WearAuth: Wristwear-Assisted User Authentication for Smartphones Using Wavelet-Based Multi-Resolution Analysis

Zero-effort bilateral authentication was introduced recently to use a trusted wristwear to continuously authenticate a smartphone user. A user is allowed to use the smartphone if both wristwear and smartphone are determined to be held by the same person by comparing the wristwear's motion with...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E102.D; no. 10; pp. 1976 - 1992
Main Authors ZHU, Bin, JI, Sangwoo, JEONG, Hayoung, KANG, Taeho, KIM, Jong
Format Journal Article
LanguageEnglish
Published Tokyo The Institute of Electronics, Information and Communication Engineers 01.10.2019
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
1745-1361
DOI10.1587/transinf.2019EDP7024

Cover

Abstract Zero-effort bilateral authentication was introduced recently to use a trusted wristwear to continuously authenticate a smartphone user. A user is allowed to use the smartphone if both wristwear and smartphone are determined to be held by the same person by comparing the wristwear's motion with the smartphone's input or motion, depending on the grip — which hand holds the smartphone and which hand provides the input. Unfortunately, the scheme has several shortcomings. First, it may work improperly when the user is walking since the gait can conceal the wrist's motions of making touches. Second, it continuously compares the motions of the two devices, which incurs a heavy communication burden. Third, the acceleration-based grip inference, which assumes that the smartphone is horizontal with the ground is inapplicable in practice. To address these shortcomings, we propose WearAuth, wristwear-assisted user authentication for smartphones in this paper. WearAuth applies wavelet-based multi-resolution analysis to extract the desired touch-specific movements regardless of whether the user is stationary or moving; uses discrete Fourier transform-based approximate correlation to reduce the communication overhead; and takes a new approach to directly compute the relative device orientation without using acceleration to infer the grip more precisely. In two experiments with 50 subjects, WearAuth produced false negative rates of 3.6% or less and false positive rates of 1.69% or less. We conclude that WearAuth operates properly under various usage cases and is robust to sophisticated attacks.
AbstractList Zero-effort bilateral authentication was introduced recently to use a trusted wristwear to continuously authenticate a smartphone user. A user is allowed to use the smartphone if both wristwear and smartphone are determined to be held by the same person by comparing the wristwear's motion with the smartphone's input or motion, depending on the grip — which hand holds the smartphone and which hand provides the input. Unfortunately, the scheme has several shortcomings. First, it may work improperly when the user is walking since the gait can conceal the wrist's motions of making touches. Second, it continuously compares the motions of the two devices, which incurs a heavy communication burden. Third, the acceleration-based grip inference, which assumes that the smartphone is horizontal with the ground is inapplicable in practice. To address these shortcomings, we propose WearAuth, wristwear-assisted user authentication for smartphones in this paper. WearAuth applies wavelet-based multi-resolution analysis to extract the desired touch-specific movements regardless of whether the user is stationary or moving; uses discrete Fourier transform-based approximate correlation to reduce the communication overhead; and takes a new approach to directly compute the relative device orientation without using acceleration to infer the grip more precisely. In two experiments with 50 subjects, WearAuth produced false negative rates of 3.6% or less and false positive rates of 1.69% or less. We conclude that WearAuth operates properly under various usage cases and is robust to sophisticated attacks.
Author KANG, Taeho
JI, Sangwoo
KIM, Jong
ZHU, Bin
JEONG, Hayoung
Author_xml – sequence: 1
  fullname: ZHU, Bin
  organization: Microsoft Research Asia
– sequence: 1
  fullname: JI, Sangwoo
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 1
  fullname: JEONG, Hayoung
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 1
  fullname: KANG, Taeho
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 1
  fullname: KIM, Jong
  organization: Pohang University of Science and Technology (POSTECH)
BookMark eNp9kUtv2zAQhInAAeo8_kEOAnpWyqVISczNtd0HkCBBHvCRWFOULUOlVJJq4H9fqnbTnHraXXC-wWB4Ria2s4aQK6DXIMriU3BofWPra0ZBLhcPBWX8hEyh4CKFLIcJmVIJeVqKjH0gZ97vKIWSgZgSuzLoZkPY3iQr1_jwGs905n1cTZW8eOOS8dXY0GgMTWeTunPJ0w90od_GFD5qGrtJVvjLtCakn9FH7m5oQ5M-Gt-1wx9oZrHdR9MLclpj683lcZ6Tly_L5_m39Pb-6_f57DbVAoqQwlobXa4ll1rnlUYqMWc5lJmuQSOXlNVlVnGJhazWAmUJlZaa1zUXa6hElZ0TcfAdbI_7V2xb1bsmpt4roGosTf0tTY2lmaofS4vcxwPXu-7nYHxQu25wMbxXjElZMp7nMqr4QaVd570z9f_Njz8SsacDtvMBN-YNil02ujX_oCVQphaj2XF75_Km1lt0ytjsNypOoqM
Cites_doi 10.1109/INFOCOM.2017.8057145
10.1007/978-0-387-84858-7
10.1109/DSN.2017.21
10.1109/TMC.2009.51
10.1007/978-3-540-74853-3_18
10.1145/1814433.1814466
10.1145/3023954
10.1109/ICASSP.2012.6289074
10.1145/1807167.1807188
10.1109/TDSC.2015.2427848
10.14722/ndss.2016.23199
10.1145/2702123.2702252
10.1109/TNSRE.2013.2265887
10.1023/A:1010933404324
10.1145/2976749.2978294
10.1137/1.9781611970104
10.1080/01621459.1997.10474042
10.1017/CBO9780511801389
10.1006/jcss.1997.1504
10.1109/SP.2014.51
10.1589/jpts.20.243
10.1145/2948618.2948627
10.1093/biomet/82.3.619
10.1109/TMC.2014.2365185
10.1145/2660267.2660334
ContentType Journal Article
Copyright 2019 The Institute of Electronics, Information and Communication Engineers
Copyright Japan Science and Technology Agency 2019
Copyright_xml – notice: 2019 The Institute of Electronics, Information and Communication Engineers
– notice: Copyright Japan Science and Technology Agency 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1587/transinf.2019EDP7024
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 1992
ExternalDocumentID 10.1587/transinf.2019edp7024
10_1587_transinf_2019EDP7024
article_transinf_E102_D_10_E102_D_2019EDP7024_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1TH
ADTOC
AFFNX
C1A
CKLRP
H13
RYL
UNPAY
VOH
ZE2
ZY4
ID FETCH-LOGICAL-c517t-1bcec8b949cc6dca09a626183cf1ca4902f83d49a79db5a981dc9c4ff45b1d5d3
IEDL.DBID UNPAY
ISSN 0916-8532
1745-1361
IngestDate Wed Oct 01 16:09:33 EDT 2025
Mon Jun 30 05:31:16 EDT 2025
Wed Oct 01 03:08:02 EDT 2025
Wed Sep 03 06:22:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-1bcec8b949cc6dca09a626183cf1ca4902f83d49a79db5a981dc9c4ff45b1d5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/transinf/E102.D/10/E102.D_2019EDP7024/_pdf
PQID 2299824669
PQPubID 2048497
PageCount 17
ParticipantIDs unpaywall_primary_10_1587_transinf_2019edp7024
proquest_journals_2299824669
crossref_primary_10_1587_transinf_2019EDP7024
jstage_primary_article_transinf_E102_D_10_E102_D_2019EDP7024_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationYear 2019
Publisher The Institute of Electronics, Information and Communication Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: Japan Science and Technology Agency
References [17] NTP: The Network Time Protocol, http://www.ntp.org/.
[14] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods,Cambridge University Press, New York, NY, USA, 2000.
[35] W.-H. Lee and R. Lee, “Implicit sensor-based authentication of smartphone users with smartwatch,” Proc. Hardware and Architectural Support for Security and Privacy 2016, pp.9:1-9:8, 2016. 10.1145/2948618.2948627
[6] D.B. Percival and A.T. Walden, Wavelet Methods for Time Series Analysis, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2000.
[9] O. Huhta, P. Shrestha, S. Udar, M. Juuti, N. Saxena, and N. Asokan, “Pitfalls in designing zero-effort deauthentication: Opportunistic human observation attacks,” The Network and Distributed System Security Symposium, 2016.
[2] S. Mare, A.M. Markham, C. Cornelius, R. Peterson, and D. Kotz, “ZEBRA: Zero-effort bilateral recurring authentication,” IEEE Symposium on Security and Privacy, pp.705-720, May 2014. 10.1109/sp.2014.51
[8] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992.
[26] Google: Smart lock, https://get.google.com/smartlock/.
[15] L. Breiman, “Random forests,” Machine Learning, vol.45, no.1, pp.5-32, Oct. 2001. 10.1023/a:1010933404324
[29] R. Mayrhofer and H. Gellersen, “Shake well before use: Intuitive and secure pairing of mobile devices,” IEEE Trans. Mobile Comput., vol.8, no.6, pp.792-806, June 2009. 10.1109/tmc.2009.51
[11] M. Kojima, S. Obuchi, O. Henmi, and N. Ikeda, “Comparison of Smoothness during Gait between Community Dwelling Elderly Fallers and Non-Fallers Using Power Spectrum Entropy of Acceleration Time-Series,” Journal of Physical Therapy Science, vol.20, no.4, pp.243-248, 2008. 10.1589/jpts.20.243
[25] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smartphones,” The Network and Distributed System Security Symposium, 2013.
[7] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 2009.
[19] A. Ivanov and G. Riccardi, “Kolmogorov-smirnov test for feature selection in emotion recognition from speech,” 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.5125-5128, March 2012. 10.1109/icassp.2012.6289074
[32] T. Li, Y. Chen, J. Sun, X. Jin, and Y. Zhang, “iLock: Immediate and automatic locking of mobile devices against data theft,” Proc. ACM SIGSAC Conference on Computer and Communications Security, pp.933-944, 2016. 10.1145/2976749.2978294
[1] S. Mare, “Seamless Authentication for Ubiquitous Devices,” Tech. Rep. TR2016-793, Dartmouth College, Computer Science, Hanover, NH, May 2016.
[31] N. Karapanos, C. Marforio, C. Soriente, and S. Čapkun, “Sound-proof: Usable two-factor authentication based on ambient sound,” 24th USENIX Security Symposium, pp.483-498, 2015.
[30] L. Li, X. Zhao, and G. Xue, “A proximity authentication system for smartphones,” IEEE Transactions on Dependable and Secure Computing, vol.13, no.6, pp.605-616, Nov. 2016. 10.1109/tdsc.2015.2427848
[10] E. Sejdić, K.A. Lowry, J. Bellanca, M.S. Redfern, and J.S. Brach, “A Comprehensive Assessment of Gait Accelerometry Signals in Time, Frequency and Time-Frequency Domains,” IEEE Trans. Neural Syst. Rehabil. Eng., vol.22, no.3, pp.603-612, 2014. 10.1109/tnsre.2013.2265887
[18] D. Bichler, G. Stromberg, M. Huemer, and M. Löw, “Key generation based on acceleration data of shaking processes,” Proc. 9th International Conference of Ubiquitous Computing, pp.304-317, 2007.
[28] W. Xu, C. Javali, G. Revadigar, C. Luo, N. Bergmann, and W. Hu, “Gait-key: A gait-based shared secret key generation protocol for wearable devices,” ACM Trans. Sen. Netw., vol.13, no.1, pp.6:1-6:27, Jan. 2017. 10.1145/3023954
[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer-Verlag, New York, 2009.
[24] D. Buschek, A. De Luca, and F. Alt, “Improving accuracy, applicability and usability of keystroke biometrics on mobile touchscreen devices,” Proc. 33rd Annual ACM Conference on Human Factors in Computing Systems, pp.1393-1402, 2015. 10.1145/2702123.2702252
[34] M. Miettinen, N. Asokan, T.D. Nguyen, A.-R. Sadeghi, and M.Sobhani, “Context-based zero-interaction pairing and key evolution for advanced personal devices,” Proc. ACM SIGSAC Conference on Computer and Communications Security, pp.880-891, 2014. 10.1145/2660267.2660334
[21] “How Do Users Really Hold Mobile Devices,” https://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php.
[16] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol.55, no.1, pp.119-139, 1997. 10.1006/jcss.1997.1504
[33] A. Kalamandeen, A. Scannell, E. de Lara, A. Sheth, and A. LaMarca, “Ensemble: Cooperative proximity-based authentication,” Proc. 8th International Conference on Mobile Systems, Applications, and Services, pp.331-344, 2010. 10.1145/1814433.1814466
[22] J. Zhang, Z. Wang, Z. Yang, and Q. Zhang, “Proximity based iot device authentication,” IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp.1-9, May 2017. 10.1109/infocom.2017.8057145
[23] Y. Ren, Y. Chen, M.C. Chuah, and J. Yang, “User verification leveraging gait recognition for smartphone enabled mobile healthcare systems,” IEEE Trans. Mobile Comput., vol.14, no.9, pp.1961-1974, Sept. 2015. 10.1109/tmc.2014.2365185
[12] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and Regression Trees, The Wadsworth and Brooks-Cole statistics-probability series, Taylor & Francis, 1984.
[36] W.-H. Lee and R.B. Lee, “Sensor-based implicit authentication of smartphone users,” 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp.309-320, June 2017. 10.1109/dsn.2017.21
[3] D.P. Percival, “On estimation of the wavelet variance,” Biometrika, vol.82, no.3, pp.619-631, 1995. 10.1093/biomet/82.3.619
[5] A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation for massive time-series data,” Proc. 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD '10, pp.171-182, 2010. 10.1145/1807167.1807188
[20] MathWorks, MATLAB, https://www.mathworks.com/products/matlab.html.
[4] D.B. Percival and H.O. Mofjeld, “Analysis of subtidal coastal sea level fluctuations using wavelets,” Journal of the American Statistical Association, vol.92, no.439, pp.868-880, 1997. 10.1080/01621459.1997.10474042
[27] “How to unlock your mac with your apple watch,” https://support.apple.com/en-us/HT206995.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [35] W.-H. Lee and R. Lee, “Implicit sensor-based authentication of smartphone users with smartwatch,” Proc. Hardware and Architectural Support for Security and Privacy 2016, pp.9:1-9:8, 2016. 10.1145/2948618.2948627
– reference: [1] S. Mare, “Seamless Authentication for Ubiquitous Devices,” Tech. Rep. TR2016-793, Dartmouth College, Computer Science, Hanover, NH, May 2016.
– reference: [6] D.B. Percival and A.T. Walden, Wavelet Methods for Time Series Analysis, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2000.
– reference: [32] T. Li, Y. Chen, J. Sun, X. Jin, and Y. Zhang, “iLock: Immediate and automatic locking of mobile devices against data theft,” Proc. ACM SIGSAC Conference on Computer and Communications Security, pp.933-944, 2016. 10.1145/2976749.2978294
– reference: [30] L. Li, X. Zhao, and G. Xue, “A proximity authentication system for smartphones,” IEEE Transactions on Dependable and Secure Computing, vol.13, no.6, pp.605-616, Nov. 2016. 10.1109/tdsc.2015.2427848
– reference: [14] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods,Cambridge University Press, New York, NY, USA, 2000.
– reference: [33] A. Kalamandeen, A. Scannell, E. de Lara, A. Sheth, and A. LaMarca, “Ensemble: Cooperative proximity-based authentication,” Proc. 8th International Conference on Mobile Systems, Applications, and Services, pp.331-344, 2010. 10.1145/1814433.1814466
– reference: [8] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992.
– reference: [13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer-Verlag, New York, 2009.
– reference: [17] NTP: The Network Time Protocol, http://www.ntp.org/.
– reference: [27] “How to unlock your mac with your apple watch,” https://support.apple.com/en-us/HT206995.
– reference: [9] O. Huhta, P. Shrestha, S. Udar, M. Juuti, N. Saxena, and N. Asokan, “Pitfalls in designing zero-effort deauthentication: Opportunistic human observation attacks,” The Network and Distributed System Security Symposium, 2016.
– reference: [11] M. Kojima, S. Obuchi, O. Henmi, and N. Ikeda, “Comparison of Smoothness during Gait between Community Dwelling Elderly Fallers and Non-Fallers Using Power Spectrum Entropy of Acceleration Time-Series,” Journal of Physical Therapy Science, vol.20, no.4, pp.243-248, 2008. 10.1589/jpts.20.243
– reference: [25] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smartphones,” The Network and Distributed System Security Symposium, 2013.
– reference: [34] M. Miettinen, N. Asokan, T.D. Nguyen, A.-R. Sadeghi, and M.Sobhani, “Context-based zero-interaction pairing and key evolution for advanced personal devices,” Proc. ACM SIGSAC Conference on Computer and Communications Security, pp.880-891, 2014. 10.1145/2660267.2660334
– reference: [24] D. Buschek, A. De Luca, and F. Alt, “Improving accuracy, applicability and usability of keystroke biometrics on mobile touchscreen devices,” Proc. 33rd Annual ACM Conference on Human Factors in Computing Systems, pp.1393-1402, 2015. 10.1145/2702123.2702252
– reference: [20] MathWorks, MATLAB, https://www.mathworks.com/products/matlab.html.
– reference: [16] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol.55, no.1, pp.119-139, 1997. 10.1006/jcss.1997.1504
– reference: [31] N. Karapanos, C. Marforio, C. Soriente, and S. Čapkun, “Sound-proof: Usable two-factor authentication based on ambient sound,” 24th USENIX Security Symposium, pp.483-498, 2015.
– reference: [36] W.-H. Lee and R.B. Lee, “Sensor-based implicit authentication of smartphone users,” 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp.309-320, June 2017. 10.1109/dsn.2017.21
– reference: [3] D.P. Percival, “On estimation of the wavelet variance,” Biometrika, vol.82, no.3, pp.619-631, 1995. 10.1093/biomet/82.3.619
– reference: [29] R. Mayrhofer and H. Gellersen, “Shake well before use: Intuitive and secure pairing of mobile devices,” IEEE Trans. Mobile Comput., vol.8, no.6, pp.792-806, June 2009. 10.1109/tmc.2009.51
– reference: [19] A. Ivanov and G. Riccardi, “Kolmogorov-smirnov test for feature selection in emotion recognition from speech,” 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.5125-5128, March 2012. 10.1109/icassp.2012.6289074
– reference: [2] S. Mare, A.M. Markham, C. Cornelius, R. Peterson, and D. Kotz, “ZEBRA: Zero-effort bilateral recurring authentication,” IEEE Symposium on Security and Privacy, pp.705-720, May 2014. 10.1109/sp.2014.51
– reference: [7] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 2009.
– reference: [23] Y. Ren, Y. Chen, M.C. Chuah, and J. Yang, “User verification leveraging gait recognition for smartphone enabled mobile healthcare systems,” IEEE Trans. Mobile Comput., vol.14, no.9, pp.1961-1974, Sept. 2015. 10.1109/tmc.2014.2365185
– reference: [15] L. Breiman, “Random forests,” Machine Learning, vol.45, no.1, pp.5-32, Oct. 2001. 10.1023/a:1010933404324
– reference: [18] D. Bichler, G. Stromberg, M. Huemer, and M. Löw, “Key generation based on acceleration data of shaking processes,” Proc. 9th International Conference of Ubiquitous Computing, pp.304-317, 2007.
– reference: [4] D.B. Percival and H.O. Mofjeld, “Analysis of subtidal coastal sea level fluctuations using wavelets,” Journal of the American Statistical Association, vol.92, no.439, pp.868-880, 1997. 10.1080/01621459.1997.10474042
– reference: [22] J. Zhang, Z. Wang, Z. Yang, and Q. Zhang, “Proximity based iot device authentication,” IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp.1-9, May 2017. 10.1109/infocom.2017.8057145
– reference: [26] Google: Smart lock, https://get.google.com/smartlock/.
– reference: [21] “How Do Users Really Hold Mobile Devices,” https://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php.
– reference: [28] W. Xu, C. Javali, G. Revadigar, C. Luo, N. Bergmann, and W. Hu, “Gait-key: A gait-based shared secret key generation protocol for wearable devices,” ACM Trans. Sen. Netw., vol.13, no.1, pp.6:1-6:27, Jan. 2017. 10.1145/3023954
– reference: [5] A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation for massive time-series data,” Proc. 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD '10, pp.171-182, 2010. 10.1145/1807167.1807188
– reference: [12] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and Regression Trees, The Wadsworth and Brooks-Cole statistics-probability series, Taylor & Francis, 1984.
– reference: [10] E. Sejdić, K.A. Lowry, J. Bellanca, M.S. Redfern, and J.S. Brach, “A Comprehensive Assessment of Gait Accelerometry Signals in Time, Frequency and Time-Frequency Domains,” IEEE Trans. Neural Syst. Rehabil. Eng., vol.22, no.3, pp.603-612, 2014. 10.1109/tnsre.2013.2265887
– ident: 22
  doi: 10.1109/INFOCOM.2017.8057145
– ident: 13
  doi: 10.1007/978-0-387-84858-7
– ident: 36
  doi: 10.1109/DSN.2017.21
– ident: 12
– ident: 29
  doi: 10.1109/TMC.2009.51
– ident: 18
  doi: 10.1007/978-3-540-74853-3_18
– ident: 31
– ident: 33
  doi: 10.1145/1814433.1814466
– ident: 28
  doi: 10.1145/3023954
– ident: 19
  doi: 10.1109/ICASSP.2012.6289074
– ident: 5
  doi: 10.1145/1807167.1807188
– ident: 7
– ident: 30
  doi: 10.1109/TDSC.2015.2427848
– ident: 9
  doi: 10.14722/ndss.2016.23199
– ident: 20
– ident: 26
– ident: 17
– ident: 24
  doi: 10.1145/2702123.2702252
– ident: 10
  doi: 10.1109/TNSRE.2013.2265887
– ident: 15
  doi: 10.1023/A:1010933404324
– ident: 1
– ident: 32
  doi: 10.1145/2976749.2978294
– ident: 8
  doi: 10.1137/1.9781611970104
– ident: 4
  doi: 10.1080/01621459.1997.10474042
– ident: 14
  doi: 10.1017/CBO9780511801389
– ident: 16
  doi: 10.1006/jcss.1997.1504
– ident: 2
  doi: 10.1109/SP.2014.51
– ident: 11
  doi: 10.1589/jpts.20.243
– ident: 35
  doi: 10.1145/2948618.2948627
– ident: 3
  doi: 10.1093/biomet/82.3.619
– ident: 6
– ident: 23
  doi: 10.1109/TMC.2014.2365185
– ident: 21
– ident: 34
  doi: 10.1145/2660267.2660334
– ident: 27
– ident: 25
SSID ssj0018215
Score 2.1928627
Snippet Zero-effort bilateral authentication was introduced recently to use a trusted wristwear to continuously authenticate a smartphone user. A user is allowed to...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1976
SubjectTerms Acceleration
Fourier transforms
Gait
motion sensor
signal processing
smart devices
Smartphones
user authentication
Wavelet analysis
Wrist
Title WearAuth: Wristwear-Assisted User Authentication for Smartphones Using Wavelet-Based Multi-Resolution Analysis
URI https://www.jstage.jst.go.jp/article/transinf/E102.D/10/E102.D_2019EDP7024/_article/-char/en
https://www.proquest.com/docview/2299824669
https://www.jstage.jst.go.jp/article/transinf/E102.D/10/E102.D_2019EDP7024/_pdf
UnpaywallVersion publishedVersion
Volume E102.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2019/10/01, Vol.E102.D(10), pp.1976-1992
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1745-1361
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0018215
  issn: 0916-8532
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61WyTgQKGAWCiVD1ydTRzbibkV2qoCVIpgteUU-ZVKpSwRzaqCX8947SxbDkhInJIotjWx5_GNMzMGeFFz5hi6x9T7llP0NxjVrcnRVZHc2rYopVkGyJ7I4yl_cybONuD9kAsTwiovEBed-3DJzr9lF90kTeKkD-obJ35yiGYxO0CJT3cNmjFEj6cVWpxJ07l2E7akQHA-gq3pyen-52XFvUJSNE4spkgKinQUKZlO1NVq8BDupbzrwlg3jNWtSNcNKHp7Me_0j2t9eblmlY62oRu-JwajfMkWvcnszz9KPf7HD74P9xKCJfux8wPY8PMd2B5OhyBJWezA3bVShw9hPkORCvtxL8ks6JVrfKTIG4HLHJmiIJDwNsQuxU1EgmiafPyKNIboeX9FlsENZKbDSRk9fYXW15Fl-jANvyCiAJGhxsojmB4dfnp9TNNZD9SKouppYay3tVFcWSud1bnS6GqhvkF-sZqrnLV16bjSlXJGaIUw2yrL25YLUzjhyscwmiM1T4BolgutS1d5W3JtrGE4lpVKlywv29qPgQ6L2nSxpEcTXCFkgmaY8PX5HcO7uECr1ml5frcOi9IchFHS3Vr3VeuQRoe6aAy7A_80SV9cNQxRQc24lGoM2Yqn_k5e4tGn_9rhGdwJTzEicRdG_feFf47Iqjd7sPn2Q72XZOYXKqYlag
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VLRL00EIBsbQgH7g6mzi2E3MrtFWFUKkEqy2nyK9UKmWJaFZV-fWM186y5YCExCmJYlsTex7fODNjgNc1Z46he0y9bzlFf4NR3ZocXRXJrW2LUpplgOypPJny9-fifAM-DrkwIazyEnHRhQ-X7OJ7dtlN0iRO-qC-ceInR2gWs0OU-HTXoBlD9HhWocWZNJ1r78GmFAjOR7A5PT07-LKsuFdIisaJxRRJQZGOIiXTibpaDR7CvZR3XRjrjrG6H-m6A0UfLOadvr3RV1drVul4B7rhe2Iwytds0ZvM_vyj1ON__OBHsJ0QLDmInR_Dhp_vws5wOgRJymIXttZKHT6B-QxFKuzHvSGzoFdu8JEibwQuc2SKgkDC2xC7FDcRCaJp8ukb0hii5_01WQY3kJkOJ2X09C1aX0eW6cM0_IKIAkSGGitPYXp89PndCU1nPVAriqqnhbHe1kZxZa10VudKo6uF-gb5xWquctbWpeNKV8oZoRXCbKssb1suTOGEK5_BaI7UPAeiWS60Ll3lbcm1sYbhWFYqXbK8bGs_BjosatPFkh5NcIWQCZphwtfndwwf4gKtWqfl-d06LEpzGEZJd2vdV61DGh3qojHsD_zTJH1x3TBEBTXjUqoxZCue-jt5iUdf_GuHPXgYnmJE4j6M-h8L_xKRVW9eJWn5BU_WJHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WearAuth%3A+Wristwear-Assisted+User+Authentication+for+Smartphones+Using+Wavelet-Based+Multi-Resolution+Analysis&rft.jtitle=IEICE+Transactions+on+Information+and+Systems&rft.au=ZHU%2C+Bin&rft.au=JI%2C+Sangwoo&rft.au=JEONG%2C+Hayoung&rft.au=KANG%2C+Taeho&rft.date=2019-10-01&rft.pub=The+Institute+of+Electronics%2C+Information+and+Communication+Engineers&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E102.D&rft.issue=10&rft.spage=1976&rft.epage=1992&rft_id=info:doi/10.1587%2Ftransinf.2019EDP7024&rft.externalDocID=article_transinf_E102_D_10_E102_D_2019EDP7024_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon