Excitability parameters and sensitivity to anemone toxin ATX-II in rat small diameter primary sensory neurones discriminated by Griffonia simplicifolia isolectin IB4

Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na + channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 μ m...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 588; no. 1; pp. 125 - 137
Main Authors Snape, Alistair, Pittaway, James F., Baker, Mark D.
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 01.01.2010
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/jphysiol.2009.181107

Cover

Abstract Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na + channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 μ m has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 −ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na V 1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na + channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and −ve neurones. IB4 +ve neurones became more excitable with depolarization over the range −100 to −20 mV, but IB4 −ve neurones exhibited peak excitability near −55 mV, and were inexcitable at −20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 −ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na V 1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 −ve neurones may express Na V 1.1 or Na V 1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na V 1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na + channel inactivation.
AbstractList Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na + channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 μ m has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 −ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na V 1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na + channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and −ve neurones. IB4 +ve neurones became more excitable with depolarization over the range −100 to −20 mV, but IB4 −ve neurones exhibited peak excitability near −55 mV, and were inexcitable at −20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 −ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na V 1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 −ve neurones may express Na V 1.1 or Na V 1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na V 1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na + channel inactivation.
Sensory neurone subtypes (≤ 25 µm apparent diameter) express a variety of Na+ channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 µm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 -ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) NaV1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na+ channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and -ve neurones. IB4 +ve neurones became more excitable with depolarization over the range -100 to -20 mV, but IB4 -ve neurones exhibited peak excitability near -55 mV, and were inexcitable at -20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 -ve neurones. Our findings are consistent with relatively toxin-insensitive channels including NaV1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 -ve neurones may express NaV1.1 or NaV1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of NaV1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na+ channel inactivation. Non-technical summarySmall diameter nerve fibres provide sensory input that is perceived as pain. Periods of raised impulse traffic slow the rate of impulse travel, although not all nerve fibres are affected equally, and the mechanism of slowing is still the subject of debate. We describe a novel way of pharmacologically discriminating two sub-sets of neurones that are the parent cell bodies of small diameter sensory nerves. We show that the excitability properties of these populations differ from one another and also report that repeated impulse generation can depress the excitation mechanism. These findings might explain the slowing of the rate of impulse travel in nerve fibres during periods of raised activity, and offer insights into the molecular mechanisms of pain.
Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na + channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 μ m has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 −ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na V 1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na + channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and −ve neurones. IB4 +ve neurones became more excitable with depolarization over the range −100 to −20 mV, but IB4 −ve neurones exhibited peak excitability near −55 mV, and were inexcitable at −20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 −ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na V 1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 −ve neurones may express Na V 1.1 or Na V 1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na V 1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na + channel inactivation.
Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na+ channels, where expression is linked to action potential duration, and associated with differential IB4‐lectin binding. We hypothesized that sensitivity to ATX‐II might also discriminate neurones and report that 1 μm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 −ve, neurones. The toxin did not act on tetrodotoxin‐resistant (TTX‐r) NaV1.8 currents; discrimination was based on tetrodotoxin‐sensitive (TTX‐s) Na+ channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and −ve neurones. IB4 +ve neurones became more excitable with depolarization over the range −100 to −20 mV, but IB4 −ve neurones exhibited peak excitability near −55 mV, and were inexcitable at −20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 −ve neurones. Our findings are consistent with relatively toxin‐insensitive channels including NaV1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 −ve neurones may express NaV1.1 or NaV1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of NaV1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C‐fibres by the build‐up of Na+ channel inactivation. Non‐technical summary
Small diameter nerve fibres provide sensory input that is perceived as pain. Periods of raised impulse traffic slow the rate of impulse travel, although not all nerve fibres are affected equally, and the mechanism of slowing is still the subject of debate. We describe a novel way of pharmacologically discriminating two sub‐sets of neurones that are the parent cell bodies of small diameter sensory nerves. We show that the excitability properties of these populations differ from one another and also report that repeated impulse generation can depress the excitation mechanism. These findings might explain the slowing of the rate of impulse travel in nerve fibres during periods of raised activity, and offer insights into the molecular mechanisms of pain.
Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na + channels, where expression is linked to action potential duration, and associated with differential IB4‐lectin binding. We hypothesized that sensitivity to ATX‐II might also discriminate neurones and report that 1 μ m has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 −ve, neurones. The toxin did not act on tetrodotoxin‐resistant (TTX‐r) Na V 1.8 currents; discrimination was based on tetrodotoxin‐sensitive (TTX‐s) Na + channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and −ve neurones. IB4 +ve neurones became more excitable with depolarization over the range −100 to −20 mV, but IB4 −ve neurones exhibited peak excitability near −55 mV, and were inexcitable at −20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 −ve neurones. Our findings are consistent with relatively toxin‐insensitive channels including Na V 1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 −ve neurones may express Na V 1.1 or Na V 1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na V 1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C‐fibres by the build‐up of Na + channel inactivation. Non‐technical summary
Small diameter nerve fibres provide sensory input that is perceived as pain. Periods of raised impulse traffic slow the rate of impulse travel, although not all nerve fibres are affected equally, and the mechanism of slowing is still the subject of debate. We describe a novel way of pharmacologically discriminating two sub‐sets of neurones that are the parent cell bodies of small diameter sensory nerves. We show that the excitability properties of these populations differ from one another and also report that repeated impulse generation can depress the excitation mechanism. These findings might explain the slowing of the rate of impulse travel in nerve fibres during periods of raised activity, and offer insights into the molecular mechanisms of pain.
Sensory neurone subtypes (< or = 25 microm apparent diameter) express a variety of Na(+) channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 microm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na(V)1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na(+) channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and ve neurones. IB4 +ve neurones became more excitable with depolarization over the range 100 to 20 mV, but IB4 ve neurones exhibited peak excitability near 55 mV, and were inexcitable at 20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na(V)1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 ve neurones may express Na(V)1.1 or Na(V)1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na(V)1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na(+) channel inactivation.
Sensory neurone subtypes (< or = 25 microm apparent diameter) express a variety of Na(+) channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 microm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na(V)1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na(+) channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and ve neurones. IB4 +ve neurones became more excitable with depolarization over the range 100 to 20 mV, but IB4 ve neurones exhibited peak excitability near 55 mV, and were inexcitable at 20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na(V)1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 ve neurones may express Na(V)1.1 or Na(V)1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na(V)1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na(+) channel inactivation.Sensory neurone subtypes (< or = 25 microm apparent diameter) express a variety of Na(+) channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 microm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na(V)1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na(+) channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and ve neurones. IB4 +ve neurones became more excitable with depolarization over the range 100 to 20 mV, but IB4 ve neurones exhibited peak excitability near 55 mV, and were inexcitable at 20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na(V)1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 ve neurones may express Na(V)1.1 or Na(V)1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na(V)1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na(+) channel inactivation.
Author Alistair Snape
James F. Pittaway
Mark D. Baker
Author_xml – sequence: 1
  givenname: Alistair
  surname: Snape
  fullname: Snape, Alistair
– sequence: 2
  givenname: James F.
  surname: Pittaway
  fullname: Pittaway, James F.
– sequence: 3
  givenname: Mark D.
  surname: Baker
  fullname: Baker, Mark D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19900960$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVAR_YB_gFAkDpyyeOI4iTkgtVUpiyrBYZG4WU4y6c7KiRfb23Z_EP8TL9kW6AFxmrHnvac3H8fJwWhHTJKXwGYAwN-u1sutJ2tmOWNyBjUAq54kR1CUMqsqyQ-SI8byPOOVgMPk2PsVY8CZlM-SQ5Aykkp2lPy4uGsp6IYMhW261k4PGND5VI9d6nH0FOhmVwo2fuEQPcT0jsb0dPEtm8_TmDkdUj9oY9KOJnq6djRot_2lYGMcceMi1UeEb2ONRh2wS5tteumo7-1IOvU0rA211FsTX-StwTZE-flZ8Tx52mvj8cU-niRfP1wszj9mV58v5-enV1kroCqzsuqwY3nRSlEUqGVZya7WqEXdIUDdIGc1a3rkedmwBrCMUQC2TdPkveScnyTvJ931phmwa3EMThu170ZZTervykhLdW1vVF7nIEQRBd7sBZz9vkEf1BAbRmPi7OzGq4rzktWilhH5-hFyZTdujN0pEIXgIKGsIurVn4YenNwvMALeTYDWWe8d9mq3zkB254-MAqZ216Lur0XtrkVN1xLJxSPyg_6_aXKi3ZLB7X9x1OLTF15V5e8BLel6eUsO1YT2tiUMWyXqWoGCXPCfHGnrdw
CODEN JPHYA7
CitedBy_id crossref_primary_10_1213_ANE_0b013e3182542843
crossref_primary_10_1113_jphysiol_2010_187112
crossref_primary_10_1113_jphysiol_2011_224436
crossref_primary_10_1152_jn_00785_2011
crossref_primary_10_1016_j_bpj_2014_12_034
crossref_primary_10_1016_j_pain_2013_07_036
crossref_primary_10_1113_jphysiol_2009_185017
crossref_primary_10_1007_s00424_021_02656_6
crossref_primary_10_1152_jn_00243_2014
crossref_primary_10_1007_s00424_015_1696_2
crossref_primary_10_1007_s00424_020_02419_9
crossref_primary_10_1152_jn_00091_2012
crossref_primary_10_1161_CIRCRESAHA_112_278358
crossref_primary_10_1016_j_pain_2013_06_015
crossref_primary_10_1113_jphysiol_2011_220624
crossref_primary_10_1152_jn_00777_2012
crossref_primary_10_1111_bph_12119
crossref_primary_10_1113_jphysiol_2010_190736
crossref_primary_10_1186_1744_8069_8_69
crossref_primary_10_1016_j_jneuroim_2019_05_002
Cites_doi 10.1074/jbc.271.27.15950
10.1523/JNEUROSCI.22-23-10277.2002
10.1113/jphysiol.1989.sp017589
10.1085/jgp.86.5.739
10.1038/9195
10.1038/379257a0
10.1007/BF00586041
10.1152/jn.1999.81.2.413
10.1007/BF01188046
10.1113/jphysiol.1979.sp012771
10.1523/JNEUROSCI.19-15-06497.1999
10.1523/JNEUROSCI.2695-04.2004
10.1523/JNEUROSCI.23-32-10338.2003
10.1016/S0304-3940(00)01694-3
10.1152/jn.01267.2004
10.1113/jphysiol.2008.167023
10.1146/annurev.pa.28.040188.001041
10.1016/S0304-3940(02)00860-1
10.1111/j.1469-7793.2003.00741.x
10.1074/jbc.271.11.5953
10.1016/j.neuron.2006.10.006
10.1523/JNEUROSCI.12-06-02259.1992
10.1038/nature05880
10.1152/jn.01033.2006
10.1523/JNEUROSCI.19-24-j0001.1999
10.1152/jn.1997.77.3.1503
10.1113/jphysiol.2007.145383
10.1016/j.toxicon.2009.04.018
10.1113/jphysiol.1968.sp008502
10.1016/j.toxicon.2006.09.022
10.1523/JNEUROSCI.1997-06.2006
10.1016/0896-6273(89)90238-9
10.1016/S0169-328X(96)00163-5
10.1074/jbc.M404344200
10.1523/JNEUROSCI.18-08-03059.1998
10.1111/j.1460-9568.1995.tb01143.x
10.1038/nature05413
10.1016/0306-4522(96)00070-X
10.1016/0304-3940(96)12418-6
10.1139/y02-034
10.1073/pnas.0404915101
10.1111/j.1469-7793.1999.799ab.x
10.1523/JNEUROSCI.1072-06.2006
10.1016/0005-2736(80)90448-4
10.1113/jphysiol.1985.sp015769
10.1097/01.wnr.0000136037.54095.64
10.1016/j.brainres.2004.09.051
10.1016/S0165-6147(00)01585-6
10.1098/rstb.1996.0039
10.1126/science.1156916
10.1085/jgp.20028628
ContentType Journal Article
Copyright 2010 The Authors. Journal compilation © 2010 The Physiological Society
Journal compilation © 2010 The Physiological Society
Copyright_xml – notice: 2010 The Authors. Journal compilation © 2010 The Physiological Society
– notice: Journal compilation © 2010 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2009.181107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Technology Research Database


CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 137
ExternalDocumentID PMC2821554
3374172381
19900960
10_1113_jphysiol_2009_181107
TJP3776
588_1_125
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GODZA
GX1
H.X
H13
HZ
HZI
IA
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF
O0-
O66
O9-
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
3O-
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCFJ
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
AEEZP
AEGXH
AEIGN
AEQDE
AEUYR
AFEBI
AFFPM
AFGKR
AFWVQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALVPJ
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IPNFZ
KBYEO
LH4
MVM
NEJ
NF~
OHT
OIG
SAMSI
TEORI
TR2
UKR
W8F
WHG
WXSBR
X7M
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5176-67ded024c9544ea9679d8aea58de118be3080bfe326b0b1e626b51ecbbb2f9333
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:20:10 EDT 2025
Fri Jul 11 16:41:22 EDT 2025
Fri Jul 25 12:11:47 EDT 2025
Mon Jul 21 05:49:28 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 04:28:55 EDT 2025
Wed Jan 22 16:24:49 EST 2025
Fri Jan 15 02:12:02 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5176-67ded024c9544ea9679d8aea58de118be3080bfe326b0b1e626b51ecbbb2f9333
Notes J. F. Pittaway and A. Snape contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2821554
PMID 19900960
PQID 1545319167
PQPubID 1086388
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2821554
proquest_miscellaneous_733608589
proquest_journals_1545319167
pubmed_primary_19900960
crossref_citationtrail_10_1113_jphysiol_2009_181107
crossref_primary_10_1113_jphysiol_2009_181107
wiley_primary_10_1113_jphysiol_2009_181107_TJP3776
highwire_physiosociety_588_1_125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: January 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2010
Publisher The Physiological Society
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: The Physiological Society
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 2004; 101
1989; 3
2006; 52
2007; 447
1989; 411
1990; 19
2002; 331
2004; 24
1985; 365
1996; 73
1968; 196
1999; 2
2008; 586
2002; 80
2008; 321
2001; 22
2007; 97
1999; 81
1985; 86
1992; 12
2003; 551
2004; 1029
1996; 206
1995; 7
1979; 290
1972; 333
1980; 600
2001; 297
1998; 18
2004; 279
2009; 54
1997; 77
2002; 120
1999; 19
2004; 15
2002; 22
2006; 26
1988; 28
1996; 271
1996; 351
2005; 93
1996; 379
1996; 43
2009; 587
2006; 444
1999; 515
2003; 23
2007; 49
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
313985 - J Physiol. 1979 May;290(2):273-303
2614732 - J Physiol. 1989 Apr;411:545-61
12198093 - J Gen Physiol. 2002 Sep;120(3):395-405
12451128 - J Neurosci. 2002 Dec 1;22(23):10277-90
8848275 - Neurosci Lett. 1996 Mar 8;206(1):33-6
19393679 - Toxicon. 2009 Dec 15;54(8):1102-11
8626372 - J Biol Chem. 1996 Mar 15;271(11):5953-6
5653884 - J Physiol. 1968 May;196(1):183-221
16822986 - J Neurosci. 2006 Jul 5;26(27):7281-92
9084615 - J Neurophysiol. 1997 Mar;77(3):1503-13
9526023 - J Neurosci. 1998 Apr 15;18(8):3059-72
12361845 - Neurosci Lett. 2002 Oct 11;331(2):79-82
8538791 - Nature. 1996 Jan 18;379(6562):257-62
11165669 - Trends Pharmacol Sci. 2001 Jan;22(1):27-31
15385606 - J Neurosci. 2004 Sep 22;24(38):8232-6
10448219 - Nat Neurosci. 1999 Jun;2(6):541-8
17035534 - J Neurosci. 2006 Oct 11;26(41):10499-507
18096592 - J Physiol. 2008 Feb 15;586(4):1089-103
11137755 - Neurosci Lett. 2001 Jan 19;297(3):171-4
4032313 - J Physiol. 1985 Aug;365:239-57
9037525 - Brain Res Mol Brain Res. 1996 Dec 31;43(1-2):117-31
7551174 - Eur J Neurosci. 1995 Jul 1;7(7):1484-94
8663157 - J Biol Chem. 1996 Jul 5;271(27):15950-62
17167479 - Nature. 2006 Dec 14;444(7121):894-8
15647393 - J Neurophysiol. 2005 Jun;93(6):3401-9
5064076 - Pflugers Arch. 1972;333(1):51-61
12056559 - Can J Physiol Pharmacol. 2002 May;80(5):495-505
2415671 - J Gen Physiol. 1985 Nov;86(5):739-62
2454608 - Annu Rev Pharmacol Toxicol. 1988;28:141-61
19171652 - J Physiol. 2009 Mar 15;587(Pt 6):1249-64
17568746 - Nature. 2007 Jun 14;447(7146):855-8
15314237 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12706-11
10036248 - J Neurophysiol. 1999 Feb;81(2):413-24
18669863 - Science. 2008 Aug 1;321(5889):702-5
6105881 - Biochim Biophys Acta. 1980 Aug 4;600(2):456-66
17108087 - J Neurophysiol. 2007 Feb;97(2):1258-65
2077115 - J Neurocytol. 1990 Oct;19(5):789-801
8809788 - Neuroscience. 1996 Aug;73(3):667-75
15257131 - Neuroreport. 2004 Aug 6;15(11):1705-9
17239913 - Toxicon. 2007 Feb;49(2):124-41
8730782 - Philos Trans R Soc Lond B Biol Sci. 1996 Mar 29;351(1338):431-40
15542080 - Brain Res. 2004 Dec 17;1029(2):251-8
20045899 - J Physiol. 2010 Jan 1;588(Pt 1):11
12843211 - J Physiol. 2003 Sep 15;551(Pt 3):741-50
2561976 - Neuron. 1989 Dec;3(6):695-704
14614093 - J Neurosci. 2003 Nov 12;23(32):10338-50
10414978 - J Neurosci. 1999 Aug 1;19(15):6497-505
10594087 - J Neurosci. 1999 Dec 15;19(24):RC43
1318958 - J Neurosci. 1992 Jun;12(6):2259-67
17145499 - Neuron. 2006 Dec 7;52(5):767-74
15169781 - J Biol Chem. 2004 Aug 6;279(32):33323-35
10066906 - J Physiol. 1999 Mar 15;515 ( Pt 3):799-811
References_xml – volume: 12
  start-page: 2259
  year: 1992
  end-page: 2267
  article-title: Elevated expression of type II Na channels in hypomyelinated axons of shiverer mouse brain
  publication-title: J Neurosci
– volume: 26
  start-page: 7281
  year: 2006
  end-page: 7292
  article-title: Intense isolectin‐B4 binding in rat dorsal root ganglion neurons distinguishes C‐fibre nociceptors with broad action potentials and high Na 1.9 expression
  publication-title: J Neurosci
– volume: 15
  start-page: 1705
  year: 2004
  end-page: 1709
  article-title: Identification of some lectin IB4 binding proteins in rat dorsal root ganglia
  publication-title: Neuroreport
– volume: 297
  start-page: 171
  year: 2001
  end-page: 174
  article-title: Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones
  publication-title: Neurosci Lett
– volume: 196
  start-page: 183
  year: 1968
  end-page: 221
  article-title: On the electrogenic sodium pump in mammalian non‐myelinated nerve fibres and its activation by various external cations
  publication-title: J Physiol
– volume: 3
  start-page: 695
  year: 1989
  end-page: 704
  article-title: Differential subcellular localization of the RI and RII Na channel subtypes in central neurons
  publication-title: Neuron
– volume: 23
  start-page: 10338
  year: 2003
  end-page: 10350
  article-title: Role of tetrodotoxin‐resistant Na current slow inactivation in adaptation of action potential firing in small‐diameter dorsal root ganglion neurons
  publication-title: J Neurosci
– volume: 26
  start-page: 10499
  year: 2006
  end-page: 10507
  article-title: Deletion of annexin 2 light chain p11 in nociceptors causes deficits in somatosensory coding and pain behaviour
  publication-title: J Neurosci
– volume: 321
  start-page: 702
  year: 2008
  end-page: 705
  article-title: The cell and molecular basis of mechanical, cold, and inflammatory pain
  publication-title: Science
– volume: 206
  start-page: 33
  year: 1996
  end-page: 36
  article-title: trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat
  publication-title: Neurosci Lett
– volume: 551
  start-page: 741
  year: 2003
  end-page: 750
  article-title: Distinct repriming and closed‐state inactivation kinetics of Na 1.6 and Na 1.7 sodium channels in mouse spinal sensory neurons
  publication-title: J Physiol
– volume: 7
  start-page: 1484
  year: 1995
  end-page: 1494
  article-title: Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons
  publication-title: Eur J Neurosci
– volume: 19
  start-page: 789
  year: 1990
  end-page: 801
  article-title: Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers
  publication-title: J Neurocytol
– volume: 80
  start-page: 495
  year: 2002
  end-page: 505
  article-title: Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor
  publication-title: Can J Physiol Pharmacol
– volume: 93
  start-page: 3401
  year: 2005
  end-page: 3409
  article-title: A‐type voltage‐gated K currents influence firing properties of isolectin B ‐positive but not isolectin B ‐negative primary sensory neurons
  publication-title: J Neurophysiol
– volume: 19
  start-page: 6497
  year: 1999
  end-page: 6505
  article-title: Isolectin B ‐positive and ‐negative nociceptors are functionally distinct
  publication-title: J Neurosci
– volume: 54
  start-page: 1102
  year: 2009
  end-page: 1111
  article-title: Actions of sea anemone type 1 neurotoxins on voltage‐gated sodium channel isoforms
  publication-title: Toxicon
– volume: 77
  start-page: 1503
  year: 1997
  end-page: 1513
  article-title: Low‐threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture
  publication-title: J Neurophysiol
– volume: 52
  start-page: 767
  year: 2006
  end-page: 774
  article-title: mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes
  publication-title: Neuron
– volume: 22
  start-page: 10277
  year: 2002
  end-page: 10290
  article-title: Roles of tetrodotoxin (TTX)‐sensitive Na current, TTX‐resistant Na current and Ca current in the action potentials of nociceptive sensory neurons
  publication-title: J Neurosci
– volume: 120
  start-page: 395
  year: 2002
  end-page: 405
  article-title: The effects of polarizing current on nerve terminal impulses recorded from polymodal and cold receptors in the guinea‐pig cornea
  publication-title: J Gen Physiol
– volume: 333
  start-page: 51
  year: 1972
  end-page: 61
  article-title: Influence of calcium ions on the ionic currents of nodes of Ranvier treated with scorpion venom
  publication-title: Pflugers Arch
– volume: 290
  start-page: 273
  year: 1979
  end-page: 303
  article-title: Effects of nerve impulses on threshold of frog sciatic nerve fibres
  publication-title: J Physiol
– volume: 351
  start-page: 431
  year: 1996
  end-page: 440
  article-title: NGF as a mediator of inflammatory pain
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 600
  start-page: 456
  year: 1980
  end-page: 466
  article-title: Modification of sodium inactivation in myelinated nerve by Anemonia toxin II and iodate. Analysis of current fluctuations and current relaxations
  publication-title: Biochim Biophys Acta
– volume: 86
  start-page: 739
  year: 1985
  end-page: 762
  article-title: Kinetic analysis of the action of Leiurus scorpion α‐toxin on ionic currents in myelinated nerve
  publication-title: J Gen Physiol
– volume: 411
  start-page: 545
  year: 1989
  end-page: 561
  article-title: Depolarization changes the mechanism of accommodation in rat and human motor axons
  publication-title: J Physiol
– volume: 1029
  start-page: 251
  year: 2004
  end-page: 258
  article-title: Tetrodotoxin‐sensitive and ‐resistant Na channel currents in subsets of small sensory neurons of rats
  publication-title: Brain Res
– volume: 49
  start-page: 124
  year: 2007
  end-page: 141
  article-title: Voltage‐gated ion channels and gating modifier toxins
  publication-title: Toxicon
– volume: 81
  start-page: 413
  year: 1999
  end-page: 424
  article-title: Electrophysiological evidence for tetrodotoxin‐resistant sodium channels in slowly conducting dural sensory fibres
  publication-title: J Neurophysiol
– volume: 365
  start-page: 239
  year: 1985
  end-page: 257
  article-title: Activity‐dependent excitability changes in normal and demyelinated rat spinal root axons
  publication-title: J Physiol
– volume: 24
  start-page: 8232
  year: 2004
  end-page: 8236
  article-title: Electrophysiological properties of mutant Na 1.7 sodium channels in a painful inherited neuropathy
  publication-title: J Neurosci
– volume: 444
  start-page: 894
  year: 2006
  end-page: 898
  article-title: An channelopathy causes congenital inability to experience pain
  publication-title: Nature
– volume: 279
  start-page: 33323
  year: 2004
  end-page: 33335
  article-title: Binding specificity of sea anemone toxins to Na 1.1–1.6 sodium channels: unexpected contributions from differences in the IV/S3‐S4 outer loop
  publication-title: J Biol Chem
– volume: 73
  start-page: 667
  year: 1996
  end-page: 675
  article-title: Activity‐dependent slowing of conduction velocity provides a method for identifying different functional classes of C‐fibre in the rat saphenous nerve
  publication-title: Neuroscience
– volume: 19
  start-page: RC43
  year: 1999
  article-title: A novel persistent tetrodotoxin‐resistant sodium current in SNS‐null and wild‐type small primary sensory neurons
  publication-title: J Neurosci
– volume: 586
  start-page: 1089
  year: 2008
  end-page: 1103
  article-title: Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges
  publication-title: J Physiol
– volume: 271
  start-page: 5953
  year: 1996
  end-page: 5956
  article-title: Structure and function of a novel voltage‐gated, tetrodotoxin‐resistant sodium channel specific to sensory neurons
  publication-title: J Biol Chem
– volume: 447
  start-page: 855
  year: 2007
  end-page: 858
  article-title: Sensory neuron sodium channel Na 1.8 is essential for pain at low temperatures
  publication-title: Nature
– volume: 22
  start-page: 27
  year: 2001
  end-page: 31
  article-title: Involvement of Na channels in pain pathways
  publication-title: Trends Pharmacol Sci
– volume: 331
  start-page: 79
  year: 2002
  end-page: 82
  article-title: Molecular determinant of Na 1.8 sodium channel resistance to the venom from the scorpion Leiurus quinquestriatus hebraeus
  publication-title: Neurosci Lett
– volume: 587
  start-page: 1249
  year: 2009
  end-page: 1264
  article-title: Action potential initiation in the peripheral terminals of cold‐sensitive neurones innervating the guinea‐pig cornea
  publication-title: J Physiol
– volume: 101
  start-page: 12706
  year: 2004
  end-page: 12711
  article-title: Nociceptor‐specific gene deletion reveals a major role for Na 1.7 (PN1) in acute and inflammatory pain
  publication-title: Proc Natl Acad Sci U S A
– volume: 18
  start-page: 3059
  year: 1998
  end-page: 3072
  article-title: A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury
  publication-title: J Neurosci
– volume: 97
  start-page: 1258
  year: 2007
  end-page: 1265
  article-title: Differential slow inactivation and use‐dependent inhibition of Na 1.8 channels contribute to distinct firing properties in IB4+ and IB4– DRG neurons
  publication-title: J Neurophysiol
– volume: 379
  start-page: 257
  year: 1996
  end-page: 262
  article-title: A tetrodotoxin‐resistant voltage‐gated sodium channel expressed by sensory neurons
  publication-title: Nature
– volume: 28
  start-page: 141
  year: 1988
  end-page: 161
  article-title: Mechanism of action of novel marine neurotoxins on ion channels
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 271
  start-page: 15950
  year: 1996
  end-page: 15962
  article-title: Molecular determinants of high affinity binding of α‐scorpion toxin and sea anemone toxin in the S3‐S4 extracellular loop in domain IV of the Na channel α subunit
  publication-title: J Biol Chem
– volume: 515
  start-page: 799
  year: 1999
  end-page: 811
  article-title: Activity‐dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin
  publication-title: J Physiol
– volume: 2
  start-page: 541
  year: 1999
  end-page: 548
  article-title: The tetrodotoxin‐resistant sodium channel SNS has a specialized function in pain pathways
  publication-title: Nat Neurosci
– volume: 43
  start-page: 117
  year: 1996
  end-page: 131
  article-title: Spinal sensory neurons express multiple sodium channel alpha‐subunit mRNAs
  publication-title: Brain Res Mol Brain Res
– ident: e_1_2_6_37_1
  doi: 10.1074/jbc.271.27.15950
– ident: e_1_2_6_12_1
  doi: 10.1523/JNEUROSCI.22-23-10277.2002
– ident: e_1_2_6_6_1
  doi: 10.1113/jphysiol.1989.sp017589
– ident: e_1_2_6_46_1
  doi: 10.1085/jgp.86.5.739
– ident: e_1_2_6_4_1
  doi: 10.1038/9195
– ident: e_1_2_6_3_1
  doi: 10.1038/379257a0
– ident: e_1_2_6_40_1
  doi: 10.1007/BF00586041
– ident: e_1_2_6_43_1
  doi: 10.1152/jn.1999.81.2.413
– ident: e_1_2_6_42_1
  doi: 10.1007/BF01188046
– ident: e_1_2_6_35_1
  doi: 10.1113/jphysiol.1979.sp012771
– ident: e_1_2_6_44_1
  doi: 10.1523/JNEUROSCI.19-15-06497.1999
– ident: e_1_2_6_21_1
  doi: 10.1523/JNEUROSCI.2695-04.2004
– ident: e_1_2_6_13_1
  doi: 10.1523/JNEUROSCI.23-32-10338.2003
– ident: e_1_2_6_36_1
  doi: 10.1016/S0304-3940(00)01694-3
– ident: e_1_2_6_45_1
  doi: 10.1152/jn.01267.2004
– ident: e_1_2_6_16_1
  doi: 10.1113/jphysiol.2008.167023
– ident: e_1_2_6_50_1
  doi: 10.1146/annurev.pa.28.040188.001041
– ident: e_1_2_6_38_1
  doi: 10.1016/S0304-3940(02)00860-1
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1469-7793.2003.00741.x
– ident: e_1_2_6_39_1
  doi: 10.1074/jbc.271.11.5953
– ident: e_1_2_6_24_1
  doi: 10.1016/j.neuron.2006.10.006
– ident: e_1_2_6_49_1
  doi: 10.1523/JNEUROSCI.12-06-02259.1992
– ident: e_1_2_6_52_1
  doi: 10.1038/nature05880
– ident: e_1_2_6_18_1
  doi: 10.1152/jn.01033.2006
– ident: e_1_2_6_20_1
  doi: 10.1523/JNEUROSCI.19-24-j0001.1999
– ident: e_1_2_6_7_1
  doi: 10.1152/jn.1997.77.3.1503
– ident: e_1_2_6_22_1
  doi: 10.1113/jphysiol.2007.145383
– ident: e_1_2_6_47_1
  doi: 10.1016/j.toxicon.2009.04.018
– ident: e_1_2_6_34_1
  doi: 10.1113/jphysiol.1968.sp008502
– ident: e_1_2_6_17_1
  doi: 10.1016/j.toxicon.2006.09.022
– ident: e_1_2_6_25_1
  doi: 10.1523/JNEUROSCI.1997-06.2006
– ident: e_1_2_6_48_1
  doi: 10.1016/0896-6273(89)90238-9
– ident: e_1_2_6_11_1
  doi: 10.1016/S0169-328X(96)00163-5
– ident: e_1_2_6_32_1
  doi: 10.1074/jbc.M404344200
– ident: e_1_2_6_10_1
  doi: 10.1523/JNEUROSCI.18-08-03059.1998
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1460-9568.1995.tb01143.x
– ident: e_1_2_6_19_1
  doi: 10.1038/nature05413
– ident: e_1_2_6_27_1
  doi: 10.1016/0306-4522(96)00070-X
– ident: e_1_2_6_9_1
  doi: 10.1016/0304-3940(96)12418-6
– ident: e_1_2_6_33_1
  doi: 10.1139/y02-034
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.0404915101
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1469-7793.1999.799ab.x
– ident: e_1_2_6_23_1
  doi: 10.1523/JNEUROSCI.1072-06.2006
– ident: e_1_2_6_31_1
  doi: 10.1016/0005-2736(80)90448-4
– ident: e_1_2_6_14_1
  doi: 10.1113/jphysiol.1985.sp015769
– ident: e_1_2_6_26_1
  doi: 10.1097/01.wnr.0000136037.54095.64
– ident: e_1_2_6_51_1
  doi: 10.1016/j.brainres.2004.09.051
– ident: e_1_2_6_8_1
  doi: 10.1016/S0165-6147(00)01585-6
– ident: e_1_2_6_29_1
  doi: 10.1098/rstb.1996.0039
– ident: e_1_2_6_2_1
  doi: 10.1126/science.1156916
– ident: e_1_2_6_15_1
  doi: 10.1085/jgp.20028628
– reference: 2614732 - J Physiol. 1989 Apr;411:545-61
– reference: 8809788 - Neuroscience. 1996 Aug;73(3):667-75
– reference: 12198093 - J Gen Physiol. 2002 Sep;120(3):395-405
– reference: 15314237 - Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12706-11
– reference: 9526023 - J Neurosci. 1998 Apr 15;18(8):3059-72
– reference: 1318958 - J Neurosci. 1992 Jun;12(6):2259-67
– reference: 8663157 - J Biol Chem. 1996 Jul 5;271(27):15950-62
– reference: 17035534 - J Neurosci. 2006 Oct 11;26(41):10499-507
– reference: 6105881 - Biochim Biophys Acta. 1980 Aug 4;600(2):456-66
– reference: 12843211 - J Physiol. 2003 Sep 15;551(Pt 3):741-50
– reference: 4032313 - J Physiol. 1985 Aug;365:239-57
– reference: 2561976 - Neuron. 1989 Dec;3(6):695-704
– reference: 11165669 - Trends Pharmacol Sci. 2001 Jan;22(1):27-31
– reference: 10414978 - J Neurosci. 1999 Aug 1;19(15):6497-505
– reference: 17108087 - J Neurophysiol. 2007 Feb;97(2):1258-65
– reference: 16822986 - J Neurosci. 2006 Jul 5;26(27):7281-92
– reference: 2415671 - J Gen Physiol. 1985 Nov;86(5):739-62
– reference: 2077115 - J Neurocytol. 1990 Oct;19(5):789-801
– reference: 18669863 - Science. 2008 Aug 1;321(5889):702-5
– reference: 12056559 - Can J Physiol Pharmacol. 2002 May;80(5):495-505
– reference: 2454608 - Annu Rev Pharmacol Toxicol. 1988;28:141-61
– reference: 10448219 - Nat Neurosci. 1999 Jun;2(6):541-8
– reference: 15647393 - J Neurophysiol. 2005 Jun;93(6):3401-9
– reference: 9037525 - Brain Res Mol Brain Res. 1996 Dec 31;43(1-2):117-31
– reference: 5653884 - J Physiol. 1968 May;196(1):183-221
– reference: 8848275 - Neurosci Lett. 1996 Mar 8;206(1):33-6
– reference: 17167479 - Nature. 2006 Dec 14;444(7121):894-8
– reference: 8730782 - Philos Trans R Soc Lond B Biol Sci. 1996 Mar 29;351(1338):431-40
– reference: 5064076 - Pflugers Arch. 1972;333(1):51-61
– reference: 12361845 - Neurosci Lett. 2002 Oct 11;331(2):79-82
– reference: 17145499 - Neuron. 2006 Dec 7;52(5):767-74
– reference: 19171652 - J Physiol. 2009 Mar 15;587(Pt 6):1249-64
– reference: 19393679 - Toxicon. 2009 Dec 15;54(8):1102-11
– reference: 11137755 - Neurosci Lett. 2001 Jan 19;297(3):171-4
– reference: 10066906 - J Physiol. 1999 Mar 15;515 ( Pt 3):799-811
– reference: 17568746 - Nature. 2007 Jun 14;447(7146):855-8
– reference: 15542080 - Brain Res. 2004 Dec 17;1029(2):251-8
– reference: 313985 - J Physiol. 1979 May;290(2):273-303
– reference: 8626372 - J Biol Chem. 1996 Mar 15;271(11):5953-6
– reference: 15257131 - Neuroreport. 2004 Aug 6;15(11):1705-9
– reference: 15385606 - J Neurosci. 2004 Sep 22;24(38):8232-6
– reference: 15169781 - J Biol Chem. 2004 Aug 6;279(32):33323-35
– reference: 20045899 - J Physiol. 2010 Jan 1;588(Pt 1):11
– reference: 8538791 - Nature. 1996 Jan 18;379(6562):257-62
– reference: 9084615 - J Neurophysiol. 1997 Mar;77(3):1503-13
– reference: 10036248 - J Neurophysiol. 1999 Feb;81(2):413-24
– reference: 7551174 - Eur J Neurosci. 1995 Jul 1;7(7):1484-94
– reference: 12451128 - J Neurosci. 2002 Dec 1;22(23):10277-90
– reference: 17239913 - Toxicon. 2007 Feb;49(2):124-41
– reference: 14614093 - J Neurosci. 2003 Nov 12;23(32):10338-50
– reference: 18096592 - J Physiol. 2008 Feb 15;586(4):1089-103
– reference: 10594087 - J Neurosci. 1999 Dec 15;19(24):RC43
SSID ssj0013099
Score 2.0841947
Snippet Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na + channels, where expression is linked to action potential duration, and...
Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na+ channels, where expression is linked to action potential duration, and associated...
Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na + channels, where expression is linked to action potential duration, and...
Sensory neurone subtypes (< or = 25 microm apparent diameter) express a variety of Na(+) channels, where expression is linked to action potential duration, and...
Sensory neurone subtypes (≤ 25 µm apparent diameter) express a variety of Na+ channels, where expression is linked to action potential duration, and associated...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Action Potentials - drug effects
Animals
Cell Size
Cells, Cultured
Cnidarian Venoms - toxicity
Dose-Response Relationship, Drug
Ganglia, Spinal - drug effects
Ganglia, Spinal - physiology
Neuroscience
Neurotoxins - toxicity
Plant Lectins - toxicity
Rats
Rats, Wistar
Sensory Receptor Cells - cytology
Sensory Receptor Cells - drug effects
Sensory Receptor Cells - physiology
Title Excitability parameters and sensitivity to anemone toxin ATX-II in rat small diameter primary sensory neurones discriminated by Griffonia simplicifolia isolectin IB4
URI http://jp.physoc.org/content/588/1/125.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2009.181107
https://www.ncbi.nlm.nih.gov/pubmed/19900960
https://www.proquest.com/docview/1545319167
https://www.proquest.com/docview/733608589
https://pubmed.ncbi.nlm.nih.gov/PMC2821554
Volume 588
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqnrjwV34CpfIBcUtp4sSJjwt0260EqtBW2ptlJ05JySaIZKUuJx6Bt-C9eBJm7CTtQiUQXHaTdTyK1-PxN_b4G0KeF1plOY8zXxeR8iOtCj8NFfcLmM54koNV1rje8fYdPz6LThbxYotMh7Mwjh9iXHDDkWHtNQ5wpfssJAGSDVxY17-pHOckTFSBPVQeMI4U-m_eh1ebCQdCjKThSRz0J-hAzMubhGzOUANr8E0I9PdAyusA185Q0zvkfGibC0z5uL_q9H725Rfax_9v_F1yuwexdOK07h7ZMvV9sjOpwYFfrukLeuqqNefrHfL98DIrO8cGvqbINL7ECJyWqjqnLYbPu_wVtGvgJwOjwsDlZVnTyXzx4-u32YzCNegpbZeqqijosxVAPzmeDCujgW_LzAmGm-JBY5esDNA01Wt6hAtTYLsUbUsbQF8WTQV3ZYu5gTsQP3sVPSBn08P562O_zw7hZ3GQcB81KQeEkYk4iowSPBF5qoyK09yA16QNAzCsCwP4VB_owIDnpuPAZFrrsBCMsYdku4bXekwoMyZL80ipiONOsFBhkrBCcG3AuSvi0CNs0AiZ9dTpmMGjks6FYnLoD8zqKaTrD4_4Y63-L_nD83RQNumKWxe4K-M0lYEEKOqR3UEJZW9rWokgGAwpDC2QMBaDlcCtH-i4ZtVKJL0EcJ0KjzxyKnv1SoBH0I_1SLKhzOMDSEC-WVKXHywRObjrCEc9Elpd_atWyvnJKUsS_uRfKj0lt1z0Bi6B7ZLt7vPKPANQ2Ok9O-Th82gR_AS00GXj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5V5QAX_spPoIAPiFtK8x8fF9R2t7RVhbbS3iw7cWhgN0EkK3U58Qi8Be_FkzBjJykLlUCI02bXyShez4y_scffADwvlMzyOMpcVYTSDZUs3NSXsVvgdBYnOXplResdxyfx-Cw8nEWzDTjoz8JYfohhwY0sw_hrMnBakO6snNgG3pvYv55b0kmcqTw6VX7NbNUROnrrX24n7HI-0IYnkdedoUM5L6-Ssj5H9bzBV2HQ31Mpf4a4Zo7avwXnfe9sasqHnWWrdrLPvxA__ofu34abHY5lI6t4d2BDV3dha1RhDL9YsRfs1D5Wv1ttwbe9i6xsLSH4ihHZ-IKScBomq5w1lEFvS1iwtsafNBqGxsuLsmKj6ez7l6-TCcNrVFXWLOR8zlCljQD20VJlGBk1fhpyTvTdjM4a23plCKiZWrEDWptC9yVZU5oc-rKo5_itbKg8cIviJ6_Ce3C2vzd9PXa7AhFuFnlJ7JIy5QgyMh6FoZY8TnieSi2jNNcYOCkdIB5WhUaIqnaVpzF4U5GnM6WUX_AgCO7DZoWv9RBYoHWW5qGUYUybwVz6SRIUPFYa47si8h0IepUQWceeTkU85sJGUYHox4MKe3Jhx8MBd3iq-0v-cD_rtU3Y5sbm7oooTYUnEI06sN1roejcTSMIB6MvRetCCUMzOgra_cGBq5eNIN5LxNcpd-CB1dnLV0JIQqGsA8maNg83EAf5ektVnhsucozYCZE64Btl_ateiunhaZAk8aN_eegZXB9Pj4_E0eTkzWO4YZM5aEVsGzbbT0v9BDFiq54a-_8BWyZpEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VRUJc-Cs_KQV8QNxSmv_kuECXboFqhbbS3iw7sdtANqmarNTlxCPwFrwXT8JMnKQsVALBabPreBSvZ8bfOONvAJ5pKdIsDFJbal_YvhTajl0R2hqXszDK0CtL2u94fxQeHPuH82C-AeP-LIzhhxg23MgyWn9NBn6W6c7IiWzgYxv6V4XhnMSFyqFD5df8EFdMAkcf3Mu3CXtJMrCGR4HTHaFDOS-ukrK-RPW0wVdB0N8zKX9GuO0SNb4FJ_3gTGbKp91lI3fTz7_wPv7_6G_DzQ7FspFRuzuwocq7sDUqMYJfrNhzNjXdqpPVFnzbv0jzxtCBrxhRjS8oBadmosxYTfnzpoAFayr8SaFZKLy8yEs2ms2_f_k6mTC8RkVl9UIUBUOFbgWwM0OU0cqo8LOl5kTPzeiksalWhnCayRV7QztT6LwEq_M2gz7XVYHf8pqKAzcofvLSvwfH4_3ZqwO7Kw9hp4EThTapUoYQI00C31ciCaMki4USQZwpDJuk8hANS60QoMo96SgM3WTgqFRK6erE87z7sFniYz0E5imVxpkvBGqPjwGpcKPI00koFUZ3OnAt8HqN4GnHnU4lPApuYiiP9_NBZT0TbubDAnvo1f0lf7if9crGTXNtMnd5EMfc4YhFLdjplZB3zqbmhILRk6JtoYShGd0EvfvBiauWNSfWS0TXcWLBA6Oyl4-EgIQCWQuiNWUebiAG8vWWMj9tmcgxXic8aoHb6upfjZLPDqdeFIXb_9LpKVyfvh7zd5Ojt4_ghsnkoO2wHdhszpfqMQLERj5prf8H5XFnvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitability+parameters+and+sensitivity+to+anemone+toxin+ATX-II+in+rat+small+diameter+primary+sensory+neurones+discriminated+by+Griffonia+simplicifolia+isolectin+IB4&rft.jtitle=The+Journal+of+physiology&rft.au=Snape%2C+Alistair&rft.au=Pittaway%2C+James+F&rft.au=Baker%2C+Mark+D&rft.date=2010-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=588&rft.issue=1&rft.spage=125&rft_id=info:doi/10.1113%2Fjphysiol.2009.181107&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3374172381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon