Mild Cold Exposure Modulates Fibroblast Growth Factor 21 (FGF21) Diurnal Rhythm in Humans: Relationship between FGF21 Levels, Lipolysis, and Cold-Induced Thermogenesis
Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Objective:Our objective was to...
        Saved in:
      
    
          | Published in | The journal of clinical endocrinology and metabolism Vol. 98; no. 1; pp. E98 - E102 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Oxford University Press
    
        01.01.2013
     Copyright by The Endocrine Society Endocrine Society  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-972X 1945-7197 1945-7197  | 
| DOI | 10.1210/jc.2012-3107 | 
Cover
| Abstract | Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Objective:Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.Design and Setting:We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.Participants:Participants were healthy adults.Intervention:Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.Outcome Measures:Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.Results:At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59–178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21–71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11–81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800–1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R2 = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.Conclusions:Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals. | 
    
|---|---|
| AbstractList | Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.
Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.
We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.
Participants were healthy adults.
Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.
Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.
At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59-178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21-71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11-81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800-1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R(2) = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.
Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals. Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Objective:Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.Design and Setting:We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.Participants:Participants were healthy adults.Intervention:Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.Outcome Measures:Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.Results:At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59–178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21–71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11–81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800–1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R2 = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.Conclusions:Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals. CONTEXT:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown. OBJECTIVE:Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans. DESIGN AND SETTING:We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center. PARTICIPANTS:Participants were healthy adults. INTERVENTION:Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter. OUTCOME MEASURES:Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated. RESULTS:At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59–178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21–71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11–81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800–1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass. CONCLUSIONS:Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals. Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.CONTEXTCold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.OBJECTIVEOur objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.DESIGN AND SETTINGWe conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.Participants were healthy adults.PARTICIPANTSParticipants were healthy adults.Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.INTERVENTIONSubjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.OUTCOME MEASURESEnergy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59-178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21-71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11-81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800-1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R(2) = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.RESULTSAt 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59-178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21-71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11-81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800-1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R(2) = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.CONCLUSIONSMild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.  | 
    
| Author | Lee, Paul Smith, Sheila Brychta, Robert J. Chen, Kong Y. Linderman, Joyce Celi, Francesco S.  | 
    
| AuthorAffiliation | Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 | 
    
| AuthorAffiliation_xml | – name: Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 | 
    
| Author_xml | – sequence: 1 givenname: Paul surname: Lee fullname: Lee, Paul email: paul.lee2@nih.gov organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 – sequence: 2 givenname: Robert J. surname: Brychta fullname: Brychta, Robert J. organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 – sequence: 3 givenname: Joyce surname: Linderman fullname: Linderman, Joyce organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 – sequence: 4 givenname: Sheila surname: Smith fullname: Smith, Sheila organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 – sequence: 5 givenname: Kong Y. surname: Chen fullname: Chen, Kong Y. organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 – sequence: 6 givenname: Francesco S. surname: Celi fullname: Celi, Francesco S. organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23150685$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1Ul1r2zAUNaNjTbu97XkI9rAO6k4ftmXvYTCyJi2kDEoHexOyfFMrkyVPspvlF-1vTknasRUq0Afcc46Oju5RcmCdhSR5TfAZoQR_WKkziglNGcH8WTIhVZannFT8IJlgTElacfr9MDkKYYUxybKcvUgOKSM5Lsp8kvy-0qZBUxeX81-9C6MHdOWa0cgBAprp2rvayDCguXfroUUzqQbnESXoZDafUfIefdGjt9Kg63YztB3SFl2MnbThI7qGqKKdDa3uUQ3DGsCiHQst4A5MOEUL3TuzCToepd37SC9tMypo0E0LvnO3YCHWXybPl9IEeHW_HyffZuc304t08XV-Of28SFVOOE4lEAoZw1UZn8dkiblqQGUxg1ryCtdULTGtcloUsipJxmG5pLxqqkyySpKyYcfJp71uP9YdNArs4KURvded9BvhpBb_V6xuxa27EyxnnGAcBU7uBbz7OUIYRKeDAmOkBTcGQShnNC9zUkTo20fQldtlGQQjRZYVJSdlRL3519FfKw9_GAF0D1DeheBhKZQedsFHg9oIgsW2UcRKiW2jiG2jRNLpI9KD7hPwbA9fOzOADz_MuAYvWpBmaAWOIyt4mUYCwzEFnMbJt2G829Pc2D91wa5x2R98WNln | 
    
| CitedBy_id | crossref_primary_10_3390_cells10092418 crossref_primary_10_1016_j_molmet_2013_12_003 crossref_primary_10_1002_med_21390 crossref_primary_10_1152_physrev_00030_2013 crossref_primary_10_1371_journal_pone_0100218 crossref_primary_10_1210_jc_2015_1797 crossref_primary_10_3390_ijms22115906 crossref_primary_10_1002_advs_202000542 crossref_primary_10_3390_jcm8060854 crossref_primary_10_1016_j_phrs_2022_106281 crossref_primary_10_1016_j_mad_2018_07_004 crossref_primary_10_1177_0271678X19878889 crossref_primary_10_1016_j_celrep_2021_109128 crossref_primary_10_12965_jer_2142260_130 crossref_primary_10_1038_s41598_018_37198_y crossref_primary_10_1210_endrev_bnac015 crossref_primary_10_3390_ijms22041530 crossref_primary_10_1002_oby_23970 crossref_primary_10_1371_journal_pone_0090172 crossref_primary_10_1016_j_cca_2024_117799 crossref_primary_10_52586_5015 crossref_primary_10_1212_WNL_0000000000000578 crossref_primary_10_3390_biology12081077 crossref_primary_10_1097_MOL_0000000000000960 crossref_primary_10_1016_j_clnu_2021_08_010 crossref_primary_10_1210_clinem_dgaa005 crossref_primary_10_1210_er_2012_1081 crossref_primary_10_1038_s41366_023_01270_z crossref_primary_10_1172_jci_insight_87094 crossref_primary_10_1530_EJE_15_1217 crossref_primary_10_1055_a_0879_2968 crossref_primary_10_1515_hmbci_2016_0023 crossref_primary_10_3389_fendo_2015_00148 crossref_primary_10_1074_jbc_M116_767590 crossref_primary_10_1007_s13238_017_0378_6 crossref_primary_10_1016_j_tem_2013_04_002 crossref_primary_10_1016_j_tem_2015_03_003 crossref_primary_10_3389_fendo_2020_00389 crossref_primary_10_1038_s41598_021_87207_w crossref_primary_10_1080_21623945_2020_1724740 crossref_primary_10_1152_ajpendo_00246_2021 crossref_primary_10_3389_fimmu_2024_1333429 crossref_primary_10_3109_10799893_2016_1147582 crossref_primary_10_1038_srep10275 crossref_primary_10_1089_ther_2019_0001 crossref_primary_10_1210_clinem_dgaa110 crossref_primary_10_1124_molpharm_123_000831 crossref_primary_10_1007_s11357_022_00706_0 crossref_primary_10_1210_clinem_dgac094 crossref_primary_10_1515_fzm_2024_0009 crossref_primary_10_3109_07853890_2013_874663 crossref_primary_10_3109_07853890_2014_914807 crossref_primary_10_1021_acs_est_3c00302 crossref_primary_10_1038_nrendo_2014_78 crossref_primary_10_1038_ijo_2013_82 crossref_primary_10_1586_14779072_2014_904745 crossref_primary_10_1016_j_mce_2015_09_018 crossref_primary_10_3390_ijms18010008 crossref_primary_10_2337_db20_0153 crossref_primary_10_1007_s00198_013_2464_9 crossref_primary_10_1016_j_bbrep_2024_101662 crossref_primary_10_3389_fendo_2015_00168 crossref_primary_10_1038_nature13477 crossref_primary_10_1038_s41598_021_86430_9 crossref_primary_10_15857_ksep_2015_24_3_283 crossref_primary_10_2337_db14_0513 crossref_primary_10_1097_MD_0000000000032181 crossref_primary_10_1016_j_cmet_2014_02_013 crossref_primary_10_1007_s10334_015_0517_0 crossref_primary_10_1038_s41598_017_07498_w crossref_primary_10_24171_j_phrp_2023_0394 crossref_primary_10_1016_j_cmet_2017_07_016 crossref_primary_10_1371_journal_pone_0112495 crossref_primary_10_1093_sleep_zsy092 crossref_primary_10_1016_j_biochi_2021_01_015 crossref_primary_10_1016_j_cmet_2013_12_017 crossref_primary_10_1007_s12576_018_0595_7 crossref_primary_10_3390_biology8010009 crossref_primary_10_1016_j_jtherbio_2014_09_004 crossref_primary_10_1113_EP092319 crossref_primary_10_3389_fphys_2015_00004 crossref_primary_10_2478_fzm_2023_0011 crossref_primary_10_2337_db14_0746 crossref_primary_10_2967_jnumed_120_246991 crossref_primary_10_1016_j_ajcnut_2024_12_013 crossref_primary_10_1038_ijo_2013_206 crossref_primary_10_1186_s12263_019_0642_x crossref_primary_10_1055_a_1778_4159 crossref_primary_10_1016_j_cyto_2021_155553 crossref_primary_10_3390_biom11101426 crossref_primary_10_1038_s41598_023_37264_0 crossref_primary_10_1186_s13098_022_00944_4 crossref_primary_10_1016_j_mce_2015_05_025 crossref_primary_10_1007_s11690_014_0460_7 crossref_primary_10_1007_s00424_018_2177_1 crossref_primary_10_1016_j_resuscitation_2021_11_016 crossref_primary_10_3390_biom14101223 crossref_primary_10_1183_13993003_00973_2018 crossref_primary_10_1210_er_2017_00016 crossref_primary_10_1186_s40101_023_00353_0 crossref_primary_10_1038_s41390_023_02652_9 crossref_primary_10_1210_jc_2014_1367 crossref_primary_10_1016_j_metabol_2014_11_009 crossref_primary_10_3389_fendo_2021_802541 crossref_primary_10_1172_JCI145546 crossref_primary_10_1007_s00424_023_02827_7 crossref_primary_10_1016_j_cmet_2018_06_013 crossref_primary_10_3389_fendo_2014_00107 crossref_primary_10_1146_annurev_physiol_021115_105339 crossref_primary_10_1111_obr_12563 crossref_primary_10_1111_bph_13732 crossref_primary_10_1111_jdi_12982 crossref_primary_10_1007_s11434_016_1051_9 crossref_primary_10_4161_adip_25417 crossref_primary_10_1007_s10741_022_10268_0  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2013 by The Endocrine Society 2013 Copyright © 2013 by The Endocrine Society  | 
    
| Copyright_xml | – notice: Copyright © 2013 by The Endocrine Society 2013 – notice: Copyright © 2013 by The Endocrine Society  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TM H94 K9. 7X8 5PM  | 
    
| DOI | 10.1210/jc.2012-3107 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Nucleic Acids Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1945-7197 | 
    
| EndPage | E102 | 
    
| ExternalDocumentID | PMC3537100 23150685 10_1210_jc_2012_3107 00004678-201301000-00070 10.1210/jc.2012-3107  | 
    
| Genre | Research Support, N.I.H., Intramural Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Report  | 
    
| GrantInformation_xml | – fundername: Intramural NIH HHS – fundername: NIDDK NIH HHS grantid: Z01-DK047057-02 – fundername: NIDDK NIH HHS grantid: Z01-DK047057-01  | 
    
| GroupedDBID | --- -~X .55 .XZ 08P 0R~ 18M 1TH 29K 2WC 34G 354 39C 4.4 48X 53G 5GY 5RS 5YH 8F7 AABZA AACZT AAIMJ AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL ABBLC ABDFA ABEJV ABGNP ABJNI ABLJU ABMNT ABNHQ ABOCM ABPMR ABPPZ ABPQP ABPTD ABQNK ABVGC ABWST ABXVV ACGFO ACGFS ACPRK ACUTJ ACYHN ADBBV ADGKP ADGZP ADHKW ADQBN ADRTK ADVEK AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFCHL AFFZL AFGWE AFOFC AFRAH AFXAL AGINJ AGKRT AGQXC AGUTN AHMBA AHMMS AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT ARIXL ASPBG ATGXG AVWKF AZFZN BAWUL BAYMD BCRHZ BEYMZ BSWAC BTRTY C45 CDBKE CS3 D-I DAKXR DIK E3Z EBS EJD EMOBN ENERS F5P FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HZ~ H~9 KBUDW KOP KQ8 KSI KSN L7B M5~ MHKGH MJL N9A NLBLG NOMLY NOYVH NVLIB O9- OAUYM OBH OCB ODMLO OFXIZ OGEVE OHH OJZSN OK1 OPAEJ OVD OVIDX P2P P6G REU ROX ROZ TEORI TJX TLC TR2 TWZ VVN W8F WOQ X7M YBU YFH YHG YOC YSK ZY1 ~02 ~H1 .GJ 3O- 7X7 88E 8FI 8FJ AAJQQ AAKAS AAPGJ AAQQT AAUQX AAWDT AAYJJ ABDPE ABUWG ABXZS ACFRR ACVCV ACZBC ADMTO ADNBA ADZCM AEMQT AEOTA AERZD AFFNX AFFQV AFKRA AFYAG AGMDO AGORE AHGBF AI. AJBYB AJDVS ALXQX APJGH AQDSO AQKUS AVNTJ BENPR BPHCQ BVXVI CCPQU EIHJH FEDTE FYUFA HMCUK HVGLF IAO IHR INH ITC J5H M1P MBLQV N4W NU- OBFPC PHGZM PHGZT PQQKQ PROAC PSQYO TMA UKHRP VH1 WHG X52 ZGI ZXP AAYXX AEHZK CITATION PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7QP 7T5 7TM H94 K9. 7X8 5PM  | 
    
| ID | FETCH-LOGICAL-c5170-ae12e430980683a807cdec4972ba790b2cf0295266a98147eff279d94a39a18d3 | 
    
| ISSN | 0021-972X 1945-7197  | 
    
| IngestDate | Tue Sep 30 16:39:22 EDT 2025 Wed Oct 01 09:48:03 EDT 2025 Tue Oct 07 07:17:13 EDT 2025 Thu Apr 03 06:53:53 EDT 2025 Wed Oct 01 01:27:52 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Fri May 16 04:03:21 EDT 2025 Fri Feb 07 10:35:40 EST 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c5170-ae12e430980683a807cdec4972ba790b2cf0295266a98147eff279d94a39a18d3 | 
    
| Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Report-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3  | 
    
| PMID | 23150685 | 
    
| PQID | 3164468718 | 
    
| PQPubID | 2046206 | 
    
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3537100 proquest_miscellaneous_1273258516 proquest_journals_3164468718 pubmed_primary_23150685 crossref_citationtrail_10_1210_jc_2012_3107 crossref_primary_10_1210_jc_2012_3107 wolterskluwer_health_00004678-201301000-00070 oup_primary_10_1210_jc_2012-3107  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-January | 
    
| PublicationDateYYYYMMDD | 2013-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-January  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington – name: Chevy Chase, MD  | 
    
| PublicationTitle | The journal of clinical endocrinology and metabolism | 
    
| PublicationTitleAlternate | J Clin Endocrinol Metab | 
    
| PublicationYear | 2013 | 
    
| Publisher | Oxford University Press Copyright by The Endocrine Society Endocrine Society  | 
    
| Publisher_xml | – name: Oxford University Press – name: Copyright by The Endocrine Society – name: Endocrine Society  | 
    
| References | 21791556 - Endocrinology. 2011 Oct;152(10):3597-602 22587513 - Curr Diabetes Rev. 2012 Jul 1;8(4):285-93 20826525 - Eur J Endocrinol. 2010 Dec;163(6):863-72 17550778 - Cell Metab. 2007 Jun;5(6):426-37 22302939 - Genes Dev. 2012 Feb 1;26(3):271-81 21317437 - J Biol Chem. 2011 Apr 15;286(15):12983-90 21613352 - J Clin Endocrinol Metab. 2011 Aug;96(8):2450-5 22302876 - Genes Dev. 2012 Feb 15;26(4):312-24 21325103 - Clin Chem. 2011 May;57(5):691-700 19458063 - Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E977-86 15902306 - J Clin Invest. 2005 Jun;115(6):1627-35 22582248 - Science. 2012 May 11;336(6082):675-6 17550777 - Cell Metab. 2007 Jun;5(6):415-25 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25 20616029 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12553-8 16936195 - Diabetes. 2006 Sep;55(9):2470-8 22796012 - Cell. 2012 Jul 20;150(2):366-76 21373720 - Mol Med. 2011;17(7-8):736-40 18460341 - FEBS Lett. 2008 May 28;582(12):1725-30  | 
    
| References_xml | – reference: 21325103 - Clin Chem. 2011 May;57(5):691-700 – reference: 21373720 - Mol Med. 2011;17(7-8):736-40 – reference: 16936195 - Diabetes. 2006 Sep;55(9):2470-8 – reference: 22302876 - Genes Dev. 2012 Feb 15;26(4):312-24 – reference: 17550777 - Cell Metab. 2007 Jun;5(6):415-25 – reference: 21317437 - J Biol Chem. 2011 Apr 15;286(15):12983-90 – reference: 21791556 - Endocrinology. 2011 Oct;152(10):3597-602 – reference: 15902306 - J Clin Invest. 2005 Jun;115(6):1627-35 – reference: 22587513 - Curr Diabetes Rev. 2012 Jul 1;8(4):285-93 – reference: 21613352 - J Clin Endocrinol Metab. 2011 Aug;96(8):2450-5 – reference: 20616029 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12553-8 – reference: 20826525 - Eur J Endocrinol. 2010 Dec;163(6):863-72 – reference: 19458063 - Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E977-86 – reference: 22302939 - Genes Dev. 2012 Feb 1;26(3):271-81 – reference: 22582248 - Science. 2012 May 11;336(6082):675-6 – reference: 18460341 - FEBS Lett. 2008 May 28;582(12):1725-30 – reference: 22796012 - Cell. 2012 Jul 20;150(2):366-76 – reference: 17550778 - Cell Metab. 2007 Jun;5(6):426-37 – reference: 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25  | 
    
| SSID | ssj0014453 | 
    
| Score | 2.450911 | 
    
| Snippet | Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through... CONTEXT:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through... Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of...  | 
    
| SourceID | pubmedcentral proquest pubmed crossref wolterskluwer oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | E98 | 
    
| SubjectTerms | Adipose tissue Adult Body fat Circadian Rhythm - physiology Cold Cold Temperature Cross-Over Studies Diurnal Energy expenditure Fatty acids Female Fibroblast Growth Factors - analysis Fibroblast Growth Factors - blood Fibroblast Growth Factors - metabolism Fibroblasts Glycerol Growth factors Humans JCEM Online: Brief Reports Lipolysis Lipolysis - physiology Male Microdialysis Middle Aged Osmolar Concentration Single-Blind Method Thermogenesis Thermogenesis - physiology Young Adult  | 
    
| Title | Mild Cold Exposure Modulates Fibroblast Growth Factor 21 (FGF21) Diurnal Rhythm in Humans: Relationship between FGF21 Levels, Lipolysis, and Cold-Induced Thermogenesis | 
    
| URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004678-201301000-00070 https://www.ncbi.nlm.nih.gov/pubmed/23150685 https://www.proquest.com/docview/3164468718 https://www.proquest.com/docview/1273258516 https://pubmed.ncbi.nlm.nih.gov/PMC3537100  | 
    
| Volume | 98 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1945-7197 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014453 issn: 0021-972X databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1945-7197 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014453 issn: 0021-972X databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF7qCSKI-HpGT1lBRenlyGuT9ZtK6yHX84Mt9FvIy-YaTZPapuj5h_xP_hpndjcvpXdw-iWE7OYF5tnZmckzM4S8cI1BaLlpojtWzHQnTA3d9znX3RhWXsRgR0oxG3l8OjieOp9m7qzX-9NhLW2q6Cj-dWFeyf9IFa6BXDFL9h8k2zwULsA5yBeOIGE4XknG4yzHpDQ48J_LEmN92NkGG3LxdT8FR7iMwDiu-mfga1dz1Vunb5loVo4-jiwTYwJJJk3S1fy8mi8w_iH69gmq3KqmynUpXeLOfo5sIwGCPFuWorBJzQTFL9LB198gtwANzEV5hio1W3dNYQRop25Fk6LJi6QEVVa0xaEWvAKo5nWxw5Y-1KU1vl-BJlemsGCLtz-8MO6AG5BMQynPWzA3caUvc57lYTcEgu0omhCI1NrMcXXPlETfI37BNaXqmb8Daam3h3JkZz8Bhxj3E6x1KYo7Gl67b9ZcgdPPwWh6chJMhrPJq-V3HTua4Z9_1d7lGrluAe5FW5FZQz8CP1ZUSG0-UyVlYEZV93Vb5tJWCmbHE9ol9N76USLZYv1N5Fp0LKbJHXJbuTr0ncTtXdLjxT1yY6zIHPfJb4QvRbDQGr60gS9t4UslfKmEL7VM-lpA8A1V0KUSujQrqITuW9oFLlXApeIuKoF7SBvYHlIAGe2Clm6B9gGZjoaTD8e66huixy72UQq5aXHHNphvDHw79A0vTnjsMM-KQo8ZkRWnhsVcME1D5puOx9PU8ljCnNBmoekn9kOyV5QFf0Ro4hrcAZOYx5HhmNwJozBK3SRiTgIWS8o10q_FE8SqqD72dskDdK5BmMHXOEBhBihMjbxsZi9lMZlL5lGQ9GVTdDnloIZBoNbqGu4F72bgg7mpkefNMOwX-BMwLHi5WcOTPNtCLsBAI_sSNc2LwNcD3e27GvG28NRMwFr02yNFNhc16W3XxjphGtG3kBfIbO5AhCLALtZx-RqmKmfhGY-v8J1PyM120R-QvWq14U_BE6iiZ2JJ_QXUFA3b | 
    
| linkProvider | Geneva Foundation for Medical Education and Research | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mild+cold+exposure+modulates+fibroblast+growth+factor+21+%28FGF21%29+diurnal+rhythm+in+humans%3A+relationship+between+FGF21+levels%2C+lipolysis%2C+and+cold-induced+thermogenesis&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Lee%2C+Paul&rft.au=Brychta%2C+Robert+J&rft.au=Linderman%2C+Joyce&rft.au=Smith%2C+Sheila&rft.date=2013-01-01&rft.issn=1945-7197&rft.eissn=1945-7197&rft.volume=98&rft.issue=1&rft.spage=E98&rft_id=info:doi/10.1210%2Fjc.2012-3107&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon |