Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect
Chemical fixation of carbon dioxide (CO 2 ) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO 2 usually requires high temperature or high pressure. The rational design of an e...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 4481 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.09.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-020-18154-9 |
Cover
Abstract | Chemical fixation of carbon dioxide (CO
2
) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO
2
usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO
2
fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO
2
cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO
2
to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.
Currently the cost of CO
2
chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO
2
fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”. |
---|---|
AbstractList | Chemical fixation of carbon dioxide (CO
2
) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO
2
usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO
2
fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO
2
cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO
2
to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.
Currently the cost of CO
2
chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO
2
fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”. Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO2 fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.Currently the cost of CO2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO2 fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”. Currently the cost of CO2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened from 10994 candidates as the efficient CO2 fixation catalyst under ambient conditions based on the finding of a “pore enrichment effect”. Chemical fixation of carbon dioxide (CO 2 ) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO 2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO 2 fixation catalysts under ambient conditions based on the finding of “pore enrichment”, which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO 2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO 2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide. Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO2 fixation catalysts under ambient conditions based on the finding of "pore enrichment", which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide.Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical fixation remains high because the chemical fixation of CO2 usually requires high temperature or high pressure. The rational design of an efficient catalyst that works at ambient conditions might substantially reduce the economic cost of fixation. Here, we report the rational design of covalent organic frameworks (COFs) as efficient CO2 fixation catalysts under ambient conditions based on the finding of "pore enrichment", which is concluded by a detailed investigation of the 10994 COFs. The best predicted COF, Zn-Salen-COF-SDU113, is synthesized, and its efficient catalytic performance for CO2 cycloaddition to terminal epoxide is confirmed with a yield of 98.2% and turnover number (TON) of 3068.9 under ambient conditions, which is comparable to the reported leading catalysts. Moreover, this COF achieves the cycloaddition of CO2 to 2,3-epoxybutane under ambient conditions among all porous materials. This work provides a strategy for designing porous catalysts in the economic fixation of carbon dioxide. |
ArticleNumber | 4481 |
Author | Zhou, Yi-Hong Yang, Li Zhai, Dong Deng, Qi-Wen Ren, Guo-Qing Sun, Lei Zhou, Wei Deng, Wei-Qiao Li, Yi-Meng |
Author_xml | – sequence: 1 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University – sequence: 2 givenname: Qi-Wen surname: Deng fullname: Deng, Qi-Wen organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Collage of Hydraulic & Environmental Engineering, China Three Gorges University – sequence: 3 givenname: Guo-Qing orcidid: 0000-0002-0278-0018 surname: Ren fullname: Ren, Guo-Qing organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University – sequence: 4 givenname: Lei orcidid: 0000-0001-9960-205X surname: Sun fullname: Sun, Lei email: slei@sdu.edu.cn organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University – sequence: 5 givenname: Li orcidid: 0000-0001-6570-5704 surname: Yang fullname: Yang, Li organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences – sequence: 6 givenname: Yi-Meng surname: Li fullname: Li, Yi-Meng organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University – sequence: 7 givenname: Dong orcidid: 0000-0003-3155-4607 surname: Zhai fullname: Zhai, Dong organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University – sequence: 8 givenname: Yi-Hong surname: Zhou fullname: Zhou, Yi-Hong organization: Collage of Hydraulic & Environmental Engineering, China Three Gorges University – sequence: 9 givenname: Wei-Qiao orcidid: 0000-0002-3671-5951 surname: Deng fullname: Deng, Wei-Qiao email: dengwq@sdu.edu.cn organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences |
BookMark | eNp9Uk1v1DAUtFARLUv_AKdIXLgE_BV_XJBQVaBSJS70bDn2y65Xib3Y2RX8e5ymAtpDfbE1npn3_Dyv0VlMERB6S_AHgpn6WDjhQraY4pYo0vFWv0AXFHPSEknZ2X_nc3RZyh7XxTRRnL9C54xqTDDmF-juOu5sdOAbZ3OfYuND-hU8NC7FE-QSKmTnxk59gDgvqA9zBUtzCraxzSFlaCDm4HbTQoBhADe_QS8HOxa4fNg36O7L9Y-rb-3t9683V59vW9cRObekd9IP1otBYA5KE8agGxjtlVcES2Z7OzDAQvGedZZyLZTtsPAdc9B13LMNull9fbJ7c8hhsvm3STaYeyDlrbF5Dm4Eo7TQXNB-4L3nTHpNvcMCyzqGTpBaeoM-rV6HYz-Bd_U12Y6PTB_fxLAz23QykkvdaVEN3j8Y5PTzCGU2UygOxtFGSMdiKOeEivoHC_XdE-o-HXOso1pYWAqqNK0surJcTqVkGP42Q7BZQmDWEJgaAnMfAqOrSD0RuTDb5ctq02F8XspWaal14hbyv66eUf0BOBXF1Q |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2021_120719 crossref_primary_10_1021_acsami_2c18283 crossref_primary_10_1016_j_cplett_2021_138509 crossref_primary_10_1039_D2NR04103K crossref_primary_10_1016_j_ccr_2022_214576 crossref_primary_10_1039_D1QI01643A crossref_primary_10_1002_cctc_202100230 crossref_primary_10_1039_D0TA11797H crossref_primary_10_2139_ssrn_3994396 crossref_primary_10_1002_adma_202412031 crossref_primary_10_1016_j_ces_2024_119867 crossref_primary_10_1021_acssuschemeng_4c02450 crossref_primary_10_1016_j_jcou_2021_101778 crossref_primary_10_1016_j_mcat_2022_112164 crossref_primary_10_1016_j_ccst_2024_100335 crossref_primary_10_1039_D2MA00143H crossref_primary_10_1016_j_jcis_2023_11_084 crossref_primary_10_1016_j_cplett_2024_141820 crossref_primary_10_1002_advs_202206687 crossref_primary_10_1016_j_eurpolymj_2022_111666 crossref_primary_10_1016_j_scitotenv_2024_170085 crossref_primary_10_1002_idm2_12140 crossref_primary_10_1039_D3EE04121B crossref_primary_10_1016_j_ccr_2021_213891 crossref_primary_10_1039_D1QI01555A crossref_primary_10_1016_j_cjche_2022_01_009 crossref_primary_10_1021_acsapm_4c00534 crossref_primary_10_1002_adfm_202308507 crossref_primary_10_1002_er_8472 crossref_primary_10_1016_j_jcis_2021_04_134 crossref_primary_10_1021_acs_chemmater_2c00738 crossref_primary_10_1021_acs_iecr_3c04350 crossref_primary_10_1021_acs_macromol_2c00544 crossref_primary_10_1016_j_ccr_2022_214835 crossref_primary_10_1002_chem_202401010 crossref_primary_10_1016_j_jhydrol_2022_127845 crossref_primary_10_1039_D1GC00267H crossref_primary_10_1039_D1CY01765A crossref_primary_10_1039_D1CP03456A crossref_primary_10_1103_PhysRevMaterials_8_105602 crossref_primary_10_1016_j_jcou_2021_101863 crossref_primary_10_1021_acs_iecr_2c04087 crossref_primary_10_1021_acssuschemeng_2c06816 crossref_primary_10_1002_anie_202011722 crossref_primary_10_1016_j_jcou_2022_101924 crossref_primary_10_1039_D4TA03530E crossref_primary_10_1039_D0TA08649E crossref_primary_10_1039_D4CC05095A crossref_primary_10_1002_asia_202401546 crossref_primary_10_1016_j_ccst_2025_100365 crossref_primary_10_1016_j_cej_2021_131633 crossref_primary_10_1021_acs_inorgchem_3c03923 crossref_primary_10_1039_D1TA05428G crossref_primary_10_1002_slct_202301141 crossref_primary_10_1016_j_jece_2024_111989 crossref_primary_10_1016_j_cej_2022_135560 crossref_primary_10_1039_D3CC04763F crossref_primary_10_1002_cssc_202101093 crossref_primary_10_1021_acs_jpcc_3c07764 crossref_primary_10_1021_acs_langmuir_2c02892 crossref_primary_10_1360_SSC_2024_0158 crossref_primary_10_1016_j_micromeso_2022_112119 crossref_primary_10_1016_j_seppur_2024_131254 crossref_primary_10_1016_j_seppur_2023_123196 crossref_primary_10_1021_acsapm_4c00164 crossref_primary_10_1016_j_cej_2024_156428 crossref_primary_10_1016_j_seppur_2023_124484 crossref_primary_10_1021_acsnano_4c08708 crossref_primary_10_1021_jacsau_1c00258 crossref_primary_10_1002_cnma_202100386 crossref_primary_10_1016_j_fuel_2022_125828 crossref_primary_10_1039_D4GC03494E crossref_primary_10_1021_jacsau_2c00502 crossref_primary_10_1016_j_cej_2024_148550 crossref_primary_10_1002_ange_202305246 crossref_primary_10_1016_j_fuel_2024_134057 crossref_primary_10_1039_D4TA05006A crossref_primary_10_1021_acssuschemeng_2c04428 crossref_primary_10_1038_s41467_022_29076_z crossref_primary_10_1039_D2CS00849A crossref_primary_10_1002_ange_202011722 crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1002_adma_202310061 crossref_primary_10_1016_j_xcrp_2021_100705 crossref_primary_10_1039_D2TA10100A crossref_primary_10_1021_acsami_4c03688 crossref_primary_10_1039_D4RE00492B crossref_primary_10_1002_anie_202305246 crossref_primary_10_1007_s40843_021_1842_8 crossref_primary_10_1016_j_mattod_2021_03_016 |
Cites_doi | 10.1021/ja0164677 10.1002/anie.201511009 10.1021/jp1027806 10.1002/anie.201602667 10.1038/nchem.1192 10.1021/ja00051a040 10.1021/ja4123939 10.1021/cm502594j 10.1021/jacs.7b01523 10.3389/fchem.2018.00623 10.1021/acs.chemmater.7b00441 10.1016/j.jcat.2004.07.018 10.1039/C8CC07865C 10.1021/cm401978e 10.1038/nmat1916 10.1021/acs.chemmater.6b02511 10.1016/j.ces.2017.05.004 10.1038/s41586-019-1798-7 10.1039/C5GC02605A 10.1021/cm301194a 10.1038/nature14327 10.1002/anie.201309778 10.1016/j.cej.2018.05.175 10.1016/j.jcat.2015.04.034 10.1039/C6SC04357G 10.1021/j100093a030 10.1039/C6TA08556C 10.1021/ja511498s 10.1021/acsami.7b09553 10.1039/c2sc01097f 10.1021/acs.chemrev.8b00501 10.1006/jcph.1995.1039 10.1039/C8TA00823J 10.1021/ja8008192 10.1021/jp911942d 10.1021/ja508626n 10.1021/ja2108239 10.1039/C8SC05019H 10.1002/anie.201002087 10.1039/C7NJ03720A |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-18154-9 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Economics |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_8969462bf4bd437d92dc060710056191 PMC7479596 10_1038_s41467_020_18154_9 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21525315 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China – fundername: ; – fundername: ; grantid: 21525315 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c517t-1bc7dfad6f604e89133e5f32b8d81073abaf3e0684b35a24968a506d53ce554d3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Thu Aug 21 14:05:07 EDT 2025 Sun Aug 24 03:42:37 EDT 2025 Wed Aug 13 07:17:58 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Tue Jul 01 04:09:03 EDT 2025 Fri Feb 21 02:40:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-1bc7dfad6f604e89133e5f32b8d81073abaf3e0684b35a24968a506d53ce554d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3155-4607 0000-0002-3671-5951 0000-0002-0278-0018 0000-0001-9960-205X 0000-0001-6570-5704 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-18154-9 |
PMID | 32901004 |
PQID | 2440762892 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8969462bf4bd437d92dc060710056191 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479596 proquest_miscellaneous_2441263916 proquest_journals_2440762892 crossref_primary_10_1038_s41467_020_18154_9 crossref_citationtrail_10_1038_s41467_020_18154_9 springer_journals_10_1038_s41467_020_18154_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-08 |
PublicationDateYYYYMMDD | 2020-09-08 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | LuXBZhangYJJinKLuoLMWangHHighly active electrophile–nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperatureJ. Catal.20042275375411:CAS:528:DC%2BD2cXotFGntbs%3D LiangJPostsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxidesChem. Sci.20178157015751:CAS:528:DC%2BC28XhslOgs7%2FK28451286 LiangLCarbon dioxide capture and conversion by an acid-base resistant metal-organic frameworkNat. Commun.201782017NatCo...8.1233L290894805663901 MoghadamPZDevelopment of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and futureChem. Mater.201729261826251:CAS:528:DC%2BC2sXkt12rurc%3D HaldoupisENairSShollDSFinding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point chargesJ. Am. Chem. Soc.2012134431343231:CAS:528:DC%2BC38XitF2msb8%3D22329402 BiswasMMCaginTSimulation studies on hydrogen sorption and its thermodynamics in covalently linked carbon nanotube scaffoldJ. Phys. Chem. B201011413752137631:CAS:528:DC%2BC3cXht1KhsL%2FF20931989 ChungYGComputation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystalsChem. Mater.201426618561921:CAS:528:DC%2BC2cXhs1Oiur7E JiGHierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversionAngew. Chem. Int. Ed.201655968596891:CAS:528:DC%2BC28Xot1Kjtb8%3D PanXLEnhanced ethanol production inside carbon-nanotube reactors containing catalytic particlesNat. Mater.200765072007NatMa...6..507P1:CAS:528:DC%2BD2sXnt1egsLc%3D17515914 HeLNathJKLinQPRobust multivariate metal-porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonatesChem. Commun.2019554124151:CAS:528:DC%2BC1cXitlOku73E LiuMLiangLLiXGaoXSunJNovel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditionsGreen. Chem.201618285128631:CAS:528:DC%2BC28Xhtlarurk%3D GaoWYCrystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditionsAngew. Chem. Int. Ed.201453261526191:CAS:528:DC%2BC2cXhsl2msL8%3D MartinRLSimonCMSmitBHaranczykMIn silico design of porous polymer networks: high-throughput screening for methane storage materialsJ. Am. Chem. Soc.2014136500650221:CAS:528:DC%2BC2cXjvVOntLw%3D24611543 LiaoYZChengZHZuoWWThomasAFaulCFJNitrogen-rich conjugated microporous polymers: facile synthesis, efficient gas storage, and heterogeneousCatal. ACS Appl. Mater. Inter.2017938390384001:CAS:528:DC%2BC2sXhs1yhsL7O Zicovich-WilsonCMCormaAViruelaPElectronic confinement of molecules in microscopic pores. a new concept which contributes to the explanation of the catalytic activity of zeolitesJ. Phys. Chem.19949810863108701:CAS:528:DyaK2cXmtlShtb0%3D Brian, K. We just breached the 410 parts per million threshold. https://www.climatecentral.org/news/we-just-breached-the-410-parts-per-million-threshold-21372 (2017). WangYRuthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: An exploration of confinement effectJ. Catal.2015329951061:CAS:528:DC%2BC2MXos1ejsbo%3D XieYWangTTLiuXHZouKDengWQCapture and conversion of CO2 at ambient conditions by a conjugated microporous polymerNat. Commun.201342013NatCo...4.1960X237277683709476 McDonaldTMCooperative insertion of CO2 in diamine-appended metal-organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D25762144 WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K SikoraBJWilmerCEGreenfieldMLSnurrRQThermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworksChem. Sci.20123221722231:CAS:528:DC%2BC38XotFGrs7k%3D ChangTJinLJingHBifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxidesChem. Cat. Chem.200913793831:CAS:528:DC%2BD1MXhtlGhsb7M YuXYOne-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditionsChem. Eng. J.20183508678711:CAS:528:DC%2BC1cXhtFeqtL7N GilMInterrogating confined proton-transfer reaction dynamics within mesoporous nanotubesJ. Phys. Chem. C.2010114631163171:CAS:528:DC%2BC3cXjs1OisL8%3D PaddockRLNguyenSTChemical CO2 fixation: Cr(III) Salen complexes as highly efficient catalysts for the coupling of CO2 and epoxidesJ. Am. Chem. Soc.200112311498114991:CAS:528:DC%2BD3MXnvVGnuro%3D11707136 HmadehMNew porous crystals of extended metal-catecholatesChem. Mater.201224351135131:CAS:528:DC%2BC38Xht1OksbbE ChenWFanZPanXBaoXEffect of confinement in carbon nanotubes on the activity of Fischer−Tropsch iron catalystJ. Am. Chem. Soc.2008130941494191:CAS:528:DC%2BD1cXnsl2ktbw%3D18576652 WangSA novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditionsJ. Mater. Chem. A20175150915151:CAS:528:DC%2BC28XitVSmsLfF LiuHControllable encapsulation of “Clean” metal clusters within MOFs through kinetic modulation: towards advanced heterogeneous nanocatalystsAngew. Chem. Int. Ed.201655501950231:CAS:528:DC%2BC28XktFGktb8%3D PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.65120 WangYCatalysis with two-dimensional materials confining single atoms: concept, design, and applicationsChem. Rev.2019119180618541:CAS:528:DC%2BC1cXisFKgsr7M30575386 ColettiAWhiteoakCJConteVKleijAWVanadium catalyzed synthesis of cyclic organic carbonatesChem. Cat. Chem.20124119011961:CAS:528:DC%2BC38Xls1egtLk%3D GoldsmithJWong-FoyAGCafarellaMJSiegelDJTheoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offsChem. Mater.201325337333821:CAS:528:DC%2BC3sXhtFOqtLjO TongMLanYYangQZhongCExploring the structure-property relationships of covalent organic frameworks for noble gas separationsChem. Eng. Sci.20171684564641:CAS:528:DC%2BC2sXotVOntbk%3D ZhaoHJiangZZhangZZhaiRBaoXStudy of support pore size dependence of silver particle agglomeration by applying ordered porous anodic aluminaChin. J. Catal.2006273813851:CAS:528:DC%2BD28XmsFOqs70%3D RappeAKCasewitCJColwellKSGoddardWASkiffWMUFF, a full periodic table force field for molecular mechanics and molecular dynamics simulationsJ. Am. Chem. Soc.199211410024100351:CAS:528:DyaK38Xmtl2qur8%3D ChenYFunction-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversionJ. Mater. Chem. A20186917291821:CAS:528:DC%2BC1cXotVSgs7w%3D Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018). DecortesACastillaAMKleijAWSalen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxidesAngew. Chem. Int. Ed.201049982298371:CAS:528:DC%2BC3cXhsFGhsLnJ BiswasTMahalingamVg-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditionsN. J. Chem.20174114839148421:CAS:528:DC%2BC2sXhslajtbzJ ZhangGWeiGLiuZOliverSRJFeiHA robust sulfonate-based metal–organic framework with permanent porosity for efficient CO2 capture and conversionChem. Mater.201628627662811:CAS:528:DC%2BC28Xhtlajtr3K XiaoJPanXGuoSRenPBaoXToward fundamentals of confined catalysis in carbon nanotubesJ. Am. Chem. Soc.20151374774821:CAS:528:DC%2BC2cXitFOhurbJ25496137 PeterGBData-driven design of metal-organic frameworks for wet flue gas CO2 captureNature20195762532562019Natur.576..253B LiLHSalen-based covalent organic frameworkJ. Am. Chem. Soc.2017139604260451:CAS:528:DC%2BC2sXlslOht70%3D28385018 BeyzaviMHA Hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activationJ. Am. Chem. Soc.201413615861158641:CAS:528:DC%2BC2cXhvVelurvJ25357020 NgCKMetal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditionsChem. Sci.201910154915541:CAS:528:DC%2BC1cXitlClsLvN30809373 XY Yu (18154_CR32) 2018; 350 H Zhao (18154_CR37) 2006; 27 18154_CR41 CK Ng (18154_CR30) 2019; 10 TM McDonald (18154_CR26) 2015; 519 M Gil (18154_CR43) 2010; 114 M Hmadeh (18154_CR29) 2012; 24 Y Wang (18154_CR36) 2019; 119 18154_CR1 WY Gao (18154_CR10) 2014; 53 E Haldoupis (18154_CR20) 2012; 134 L He (18154_CR31) 2019; 55 RL Paddock (18154_CR4) 2001; 123 YZ Liao (18154_CR34) 2017; 9 S Plimpton (18154_CR44) 1995; 117 PZ Moghadam (18154_CR19) 2017; 29 RL Martin (18154_CR21) 2014; 136 MH Beyzavi (18154_CR11) 2014; 136 YG Chung (18154_CR18) 2014; 26 T Chang (18154_CR3) 2009; 1 L Liang (18154_CR14) 2017; 8 AK Rappe (18154_CR45) 1992; 114 XL Pan (18154_CR27) 2007; 6 MM Biswas (18154_CR46) 2010; 114 G Zhang (18154_CR12) 2016; 28 G Ji (18154_CR8) 2016; 55 J Liang (18154_CR13) 2017; 8 LH Li (18154_CR28) 2017; 139 H Liu (18154_CR42) 2016; 55 M Liu (18154_CR15) 2016; 18 BJ Sikora (18154_CR23) 2012; 3 M Tong (18154_CR24) 2017; 168 XB Lu (18154_CR5) 2004; 227 Y Chen (18154_CR16) 2018; 6 CM Zicovich-Wilson (18154_CR35) 1994; 98 Y Wang (18154_CR40) 2015; 329 GB Peter (18154_CR25) 2019; 576 Y Xie (18154_CR2) 2013; 4 J Xiao (18154_CR39) 2015; 137 S Wang (18154_CR9) 2017; 5 A Decortes (18154_CR6) 2010; 49 CE Wilmer (18154_CR17) 2012; 4 W Chen (18154_CR38) 2008; 130 J Goldsmith (18154_CR22) 2013; 25 T Biswas (18154_CR33) 2017; 41 A Coletti (18154_CR7) 2012; 4 |
References_xml | – reference: ColettiAWhiteoakCJConteVKleijAWVanadium catalyzed synthesis of cyclic organic carbonatesChem. Cat. Chem.20124119011961:CAS:528:DC%2BC38Xls1egtLk%3D – reference: NgCKMetal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditionsChem. Sci.201910154915541:CAS:528:DC%2BC1cXitlClsLvN30809373 – reference: Zicovich-WilsonCMCormaAViruelaPElectronic confinement of molecules in microscopic pores. a new concept which contributes to the explanation of the catalytic activity of zeolitesJ. Phys. Chem.19949810863108701:CAS:528:DyaK2cXmtlShtb0%3D – reference: WilmerCELarge-scale screening of hypothetical metal–organic frameworksNat. Chem.2012483891:CAS:528:DC%2BC3MXhsVagtL3K – reference: DecortesACastillaAMKleijAWSalen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxidesAngew. Chem. Int. Ed.201049982298371:CAS:528:DC%2BC3cXhsFGhsLnJ – reference: ZhaoHJiangZZhangZZhaiRBaoXStudy of support pore size dependence of silver particle agglomeration by applying ordered porous anodic aluminaChin. J. Catal.2006273813851:CAS:528:DC%2BD28XmsFOqs70%3D – reference: MartinRLSimonCMSmitBHaranczykMIn silico design of porous polymer networks: high-throughput screening for methane storage materialsJ. Am. Chem. Soc.2014136500650221:CAS:528:DC%2BC2cXjvVOntLw%3D24611543 – reference: LuXBZhangYJJinKLuoLMWangHHighly active electrophile–nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperatureJ. Catal.20042275375411:CAS:528:DC%2BD2cXotFGntbs%3D – reference: LiLHSalen-based covalent organic frameworkJ. Am. Chem. Soc.2017139604260451:CAS:528:DC%2BC2sXlslOht70%3D28385018 – reference: GaoWYCrystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditionsAngew. Chem. Int. Ed.201453261526191:CAS:528:DC%2BC2cXhsl2msL8%3D – reference: SikoraBJWilmerCEGreenfieldMLSnurrRQThermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworksChem. Sci.20123221722231:CAS:528:DC%2BC38XotFGrs7k%3D – reference: BiswasMMCaginTSimulation studies on hydrogen sorption and its thermodynamics in covalently linked carbon nanotube scaffoldJ. Phys. Chem. B201011413752137631:CAS:528:DC%2BC3cXht1KhsL%2FF20931989 – reference: LiuMLiangLLiXGaoXSunJNovel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditionsGreen. Chem.201618285128631:CAS:528:DC%2BC28Xhtlarurk%3D – reference: TongMLanYYangQZhongCExploring the structure-property relationships of covalent organic frameworks for noble gas separationsChem. Eng. Sci.20171684564641:CAS:528:DC%2BC2sXotVOntbk%3D – reference: BiswasTMahalingamVg-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditionsN. J. Chem.20174114839148421:CAS:528:DC%2BC2sXhslajtbzJ – reference: ZhangGWeiGLiuZOliverSRJFeiHA robust sulfonate-based metal–organic framework with permanent porosity for efficient CO2 capture and conversionChem. Mater.201628627662811:CAS:528:DC%2BC28Xhtlajtr3K – reference: ChenYFunction-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversionJ. Mater. Chem. A20186917291821:CAS:528:DC%2BC1cXotVSgs7w%3D – reference: XiaoJPanXGuoSRenPBaoXToward fundamentals of confined catalysis in carbon nanotubesJ. Am. Chem. Soc.20151374774821:CAS:528:DC%2BC2cXitFOhurbJ25496137 – reference: MoghadamPZDevelopment of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and futureChem. Mater.201729261826251:CAS:528:DC%2BC2sXkt12rurc%3D – reference: WangYRuthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: An exploration of confinement effectJ. Catal.2015329951061:CAS:528:DC%2BC2MXos1ejsbo%3D – reference: Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018). – reference: ChungYGComputation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystalsChem. Mater.201426618561921:CAS:528:DC%2BC2cXhs1Oiur7E – reference: RappeAKCasewitCJColwellKSGoddardWASkiffWMUFF, a full periodic table force field for molecular mechanics and molecular dynamics simulationsJ. Am. Chem. Soc.199211410024100351:CAS:528:DyaK38Xmtl2qur8%3D – reference: JiGHierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversionAngew. Chem. Int. Ed.201655968596891:CAS:528:DC%2BC28Xot1Kjtb8%3D – reference: PaddockRLNguyenSTChemical CO2 fixation: Cr(III) Salen complexes as highly efficient catalysts for the coupling of CO2 and epoxidesJ. Am. Chem. Soc.200112311498114991:CAS:528:DC%2BD3MXnvVGnuro%3D11707136 – reference: BeyzaviMHA Hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activationJ. Am. Chem. Soc.201413615861158641:CAS:528:DC%2BC2cXhvVelurvJ25357020 – reference: LiangJPostsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxidesChem. Sci.20178157015751:CAS:528:DC%2BC28XhslOgs7%2FK28451286 – reference: ChenWFanZPanXBaoXEffect of confinement in carbon nanotubes on the activity of Fischer−Tropsch iron catalystJ. Am. Chem. Soc.2008130941494191:CAS:528:DC%2BD1cXnsl2ktbw%3D18576652 – reference: LiuHControllable encapsulation of “Clean” metal clusters within MOFs through kinetic modulation: towards advanced heterogeneous nanocatalystsAngew. Chem. Int. Ed.201655501950231:CAS:528:DC%2BC28XktFGktb8%3D – reference: PeterGBData-driven design of metal-organic frameworks for wet flue gas CO2 captureNature20195762532562019Natur.576..253B – reference: LiangLCarbon dioxide capture and conversion by an acid-base resistant metal-organic frameworkNat. Commun.201782017NatCo...8.1233L290894805663901 – reference: GoldsmithJWong-FoyAGCafarellaMJSiegelDJTheoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offsChem. Mater.201325337333821:CAS:528:DC%2BC3sXhtFOqtLjO – reference: LiaoYZChengZHZuoWWThomasAFaulCFJNitrogen-rich conjugated microporous polymers: facile synthesis, efficient gas storage, and heterogeneousCatal. ACS Appl. Mater. Inter.2017938390384001:CAS:528:DC%2BC2sXhs1yhsL7O – reference: YuXYOne-pot synthesis of an ionic porous organic framework for metal-free catalytic CO2 fixation under ambient conditionsChem. Eng. J.20183508678711:CAS:528:DC%2BC1cXhtFeqtL7N – reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.65120 – reference: Brian, K. We just breached the 410 parts per million threshold. https://www.climatecentral.org/news/we-just-breached-the-410-parts-per-million-threshold-21372 (2017). – reference: XieYWangTTLiuXHZouKDengWQCapture and conversion of CO2 at ambient conditions by a conjugated microporous polymerNat. Commun.201342013NatCo...4.1960X237277683709476 – reference: ChangTJinLJingHBifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxidesChem. Cat. Chem.200913793831:CAS:528:DC%2BD1MXhtlGhsb7M – reference: WangSA novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditionsJ. Mater. Chem. A20175150915151:CAS:528:DC%2BC28XitVSmsLfF – reference: McDonaldTMCooperative insertion of CO2 in diamine-appended metal-organic frameworksNature20155193033082015Natur.519..303M1:CAS:528:DC%2BC2MXks1yqsb8%3D25762144 – reference: WangYCatalysis with two-dimensional materials confining single atoms: concept, design, and applicationsChem. Rev.2019119180618541:CAS:528:DC%2BC1cXisFKgsr7M30575386 – reference: PanXLEnhanced ethanol production inside carbon-nanotube reactors containing catalytic particlesNat. Mater.200765072007NatMa...6..507P1:CAS:528:DC%2BD2sXnt1egsLc%3D17515914 – reference: HmadehMNew porous crystals of extended metal-catecholatesChem. Mater.201224351135131:CAS:528:DC%2BC38Xht1OksbbE – reference: HaldoupisENairSShollDSFinding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point chargesJ. Am. Chem. Soc.2012134431343231:CAS:528:DC%2BC38XitF2msb8%3D22329402 – reference: HeLNathJKLinQPRobust multivariate metal-porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonatesChem. Commun.2019554124151:CAS:528:DC%2BC1cXitlOku73E – reference: GilMInterrogating confined proton-transfer reaction dynamics within mesoporous nanotubesJ. Phys. Chem. C.2010114631163171:CAS:528:DC%2BC3cXjs1OisL8%3D – volume: 123 start-page: 11498 year: 2001 ident: 18154_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0164677 – volume: 55 start-page: 5019 year: 2016 ident: 18154_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511009 – volume: 4 start-page: 1190 year: 2012 ident: 18154_CR7 publication-title: Chem. Cat. Chem. – volume: 114 start-page: 13752 year: 2010 ident: 18154_CR46 publication-title: J. Phys. Chem. B doi: 10.1021/jp1027806 – volume: 55 start-page: 9685 year: 2016 ident: 18154_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602667 – volume: 4 start-page: 83 year: 2012 ident: 18154_CR17 publication-title: Nat. Chem. doi: 10.1038/nchem.1192 – volume: 114 start-page: 10024 year: 1992 ident: 18154_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 136 start-page: 5006 year: 2014 ident: 18154_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4123939 – volume: 26 start-page: 6185 year: 2014 ident: 18154_CR18 publication-title: Chem. Mater. doi: 10.1021/cm502594j – volume: 139 start-page: 6042 year: 2017 ident: 18154_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01523 – ident: 18154_CR41 doi: 10.3389/fchem.2018.00623 – volume: 29 start-page: 2618 year: 2017 ident: 18154_CR19 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00441 – volume: 27 start-page: 381 year: 2006 ident: 18154_CR37 publication-title: Chin. J. Catal. – volume: 227 start-page: 537 year: 2004 ident: 18154_CR5 publication-title: J. Catal. doi: 10.1016/j.jcat.2004.07.018 – volume: 55 start-page: 412 year: 2019 ident: 18154_CR31 publication-title: Chem. Commun. doi: 10.1039/C8CC07865C – volume: 25 start-page: 3373 year: 2013 ident: 18154_CR22 publication-title: Chem. Mater. doi: 10.1021/cm401978e – volume: 6 start-page: 507 year: 2007 ident: 18154_CR27 publication-title: Nat. Mater. doi: 10.1038/nmat1916 – volume: 28 start-page: 6276 year: 2016 ident: 18154_CR12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02511 – volume: 168 start-page: 456 year: 2017 ident: 18154_CR24 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.05.004 – volume: 576 start-page: 253 year: 2019 ident: 18154_CR25 publication-title: Nature doi: 10.1038/s41586-019-1798-7 – volume: 18 start-page: 2851 year: 2016 ident: 18154_CR15 publication-title: Green. Chem. doi: 10.1039/C5GC02605A – volume: 24 start-page: 3511 year: 2012 ident: 18154_CR29 publication-title: Chem. Mater. doi: 10.1021/cm301194a – volume: 519 start-page: 303 year: 2015 ident: 18154_CR26 publication-title: Nature doi: 10.1038/nature14327 – volume: 53 start-page: 2615 year: 2014 ident: 18154_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309778 – volume: 350 start-page: 867 year: 2018 ident: 18154_CR32 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.175 – volume: 329 start-page: 95 year: 2015 ident: 18154_CR40 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.04.034 – volume: 1 start-page: 379 year: 2009 ident: 18154_CR3 publication-title: Chem. Cat. Chem. – volume: 8 start-page: 1570 year: 2017 ident: 18154_CR13 publication-title: Chem. Sci. doi: 10.1039/C6SC04357G – volume: 98 start-page: 10863 year: 1994 ident: 18154_CR35 publication-title: J. Phys. Chem. doi: 10.1021/j100093a030 – volume: 5 start-page: 1509 year: 2017 ident: 18154_CR9 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08556C – volume: 137 start-page: 477 year: 2015 ident: 18154_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511498s – volume: 9 start-page: 38390 year: 2017 ident: 18154_CR34 publication-title: Catal. ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b09553 – ident: 18154_CR1 – volume: 3 start-page: 2217 year: 2012 ident: 18154_CR23 publication-title: Chem. Sci. doi: 10.1039/c2sc01097f – volume: 119 start-page: 1806 year: 2019 ident: 18154_CR36 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00501 – volume: 8 year: 2017 ident: 18154_CR14 publication-title: Nat. Commun. – volume: 4 year: 2013 ident: 18154_CR2 publication-title: Nat. Commun. – volume: 117 start-page: 1 year: 1995 ident: 18154_CR44 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 6 start-page: 9172 year: 2018 ident: 18154_CR16 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00823J – volume: 130 start-page: 9414 year: 2008 ident: 18154_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8008192 – volume: 114 start-page: 6311 year: 2010 ident: 18154_CR43 publication-title: J. Phys. Chem. C. doi: 10.1021/jp911942d – volume: 136 start-page: 15861 year: 2014 ident: 18154_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508626n – volume: 134 start-page: 4313 year: 2012 ident: 18154_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2108239 – volume: 10 start-page: 1549 year: 2019 ident: 18154_CR30 publication-title: Chem. Sci. doi: 10.1039/C8SC05019H – volume: 49 start-page: 9822 year: 2010 ident: 18154_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201002087 – volume: 41 start-page: 14839 year: 2017 ident: 18154_CR33 publication-title: N. J. Chem. doi: 10.1039/C7NJ03720A |
SSID | ssj0000391844 |
Score | 2.5910444 |
Snippet | Chemical fixation of carbon dioxide (CO
2
) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of... Chemical fixation of carbon dioxide (CO2) may be a pathway to retard the current trend of rapid global warming. However, the current economic cost of chemical... Currently the cost of CO2 chemical fixation remains high because of harsh reaction conditions. Here, the authors report a covalent organic framework screened... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4481 |
SubjectTerms | 119/118 140/131 147/135 639/638/563/981 639/638/77/884 639/638/77/887 Carbon dioxide Carbon dioxide fixation Carbon sequestration Catalysts Chemical synthesis Climate change Cycloaddition Economic impact Economics Enrichment Global warming High pressure High temperature Humanities and Social Sciences multidisciplinary Porous materials Science Science (multidisciplinary) Temperature requirements |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NixMxNEhhwYvoqjjaXSJ406Ezk49Jjqu0FEFPFvYW8kkHdCrtVHb_vS-Zad0p7HrZa77z8pL3Xt4XQh_gWGvHncyDsz6nWvPcsNLkQLudpYF7n76yv33nyxX9es2u76T6ijZhfXjgHnAzIbmkvDKBGkdJ7WTlbMFTUBog_clvvSpkcUeYSm8wkSC60MFLpiBitqPpTYjSEhA1RnM5okQpYP-Iyzy1kTxRlCb6s3iOng2MI77qF_wCPfHtOTrrU0nevkSrebtOynxs9dZsWuyazU3jPE5m5elPDOsO618mOkDGUtcba-E_jcYaAxvuMeBSY9fxvxD3dh6v0Gox__FlmQ8pE3LLyrrLS2NrF7TjgRfURxUk8SyQyggnQNAj2uhAfMEFNYRpEL240KzgjhHrgbFw5DWatJvWv0E4ECtjnnQYsKaeAqsmy1AKayhlMJDPUHkAn7JDPPGY1uKnSnptIlQPcgUgVwnkSmbo47HP7z6axoOtP8dTObaMkbBTAeCHGvBD_Q8_MjQ9nKkarudOAU9TABUQssrQ-2M1XKyoLdGt3-xTm7Li0S85Q_UIF0YLGte0zTqF6AYhTTIJPT8dsObf5Pdv-O1jbPgdelpFLI9KLzFFk2679xfAOHXmMt2Rv0gLEWc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcKhXRF9Eq2JqlRV809Ak-5Hsg4iVK0XwEPGgb8t-xQvUpN5di_57ZzfJlRTs635lMzu78z0D8BaPtXTCybR21qdMa5EanpsUabezrBbeR1X214U4W7Iv5_x8DxZjLExwqxzfxPhQu84GHfkxkiEUuVE8KD5e_k5D1ahgXR1LaOihtIL7EFOM3YN9fJJ5NoP9k_ni2_ed1iXkQ68YG6JnMlodb1h8K4IUhcSOs1ROKFRM5D_hPm_7Tt4yoEa6dPoYHg0MJfnUY8AT2PPtAdzvS0z-PYAHY-Tx5iks5-0qGvyJ1WvTtcQ13Z_GeRJdz6PejOgt0b9MCJIMra536CLXjSaaIKvuCeJbY1dBp0h6X5BnsDyd__h8lg5lFVLL83Kb5saWrtZO1CJjPpgpqec1LUzlKhQGqTa6pj4TFTOUaxTPRKV5Jhyn1iPz4ehzmLVd618AqamVoZY6Llgyz5Cdk3mdV9YwxnEhn0A-glLZIed4KH1xoaLtm1aqB79C8KsIfiUTeLebc9ln3Lhz9Ek4od3IkC07NnTrn2q4fKqSQjJRmJoZx2jpZOFsJmJiI2QfZZ7A0Xi-arjCG3WDcAm82XXj5QsWFd367iqOyQsRYpcTKCd4MdnQtKdtVjGNNwpykkuc-X7EoJuP__-HD-_e60t4WARcDiav6ghm2_WVf4Vs09a8Hu7CP_DCFPQ priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Ni9UwcFhXBC_i-oFd1yWCNy22zUeToz52WQQ9-WBvIZ--grby9q2s_95J2j7pooLXZJKmk5nMZyYAr3BbWy-8KqN3oWTGiNLy2pYou71jUYSQXdkfP4mLNftwyS8PoJnvwuSk_VzSMh_Tc3bY2yuWWToZOyiTOCvVHbgrW8oTVa_Eau9XSRXPJWPT_ZiKyj8MXcigXKp_oV_ezo68FSLNkuf8ITyYVEbyblzkERyE_hHcGx-R_PkY1mf9JofxiTNbO_TEd8NN5wPJCeXZG0bMjphvNl19TK1-TNMiPzpDDEEFPBCkos5tkqeQjBkeT2B9fvZ5dVFOjyWUjtftrqyta300XkRRsZCCjzTwSBsrvUQTjxprIg2VkMxSbtDoEtLwSnhOXUCVwtOncNgPfXgGJFKn0gvpOGHLAkMlTdWxls4yxnGiUEA9o0-7qZJ4etDiq84RbSr1iHKNKNcZ5VoV8Ho_5vtYR-Of0O_TruwhUw3s3DBsv-iJJrRUQjHR2MisZ7T1qvGuErlcESqFqi7gZN5TPTHmlUZtpsLzX6qmgJf7bmSpFCcxfRiuM0zdiHQjuYB2QQuLBS17-m6Ti3Ojeaa4wpFvZqr5_fG___Dx_4E_h_tNoucU2JIncLjbXocXqBzt7Gnmhl_GkAhz priority: 102 providerName: Springer Nature |
Title | Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect |
URI | https://link.springer.com/article/10.1038/s41467-020-18154-9 https://www.proquest.com/docview/2440762892 https://www.proquest.com/docview/2441263916 https://pubmed.ncbi.nlm.nih.gov/PMC7479596 https://doaj.org/article/8969462bf4bd437d92dc060710056191 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQPgfaC-BQZozISbxBIYsexHxDqqpapEhMCKvUt8lfWSCOFrpu2f8_ZSYo6DR54SSR_xMn5LvfpO4DXuK2F5VbGlTUuZkrxWOepjpF3W8Mq7lwwZX8-5SczNp3n8x3oyx11ALy4U7Xz9aRmq_N3179uPiLBf2iPjIv3FyyQu1eEkF_lLJa7sB_8RT6UrxP3w5-ZSlRoWHd25u6pB3Cfet9i0pVu61lVyOi_JYbeDqK85UkNDGryEB50kiUZtqjwCHZc8xjutbUmb57AbNwsgrefGLXSy4bYenldW0dC3HkwmhG1JuqH9ickfatto7nIVa2IIggiRxDZarPwBkXSBoI8hdlk_H10Enc1FWKTp8U6TrUpbKUsr3jCnPdRUpdXNNPCCtQEqdKqoi7hgmmaK9TNuFB5wm1OjUPJw9JnsNcsG_ccSEWN9IXU8YEFcwxlOZlWqTCasRwf5CJIe_CVpks47utenJfB8U1F2UK_ROiXAfqljODNZs7PNt3GP0cf-13ZjPSpskPDcnVWdpRXCskl45mumLaMFlZm1iQ8ZDVC2VGmERz1e1r26Fei0JMgmxAyi-DVphspz7tTVOOWl2FMmnF_cDmCYgsXtl5ou6epFyGHN2pxMpc4822PNX8W__sHH_73Qi_gIPNY7l1h4gj21qtL9xLFqbUewG4xL_AqJp8GsD8cTr9N8X48Pv3yFVtHfDQIhopBoKXfcjAh6Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6ofGCYIDoGGAkeIJoSew48cOEGHTq2FYhtEp7M_4KrcSS0XbA_hy_jbOTdOok9rZXf8U5n33fdwCv8Vhzy62ISmtcxJTikc4SHSHttoaV3Lmgyj4e8eGYfT7NTtfgbxcL490quzcxPNS2Nl5HvoNkCEVuFA_S9-c_I181yltXuxIaqi2tYHdDirE2sOPQXf5GEW6-e_AJz_tNmu4PTj4Oo7bKQGSyJF9EiTa5LZXlJY-Z81Y76rKSprqwBcpGVGlVUhfzgmmaKZRWeKGymNuMGoe02FJc9w6sM69A6cH63mD05etSy-PzrxeMtdE6MS125iy8TV5qQ-KasUisUMRQOGCF273uq3nNYBvo4P4DuN8ysORDg3EPYc1Vm3C3KWl5uQkbXaTz_BGMB9UkOBgQo2a6roid1n-m1pHg6h70dEQtiDrTPijTt9rGgYz8miqiCIoGjiB-T83E6zBJ43vyGMa3AuAn0Kvqyj0FUlIjfO12XDBnjiH7KJIyKYxmLMOFXB-SDpTStDnOfamNHzLY2mkhG_BLBL8M4JeiD2-Xc86bDB83jt7zJ7Qc6bNzh4Z69l22l10WggvGU10ybRnNrUitiXlIpITsqkj6sN2dr2yfjLm8QvA-vFp242X3FhxVufoijElS7mOl-5Cv4MXKhlZ7qukkpA1HwVFkAme-6zDo6uP__-Gtm_f6EjaGJ8dH8uhgdPgM7qUer725rdiG3mJ24Z4jy7bQL9p7QeDbbV_Ff_5_UaE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKeFwQFBCBAkaCE0SbxI4THxAC2lVLoeLASnszfoWN1CZldwv01_g6xk6y1Vait14T23HGM573DMBLPNbCciviyhoXM6V4rPNUx8i7rWEVdy6Ysr8c8r0J-zTNpxvwd8iF8WGVw50YLmrbGm8jHyEbQpUb1YNsVPVhEV93xu9Ofsa-g5T3tA7tNDoUOXBnv1F9W7zd38GzfpVl491vH_fivsNAbPK0WMapNoWtlOUVT5jzHjvq8opmurQl6kVUaVVRl_CSaZor1FR4qfKE25wah3zYUlz3GlwvKG4OaamYFiv7jq-8XjLW5-kktBwtWLiVvL6GbDVnsVjjhaFlwJqcezFK84KrNnDA8V2404uu5H2Ha_dgwzVbcKNrZnm2BbeGHOfFfZjsNrMQWkCMmuu2IbZu_9TWkRDkHix0RC2JOtY-HdM_tV3oGPlVK6IIKgWOIGbXZuatl6SLOnkAkysB70PYbNrGPQJSUSN813ZcsGCOoeAo0iotjWYsx4VcBOkASmn66ua-ycaRDF52WsoO_BLBLwP4pYjg9WrOSVfb49LRH_wJrUb6utzhQTv_IXsyl6XggvFMV0xbRgsrMmsSHkoooaAq0gi2h_OV_WWxkOeoHcGL1Wskc--7UY1rT8OYNOM-SzqCYg0v1ja0_qapZ6FgOKqMIhc4882AQecf__8PP758r8_hJhKg_Lx_ePAEbmcerb2frdyGzeX81D1FWW2pnwWiIPD9qqnwH7vDTz0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+carbon+dioxide+conversion+at+ambient+conditions+via+a+pore+enrichment+effect&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Wei&rft.au=Deng%2C+Qi-Wen&rft.au=Ren%2C+Guo-Qing&rft.au=Sun%2C+Lei&rft.date=2020-09-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-18154-9&rft_id=info%3Apmid%2F32901004&rft.externalDocID=PMC7479596 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |