Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect

Chemical fixation of carbon dioxide (CO 2 ) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO 2 usually requires high temperature or high pressure. The rational design of an e...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 4481 - 9
Main Authors Zhou, Wei, Deng, Qi-Wen, Ren, Guo-Qing, Sun, Lei, Yang, Li, Li, Yi-Meng, Zhai, Dong, Zhou, Yi-Hong, Deng, Wei-Qiao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.09.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-020-18154-9

Cover

Abstract Chemical fixation of carbon dioxide (CO 2 ) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO 2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO 2 fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO 2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO 2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide. Currently the cost of CO 2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO 2 fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”.
AbstractList Chemical fixation of carbon dioxide (CO 2 ) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO 2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO 2 fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO 2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO 2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide. Currently the cost of CO 2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO 2 fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”.
Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO2 fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.Currently the cost of CO2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO2 fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”.
Currently the cost of CO2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO2 fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”.
Chemical fixation of carbon dioxide (CO 2 ) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO 2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO 2 fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO 2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO 2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.
Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO2 fixation catalysts under ambient conditions based on the finding of "pore enrichment", which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO2 fixation catalysts under ambient conditions based on the finding of "pore enrichment", which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.
ArticleNumber 4481
Author Zhou, Yi-Hong
Yang, Li
Zhai, Dong
Deng, Qi-Wen
Ren, Guo-Qing
Sun, Lei
Zhou, Wei
Deng, Wei-Qiao
Li, Yi-Meng
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University
– sequence: 2
  givenname: Qi-Wen
  surname: Deng
  fullname: Deng, Qi-Wen
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Collage of Hydraulic & Environmental Engineering, China Three Gorges University
– sequence: 3
  givenname: Guo-Qing
  orcidid: 0000-0002-0278-0018
  surname: Ren
  fullname: Ren, Guo-Qing
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University
– sequence: 4
  givenname: Lei
  orcidid: 0000-0001-9960-205X
  surname: Sun
  fullname: Sun, Lei
  email: slei@sdu.edu.cn
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University
– sequence: 5
  givenname: Li
  orcidid: 0000-0001-6570-5704
  surname: Yang
  fullname: Yang, Li
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences
– sequence: 6
  givenname: Yi-Meng
  surname: Li
  fullname: Li, Yi-Meng
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University
– sequence: 7
  givenname: Dong
  orcidid: 0000-0003-3155-4607
  surname: Zhai
  fullname: Zhai, Dong
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University
– sequence: 8
  givenname: Yi-Hong
  surname: Zhou
  fullname: Zhou, Yi-Hong
  organization: Collage of Hydraulic & Environmental Engineering, China Three Gorges University
– sequence: 9
  givenname: Wei-Qiao
  orcidid: 0000-0002-3671-5951
  surname: Deng
  fullname: Deng, Wei-Qiao
  email: dengwq@sdu.edu.cn
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
BookMark eNp9Uk1v1DAUtFARLUv_AKdIXLgE_BV_XJBQVaBSJS70bDn2y65Xib3Y2RX8e5ymAtpDfbE1npn3_Dyv0VlMERB6S_AHgpn6WDjhQraY4pYo0vFWv0AXFHPSEknZ2X_nc3RZyh7XxTRRnL9C54xqTDDmF-juOu5sdOAbZ3OfYuND-hU8NC7FE-QSKmTnxk59gDgvqA9zBUtzCraxzSFlaCDm4HbTQoBhADe_QS8HOxa4fNg36O7L9Y-rb-3t9683V59vW9cRObekd9IP1otBYA5KE8agGxjtlVcES2Z7OzDAQvGedZZyLZTtsPAdc9B13LMNull9fbJ7c8hhsvm3STaYeyDlrbF5Dm4Eo7TQXNB-4L3nTHpNvcMCyzqGTpBaeoM-rV6HYz-Bd_U12Y6PTB_fxLAz23QykkvdaVEN3j8Y5PTzCGU2UygOxtFGSMdiKOeEivoHC_XdE-o-HXOso1pYWAqqNK0surJcTqVkGP42Q7BZQmDWEJgaAnMfAqOrSD0RuTDb5ctq02F8XspWaal14hbyv66eUf0BOBXF1Q
CitedBy_id crossref_primary_10_1016_j_apcatb_2021_120719
crossref_primary_10_1021_acsami_2c18283
crossref_primary_10_1016_j_cplett_2021_138509
crossref_primary_10_1039_D2NR04103K
crossref_primary_10_1016_j_ccr_2022_214576
crossref_primary_10_1039_D1QI01643A
crossref_primary_10_1002_cctc_202100230
crossref_primary_10_1039_D0TA11797H
crossref_primary_10_2139_ssrn_3994396
crossref_primary_10_1002_adma_202412031
crossref_primary_10_1016_j_ces_2024_119867
crossref_primary_10_1021_acssuschemeng_4c02450
crossref_primary_10_1016_j_jcou_2021_101778
crossref_primary_10_1016_j_mcat_2022_112164
crossref_primary_10_1016_j_ccst_2024_100335
crossref_primary_10_1039_D2MA00143H
crossref_primary_10_1016_j_jcis_2023_11_084
crossref_primary_10_1016_j_cplett_2024_141820
crossref_primary_10_1002_advs_202206687
crossref_primary_10_1016_j_eurpolymj_2022_111666
crossref_primary_10_1016_j_scitotenv_2024_170085
crossref_primary_10_1002_idm2_12140
crossref_primary_10_1039_D3EE04121B
crossref_primary_10_1016_j_ccr_2021_213891
crossref_primary_10_1039_D1QI01555A
crossref_primary_10_1016_j_cjche_2022_01_009
crossref_primary_10_1021_acsapm_4c00534
crossref_primary_10_1002_adfm_202308507
crossref_primary_10_1002_er_8472
crossref_primary_10_1016_j_jcis_2021_04_134
crossref_primary_10_1021_acs_chemmater_2c00738
crossref_primary_10_1021_acs_iecr_3c04350
crossref_primary_10_1021_acs_macromol_2c00544
crossref_primary_10_1016_j_ccr_2022_214835
crossref_primary_10_1002_chem_202401010
crossref_primary_10_1016_j_jhydrol_2022_127845
crossref_primary_10_1039_D1GC00267H
crossref_primary_10_1039_D1CY01765A
crossref_primary_10_1039_D1CP03456A
crossref_primary_10_1103_PhysRevMaterials_8_105602
crossref_primary_10_1016_j_jcou_2021_101863
crossref_primary_10_1021_acs_iecr_2c04087
crossref_primary_10_1021_acssuschemeng_2c06816
crossref_primary_10_1002_anie_202011722
crossref_primary_10_1016_j_jcou_2022_101924
crossref_primary_10_1039_D4TA03530E
crossref_primary_10_1039_D0TA08649E
crossref_primary_10_1039_D4CC05095A
crossref_primary_10_1002_asia_202401546
crossref_primary_10_1016_j_ccst_2025_100365
crossref_primary_10_1016_j_cej_2021_131633
crossref_primary_10_1021_acs_inorgchem_3c03923
crossref_primary_10_1039_D1TA05428G
crossref_primary_10_1002_slct_202301141
crossref_primary_10_1016_j_jece_2024_111989
crossref_primary_10_1016_j_cej_2022_135560
crossref_primary_10_1039_D3CC04763F
crossref_primary_10_1002_cssc_202101093
crossref_primary_10_1021_acs_jpcc_3c07764
crossref_primary_10_1021_acs_langmuir_2c02892
crossref_primary_10_1360_SSC_2024_0158
crossref_primary_10_1016_j_micromeso_2022_112119
crossref_primary_10_1016_j_seppur_2024_131254
crossref_primary_10_1016_j_seppur_2023_123196
crossref_primary_10_1021_acsapm_4c00164
crossref_primary_10_1016_j_cej_2024_156428
crossref_primary_10_1016_j_seppur_2023_124484
crossref_primary_10_1021_acsnano_4c08708
crossref_primary_10_1021_jacsau_1c00258
crossref_primary_10_1002_cnma_202100386
crossref_primary_10_1016_j_fuel_2022_125828
crossref_primary_10_1039_D4GC03494E
crossref_primary_10_1021_jacsau_2c00502
crossref_primary_10_1016_j_cej_2024_148550
crossref_primary_10_1002_ange_202305246
crossref_primary_10_1016_j_fuel_2024_134057
crossref_primary_10_1039_D4TA05006A
crossref_primary_10_1021_acssuschemeng_2c04428
crossref_primary_10_1038_s41467_022_29076_z
crossref_primary_10_1039_D2CS00849A
crossref_primary_10_1002_ange_202011722
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1002_adma_202310061
crossref_primary_10_1016_j_xcrp_2021_100705
crossref_primary_10_1039_D2TA10100A
crossref_primary_10_1021_acsami_4c03688
crossref_primary_10_1039_D4RE00492B
crossref_primary_10_1002_anie_202305246
crossref_primary_10_1007_s40843_021_1842_8
crossref_primary_10_1016_j_mattod_2021_03_016
Cites_doi 10.1021/ja0164677
10.1002/anie.201511009
10.1021/jp1027806
10.1002/anie.201602667
10.1038/nchem.1192
10.1021/ja00051a040
10.1021/ja4123939
10.1021/cm502594j
10.1021/jacs.7b01523
10.3389/fchem.2018.00623
10.1021/acs.chemmater.7b00441
10.1016/j.jcat.2004.07.018
10.1039/C8CC07865C
10.1021/cm401978e
10.1038/nmat1916
10.1021/acs.chemmater.6b02511
10.1016/j.ces.2017.05.004
10.1038/s41586-019-1798-7
10.1039/C5GC02605A
10.1021/cm301194a
10.1038/nature14327
10.1002/anie.201309778
10.1016/j.cej.2018.05.175
10.1016/j.jcat.2015.04.034
10.1039/C6SC04357G
10.1021/j100093a030
10.1039/C6TA08556C
10.1021/ja511498s
10.1021/acsami.7b09553
10.1039/c2sc01097f
10.1021/acs.chemrev.8b00501
10.1006/jcph.1995.1039
10.1039/C8TA00823J
10.1021/ja8008192
10.1021/jp911942d
10.1021/ja508626n
10.1021/ja2108239
10.1039/C8SC05019H
10.1002/anie.201002087
10.1039/C7NJ03720A
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-18154-9
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Economics
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_8969462bf4bd437d92dc060710056191
PMC7479596
10_1038_s41467_020_18154_9
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21525315
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
– fundername: ;
– fundername: ;
  grantid: 21525315
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-1bc7dfad6f604e89133e5f32b8d81073abaf3e0684b35a24968a506d53ce554d3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:43 EDT 2025
Thu Aug 21 14:05:07 EDT 2025
Sun Aug 24 03:42:37 EDT 2025
Wed Aug 13 07:17:58 EDT 2025
Thu Apr 24 22:53:03 EDT 2025
Tue Jul 01 04:09:03 EDT 2025
Fri Feb 21 02:40:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-1bc7dfad6f604e89133e5f32b8d81073abaf3e0684b35a24968a506d53ce554d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3155-4607
0000-0002-3671-5951
0000-0002-0278-0018
0000-0001-9960-205X
0000-0001-6570-5704
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-18154-9
PMID 32901004
PQID 2440762892
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_8969462bf4bd437d92dc060710056191
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479596
proquest_miscellaneous_2441263916
proquest_journals_2440762892
crossref_primary_10_1038_s41467_020_18154_9
crossref_citationtrail_10_1038_s41467_020_18154_9
springer_journals_10_1038_s41467_020_18154_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-08
PublicationDateYYYYMMDD 2020-09-08
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LuXBZhangYJJinKLuoLMWangHHighly active electrophile–nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperatureJ. Catal.20042275375411:CAS:528:DC%2BD2cXotFGntbs%3D
LiangJPostsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxidesChem. Sci.20178157015751:CAS:528:DC%2BC28XhslOgs7%2FK28451286
LiangLCarbon dioxide capture and conversion by an acid-base resistant metal-organic frameworkNat. Commun.201782017NatCo...8.1233L290894805663901
MoghadamPZDevelopment of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and futureChem. Mater.201729261826251:CAS:528:DC%2BC2sXkt12rurc%3D
HaldoupisENairSShollDSFinding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point chargesJ. Am. Chem. Soc.2012134431343231:CAS:528:DC%2BC38XitF2msb8%3D22329402
BiswasMMCaginTSimulation studies on hydrogen sorption and its thermodynamics in covalently linked carbon nanotube scaffoldJ. Phys. Chem. B201011413752137631:CAS:528:DC%2BC3cXht1KhsL%2FF20931989
ChungYGComputation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystalsChem. Mater.201426618561921:CAS:528:DC%2BC2cXhs1Oiur7E
JiGHierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversionAngew. Chem. Int. Ed.201655968596891:CAS:528:DC%2BC28Xot1Kjtb8%3D
PanXLEnhanced ethanol production inside carbon-nanotube reactors containing catalytic particlesNat. Mater.200765072007NatMa...6..507P1:CAS:528:DC%2BD2sXnt1egsLc%3D17515914
HeLNathJKLinQPRobust multivariate metal-porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonatesChem. Commun.2019554124151:CAS:528:DC%2BC1cXitlOku73E
LiuMLiangLLiXGaoXSunJNovel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditionsGreen. Chem.201618285128631:CAS:528:DC%2BC28Xhtlarurk%3D
GaoWYCrystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditionsAngew. Chem. Int. Ed.201453261526191:CAS:528:DC%2BC2cXhsl2msL8%3D
MartinRLSimonCMSmitBHaranczykMIn silico design of porous polymer networks: high-throughput screening for methane storage materialsJ. Am. Chem. Soc.2014136500650221:CAS:528:DC%2BC2cXjvVOntLw%3D24611543
LiaoYZChengZHZuoWWThomasAFaulCFJNitrogen-rich conjugated microporous polymers: facile synthesis, efficient gas storage, and heterogeneousCatal. ACS Appl. Mater. Inter.2017938390384001:CAS:528:DC%2BC2sXhs1yhsL7O
Zicovich-WilsonCMCormaAViruelaPElectronic confinement of molecules in microscopic pores. a new concept which contributes to the explanation of the catalytic activity of zeolitesJ. Phys. Chem.19949810863108701:CAS:528:DyaK2cXmtlShtb0%3D
Brian, K. We just breached the 410 parts per million threshold. https://www.climatecentral.org/news/we-just-breached-the-410-parts-per-million-threshold-21372 (2017).
WangYRuthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: An exploration of confinement effectJ. Catal.2015329951061:CAS:528:DC%2BC2MXos1ejsbo%3D
XieYWangTTLiuXHZouKDengWQCapture and conversion of CO2 at ambient conditions by a conjugated microporous polymerNat. Commun.201342013NatCo...4.1960X237277683709476
McDonaldTMCooperative insertion of CO2 in diamine-appended metal-organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D25762144
WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K
SikoraBJWilmerCEGreenfieldMLSnurrRQThermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworksChem. Sci.20123221722231:CAS:528:DC%2BC38XotFGrs7k%3D
ChangTJinLJingHBifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxidesChem. Cat. Chem.200913793831:CAS:528:DC%2BD1MXhtlGhsb7M
YuXYOne-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditionsChem. Eng. J.20183508678711:CAS:528:DC%2BC1cXhtFeqtL7N
GilMInterrogating confined proton-transfer reaction dynamics within mesoporous nanotubesJ. Phys. Chem. C.2010114631163171:CAS:528:DC%2BC3cXjs1OisL8%3D
PaddockRLNguyenSTChemical CO2 fixation: Cr(III) Salen complexes as highly efficient catalysts for the coupling of CO2 and epoxidesJ. Am. Chem. Soc.200112311498114991:CAS:528:DC%2BD3MXnvVGnuro%3D11707136
HmadehMNew porous crystals of extended metal-catecholatesChem. Mater.201224351135131:CAS:528:DC%2BC38Xht1OksbbE
ChenWFanZPanXBaoXEffect of confinement in carbon nanotubes on the activity of Fischer−Tropsch iron catalystJ. Am. Chem. Soc.2008130941494191:CAS:528:DC%2BD1cXnsl2ktbw%3D18576652
WangSA novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditionsJ. Mater. Chem. A20175150915151:CAS:528:DC%2BC28XitVSmsLfF
LiuHControllable encapsulation of “Clean” metal clusters within MOFs through kinetic modulation: towards advanced heterogeneous nanocatalystsAngew. Chem. Int. Ed.201655501950231:CAS:528:DC%2BC28XktFGktb8%3D
PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.65120
WangYCatalysis with two-dimensional materials confining single atoms: concept, design, and applicationsChem. Rev.2019119180618541:CAS:528:DC%2BC1cXisFKgsr7M30575386
ColettiAWhiteoakCJConteVKleijAWVanadium catalyzed synthesis of cyclic organic carbonatesChem. Cat. Chem.20124119011961:CAS:528:DC%2BC38Xls1egtLk%3D
GoldsmithJWong-FoyAGCafarellaMJSiegelDJTheoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offsChem. Mater.201325337333821:CAS:528:DC%2BC3sXhtFOqtLjO
TongMLanYYangQZhongCExploring the structure-property relationships of covalent organic frameworks for noble gas separationsChem. Eng. Sci.20171684564641:CAS:528:DC%2BC2sXotVOntbk%3D
ZhaoHJiangZZhangZZhaiRBaoXStudy of support pore size dependence of silver particle agglomeration by applying ordered porous anodic aluminaChin. J. Catal.2006273813851:CAS:528:DC%2BD28XmsFOqs70%3D
RappeAKCasewitCJColwellKSGoddardWASkiffWMUFF, a full periodic table force field for molecular mechanics and molecular dynamics simulationsJ. Am. Chem. Soc.199211410024100351:CAS:528:DyaK38Xmtl2qur8%3D
ChenYFunction-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversionJ. Mater. Chem. A20186917291821:CAS:528:DC%2BC1cXotVSgs7w%3D
Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018).
DecortesACastillaAMKleijAWSalen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxidesAngew. Chem. Int. Ed.201049982298371:CAS:528:DC%2BC3cXhsFGhsLnJ
BiswasTMahalingamVg-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditionsN. J. Chem.20174114839148421:CAS:528:DC%2BC2sXhslajtbzJ
ZhangGWeiGLiuZOliverSRJFeiHA robust sulfonate-based metal–organic framework with permanent porosity for efficient CO2 capture and conversionChem. Mater.201628627662811:CAS:528:DC%2BC28Xhtlajtr3K
XiaoJPanXGuoSRenPBaoXToward fundamentals of confined catalysis in carbon nanotubesJ. Am. Chem. Soc.20151374774821:CAS:528:DC%2BC2cXitFOhurbJ25496137
PeterGBData-driven design of metal-organic frameworks for wet flue gas CO2 captureNature20195762532562019Natur.576..253B
LiLHSalen-based covalent organic frameworkJ. Am. Chem. Soc.2017139604260451:CAS:528:DC%2BC2sXlslOht70%3D28385018
BeyzaviMHA Hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activationJ. Am. Chem. Soc.201413615861158641:CAS:528:DC%2BC2cXhvVelurvJ25357020
NgCKMetal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditionsChem. Sci.201910154915541:CAS:528:DC%2BC1cXitlClsLvN30809373
XY Yu (18154_CR32) 2018; 350
H Zhao (18154_CR37) 2006; 27
18154_CR41
CK Ng (18154_CR30) 2019; 10
TM McDonald (18154_CR26) 2015; 519
M Gil (18154_CR43) 2010; 114
M Hmadeh (18154_CR29) 2012; 24
Y Wang (18154_CR36) 2019; 119
18154_CR1
WY Gao (18154_CR10) 2014; 53
E Haldoupis (18154_CR20) 2012; 134
L He (18154_CR31) 2019; 55
RL Paddock (18154_CR4) 2001; 123
YZ Liao (18154_CR34) 2017; 9
S Plimpton (18154_CR44) 1995; 117
PZ Moghadam (18154_CR19) 2017; 29
RL Martin (18154_CR21) 2014; 136
MH Beyzavi (18154_CR11) 2014; 136
YG Chung (18154_CR18) 2014; 26
T Chang (18154_CR3) 2009; 1
L Liang (18154_CR14) 2017; 8
AK Rappe (18154_CR45) 1992; 114
XL Pan (18154_CR27) 2007; 6
MM Biswas (18154_CR46) 2010; 114
G Zhang (18154_CR12) 2016; 28
G Ji (18154_CR8) 2016; 55
J Liang (18154_CR13) 2017; 8
LH Li (18154_CR28) 2017; 139
H Liu (18154_CR42) 2016; 55
M Liu (18154_CR15) 2016; 18
BJ Sikora (18154_CR23) 2012; 3
M Tong (18154_CR24) 2017; 168
XB Lu (18154_CR5) 2004; 227
Y Chen (18154_CR16) 2018; 6
CM Zicovich-Wilson (18154_CR35) 1994; 98
Y Wang (18154_CR40) 2015; 329
GB Peter (18154_CR25) 2019; 576
Y Xie (18154_CR2) 2013; 4
J Xiao (18154_CR39) 2015; 137
S Wang (18154_CR9) 2017; 5
A Decortes (18154_CR6) 2010; 49
CE Wilmer (18154_CR17) 2012; 4
W Chen (18154_CR38) 2008; 130
J Goldsmith (18154_CR22) 2013; 25
T Biswas (18154_CR33) 2017; 41
A Coletti (18154_CR7) 2012; 4
References_xml – reference: ColettiAWhiteoakCJConteVKleijAWVanadium catalyzed synthesis of cyclic organic carbonatesChem. Cat. Chem.20124119011961:CAS:528:DC%2BC38Xls1egtLk%3D
– reference: NgCKMetal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditionsChem. Sci.201910154915541:CAS:528:DC%2BC1cXitlClsLvN30809373
– reference: Zicovich-WilsonCMCormaAViruelaPElectronic confinement of molecules in microscopic pores. a new concept which contributes to the explanation of the catalytic activity of zeolitesJ. Phys. Chem.19949810863108701:CAS:528:DyaK2cXmtlShtb0%3D
– reference: WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K
– reference: DecortesACastillaAMKleijAWSalen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxidesAngew. Chem. Int. Ed.201049982298371:CAS:528:DC%2BC3cXhsFGhsLnJ
– reference: ZhaoHJiangZZhangZZhaiRBaoXStudy of support pore size dependence of silver particle agglomeration by applying ordered porous anodic aluminaChin. J. Catal.2006273813851:CAS:528:DC%2BD28XmsFOqs70%3D
– reference: MartinRLSimonCMSmitBHaranczykMIn silico design of porous polymer networks: high-throughput screening for methane storage materialsJ. Am. Chem. Soc.2014136500650221:CAS:528:DC%2BC2cXjvVOntLw%3D24611543
– reference: LuXBZhangYJJinKLuoLMWangHHighly active electrophile–nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperatureJ. Catal.20042275375411:CAS:528:DC%2BD2cXotFGntbs%3D
– reference: LiLHSalen-based covalent organic frameworkJ. Am. Chem. Soc.2017139604260451:CAS:528:DC%2BC2sXlslOht70%3D28385018
– reference: GaoWYCrystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditionsAngew. Chem. Int. Ed.201453261526191:CAS:528:DC%2BC2cXhsl2msL8%3D
– reference: SikoraBJWilmerCEGreenfieldMLSnurrRQThermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworksChem. Sci.20123221722231:CAS:528:DC%2BC38XotFGrs7k%3D
– reference: BiswasMMCaginTSimulation studies on hydrogen sorption and its thermodynamics in covalently linked carbon nanotube scaffoldJ. Phys. Chem. B201011413752137631:CAS:528:DC%2BC3cXht1KhsL%2FF20931989
– reference: LiuMLiangLLiXGaoXSunJNovel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditionsGreen. Chem.201618285128631:CAS:528:DC%2BC28Xhtlarurk%3D
– reference: TongMLanYYangQZhongCExploring the structure-property relationships of covalent organic frameworks for noble gas separationsChem. Eng. Sci.20171684564641:CAS:528:DC%2BC2sXotVOntbk%3D
– reference: BiswasTMahalingamVg-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditionsN. J. Chem.20174114839148421:CAS:528:DC%2BC2sXhslajtbzJ
– reference: ZhangGWeiGLiuZOliverSRJFeiHA robust sulfonate-based metal–organic framework with permanent porosity for efficient CO2 capture and conversionChem. Mater.201628627662811:CAS:528:DC%2BC28Xhtlajtr3K
– reference: ChenYFunction-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversionJ. Mater. Chem. A20186917291821:CAS:528:DC%2BC1cXotVSgs7w%3D
– reference: XiaoJPanXGuoSRenPBaoXToward fundamentals of confined catalysis in carbon nanotubesJ. Am. Chem. Soc.20151374774821:CAS:528:DC%2BC2cXitFOhurbJ25496137
– reference: MoghadamPZDevelopment of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and futureChem. Mater.201729261826251:CAS:528:DC%2BC2sXkt12rurc%3D
– reference: WangYRuthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: An exploration of confinement effectJ. Catal.2015329951061:CAS:528:DC%2BC2MXos1ejsbo%3D
– reference: Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018).
– reference: ChungYGComputation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystalsChem. Mater.201426618561921:CAS:528:DC%2BC2cXhs1Oiur7E
– reference: RappeAKCasewitCJColwellKSGoddardWASkiffWMUFF, a full periodic table force field for molecular mechanics and molecular dynamics simulationsJ. Am. Chem. Soc.199211410024100351:CAS:528:DyaK38Xmtl2qur8%3D
– reference: JiGHierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversionAngew. Chem. Int. Ed.201655968596891:CAS:528:DC%2BC28Xot1Kjtb8%3D
– reference: PaddockRLNguyenSTChemical CO2 fixation: Cr(III) Salen complexes as highly efficient catalysts for the coupling of CO2 and epoxidesJ. Am. Chem. Soc.200112311498114991:CAS:528:DC%2BD3MXnvVGnuro%3D11707136
– reference: BeyzaviMHA Hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activationJ. Am. Chem. Soc.201413615861158641:CAS:528:DC%2BC2cXhvVelurvJ25357020
– reference: LiangJPostsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxidesChem. Sci.20178157015751:CAS:528:DC%2BC28XhslOgs7%2FK28451286
– reference: ChenWFanZPanXBaoXEffect of confinement in carbon nanotubes on the activity of Fischer−Tropsch iron catalystJ. Am. Chem. Soc.2008130941494191:CAS:528:DC%2BD1cXnsl2ktbw%3D18576652
– reference: LiuHControllable encapsulation of “Clean” metal clusters within MOFs through kinetic modulation: towards advanced heterogeneous nanocatalystsAngew. Chem. Int. Ed.201655501950231:CAS:528:DC%2BC28XktFGktb8%3D
– reference: PeterGBData-driven design of metal-organic frameworks for wet flue gas CO2 captureNature20195762532562019Natur.576..253B
– reference: LiangLCarbon dioxide capture and conversion by an acid-base resistant metal-organic frameworkNat. Commun.201782017NatCo...8.1233L290894805663901
– reference: GoldsmithJWong-FoyAGCafarellaMJSiegelDJTheoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offsChem. Mater.201325337333821:CAS:528:DC%2BC3sXhtFOqtLjO
– reference: LiaoYZChengZHZuoWWThomasAFaulCFJNitrogen-rich conjugated microporous polymers: facile synthesis, efficient gas storage, and heterogeneousCatal. ACS Appl. Mater. Inter.2017938390384001:CAS:528:DC%2BC2sXhs1yhsL7O
– reference: YuXYOne-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditionsChem. Eng. J.20183508678711:CAS:528:DC%2BC1cXhtFeqtL7N
– reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.65120
– reference: Brian, K. We just breached the 410 parts per million threshold. https://www.climatecentral.org/news/we-just-breached-the-410-parts-per-million-threshold-21372 (2017).
– reference: XieYWangTTLiuXHZouKDengWQCapture and conversion of CO2 at ambient conditions by a conjugated microporous polymerNat. Commun.201342013NatCo...4.1960X237277683709476
– reference: ChangTJinLJingHBifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxidesChem. Cat. Chem.200913793831:CAS:528:DC%2BD1MXhtlGhsb7M
– reference: WangSA novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditionsJ. Mater. Chem. A20175150915151:CAS:528:DC%2BC28XitVSmsLfF
– reference: McDonaldTMCooperative insertion of CO2 in diamine-appended metal-organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D25762144
– reference: WangYCatalysis with two-dimensional materials confining single atoms: concept, design, and applicationsChem. Rev.2019119180618541:CAS:528:DC%2BC1cXisFKgsr7M30575386
– reference: PanXLEnhanced ethanol production inside carbon-nanotube reactors containing catalytic particlesNat. Mater.200765072007NatMa...6..507P1:CAS:528:DC%2BD2sXnt1egsLc%3D17515914
– reference: HmadehMNew porous crystals of extended metal-catecholatesChem. Mater.201224351135131:CAS:528:DC%2BC38Xht1OksbbE
– reference: HaldoupisENairSShollDSFinding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point chargesJ. Am. Chem. Soc.2012134431343231:CAS:528:DC%2BC38XitF2msb8%3D22329402
– reference: HeLNathJKLinQPRobust multivariate metal-porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonatesChem. Commun.2019554124151:CAS:528:DC%2BC1cXitlOku73E
– reference: GilMInterrogating confined proton-transfer reaction dynamics within mesoporous nanotubesJ. Phys. Chem. C.2010114631163171:CAS:528:DC%2BC3cXjs1OisL8%3D
– volume: 123
  start-page: 11498
  year: 2001
  ident: 18154_CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0164677
– volume: 55
  start-page: 5019
  year: 2016
  ident: 18154_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511009
– volume: 4
  start-page: 1190
  year: 2012
  ident: 18154_CR7
  publication-title: Chem. Cat. Chem.
– volume: 114
  start-page: 13752
  year: 2010
  ident: 18154_CR46
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp1027806
– volume: 55
  start-page: 9685
  year: 2016
  ident: 18154_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602667
– volume: 4
  start-page: 83
  year: 2012
  ident: 18154_CR17
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1192
– volume: 114
  start-page: 10024
  year: 1992
  ident: 18154_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 136
  start-page: 5006
  year: 2014
  ident: 18154_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4123939
– volume: 26
  start-page: 6185
  year: 2014
  ident: 18154_CR18
  publication-title: Chem. Mater.
  doi: 10.1021/cm502594j
– volume: 139
  start-page: 6042
  year: 2017
  ident: 18154_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01523
– ident: 18154_CR41
  doi: 10.3389/fchem.2018.00623
– volume: 29
  start-page: 2618
  year: 2017
  ident: 18154_CR19
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00441
– volume: 27
  start-page: 381
  year: 2006
  ident: 18154_CR37
  publication-title: Chin. J. Catal.
– volume: 227
  start-page: 537
  year: 2004
  ident: 18154_CR5
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.07.018
– volume: 55
  start-page: 412
  year: 2019
  ident: 18154_CR31
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07865C
– volume: 25
  start-page: 3373
  year: 2013
  ident: 18154_CR22
  publication-title: Chem. Mater.
  doi: 10.1021/cm401978e
– volume: 6
  start-page: 507
  year: 2007
  ident: 18154_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1916
– volume: 28
  start-page: 6276
  year: 2016
  ident: 18154_CR12
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02511
– volume: 168
  start-page: 456
  year: 2017
  ident: 18154_CR24
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.05.004
– volume: 576
  start-page: 253
  year: 2019
  ident: 18154_CR25
  publication-title: Nature
  doi: 10.1038/s41586-019-1798-7
– volume: 18
  start-page: 2851
  year: 2016
  ident: 18154_CR15
  publication-title: Green. Chem.
  doi: 10.1039/C5GC02605A
– volume: 24
  start-page: 3511
  year: 2012
  ident: 18154_CR29
  publication-title: Chem. Mater.
  doi: 10.1021/cm301194a
– volume: 519
  start-page: 303
  year: 2015
  ident: 18154_CR26
  publication-title: Nature
  doi: 10.1038/nature14327
– volume: 53
  start-page: 2615
  year: 2014
  ident: 18154_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201309778
– volume: 350
  start-page: 867
  year: 2018
  ident: 18154_CR32
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.175
– volume: 329
  start-page: 95
  year: 2015
  ident: 18154_CR40
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.04.034
– volume: 1
  start-page: 379
  year: 2009
  ident: 18154_CR3
  publication-title: Chem. Cat. Chem.
– volume: 8
  start-page: 1570
  year: 2017
  ident: 18154_CR13
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC04357G
– volume: 98
  start-page: 10863
  year: 1994
  ident: 18154_CR35
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100093a030
– volume: 5
  start-page: 1509
  year: 2017
  ident: 18154_CR9
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08556C
– volume: 137
  start-page: 477
  year: 2015
  ident: 18154_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511498s
– volume: 9
  start-page: 38390
  year: 2017
  ident: 18154_CR34
  publication-title: Catal. ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b09553
– ident: 18154_CR1
– volume: 3
  start-page: 2217
  year: 2012
  ident: 18154_CR23
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc01097f
– volume: 119
  start-page: 1806
  year: 2019
  ident: 18154_CR36
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00501
– volume: 8
  year: 2017
  ident: 18154_CR14
  publication-title: Nat. Commun.
– volume: 4
  year: 2013
  ident: 18154_CR2
  publication-title: Nat. Commun.
– volume: 117
  start-page: 1
  year: 1995
  ident: 18154_CR44
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 6
  start-page: 9172
  year: 2018
  ident: 18154_CR16
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00823J
– volume: 130
  start-page: 9414
  year: 2008
  ident: 18154_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8008192
– volume: 114
  start-page: 6311
  year: 2010
  ident: 18154_CR43
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp911942d
– volume: 136
  start-page: 15861
  year: 2014
  ident: 18154_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508626n
– volume: 134
  start-page: 4313
  year: 2012
  ident: 18154_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2108239
– volume: 10
  start-page: 1549
  year: 2019
  ident: 18154_CR30
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05019H
– volume: 49
  start-page: 9822
  year: 2010
  ident: 18154_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201002087
– volume: 41
  start-page: 14839
  year: 2017
  ident: 18154_CR33
  publication-title: N. J. Chem.
  doi: 10.1039/C7NJ03720A
SSID ssj0000391844
Score 2.5910444
Snippet Chemical fixation of carbon dioxide (CO 2 ) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of...
Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical...
Currently the cost of CO2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4481
SubjectTerms 119/118
140/131
147/135
639/638/563/981
639/638/77/884
639/638/77/887
Carbon dioxide
Carbon dioxide fixation
Carbon sequestration
Catalysts
Chemical synthesis
Climate change
Cycloaddition
Economic impact
Economics
Enrichment
Global warming
High pressure
High temperature
Humanities and Social Sciences
multidisciplinary
Porous materials
Science
Science (multidisciplinary)
Temperature requirements
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NixMxNEhhwYvoqjjaXSJ406Ezk49Jjqu0FEFPFvYW8kkHdCrtVHb_vS-Zad0p7HrZa77z8pL3Xt4XQh_gWGvHncyDsz6nWvPcsNLkQLudpYF7n76yv33nyxX9es2u76T6ijZhfXjgHnAzIbmkvDKBGkdJ7WTlbMFTUBog_clvvSpkcUeYSm8wkSC60MFLpiBitqPpTYjSEhA1RnM5okQpYP-Iyzy1kTxRlCb6s3iOng2MI77qF_wCPfHtOTrrU0nevkSrebtOynxs9dZsWuyazU3jPE5m5elPDOsO618mOkDGUtcba-E_jcYaAxvuMeBSY9fxvxD3dh6v0Gox__FlmQ8pE3LLyrrLS2NrF7TjgRfURxUk8SyQyggnQNAj2uhAfMEFNYRpEL240KzgjhHrgbFw5DWatJvWv0E4ECtjnnQYsKaeAqsmy1AKayhlMJDPUHkAn7JDPPGY1uKnSnptIlQPcgUgVwnkSmbo47HP7z6axoOtP8dTObaMkbBTAeCHGvBD_Q8_MjQ9nKkarudOAU9TABUQssrQ-2M1XKyoLdGt3-xTm7Li0S85Q_UIF0YLGte0zTqF6AYhTTIJPT8dsObf5Pdv-O1jbPgdelpFLI9KLzFFk2679xfAOHXmMt2Rv0gLEWc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcKhXRF9Eq2JqlRV809Ak-5Hsg4iVK0XwEPGgb8t-xQvUpN5di_57ZzfJlRTs635lMzu78z0D8BaPtXTCybR21qdMa5EanpsUabezrBbeR1X214U4W7Iv5_x8DxZjLExwqxzfxPhQu84GHfkxkiEUuVE8KD5e_k5D1ahgXR1LaOihtIL7EFOM3YN9fJJ5NoP9k_ni2_ed1iXkQ68YG6JnMlodb1h8K4IUhcSOs1ROKFRM5D_hPm_7Tt4yoEa6dPoYHg0MJfnUY8AT2PPtAdzvS0z-PYAHY-Tx5iks5-0qGvyJ1WvTtcQ13Z_GeRJdz6PejOgt0b9MCJIMra536CLXjSaaIKvuCeJbY1dBp0h6X5BnsDyd__h8lg5lFVLL83Kb5saWrtZO1CJjPpgpqec1LUzlKhQGqTa6pj4TFTOUaxTPRKV5Jhyn1iPz4ehzmLVd618AqamVoZY6Llgyz5Cdk3mdV9YwxnEhn0A-glLZIed4KH1xoaLtm1aqB79C8KsIfiUTeLebc9ln3Lhz9Ek4od3IkC07NnTrn2q4fKqSQjJRmJoZx2jpZOFsJmJiI2QfZZ7A0Xi-arjCG3WDcAm82XXj5QsWFd367iqOyQsRYpcTKCd4MdnQtKdtVjGNNwpykkuc-X7EoJuP__-HD-_e60t4WARcDiav6ghm2_WVf4Vs09a8Hu7CP_DCFPQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Ni9UwcFhXBC_i-oFd1yWCNy22zUeToz52WQQ9-WBvIZ--grby9q2s_95J2j7pooLXZJKmk5nMZyYAr3BbWy-8KqN3oWTGiNLy2pYou71jUYSQXdkfP4mLNftwyS8PoJnvwuSk_VzSMh_Tc3bY2yuWWToZOyiTOCvVHbgrW8oTVa_Eau9XSRXPJWPT_ZiKyj8MXcigXKp_oV_ezo68FSLNkuf8ITyYVEbyblzkERyE_hHcGx-R_PkY1mf9JofxiTNbO_TEd8NN5wPJCeXZG0bMjphvNl19TK1-TNMiPzpDDEEFPBCkos5tkqeQjBkeT2B9fvZ5dVFOjyWUjtftrqyta300XkRRsZCCjzTwSBsrvUQTjxprIg2VkMxSbtDoEtLwSnhOXUCVwtOncNgPfXgGJFKn0gvpOGHLAkMlTdWxls4yxnGiUEA9o0-7qZJ4etDiq84RbSr1iHKNKNcZ5VoV8Ho_5vtYR-Of0O_TruwhUw3s3DBsv-iJJrRUQjHR2MisZ7T1qvGuErlcESqFqi7gZN5TPTHmlUZtpsLzX6qmgJf7bmSpFCcxfRiuM0zdiHQjuYB2QQuLBS17-m6Ti3Ojeaa4wpFvZqr5_fG___Dx_4E_h_tNoucU2JIncLjbXocXqBzt7Gnmhl_GkAhz
  priority: 102
  providerName: Springer Nature
Title Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect
URI https://link.springer.com/article/10.1038/s41467-020-18154-9
https://www.proquest.com/docview/2440762892
https://www.proquest.com/docview/2441263916
https://pubmed.ncbi.nlm.nih.gov/PMC7479596
https://doaj.org/article/8969462bf4bd437d92dc060710056191
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQPgfaC-BQZozISbxBIYsexHxDqqpapEhMCKvUt8lfWSCOFrpu2f8_ZSYo6DR54SSR_xMn5LvfpO4DXuK2F5VbGlTUuZkrxWOepjpF3W8Mq7lwwZX8-5SczNp3n8x3oyx11ALy4U7Xz9aRmq_N3179uPiLBf2iPjIv3FyyQu1eEkF_lLJa7sB_8RT6UrxP3w5-ZSlRoWHd25u6pB3Cfet9i0pVu61lVyOi_JYbeDqK85UkNDGryEB50kiUZtqjwCHZc8xjutbUmb57AbNwsgrefGLXSy4bYenldW0dC3HkwmhG1JuqH9ickfatto7nIVa2IIggiRxDZarPwBkXSBoI8hdlk_H10Enc1FWKTp8U6TrUpbKUsr3jCnPdRUpdXNNPCCtQEqdKqoi7hgmmaK9TNuFB5wm1OjUPJw9JnsNcsG_ccSEWN9IXU8YEFcwxlOZlWqTCasRwf5CJIe_CVpks47utenJfB8U1F2UK_ROiXAfqljODNZs7PNt3GP0cf-13ZjPSpskPDcnVWdpRXCskl45mumLaMFlZm1iQ8ZDVC2VGmERz1e1r26Fei0JMgmxAyi-DVphspz7tTVOOWl2FMmnF_cDmCYgsXtl5ou6epFyGHN2pxMpc4822PNX8W__sHH_73Qi_gIPNY7l1h4gj21qtL9xLFqbUewG4xL_AqJp8GsD8cTr9N8X48Pv3yFVtHfDQIhopBoKXfcjAh6Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6ofGCYIDoGGAkeIJoSew48cOEGHTq2FYhtEp7M_4KrcSS0XbA_hy_jbOTdOok9rZXf8U5n33fdwCv8Vhzy62ISmtcxJTikc4SHSHttoaV3Lmgyj4e8eGYfT7NTtfgbxcL490quzcxPNS2Nl5HvoNkCEVuFA_S9-c_I181yltXuxIaqi2tYHdDirE2sOPQXf5GEW6-e_AJz_tNmu4PTj4Oo7bKQGSyJF9EiTa5LZXlJY-Z81Y76rKSprqwBcpGVGlVUhfzgmmaKZRWeKGymNuMGoe02FJc9w6sM69A6cH63mD05etSy-PzrxeMtdE6MS125iy8TV5qQ-KasUisUMRQOGCF273uq3nNYBvo4P4DuN8ysORDg3EPYc1Vm3C3KWl5uQkbXaTz_BGMB9UkOBgQo2a6roid1n-m1pHg6h70dEQtiDrTPijTt9rGgYz8miqiCIoGjiB-T83E6zBJ43vyGMa3AuAn0Kvqyj0FUlIjfO12XDBnjiH7KJIyKYxmLMOFXB-SDpTStDnOfamNHzLY2mkhG_BLBL8M4JeiD2-Xc86bDB83jt7zJ7Qc6bNzh4Z69l22l10WggvGU10ybRnNrUitiXlIpITsqkj6sN2dr2yfjLm8QvA-vFp242X3FhxVufoijElS7mOl-5Cv4MXKhlZ7qukkpA1HwVFkAme-6zDo6uP__-Gtm_f6EjaGJ8dH8uhgdPgM7qUer725rdiG3mJ24Z4jy7bQL9p7QeDbbV_Ff_5_UaE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKeFwQFBCBAkaCE0SbxI4THxAC2lVLoeLASnszfoWN1CZldwv01_g6xk6y1Vait14T23HGM573DMBLPNbCciviyhoXM6V4rPNUx8i7rWEVdy6Ysr8c8r0J-zTNpxvwd8iF8WGVw50YLmrbGm8jHyEbQpUb1YNsVPVhEV93xu9Ofsa-g5T3tA7tNDoUOXBnv1F9W7zd38GzfpVl491vH_fivsNAbPK0WMapNoWtlOUVT5jzHjvq8opmurQl6kVUaVVRl_CSaZor1FR4qfKE25wah3zYUlz3GlwvKG4OaamYFiv7jq-8XjLW5-kktBwtWLiVvL6GbDVnsVjjhaFlwJqcezFK84KrNnDA8V2404uu5H2Ha_dgwzVbcKNrZnm2BbeGHOfFfZjsNrMQWkCMmuu2IbZu_9TWkRDkHix0RC2JOtY-HdM_tV3oGPlVK6IIKgWOIGbXZuatl6SLOnkAkysB70PYbNrGPQJSUSN813ZcsGCOoeAo0iotjWYsx4VcBOkASmn66ua-ycaRDF52WsoO_BLBLwP4pYjg9WrOSVfb49LRH_wJrUb6utzhQTv_IXsyl6XggvFMV0xbRgsrMmsSHkoooaAq0gi2h_OV_WWxkOeoHcGL1Wskc--7UY1rT8OYNOM-SzqCYg0v1ja0_qapZ6FgOKqMIhc4882AQecf__8PP758r8_hJhKg_Lx_ePAEbmcerb2frdyGzeX81D1FWW2pnwWiIPD9qqnwH7vDTz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+carbon+dioxide+conversion+at+ambient+conditions+via+a+pore+enrichment+effect&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Wei&rft.au=Deng%2C+Qi-Wen&rft.au=Ren%2C+Guo-Qing&rft.au=Sun%2C+Lei&rft.date=2020-09-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-18154-9&rft_id=info%3Apmid%2F32901004&rft.externalDocID=PMC7479596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon