsgWhSmMvh6jB-5Vr1ki5h2WNPoRKF6CAqpmI_nafVrSqSP3_dN3nYtfvdZVXFsXULM_MeHwuaO1eJ9catEl7tXncIBu2uEkuR83_9Fvke2_89dienNry57cfMzosUYKqolHVWXpGcZ2WhqYEXwCHs08zug9O5rTZvUmfhuH-M2qKjL61dkobttYjtw_BMaO9hrCcVoUJMIxGe0N378NBRMMlbhWjg7oK_TYZ7e4cvAndpjWDm_KunLvdjAeZNpAraZEKnSce08akgZE6s8KzOcu4UkwEgud-1jUpACfwu5zlWufWY-wO2Swmhb1HKEhVIrwg47kIciOTFJIkHeTc-mBDeeaQ5ysVxNOagSOGzAU1Fl-gMYf0UU3roUifXZ2YlEdxMxtj66XM5DyQPiDWhCfaKsWR6owlFmw0cMgTVHKMZgeaTE2zVwGeGOmy4p7CTNRnkjlkuzUSJmfaFq_MJF7Zdsy6ArI8KblwyKO1GK_EgrfCThbVGIFYFW9xt7aq9SsBpkToAVerlr213rktKU6OK-pw3GYslFQOcdem-S9f9f7_KeEBuepjn-Squn2bbM7LhX0I4G2edMhWf2cwfN-pFj861fSEc6PBsPfxFw6VR3A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VrUS5IP4xFFgkECBh1fH-eQ8VSmgrlyZpBKnUm1l7121F6oT8KConbjwDL8PD8CTMOE5oACEuPUXyrq2sZ3bmm_XMN4Q8ZQYQm4VIVbFc-dwI4UeRDnxjVSBzzU1Unum22jI-5G-PxNEK-T6vhcG0yrlNLA217Wd4Rr7JahKgsVJCvh588rFrFH5dnbfQMFVrBbtVUoxVhR377nwKIdxoa28b5P0sDHd3um9iv-oy4GeipsZ-zQputQHYr2UmdZ4GTBuTcaO0dTJwObMiipjkUuShrZkMMACYEMFyrXMX4IEouIA1zriG4G-tsdPuvFuc8iDrJsRgM7ojxnSwaWcZdMjBDFgMHIhSSy6x7Bzwp3-44CB_T95cnxQDcz41vd4Fz7h7nVyrIC2tz3TwBllxxU1ypVV9tL9FvtZ7n0_c6Zkb_vjybUQ7QxxBfaCtsn31iOJhMI3NEAwO_Ew_jugBWLKzqkSUvojjg5fUFJZuOzegFSXssd8AD2xpvWJFp2X2A0yjrWbHb77vtmh8jvVotD1Ldb9NDi9FMnfIatEv3D1CYTRKZcCtyCXPjUoziMQ0z4ULQVFz65FXcxEkgxnNRwLhEUos-YvEPNJAMS2mIkd3eaE_PE6qLZ-4IGMmF1yFAItTkWoXRQL51FjqYCNwjzxHISdoSUCSmakKIuAfIydXUo8w3A2ZYh7ZWJoJFiBbHp6rSVJZoFHya7945MliGO_ErLrC9SflHImAGB9xd6ZViyUBcEV8A3dHS_q2tOblkeL0pOQnx1pmGanII_5CNf_nrd7_9zoek_W422omzb32_gNyNcRGzGX6_AZZHQ8n7iGgw3H6qNqClHy47F3_E_w2eRE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqVipcEP8EChgJBEisslmv7d1DhRLSKKVJGkEr9bZ413ZbkW5CfhSVEzeegVfiMXgSZnad0ABCXHqKFHujeOd_PPMNIU-ZAo9NQ6QqmZVeqDj3oij2PaWlL2wcqqjI6XZ7on0Yvj3iR2vk-6IXBssqFzqxUNR6mGGOvMpqAlxjKbmoWlcW0W-2Xo8-eThBCm9aF-M0lBuzoLcLuDHX5LFnzucQzk22d5tA-2dB0No5eNP23MQBL-M1OfVqmoc6VhACxCITsU19FiuVhUrG2gjfWKZ5FDERCm4DXVMZ-AOgTjizcWyNj8lRMAcbePkFSmKjsdPrv1tmfBCBE-KxEvqIsdiv6rKaDvGYwS8DYyLlinkspgj8aSsuGMvfCzmvzPKROp-rweCClWxdJ9ece0vrJT_eIGsmv0k2u-4C_xb5Wh98PjGnZ2b848u3Ce2PcQV5g3aLUdYTiolh2lZjUD7wMf84ofug1c5cuyh90W7vv6Qq17RpzIg6eNhjrwHWWNO6Q0inRSUEbKPdTt_rvD_o0vY59qbRXln2fpscXgpl7pD1fJibe4TCapQKP9TcitAqmWYQlcWh5SYAprW6Ql4tSJCMSsiPBEIlpFjyF4pVSAPJtNyKeN3FF8PxceLEPzF-xpTloQzARU55Gpso4oitxlIDQhFWyHMkcoJaBSiZKdccAf8Y8bmSeoShb8Akq5CtlZ2gDbLV5QWbJE4bTZJfslMhT5bL-CRW2OVmOCv2CHSO8Sfully1PBI4sejrwNPRCr-tnHl1JT89KbDKsa9ZRDKqEG_Jmv_zVu__-xyPySZIf9LZ7e09IFcDnMlcVNJvkfXpeGYegqM4TR85CaTkw2UL_U9zOH1A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYglYAL78dCQUZCAiS2bOL165gC1Qo1aSRaqZxW3rVNq6bbKA9V7Ykbv4G_xy9hZteNsgWkcoqUGUexPZ75ZnfmMyGvmAHEZiFTlczLODWcx0rpJDZWJsLr1Kj6me5gKLK99PM-3w8829gLs_L-nkE6_t42BWdIWQzQBfytlNfJmuAAvDtkbW846n_F6-Mg8MUQ2FXDK_Svka3YU1P0_-mIVyLR5SrJm4tqYs5OzXi8EoK27jS93bOauRArT442FvNiozy_xOt4xdndJbcDFKX9xnbukWuuuk9uDMLL9gfkR398fuAOj9301_efMzqaogT3kQ7qa6dnFB_i0sxMwVHAx-nRjO6ABzoOrZ30TZbtvKWmsvSjcxMaqFy_xZsQOS3tBzZzWlctgBodbI_i7S-7A5qdYR8ZHTYl6g_J3tan3Q9ZHO5tiEvelfO4a3lqtYFESotSaF8kTBtTpkZq60TiPLNcKSZSwX3Pdk0JqAqcMmdea-8Sxh6RTnVSuSeEglQVIkkt9yL1RhYlZFA69dz1wMC8jci7ix3NJw09Rw5pDS5u_pfFjcgm7vpSFbm16y9gU_JwVHOXlMx4nsoewNmCF9opxZEHjRUODDiNyGu0mRw9ABhGaUIjA_xj5NLK-wrT1B6TLCLrLU04uWVbfGF1efAcs5x1BaSAUnIRkZdLMY7EarjKnSxqHYFAFn_icWOkyykB4ERcAqNVy3xbc25LqsODmlcce5CFkioi8dLSr7KqT_9T_xm51cNblOva93XSmU8X7jlAu3nxIhzp3ymuTXY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s+Prediction+Methods+with+Harris+Hawks+Optimization+%28HHO%29+and+Deep+Learning-Based+Approach+Using+an+MLP-LSTM+Hybrid+Network&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Ghadami%2C+Raheleh&rft.au=Rahebi%2C+Javad&rft.date=2025-02-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=15&rft.issue=3&rft.spage=377&rft_id=info:doi/10.3390%2Fdiagnostics15030377&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics15030377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon