SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the app...
Saved in:
| Published in | BMC bioinformatics Vol. 7; no. 1; p. 43 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
BioMed Central
26.01.2006
BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-7-43 |
Cover
| Abstract | The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner.
In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms.
This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data. |
|---|---|
| AbstractList | Abstract Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. Results In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. Conclusion This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data. Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. Results In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. Conclusion This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data. The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data. The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data. The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner.BACKGROUNDThe development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner.In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms.RESULTSIn this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms.This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.CONCLUSIONThis network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data. |
| ArticleNumber | 43 |
| Author | Marchal, Kathleen De Moor, Bart Naudts, Bart Ma, Hongwu Verschoren, Alain van Remortel, Piet Van den Bulcke, Tim Van Leemput, Koenraad |
| AuthorAffiliation | 1 ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium 2 ISLab, Dept. Math. and Comp. Sc., University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium 4 CMPG, Dept. Microbial and Molecular Systems, K.U.Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium 3 Dept. of Genome Analysis, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany |
| AuthorAffiliation_xml | – name: 4 CMPG, Dept. Microbial and Molecular Systems, K.U.Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium – name: 1 ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium – name: 2 ISLab, Dept. Math. and Comp. Sc., University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium – name: 3 Dept. of Genome Analysis, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany |
| Author_xml | – sequence: 1 givenname: Tim surname: Van den Bulcke fullname: Van den Bulcke, Tim – sequence: 2 givenname: Koenraad surname: Van Leemput fullname: Van Leemput, Koenraad – sequence: 3 givenname: Bart surname: Naudts fullname: Naudts, Bart – sequence: 4 givenname: Piet surname: van Remortel fullname: van Remortel, Piet – sequence: 5 givenname: Hongwu surname: Ma fullname: Ma, Hongwu – sequence: 6 givenname: Alain surname: Verschoren fullname: Verschoren, Alain – sequence: 7 givenname: Bart surname: De Moor fullname: De Moor, Bart – sequence: 8 givenname: Kathleen surname: Marchal fullname: Marchal, Kathleen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16438721$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstvFSEUxiemxj5069LMyt20wDAMuDAxjdUmjSZa14SBM3NpuHAFRr3_fbmP1NbE3AWBHH7fl_M6rY588FBVrzE6x5izC0x73BCMuqZvaPusOnkIHD16H1enKd0hhHuOuhfVMWa05T3BJ1X4vva33-DLu1rVE3iIKodYh7FOa58XkK3ehmv4s4qQkg2-NiqreiyUgWQnXytvylFunWzaKnOcdZ4j1A5U9NZPtXJTiDYvlull9XxULsGr_X1W_bj6eHv5ubn5-un68sNNozvMcmOEJgNHA1at4NAPSNNx0KIbmKCCiYFw3CrUdRyZQY8cQeEQHgnrWkEM4-1Zdb3zNUHdyVW0SxXXMigrt4EQJ6liqc6BHJnp9Eg5JpxQjLjQ3BBQXQu9FgCmeF3svGa_UuvfyrkHQ4zkZgxy02m56bTsJW2L4v1OsZqHJRgNPkflnqTx9MfbhZzCL4nbvmWIFoO3e4MYfs6QslzapME55SHMSbKeMdFydhAkmJRJY34QxIJSgWhfwDePc_9b6n5nCnC-A3QMKUUYD3eD_iPQNqtcdqnUbt3_ZPeM6uQL |
| CitedBy_id | crossref_primary_10_1186_s12859_023_05558_9 crossref_primary_10_3390_make1010008 crossref_primary_10_1186_s13059_024_03264_0 crossref_primary_10_1093_bioinformatics_btr373 crossref_primary_10_1371_journal_pone_0029279 crossref_primary_10_1089_cmb_2014_0175 crossref_primary_10_3389_fgene_2023_1143382 crossref_primary_10_1016_j_artmed_2018_10_006 crossref_primary_10_1186_1471_2105_12_359 crossref_primary_10_1089_cmb_2008_09TT crossref_primary_10_1186_s12859_016_1398_6 crossref_primary_10_1186_1471_2105_9_461 crossref_primary_10_1186_s12859_016_0913_0 crossref_primary_10_1093_bioinformatics_btm640 crossref_primary_10_1093_bioinformatics_btp115 crossref_primary_10_1038_srep07464 crossref_primary_10_1093_g3journal_jkab133 crossref_primary_10_1109_TCBB_2011_116 crossref_primary_10_1186_1471_2105_13_281 crossref_primary_10_1155_2007_79879 crossref_primary_10_1093_bioinformatics_btt438 crossref_primary_10_1186_1471_2105_8_S2_S5 crossref_primary_10_1093_bioinformatics_bts296 crossref_primary_10_1016_j_artint_2020_103428 crossref_primary_10_1109_TSMCA_2010_2052039 crossref_primary_10_1093_bib_bbt034 crossref_primary_10_1093_bioinformatics_btp068 crossref_primary_10_1016_j_engappai_2024_108258 crossref_primary_10_1016_j_ijar_2016_12_012 crossref_primary_10_1371_journal_pone_0087446 crossref_primary_10_1186_1471_2105_10_193 crossref_primary_10_1111_j_1749_6632_2008_03756_x crossref_primary_10_1371_journal_pone_0102803 crossref_primary_10_53759_aist_978_9914_9946_0_5_8 crossref_primary_10_1093_jamia_ocz161 crossref_primary_10_1371_journal_pone_0037510 crossref_primary_10_1371_journal_pone_0040918 crossref_primary_10_1186_1471_2105_11_95 crossref_primary_10_1214_11_AOAS532 crossref_primary_10_1007_s11071_014_1251_2 crossref_primary_10_1186_1471_2105_15_S15_S3 crossref_primary_10_1038_s41598_024_76513_8 crossref_primary_10_1186_1471_2105_12_292 crossref_primary_10_1111_j_1365_2958_2006_05453_x crossref_primary_10_1109_TCBB_2019_2901676 crossref_primary_10_1186_1471_2105_12_296 crossref_primary_10_1016_j_ijar_2022_09_004 crossref_primary_10_1093_jamia_ocx079 crossref_primary_10_1007_s10115_024_02140_4 crossref_primary_10_1039_C7MB00248C crossref_primary_10_3390_microarrays4040432 crossref_primary_10_1155_2009_308959 crossref_primary_10_1186_1752_0509_7_106 crossref_primary_10_1186_s40294_019_0065_y crossref_primary_10_1093_molbev_msac057 crossref_primary_10_1109_TCBB_2014_2338304 crossref_primary_10_1093_bioinformatics_btx642 crossref_primary_10_1016_j_ygeno_2009_08_009 crossref_primary_10_1371_journal_pone_0028713 crossref_primary_10_1016_j_compbiomed_2024_108850 crossref_primary_10_3390_ijms232113149 crossref_primary_10_1021_acs_jproteome_5b00344 crossref_primary_10_1016_j_jpdc_2013_04_001 crossref_primary_10_1039_C7MB00058H crossref_primary_10_1186_1756_0500_4_189 crossref_primary_10_1093_bioinformatics_btaa267 crossref_primary_10_1162_artl_2008_14_1_49 crossref_primary_10_1093_bioinformatics_btac445 crossref_primary_10_1093_nar_gkt983 crossref_primary_10_1371_journal_pone_0144031 crossref_primary_10_1049_iet_syb_2010_0091 crossref_primary_10_1109_TCBB_2010_83 crossref_primary_10_1007_s10994_017_5664_2 crossref_primary_10_1371_journal_pone_0018634 crossref_primary_10_1093_bioinformatics_btr269 crossref_primary_10_1088_2632_2153_ada47f crossref_primary_10_1186_1471_2105_11_32 crossref_primary_10_1186_1471_2105_12_82 crossref_primary_10_1103_PhysRevLett_107_054101 crossref_primary_10_1109_ACCESS_2024_3456233 crossref_primary_10_1093_nar_gks904 crossref_primary_10_3389_fpls_2016_00903 crossref_primary_10_1155_2013_401649 crossref_primary_10_1186_1745_6150_6_31 crossref_primary_10_1186_s12859_015_0577_1 crossref_primary_10_1109_TCBB_2007_1067 crossref_primary_10_1186_1471_2105_12_315 crossref_primary_10_1007_s11427_014_4762_7 crossref_primary_10_1371_journal_pone_0092709 crossref_primary_10_1093_gigascience_giy118 crossref_primary_10_1016_j_compbiolchem_2015_03_002 crossref_primary_10_1186_gm340 crossref_primary_10_1038_srep41328 crossref_primary_10_1093_bioinformatics_btm562 crossref_primary_10_1186_1471_2105_15_S10_P33 crossref_primary_10_3389_fgene_2022_815692 crossref_primary_10_1007_s11009_017_9554_7 crossref_primary_10_1186_1471_2105_14_S8_S5 crossref_primary_10_1371_journal_pone_0033624 crossref_primary_10_3389_fams_2019_00017 crossref_primary_10_1038_s41540_017_0019_y crossref_primary_10_1007_s11071_014_1823_1 crossref_primary_10_1371_journal_pone_0177701 crossref_primary_10_1186_1752_0509_9_S3_S6 crossref_primary_10_1371_journal_pone_0259193 crossref_primary_10_1093_bioinformatics_btw642 crossref_primary_10_1371_journal_pone_0235070 crossref_primary_10_1109_TCYB_2021_3116762 crossref_primary_10_17706_ijbbb_2015_5_5_296_310 crossref_primary_10_1186_1752_0509_4_132 crossref_primary_10_3390_pr9101758 crossref_primary_10_1038_s41467_021_24152_2 crossref_primary_10_1007_s10994_019_05861_8 crossref_primary_10_1093_bioinformatics_btq144 crossref_primary_10_1093_bioinformatics_btu182 crossref_primary_10_1007_s12038_022_00278_3 crossref_primary_10_1016_j_physa_2015_12_039 crossref_primary_10_1093_bioinformatics_btac630 crossref_primary_10_1049_iet_syb_2010_0041 crossref_primary_10_1155_2013_856325 crossref_primary_10_1109_TCYB_2023_3237635 crossref_primary_10_1371_journal_pcbi_1010991 crossref_primary_10_4137_EBO_S13481 crossref_primary_10_1016_j_compbiomed_2023_107024 crossref_primary_10_3389_fgene_2014_00299 crossref_primary_10_1186_1471_2105_8_272 crossref_primary_10_1109_JSTSP_2008_923858 crossref_primary_10_1186_s12859_015_0728_4 crossref_primary_10_7717_peerj_1621 crossref_primary_10_1109_TCBB_2020_3034861 crossref_primary_10_1016_j_bbagrm_2019_194444 crossref_primary_10_1016_j_simpat_2018_07_013 crossref_primary_10_1089_cmb_2010_0118 crossref_primary_10_1093_bioinformatics_btz105 crossref_primary_10_1186_s13059_019_1851_8 crossref_primary_10_1016_j_patcog_2008_09_022 crossref_primary_10_1109_TPDS_2010_59 crossref_primary_10_1038_nrmicro2419 crossref_primary_10_1186_1752_0509_6_38 crossref_primary_10_1093_bioinformatics_btt643 crossref_primary_10_1186_s12918_017_0512_3 crossref_primary_10_2174_1574893616666210906141545 crossref_primary_10_1093_bioinformatics_btn660 crossref_primary_10_1109_TCBB_2008_87 crossref_primary_10_1371_journal_pcbi_0030069 crossref_primary_10_1140_epjb_e2013_31111_8 crossref_primary_10_1017_cts_2022_18 crossref_primary_10_1186_s12918_018_0613_7 crossref_primary_10_1016_j_compbiomed_2011_06_012 crossref_primary_10_1093_bioinformatics_btab035 crossref_primary_10_1186_s12859_016_0981_1 crossref_primary_10_1186_s12859_017_1731_8 crossref_primary_10_1155_2014_540679 crossref_primary_10_1162_NECO_a_00589 crossref_primary_10_1093_bioinformatics_btq259 crossref_primary_10_1186_s12918_017_0440_2 |
| Cites_doi | 10.1093/bioinformatics/17.suppl_1.S215 10.1038/ng881 10.1089/106652701753307485 10.1016/j.physa.2003.10.083 10.1126/science.298.5594.824 10.1093/bioinformatics/18.suppl_1.S216 10.1093/bioinformatics/btg1082 10.1103/PhysRevLett.85.5234 10.1073/pnas.1230759100 10.1093/bioinformatics/17.suppl_1.S243 10.1093/bioinformatics/btg313 10.1038/ng873 10.5486/PMD.1959.6.3-4.12 10.1093/bioinformatics/bth941 10.1093/bioinformatics/btg1069 10.1038/30918 10.1186/1471-2105-6-8 10.1093/nar/gkh1009 10.1126/science.1094068 10.1093/nar/30.4.e15 |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 Van den Bulcke et al; licensee BioMed Central Ltd. 2006 Van den Bulcke et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2006 Van den Bulcke et al; licensee BioMed Central Ltd. 2006 Van den Bulcke et al; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-7-43 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database Engineering Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 43 |
| ExternalDocumentID | oai_doaj_org_article_f6d5cf48128241089c8d2ea53e7c9eed 10.1186/1471-2105-7-43 PMC1373604 16438721 10_1186_1471_2105_7_43 |
| Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB ALIPV CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFKRA ARAPS AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK K6V K7- LK8 M1P M7P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY |
| ID | FETCH-LOGICAL-c516t-d9c2b80b1a398e7b0c4fbc95b694969b2813a05580dbcf80ea3901f265392d683 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:50:35 EDT 2025 Sun Oct 26 03:59:51 EDT 2025 Thu Aug 21 18:06:38 EDT 2025 Fri Sep 05 13:32:49 EDT 2025 Tue Oct 07 09:19:48 EDT 2025 Tue Oct 07 09:50:52 EDT 2025 Thu Apr 03 07:06:49 EDT 2025 Wed Oct 01 01:46:24 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-d9c2b80b1a398e7b0c4fbc95b694969b2813a05580dbcf80ea3901f265392d683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-7-43 |
| PMID | 16438721 |
| PQID | 19449047 |
| PQPubID | 23462 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f6d5cf48128241089c8d2ea53e7c9eed unpaywall_primary_10_1186_1471_2105_7_43 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1373604 proquest_miscellaneous_67669386 proquest_miscellaneous_21238718 proquest_miscellaneous_19449047 pubmed_primary_16438721 crossref_primary_10_1186_1471_2105_7_43 crossref_citationtrail_10_1186_1471_2105_7_43 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-01-26 |
| PublicationDateYYYYMMDD | 2006-01-26 |
| PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-26 day: 26 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2006 |
| Publisher | BioMed Central BMC |
| Publisher_xml | – name: BioMed Central – name: BMC |
| References | DJ Watts (782_CR12) 1998; 393 D Husmeier (782_CR7) 2003; 19 P Erdös (782_CR19) 1959; 6 JH Hofmeyr (782_CR23) 1997; 13 A Fersht (782_CR26) 1985 E Segal (782_CR6) 2001; 17 D Pe'er (782_CR5) 2001; 17 HW Ma (782_CR20) 2004; 32 I Nachman (782_CR4) 2004; 20 DM Rocke (782_CR27) 2001; 8 I Derényi (782_CR29) 2004; 334 B Bollobas (782_CR22) 2003 B Bollobás (782_CR28) 1985 Y Tamada (782_CR1) 2003; 19 N Guelzim (782_CR21) 2002; 31 T Reil (782_CR15) 1999 SS Shen-Orr (782_CR18) 2002; 31 R Milo (782_CR17) 2002; 298 N Friedman (782_CR3) 2004; 303 P Mendes (782_CR11) 2003; 19 P D'Haeseleer (782_CR2) 1999 DE Zak (782_CR9) 2001 YH Yang (782_CR25) 2002; 30 D Zhu (782_CR16) 2005; 6 C Knüpfer (782_CR10) 2004 Y Setty (782_CR24) 2003; 100 T Akutsu (782_CR14) 1999 VA Smith (782_CR8) 2002; 18 R Albert (782_CR13) 2000; 85 |
| References_xml | – volume: 17 start-page: S215 year: 2001 ident: 782_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.suppl_1.S215 – volume: 31 start-page: 64 year: 2002 ident: 782_CR18 publication-title: Nat Genet doi: 10.1038/ng881 – volume: 8 start-page: 557 year: 2001 ident: 782_CR27 publication-title: J Comput Biol doi: 10.1089/106652701753307485 – volume: 334 start-page: 583 year: 2004 ident: 782_CR29 publication-title: Physica A doi: 10.1016/j.physa.2003.10.083 – start-page: 231 volume-title: Proceedings of the Second International Conference on Systems Biology year: 2001 ident: 782_CR9 – volume: 298 start-page: 824 year: 2002 ident: 782_CR17 publication-title: Science doi: 10.1126/science.298.5594.824 – volume: 18 start-page: S216 year: 2002 ident: 782_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S216 – start-page: 132 volume-title: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms year: 2003 ident: 782_CR22 – volume: 19 start-page: II227 year: 2003 ident: 782_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1082 – volume-title: Enzyme structure and mechanism year: 1985 ident: 782_CR26 – volume: 85 start-page: 5234 year: 2000 ident: 782_CR13 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.85.5234 – volume: 100 start-page: 7702 year: 2003 ident: 782_CR24 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1230759100 – volume: 17 start-page: S243 year: 2001 ident: 782_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.suppl_1.S243 – volume: 19 start-page: 2271 year: 2003 ident: 782_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg313 – volume: 31 start-page: 60 year: 2002 ident: 782_CR21 publication-title: Nat Genet doi: 10.1038/ng873 – volume: 6 start-page: 290 year: 1959 ident: 782_CR19 publication-title: Publ Math Debrecen doi: 10.5486/PMD.1959.6.3-4.12 – volume: 13 start-page: 377 year: 1997 ident: 782_CR23 publication-title: Comput Appl Biosci – volume-title: Random graphs year: 1985 ident: 782_CR28 – start-page: 17 volume-title: Pac Symp Biocomput year: 1999 ident: 782_CR14 – start-page: 66 volume-title: Artificial Gene Regulation: A Data Source for Validation of Reverse Bioengineering, Akademische Verlagsgesellschaft Aka, Berlin year: 2004 ident: 782_CR10 – volume: 20 start-page: I248 year: 2004 ident: 782_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth941 – volume: 19 start-page: II122 year: 2003 ident: 782_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1069 – start-page: 457 volume-title: European Conference on Artificial Life year: 1999 ident: 782_CR15 – volume: 393 start-page: 440 year: 1998 ident: 782_CR12 publication-title: Nature doi: 10.1038/30918 – start-page: 41 volume-title: Pac Symp Biocomput year: 1999 ident: 782_CR2 – volume: 6 start-page: 8 year: 2005 ident: 782_CR16 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-8 – volume: 32 start-page: 6643 year: 2004 ident: 782_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh1009 – volume: 303 start-page: 799 year: 2004 ident: 782_CR3 publication-title: Science doi: 10.1126/science.1094068 – volume: 30 start-page: e15 year: 2002 ident: 782_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.4.e15 |
| SSID | ssj0017805 |
| Score | 2.3543363 |
| Snippet | The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research.... Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics... Abstract Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 43 |
| SubjectTerms | Algorithms Artificial Intelligence Benchmarking - methods Computer Simulation Databases, Factual Gene Expression Regulation - physiology Methodology Models, Biological Signal Transduction - physiology Software Software Validation Transcription Factors - metabolism |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQJQQXxJvl6QMSXKyu1-sXN0BUFRI9QCv1ZvmZVkqdqkkE-feMvZvQCKJeOOzFO5bWnrG_GXv2G4TeAsgw4bkllgpHCkIQx1Ii0rU8qBQAFsp5x7cjcXjSfz3lp9dKfZWcsIEeeJi4_SQC96kHHFIANq3SXoUuWs6i9Bo2-LL7Qus6mBrvDwpTf_2vSFICQQ0f6RqpEvubNiJJz7bgqLL2_8vV_Dtj8s4yX9rVTzudXoOjg_vo3uhH4o_D9z9At2J-iG4PlSVXj9Dsxyoff49HH7DFk8osDbE1niU8X2Vw-aBTbcbx15gIm3HJFcXgwuJQkzqwzQGegbKk9qxMs8uriMdKExNsp5PZ1fni7GL-GJ0cfDn-fEjG2grEcyoWJGjfOdU6aplWETTj--S85k7oXgvtOkWZbTlXbXA-qTbacjiSusJk2wWh2BO0l2c5PkM4AcpHbbkCzcB2wFTyniYnbbJt0NQ3iKyn2PiReLzUv5iaGoAoYYpKTFGJkaZnDXq3kb8cKDd2Sn4qGttIFars2gAGZEYDMjcZUIPerPVtYGmV-xKb42w5N1T3vW57uVui4D5EnGq3hJBCaKZEg54OFvRnSOALKoi_GyS3bGtrNNtv8vlZJQCnTDLR9g16v7HCG2bq-f-YqRfo7voAqhMv0R6YXXwFLtnCva6r7zcErTNp priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBceD_C0wckuLibxLFjc1sQqxUSFYKttJwiP7sV2aTqQ1B-PeM8ypalggOHXJyxZDtjzzfOzDcIvQAjQ7lhiqiEaxIsBNHUe5LrmFnhLZiFcN_xYcSPx9n7U3a6h0Z9Low-N3pad6Shgah4eDENvWyzHEIVBTc_mFnfbnrBDxI4ZAm4L4zkJKNX0D5ngM0HaH88-nj4pUkx6gQ65sbLnbYsU0Pg_yfUeTl48tqqmqn1N1WWFyzT0U1U93NqA1K-DldLPTQ_fqN7_H-TvoVudCAWH7ZadxvtueoOutqWtVzfRfXndXXyyY1eY4UnDa01OPa49nixrgBvQqemGbvvXRRuhUOgKoaBYdtElGBVWXhavpSmZ0Nzu5o73JW5mGBVTur5dHl2vriHxkfvTt4ek66wAzEs4UtipUm1iHWiqBQO1MJkXhvJNJeZ5FKnIqEqZkzEVhsvYqfCzYxPA41uarmg99Ggqiv3EGEPEMNJxYQRFs4iKrwxide58iq2MjERIv1HLUzHeh6Kb5RF4_0IXoRFLMIiFnmR0Qi93MjPWr6PnZJvgo5spAJPd9NQzydFt-0Lzy0zPgMUJQAqxULCMFOnGHW5kQBPIvS817AC9nX4WaMqV68WRSKzTMZZvlsigA5wd8VuCZ5zLqngEXrQ6uyvKQEQFeD8Ryjf0uat2Wy_qaZnDft4QnPK4yxCrzZ6_5eVevTvoo_R9f6OK-VP0ACUyz0F1LfUz7qt_BMNIVaa priority: 102 providerName: Unpaywall |
| Title | SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16438721 https://www.proquest.com/docview/19449047 https://www.proquest.com/docview/21238718 https://www.proquest.com/docview/67669386 https://pubmed.ncbi.nlm.nih.gov/PMC1373604 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-43 https://doaj.org/article/f6d5cf48128241089c8d2ea53e7c9eed |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKK0QviDfLI_iAgIthd_1YGwmhgKiqSI0QbaRyWtleO0XabtI8RPPvGTublKiNesjFGUexZ2bnG3v2G4TeQpChwnJNdCYMCRGCGOo9KUzKK-krCAvhvOOoLw4HrHfKT3fQqpS33cDpjald6Cc1mNQfLy8WX8Hhv0SHl-JTBg9YAqkLJwVh9N34goSmUuHyte2wcQftQeBSobPDEbu6ZAh0_vHlo3Z6y-l4_Sc3Ylak9r8Jj14vq7w3b8Z68VfX9X8x6-ABut-CTdxdWsdDtOOaR-jusv3k4jEaHS-ak1-u_xlrPIz005CA45HH00UDuBAmxWHsLttq2QaHglIMOBdXsfID66aCz5LXJM6MdLTzicNtO4oh1vUQNmp2dj59ggYHP06-H5K2AQOxPBMzUimbG5maTFMlHajPMm-s4kYopoQyucyoTjmXaWWsl6nT4QTF54HuNq-EpE_RbjNq3HOEPUABpzSXVlbwzKDSW5t5U2iv00plNkFktcWlbdnJQ5OMuoxZihRlUEkZVFIWJaMJer-WHy95ObZKfgsaW0sFPu04MJoMy9Y9Sy8qbj0DtCMB0qRSwd_MnebUFVYBjEjQm5W-S_C_cKmiGzeaT8tMMaZSVmyXCOAA0lK5XUIUQigqRYKeLS3oakkAGCUk6QkqNmxrYzWb3zR_ziJLeEYLKlKWoA9rK7xlp17cuoSXaH91BJWLV2gXbMq9BlA2Mx201-32jnudeKjRiY4GY4P-z-7vfy0OObw |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBceD_C0wckuLibxLFjc1sQqxUSFYKttJwiP7sV2aTqQ1B-PeM8ypalggOHXJyxZDtjzzfOzDcIvQAjQ7lhiqiEaxIsBNHUe5LrmFnhLZiFcN_xYcSPx9n7U3a6h0Z9Low-N3pad6Shgah4eDENvWyzHEIVBTc_mFnfbnrBDxI4ZAm4L4zkJKNX0D5ngM0HaH88-nj4pUkx6gQ65sbLnbYsU0Pg_yfUeTl48tqqmqn1N1WWFyzT0U1U93NqA1K-DldLPTQ_fqN7_H-TvoVudCAWH7ZadxvtueoOutqWtVzfRfXndXXyyY1eY4UnDa01OPa49nixrgBvQqemGbvvXRRuhUOgKoaBYdtElGBVWXhavpSmZ0Nzu5o73JW5mGBVTur5dHl2vriHxkfvTt4ek66wAzEs4UtipUm1iHWiqBQO1MJkXhvJNJeZ5FKnIqEqZkzEVhsvYqfCzYxPA41uarmg99Ggqiv3EGEPEMNJxYQRFs4iKrwxide58iq2MjERIv1HLUzHeh6Kb5RF4_0IXoRFLMIiFnmR0Qi93MjPWr6PnZJvgo5spAJPd9NQzydFt-0Lzy0zPgMUJQAqxULCMFOnGHW5kQBPIvS817AC9nX4WaMqV68WRSKzTMZZvlsigA5wd8VuCZ5zLqngEXrQ6uyvKQEQFeD8Ryjf0uat2Wy_qaZnDft4QnPK4yxCrzZ6_5eVevTvoo_R9f6OK-VP0ACUyz0F1LfUz7qt_BMNIVaa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SynTReN%3A+a+generator+of+synthetic+gene+expression+data+for+design+and+analysis+of+structure+learning+algorithms&rft.jtitle=BMC+bioinformatics&rft.au=Van+den+Bulcke%2C+Tim&rft.au=Van+Leemput%2C+Koenraad&rft.au=Naudts%2C+Bart&rft.au=van+Remortel%2C+Piet&rft.date=2006-01-26&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=7&rft.spage=43&rft.epage=43&rft_id=info:doi/10.1186%2F1471-2105-7-43&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |