Mild Cold Exposure Modulates Fibroblast Growth Factor 21 (FGF21) Diurnal Rhythm in Humans: Relationship between FGF21 Levels, Lipolysis, and Cold-Induced Thermogenesis

Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Objective:Our objective was to...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 98; no. 1; pp. E98 - E102
Main Authors Lee, Paul, Brychta, Robert J., Linderman, Joyce, Smith, Sheila, Chen, Kong Y., Celi, Francesco S.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.01.2013
Copyright by The Endocrine Society
Endocrine Society
Subjects
Online AccessGet full text
ISSN0021-972X
1945-7197
1945-7197
DOI10.1210/jc.2012-3107

Cover

Abstract Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Objective:Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.Design and Setting:We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.Participants:Participants were healthy adults.Intervention:Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.Outcome Measures:Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.Results:At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59–178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21–71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11–81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800–1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R2 = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.Conclusions:Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.
AbstractList Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown. Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans. We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center. Participants were healthy adults. Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter. Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated. At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59-178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21-71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11-81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800-1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R(2) = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass. Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.
Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Objective:Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.Design and Setting:We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.Participants:Participants were healthy adults.Intervention:Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.Outcome Measures:Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.Results:At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59–178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21–71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11–81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800–1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R2 = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.Conclusions:Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.
CONTEXT:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown. OBJECTIVE:Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans. DESIGN AND SETTING:We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center. PARTICIPANTS:Participants were healthy adults. INTERVENTION:Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter. OUTCOME MEASURES:Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated. RESULTS:At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59–178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21–71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11–81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800–1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass. CONCLUSIONS:Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.
Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.CONTEXTCold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of white adipose tissue. In humans, the effects of cold exposure on circulating FGF21 levels are unknown.Our objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.OBJECTIVEOur objective was to evaluate the effects of mild cold exposure on circulating FGF21 and its relationship with CIT and lipolysis in humans.We conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.DESIGN AND SETTINGWe conducted a randomized, single-blind, crossover intervention study at the National Institutes of Health Clinical Center.Participants were healthy adults.PARTICIPANTSParticipants were healthy adults.Subjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.INTERVENTIONSubjects were exposed to a 12-h exposure to 24 or 19 C in a whole-room indirect calorimeter.Energy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.OUTCOME MEASURESEnergy expenditure, plasma FGF 21, nonesterified fatty acid, and adipose tissue microdialysis glycerol concentrations were evaluated.At 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59-178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21-71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11-81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800-1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R(2) = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.RESULTSAt 24 C, plasma FGF21 exhibited a diurnal rhythm, peaking at 0800 h [110 (59-178) pg/ml], and progressively dropped to a nadir at 1700 h [41 (21-71) pg/ml, P < 0.0001] before rising at 1900 h [60 (11-81) pg/ml, P < 0.0001]. Exposure at 19 C lessened the diurnal reduction of FGF21 observed at 24 C from 0800-1700 h and augmented overall FGF21 levels by 37 ± 45% (P = 0.01). The change in area under the curve plasma FGF21 between 19 and 24 C correlated positively with the change in area under the curve adipose microdialysate glycerol (R(2) = 0.35, P = 0.04) but not with nonesterified fatty acid. Cold-induced increase in FGF21 predicted greater rise in energy expenditure during cold exposure (β = 0.66, P = 0.027), independent of age, gender, fat mass, and lean mass.Mild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.CONCLUSIONSMild cold exposure increased circulating FGF21 levels, predicting greater lipolysis and CIT. A small reduction in environmental temperature is sufficient to modulate FGF21 diurnal rhythm in humans, which may mediate cold-induced metabolic changes similar to those in animals.
Author Lee, Paul
Smith, Sheila
Brychta, Robert J.
Chen, Kong Y.
Linderman, Joyce
Celi, Francesco S.
AuthorAffiliation Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
AuthorAffiliation_xml – name: Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
Author_xml – sequence: 1
  givenname: Paul
  surname: Lee
  fullname: Lee, Paul
  email: paul.lee2@nih.gov
  organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
– sequence: 2
  givenname: Robert J.
  surname: Brychta
  fullname: Brychta, Robert J.
  organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
– sequence: 3
  givenname: Joyce
  surname: Linderman
  fullname: Linderman, Joyce
  organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
– sequence: 4
  givenname: Sheila
  surname: Smith
  fullname: Smith, Sheila
  organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
– sequence: 5
  givenname: Kong Y.
  surname: Chen
  fullname: Chen, Kong Y.
  organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
– sequence: 6
  givenname: Francesco S.
  surname: Celi
  fullname: Celi, Francesco S.
  organization: 1Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23150685$$D View this record in MEDLINE/PubMed
BookMark eNp1Ul1r2zAUNaNjTbu97XkI9rAO6k4ftmXvYTCyJi2kDEoHexOyfFMrkyVPspvlF-1vTknasRUq0Afcc46Oju5RcmCdhSR5TfAZoQR_WKkziglNGcH8WTIhVZannFT8IJlgTElacfr9MDkKYYUxybKcvUgOKSM5Lsp8kvy-0qZBUxeX81-9C6MHdOWa0cgBAprp2rvayDCguXfroUUzqQbnESXoZDafUfIefdGjt9Kg63YztB3SFl2MnbThI7qGqKKdDa3uUQ3DGsCiHQst4A5MOEUL3TuzCToepd37SC9tMypo0E0LvnO3YCHWXybPl9IEeHW_HyffZuc304t08XV-Of28SFVOOE4lEAoZw1UZn8dkiblqQGUxg1ryCtdULTGtcloUsipJxmG5pLxqqkyySpKyYcfJp71uP9YdNArs4KURvded9BvhpBb_V6xuxa27EyxnnGAcBU7uBbz7OUIYRKeDAmOkBTcGQShnNC9zUkTo20fQldtlGQQjRZYVJSdlRL3519FfKw9_GAF0D1DeheBhKZQedsFHg9oIgsW2UcRKiW2jiG2jRNLpI9KD7hPwbA9fOzOADz_MuAYvWpBmaAWOIyt4mUYCwzEFnMbJt2G829Pc2D91wa5x2R98WNln
CitedBy_id crossref_primary_10_3390_cells10092418
crossref_primary_10_1016_j_molmet_2013_12_003
crossref_primary_10_1002_med_21390
crossref_primary_10_1152_physrev_00030_2013
crossref_primary_10_1371_journal_pone_0100218
crossref_primary_10_1210_jc_2015_1797
crossref_primary_10_3390_ijms22115906
crossref_primary_10_1002_advs_202000542
crossref_primary_10_3390_jcm8060854
crossref_primary_10_1016_j_phrs_2022_106281
crossref_primary_10_1016_j_mad_2018_07_004
crossref_primary_10_1177_0271678X19878889
crossref_primary_10_1016_j_celrep_2021_109128
crossref_primary_10_12965_jer_2142260_130
crossref_primary_10_1038_s41598_018_37198_y
crossref_primary_10_1210_endrev_bnac015
crossref_primary_10_3390_ijms22041530
crossref_primary_10_1002_oby_23970
crossref_primary_10_1371_journal_pone_0090172
crossref_primary_10_1016_j_cca_2024_117799
crossref_primary_10_52586_5015
crossref_primary_10_1212_WNL_0000000000000578
crossref_primary_10_3390_biology12081077
crossref_primary_10_1097_MOL_0000000000000960
crossref_primary_10_1016_j_clnu_2021_08_010
crossref_primary_10_1210_clinem_dgaa005
crossref_primary_10_1210_er_2012_1081
crossref_primary_10_1038_s41366_023_01270_z
crossref_primary_10_1172_jci_insight_87094
crossref_primary_10_1530_EJE_15_1217
crossref_primary_10_1055_a_0879_2968
crossref_primary_10_1515_hmbci_2016_0023
crossref_primary_10_3389_fendo_2015_00148
crossref_primary_10_1074_jbc_M116_767590
crossref_primary_10_1007_s13238_017_0378_6
crossref_primary_10_1016_j_tem_2013_04_002
crossref_primary_10_1016_j_tem_2015_03_003
crossref_primary_10_3389_fendo_2020_00389
crossref_primary_10_1038_s41598_021_87207_w
crossref_primary_10_1080_21623945_2020_1724740
crossref_primary_10_1152_ajpendo_00246_2021
crossref_primary_10_3389_fimmu_2024_1333429
crossref_primary_10_3109_10799893_2016_1147582
crossref_primary_10_1038_srep10275
crossref_primary_10_1089_ther_2019_0001
crossref_primary_10_1210_clinem_dgaa110
crossref_primary_10_1124_molpharm_123_000831
crossref_primary_10_1007_s11357_022_00706_0
crossref_primary_10_1210_clinem_dgac094
crossref_primary_10_1515_fzm_2024_0009
crossref_primary_10_3109_07853890_2013_874663
crossref_primary_10_3109_07853890_2014_914807
crossref_primary_10_1021_acs_est_3c00302
crossref_primary_10_1038_nrendo_2014_78
crossref_primary_10_1038_ijo_2013_82
crossref_primary_10_1586_14779072_2014_904745
crossref_primary_10_1016_j_mce_2015_09_018
crossref_primary_10_3390_ijms18010008
crossref_primary_10_2337_db20_0153
crossref_primary_10_1007_s00198_013_2464_9
crossref_primary_10_1016_j_bbrep_2024_101662
crossref_primary_10_3389_fendo_2015_00168
crossref_primary_10_1038_nature13477
crossref_primary_10_1038_s41598_021_86430_9
crossref_primary_10_15857_ksep_2015_24_3_283
crossref_primary_10_2337_db14_0513
crossref_primary_10_1097_MD_0000000000032181
crossref_primary_10_1016_j_cmet_2014_02_013
crossref_primary_10_1007_s10334_015_0517_0
crossref_primary_10_1038_s41598_017_07498_w
crossref_primary_10_24171_j_phrp_2023_0394
crossref_primary_10_1016_j_cmet_2017_07_016
crossref_primary_10_1371_journal_pone_0112495
crossref_primary_10_1093_sleep_zsy092
crossref_primary_10_1016_j_biochi_2021_01_015
crossref_primary_10_1016_j_cmet_2013_12_017
crossref_primary_10_1007_s12576_018_0595_7
crossref_primary_10_3390_biology8010009
crossref_primary_10_1016_j_jtherbio_2014_09_004
crossref_primary_10_1113_EP092319
crossref_primary_10_3389_fphys_2015_00004
crossref_primary_10_2478_fzm_2023_0011
crossref_primary_10_2337_db14_0746
crossref_primary_10_2967_jnumed_120_246991
crossref_primary_10_1016_j_ajcnut_2024_12_013
crossref_primary_10_1038_ijo_2013_206
crossref_primary_10_1186_s12263_019_0642_x
crossref_primary_10_1055_a_1778_4159
crossref_primary_10_1016_j_cyto_2021_155553
crossref_primary_10_3390_biom11101426
crossref_primary_10_1038_s41598_023_37264_0
crossref_primary_10_1186_s13098_022_00944_4
crossref_primary_10_1016_j_mce_2015_05_025
crossref_primary_10_1007_s11690_014_0460_7
crossref_primary_10_1007_s00424_018_2177_1
crossref_primary_10_1016_j_resuscitation_2021_11_016
crossref_primary_10_3390_biom14101223
crossref_primary_10_1183_13993003_00973_2018
crossref_primary_10_1210_er_2017_00016
crossref_primary_10_1186_s40101_023_00353_0
crossref_primary_10_1038_s41390_023_02652_9
crossref_primary_10_1210_jc_2014_1367
crossref_primary_10_1016_j_metabol_2014_11_009
crossref_primary_10_3389_fendo_2021_802541
crossref_primary_10_1172_JCI145546
crossref_primary_10_1007_s00424_023_02827_7
crossref_primary_10_1016_j_cmet_2018_06_013
crossref_primary_10_3389_fendo_2014_00107
crossref_primary_10_1146_annurev_physiol_021115_105339
crossref_primary_10_1111_obr_12563
crossref_primary_10_1111_bph_13732
crossref_primary_10_1111_jdi_12982
crossref_primary_10_1007_s11434_016_1051_9
crossref_primary_10_4161_adip_25417
crossref_primary_10_1007_s10741_022_10268_0
ContentType Journal Article
Copyright Copyright © 2013 by The Endocrine Society 2013
Copyright © 2013 by The Endocrine Society
Copyright_xml – notice: Copyright © 2013 by The Endocrine Society 2013
– notice: Copyright © 2013 by The Endocrine Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TM
H94
K9.
7X8
5PM
DOI 10.1210/jc.2012-3107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1945-7197
EndPage E102
ExternalDocumentID PMC3537100
23150685
10_1210_jc_2012_3107
00004678-201301000-00070
10.1210/jc.2012-3107
Genre Research Support, N.I.H., Intramural
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Report
GrantInformation_xml – fundername: Intramural NIH HHS
– fundername: NIDDK NIH HHS
  grantid: Z01-DK047057-02
– fundername: NIDDK NIH HHS
  grantid: Z01-DK047057-01
GroupedDBID ---
-~X
.55
.XZ
08P
0R~
18M
1TH
29K
2WC
34G
354
39C
4.4
48X
53G
5GY
5RS
5YH
8F7
AABZA
AACZT
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
ABBLC
ABDFA
ABEJV
ABGNP
ABJNI
ABLJU
ABMNT
ABNHQ
ABOCM
ABPMR
ABPPZ
ABPQP
ABPTD
ABQNK
ABVGC
ABWST
ABXVV
ACGFO
ACGFS
ACPRK
ACUTJ
ACYHN
ADBBV
ADGKP
ADGZP
ADHKW
ADQBN
ADRTK
ADVEK
AELWJ
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFCHL
AFFZL
AFGWE
AFOFC
AFRAH
AFXAL
AGINJ
AGKRT
AGQXC
AGUTN
AHMBA
AHMMS
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
ARIXL
ASPBG
ATGXG
AVWKF
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BSWAC
BTRTY
C45
CDBKE
CS3
D-I
DAKXR
DIK
E3Z
EBS
EJD
EMOBN
ENERS
F5P
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
HZ~
H~9
KBUDW
KOP
KQ8
KSI
KSN
L7B
M5~
MHKGH
MJL
N9A
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBH
OCB
ODMLO
OFXIZ
OGEVE
OHH
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
P6G
REU
ROX
ROZ
TEORI
TJX
TLC
TR2
TWZ
VVN
W8F
WOQ
X7M
YBU
YFH
YHG
YOC
YSK
ZY1
~02
~H1
.GJ
3O-
7X7
88E
8FI
8FJ
AAJQQ
AAKAS
AAPGJ
AAQQT
AAUQX
AAWDT
AAYJJ
ABDPE
ABUWG
ABXZS
ACFRR
ACVCV
ACZBC
ADMTO
ADNBA
ADZCM
AEMQT
AEOTA
AERZD
AFFNX
AFFQV
AFKRA
AFYAG
AGMDO
AGORE
AHGBF
AI.
AJBYB
AJDVS
ALXQX
APJGH
AQDSO
AQKUS
AVNTJ
BENPR
BPHCQ
BVXVI
CCPQU
EIHJH
FEDTE
FYUFA
HMCUK
HVGLF
IAO
IHR
INH
ITC
J5H
M1P
MBLQV
N4W
NU-
OBFPC
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
TMA
UKHRP
VH1
WHG
X52
ZGI
ZXP
AAYXX
AEHZK
CITATION
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TM
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c5170-ae12e430980683a807cdec4972ba790b2cf0295266a98147eff279d94a39a18d3
ISSN 0021-972X
1945-7197
IngestDate Tue Sep 30 16:39:22 EDT 2025
Wed Oct 01 09:48:03 EDT 2025
Tue Oct 07 07:17:13 EDT 2025
Thu Apr 03 06:53:53 EDT 2025
Wed Oct 01 01:27:52 EDT 2025
Thu Apr 24 23:10:09 EDT 2025
Fri May 16 04:03:21 EDT 2025
Fri Feb 07 10:35:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5170-ae12e430980683a807cdec4972ba790b2cf0295266a98147eff279d94a39a18d3
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 23150685
PQID 3164468718
PQPubID 2046206
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3537100
proquest_miscellaneous_1273258516
proquest_journals_3164468718
pubmed_primary_23150685
crossref_citationtrail_10_1210_jc_2012_3107
crossref_primary_10_1210_jc_2012_3107
wolterskluwer_health_00004678-201301000-00070
oup_primary_10_1210_jc_2012-3107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-January
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-January
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Chevy Chase, MD
PublicationTitle The journal of clinical endocrinology and metabolism
PublicationTitleAlternate J Clin Endocrinol Metab
PublicationYear 2013
Publisher Oxford University Press
Copyright by The Endocrine Society
Endocrine Society
Publisher_xml – name: Oxford University Press
– name: Copyright by The Endocrine Society
– name: Endocrine Society
References 21791556 - Endocrinology. 2011 Oct;152(10):3597-602
22587513 - Curr Diabetes Rev. 2012 Jul 1;8(4):285-93
20826525 - Eur J Endocrinol. 2010 Dec;163(6):863-72
17550778 - Cell Metab. 2007 Jun;5(6):426-37
22302939 - Genes Dev. 2012 Feb 1;26(3):271-81
21317437 - J Biol Chem. 2011 Apr 15;286(15):12983-90
21613352 - J Clin Endocrinol Metab. 2011 Aug;96(8):2450-5
22302876 - Genes Dev. 2012 Feb 15;26(4):312-24
21325103 - Clin Chem. 2011 May;57(5):691-700
19458063 - Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E977-86
15902306 - J Clin Invest. 2005 Jun;115(6):1627-35
22582248 - Science. 2012 May 11;336(6082):675-6
17550777 - Cell Metab. 2007 Jun;5(6):415-25
19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25
20616029 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12553-8
16936195 - Diabetes. 2006 Sep;55(9):2470-8
22796012 - Cell. 2012 Jul 20;150(2):366-76
21373720 - Mol Med. 2011;17(7-8):736-40
18460341 - FEBS Lett. 2008 May 28;582(12):1725-30
References_xml – reference: 21325103 - Clin Chem. 2011 May;57(5):691-700
– reference: 21373720 - Mol Med. 2011;17(7-8):736-40
– reference: 16936195 - Diabetes. 2006 Sep;55(9):2470-8
– reference: 22302876 - Genes Dev. 2012 Feb 15;26(4):312-24
– reference: 17550777 - Cell Metab. 2007 Jun;5(6):415-25
– reference: 21317437 - J Biol Chem. 2011 Apr 15;286(15):12983-90
– reference: 21791556 - Endocrinology. 2011 Oct;152(10):3597-602
– reference: 15902306 - J Clin Invest. 2005 Jun;115(6):1627-35
– reference: 22587513 - Curr Diabetes Rev. 2012 Jul 1;8(4):285-93
– reference: 21613352 - J Clin Endocrinol Metab. 2011 Aug;96(8):2450-5
– reference: 20616029 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12553-8
– reference: 20826525 - Eur J Endocrinol. 2010 Dec;163(6):863-72
– reference: 19458063 - Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E977-86
– reference: 22302939 - Genes Dev. 2012 Feb 1;26(3):271-81
– reference: 22582248 - Science. 2012 May 11;336(6082):675-6
– reference: 18460341 - FEBS Lett. 2008 May 28;582(12):1725-30
– reference: 22796012 - Cell. 2012 Jul 20;150(2):366-76
– reference: 17550778 - Cell Metab. 2007 Jun;5(6):426-37
– reference: 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25
SSID ssj0014453
Score 2.450911
Snippet Context:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through...
CONTEXT:Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through...
Cold exposure stimulates fibroblast growth factor 21 (FGF21) secretion in animals, enhancing the cold-induced thermogenesis (CIT) response through browning of...
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E98
SubjectTerms Adipose tissue
Adult
Body fat
Circadian Rhythm - physiology
Cold
Cold Temperature
Cross-Over Studies
Diurnal
Energy expenditure
Fatty acids
Female
Fibroblast Growth Factors - analysis
Fibroblast Growth Factors - blood
Fibroblast Growth Factors - metabolism
Fibroblasts
Glycerol
Growth factors
Humans
JCEM Online: Brief Reports
Lipolysis
Lipolysis - physiology
Male
Microdialysis
Middle Aged
Osmolar Concentration
Single-Blind Method
Thermogenesis
Thermogenesis - physiology
Young Adult
Title Mild Cold Exposure Modulates Fibroblast Growth Factor 21 (FGF21) Diurnal Rhythm in Humans: Relationship between FGF21 Levels, Lipolysis, and Cold-Induced Thermogenesis
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004678-201301000-00070
https://www.ncbi.nlm.nih.gov/pubmed/23150685
https://www.proquest.com/docview/3164468718
https://www.proquest.com/docview/1273258516
https://pubmed.ncbi.nlm.nih.gov/PMC3537100
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1945-7197
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014453
  issn: 0021-972X
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1945-7197
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014453
  issn: 0021-972X
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF7qCSKI-HpGT1lBRenlyGuT9ZtK6yHX84Mt9FvIy-YaTZPapuj5h_xP_hpndjcvpXdw-iWE7OYF5tnZmckzM4S8cI1BaLlpojtWzHQnTA3d9znX3RhWXsRgR0oxG3l8OjieOp9m7qzX-9NhLW2q6Cj-dWFeyf9IFa6BXDFL9h8k2zwULsA5yBeOIGE4XknG4yzHpDQ48J_LEmN92NkGG3LxdT8FR7iMwDiu-mfga1dz1Vunb5loVo4-jiwTYwJJJk3S1fy8mi8w_iH69gmq3KqmynUpXeLOfo5sIwGCPFuWorBJzQTFL9LB198gtwANzEV5hio1W3dNYQRop25Fk6LJi6QEVVa0xaEWvAKo5nWxw5Y-1KU1vl-BJlemsGCLtz-8MO6AG5BMQynPWzA3caUvc57lYTcEgu0omhCI1NrMcXXPlETfI37BNaXqmb8Daam3h3JkZz8Bhxj3E6x1KYo7Gl67b9ZcgdPPwWh6chJMhrPJq-V3HTua4Z9_1d7lGrluAe5FW5FZQz8CP1ZUSG0-UyVlYEZV93Vb5tJWCmbHE9ol9N76USLZYv1N5Fp0LKbJHXJbuTr0ncTtXdLjxT1yY6zIHPfJb4QvRbDQGr60gS9t4UslfKmEL7VM-lpA8A1V0KUSujQrqITuW9oFLlXApeIuKoF7SBvYHlIAGe2Clm6B9gGZjoaTD8e66huixy72UQq5aXHHNphvDHw79A0vTnjsMM-KQo8ZkRWnhsVcME1D5puOx9PU8ljCnNBmoekn9kOyV5QFf0Ro4hrcAZOYx5HhmNwJozBK3SRiTgIWS8o10q_FE8SqqD72dskDdK5BmMHXOEBhBihMjbxsZi9lMZlL5lGQ9GVTdDnloIZBoNbqGu4F72bgg7mpkefNMOwX-BMwLHi5WcOTPNtCLsBAI_sSNc2LwNcD3e27GvG28NRMwFr02yNFNhc16W3XxjphGtG3kBfIbO5AhCLALtZx-RqmKmfhGY-v8J1PyM120R-QvWq14U_BE6iiZ2JJ_QXUFA3b
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mild+cold+exposure+modulates+fibroblast+growth+factor+21+%28FGF21%29+diurnal+rhythm+in+humans%3A+relationship+between+FGF21+levels%2C+lipolysis%2C+and+cold-induced+thermogenesis&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Lee%2C+Paul&rft.au=Brychta%2C+Robert+J&rft.au=Linderman%2C+Joyce&rft.au=Smith%2C+Sheila&rft.date=2013-01-01&rft.issn=1945-7197&rft.eissn=1945-7197&rft.volume=98&rft.issue=1&rft.spage=E98&rft_id=info:doi/10.1210%2Fjc.2012-3107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon