SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms

The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the app...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 7; no. 1; p. 43
Main Authors Van den Bulcke, Tim, Van Leemput, Koenraad, Naudts, Bart, van Remortel, Piet, Ma, Hongwu, Verschoren, Alain, De Moor, Bart, Marchal, Kathleen
Format Journal Article
LanguageEnglish
Published England BioMed Central 26.01.2006
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-7-43

Cover

Abstract The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.
AbstractList Abstract Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. Results In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. Conclusion This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.
Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. Results In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. Conclusion This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.
The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.
The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner. In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms. This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.
The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner.BACKGROUNDThe development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner.In this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms.RESULTSIn this paper we describe a network generator that creates synthetic transcriptional regulatory networks and produces simulated gene expression data that approximates experimental data. Network topologies are generated by selecting subnetworks from previously described regulatory networks. Interaction kinetics are modeled by equations based on Michaelis-Menten and Hill kinetics. Our results show that the statistical properties of these topologies more closely approximate those of genuine biological networks than do those of different types of random graph models. Several user-definable parameters adjust the complexity of the resulting data set with respect to the structure learning algorithms.This network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.CONCLUSIONThis network generation technique offers a valid alternative to existing methods. The topological characteristics of the generated networks more closely resemble the characteristics of real transcriptional networks. Simulation of the network scales well to large networks. The generator models different types of biological interactions and produces biologically plausible synthetic gene expression data.
ArticleNumber 43
Author Marchal, Kathleen
De Moor, Bart
Naudts, Bart
Ma, Hongwu
Verschoren, Alain
van Remortel, Piet
Van den Bulcke, Tim
Van Leemput, Koenraad
AuthorAffiliation 1 ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
2 ISLab, Dept. Math. and Comp. Sc., University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium
4 CMPG, Dept. Microbial and Molecular Systems, K.U.Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
3 Dept. of Genome Analysis, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
AuthorAffiliation_xml – name: 4 CMPG, Dept. Microbial and Molecular Systems, K.U.Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
– name: 1 ESAT-SCD, K.U.Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
– name: 2 ISLab, Dept. Math. and Comp. Sc., University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium
– name: 3 Dept. of Genome Analysis, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
Author_xml – sequence: 1
  givenname: Tim
  surname: Van den Bulcke
  fullname: Van den Bulcke, Tim
– sequence: 2
  givenname: Koenraad
  surname: Van Leemput
  fullname: Van Leemput, Koenraad
– sequence: 3
  givenname: Bart
  surname: Naudts
  fullname: Naudts, Bart
– sequence: 4
  givenname: Piet
  surname: van Remortel
  fullname: van Remortel, Piet
– sequence: 5
  givenname: Hongwu
  surname: Ma
  fullname: Ma, Hongwu
– sequence: 6
  givenname: Alain
  surname: Verschoren
  fullname: Verschoren, Alain
– sequence: 7
  givenname: Bart
  surname: De Moor
  fullname: De Moor, Bart
– sequence: 8
  givenname: Kathleen
  surname: Marchal
  fullname: Marchal, Kathleen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16438721$$D View this record in MEDLINE/PubMed
BookMark eNqFkstvFSEUxiemxj5069LMyt20wDAMuDAxjdUmjSZa14SBM3NpuHAFRr3_fbmP1NbE3AWBHH7fl_M6rY588FBVrzE6x5izC0x73BCMuqZvaPusOnkIHD16H1enKd0hhHuOuhfVMWa05T3BJ1X4vva33-DLu1rVE3iIKodYh7FOa58XkK3ehmv4s4qQkg2-NiqreiyUgWQnXytvylFunWzaKnOcdZ4j1A5U9NZPtXJTiDYvlull9XxULsGr_X1W_bj6eHv5ubn5-un68sNNozvMcmOEJgNHA1at4NAPSNNx0KIbmKCCiYFw3CrUdRyZQY8cQeEQHgnrWkEM4-1Zdb3zNUHdyVW0SxXXMigrt4EQJ6liqc6BHJnp9Eg5JpxQjLjQ3BBQXQu9FgCmeF3svGa_UuvfyrkHQ4zkZgxy02m56bTsJW2L4v1OsZqHJRgNPkflnqTx9MfbhZzCL4nbvmWIFoO3e4MYfs6QslzapME55SHMSbKeMdFydhAkmJRJY34QxIJSgWhfwDePc_9b6n5nCnC-A3QMKUUYD3eD_iPQNqtcdqnUbt3_ZPeM6uQL
CitedBy_id crossref_primary_10_1186_s12859_023_05558_9
crossref_primary_10_3390_make1010008
crossref_primary_10_1186_s13059_024_03264_0
crossref_primary_10_1093_bioinformatics_btr373
crossref_primary_10_1371_journal_pone_0029279
crossref_primary_10_1089_cmb_2014_0175
crossref_primary_10_3389_fgene_2023_1143382
crossref_primary_10_1016_j_artmed_2018_10_006
crossref_primary_10_1186_1471_2105_12_359
crossref_primary_10_1089_cmb_2008_09TT
crossref_primary_10_1186_s12859_016_1398_6
crossref_primary_10_1186_1471_2105_9_461
crossref_primary_10_1186_s12859_016_0913_0
crossref_primary_10_1093_bioinformatics_btm640
crossref_primary_10_1093_bioinformatics_btp115
crossref_primary_10_1038_srep07464
crossref_primary_10_1093_g3journal_jkab133
crossref_primary_10_1109_TCBB_2011_116
crossref_primary_10_1186_1471_2105_13_281
crossref_primary_10_1155_2007_79879
crossref_primary_10_1093_bioinformatics_btt438
crossref_primary_10_1186_1471_2105_8_S2_S5
crossref_primary_10_1093_bioinformatics_bts296
crossref_primary_10_1016_j_artint_2020_103428
crossref_primary_10_1109_TSMCA_2010_2052039
crossref_primary_10_1093_bib_bbt034
crossref_primary_10_1093_bioinformatics_btp068
crossref_primary_10_1016_j_engappai_2024_108258
crossref_primary_10_1016_j_ijar_2016_12_012
crossref_primary_10_1371_journal_pone_0087446
crossref_primary_10_1186_1471_2105_10_193
crossref_primary_10_1111_j_1749_6632_2008_03756_x
crossref_primary_10_1371_journal_pone_0102803
crossref_primary_10_53759_aist_978_9914_9946_0_5_8
crossref_primary_10_1093_jamia_ocz161
crossref_primary_10_1371_journal_pone_0037510
crossref_primary_10_1371_journal_pone_0040918
crossref_primary_10_1186_1471_2105_11_95
crossref_primary_10_1214_11_AOAS532
crossref_primary_10_1007_s11071_014_1251_2
crossref_primary_10_1186_1471_2105_15_S15_S3
crossref_primary_10_1038_s41598_024_76513_8
crossref_primary_10_1186_1471_2105_12_292
crossref_primary_10_1111_j_1365_2958_2006_05453_x
crossref_primary_10_1109_TCBB_2019_2901676
crossref_primary_10_1186_1471_2105_12_296
crossref_primary_10_1016_j_ijar_2022_09_004
crossref_primary_10_1093_jamia_ocx079
crossref_primary_10_1007_s10115_024_02140_4
crossref_primary_10_1039_C7MB00248C
crossref_primary_10_3390_microarrays4040432
crossref_primary_10_1155_2009_308959
crossref_primary_10_1186_1752_0509_7_106
crossref_primary_10_1186_s40294_019_0065_y
crossref_primary_10_1093_molbev_msac057
crossref_primary_10_1109_TCBB_2014_2338304
crossref_primary_10_1093_bioinformatics_btx642
crossref_primary_10_1016_j_ygeno_2009_08_009
crossref_primary_10_1371_journal_pone_0028713
crossref_primary_10_1016_j_compbiomed_2024_108850
crossref_primary_10_3390_ijms232113149
crossref_primary_10_1021_acs_jproteome_5b00344
crossref_primary_10_1016_j_jpdc_2013_04_001
crossref_primary_10_1039_C7MB00058H
crossref_primary_10_1186_1756_0500_4_189
crossref_primary_10_1093_bioinformatics_btaa267
crossref_primary_10_1162_artl_2008_14_1_49
crossref_primary_10_1093_bioinformatics_btac445
crossref_primary_10_1093_nar_gkt983
crossref_primary_10_1371_journal_pone_0144031
crossref_primary_10_1049_iet_syb_2010_0091
crossref_primary_10_1109_TCBB_2010_83
crossref_primary_10_1007_s10994_017_5664_2
crossref_primary_10_1371_journal_pone_0018634
crossref_primary_10_1093_bioinformatics_btr269
crossref_primary_10_1088_2632_2153_ada47f
crossref_primary_10_1186_1471_2105_11_32
crossref_primary_10_1186_1471_2105_12_82
crossref_primary_10_1103_PhysRevLett_107_054101
crossref_primary_10_1109_ACCESS_2024_3456233
crossref_primary_10_1093_nar_gks904
crossref_primary_10_3389_fpls_2016_00903
crossref_primary_10_1155_2013_401649
crossref_primary_10_1186_1745_6150_6_31
crossref_primary_10_1186_s12859_015_0577_1
crossref_primary_10_1109_TCBB_2007_1067
crossref_primary_10_1186_1471_2105_12_315
crossref_primary_10_1007_s11427_014_4762_7
crossref_primary_10_1371_journal_pone_0092709
crossref_primary_10_1093_gigascience_giy118
crossref_primary_10_1016_j_compbiolchem_2015_03_002
crossref_primary_10_1186_gm340
crossref_primary_10_1038_srep41328
crossref_primary_10_1093_bioinformatics_btm562
crossref_primary_10_1186_1471_2105_15_S10_P33
crossref_primary_10_3389_fgene_2022_815692
crossref_primary_10_1007_s11009_017_9554_7
crossref_primary_10_1186_1471_2105_14_S8_S5
crossref_primary_10_1371_journal_pone_0033624
crossref_primary_10_3389_fams_2019_00017
crossref_primary_10_1038_s41540_017_0019_y
crossref_primary_10_1007_s11071_014_1823_1
crossref_primary_10_1371_journal_pone_0177701
crossref_primary_10_1186_1752_0509_9_S3_S6
crossref_primary_10_1371_journal_pone_0259193
crossref_primary_10_1093_bioinformatics_btw642
crossref_primary_10_1371_journal_pone_0235070
crossref_primary_10_1109_TCYB_2021_3116762
crossref_primary_10_17706_ijbbb_2015_5_5_296_310
crossref_primary_10_1186_1752_0509_4_132
crossref_primary_10_3390_pr9101758
crossref_primary_10_1038_s41467_021_24152_2
crossref_primary_10_1007_s10994_019_05861_8
crossref_primary_10_1093_bioinformatics_btq144
crossref_primary_10_1093_bioinformatics_btu182
crossref_primary_10_1007_s12038_022_00278_3
crossref_primary_10_1016_j_physa_2015_12_039
crossref_primary_10_1093_bioinformatics_btac630
crossref_primary_10_1049_iet_syb_2010_0041
crossref_primary_10_1155_2013_856325
crossref_primary_10_1109_TCYB_2023_3237635
crossref_primary_10_1371_journal_pcbi_1010991
crossref_primary_10_4137_EBO_S13481
crossref_primary_10_1016_j_compbiomed_2023_107024
crossref_primary_10_3389_fgene_2014_00299
crossref_primary_10_1186_1471_2105_8_272
crossref_primary_10_1109_JSTSP_2008_923858
crossref_primary_10_1186_s12859_015_0728_4
crossref_primary_10_7717_peerj_1621
crossref_primary_10_1109_TCBB_2020_3034861
crossref_primary_10_1016_j_bbagrm_2019_194444
crossref_primary_10_1016_j_simpat_2018_07_013
crossref_primary_10_1089_cmb_2010_0118
crossref_primary_10_1093_bioinformatics_btz105
crossref_primary_10_1186_s13059_019_1851_8
crossref_primary_10_1016_j_patcog_2008_09_022
crossref_primary_10_1109_TPDS_2010_59
crossref_primary_10_1038_nrmicro2419
crossref_primary_10_1186_1752_0509_6_38
crossref_primary_10_1093_bioinformatics_btt643
crossref_primary_10_1186_s12918_017_0512_3
crossref_primary_10_2174_1574893616666210906141545
crossref_primary_10_1093_bioinformatics_btn660
crossref_primary_10_1109_TCBB_2008_87
crossref_primary_10_1371_journal_pcbi_0030069
crossref_primary_10_1140_epjb_e2013_31111_8
crossref_primary_10_1017_cts_2022_18
crossref_primary_10_1186_s12918_018_0613_7
crossref_primary_10_1016_j_compbiomed_2011_06_012
crossref_primary_10_1093_bioinformatics_btab035
crossref_primary_10_1186_s12859_016_0981_1
crossref_primary_10_1186_s12859_017_1731_8
crossref_primary_10_1155_2014_540679
crossref_primary_10_1162_NECO_a_00589
crossref_primary_10_1093_bioinformatics_btq259
crossref_primary_10_1186_s12918_017_0440_2
Cites_doi 10.1093/bioinformatics/17.suppl_1.S215
10.1038/ng881
10.1089/106652701753307485
10.1016/j.physa.2003.10.083
10.1126/science.298.5594.824
10.1093/bioinformatics/18.suppl_1.S216
10.1093/bioinformatics/btg1082
10.1103/PhysRevLett.85.5234
10.1073/pnas.1230759100
10.1093/bioinformatics/17.suppl_1.S243
10.1093/bioinformatics/btg313
10.1038/ng873
10.5486/PMD.1959.6.3-4.12
10.1093/bioinformatics/bth941
10.1093/bioinformatics/btg1069
10.1038/30918
10.1186/1471-2105-6-8
10.1093/nar/gkh1009
10.1126/science.1094068
10.1093/nar/30.4.e15
ContentType Journal Article
Copyright Copyright © 2006 Van den Bulcke et al; licensee BioMed Central Ltd. 2006 Van den Bulcke et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2006 Van den Bulcke et al; licensee BioMed Central Ltd. 2006 Van den Bulcke et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-7-43
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 43
ExternalDocumentID oai_doaj_org_article_f6d5cf48128241089c8d2ea53e7c9eed
10.1186/1471-2105-7-43
PMC1373604
16438721
10_1186_1471_2105_7_43
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
LK8
M1P
M7P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c516t-d9c2b80b1a398e7b0c4fbc95b694969b2813a05580dbcf80ea3901f265392d683
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:50:35 EDT 2025
Sun Oct 26 03:59:51 EDT 2025
Thu Aug 21 18:06:38 EDT 2025
Fri Sep 05 13:32:49 EDT 2025
Tue Oct 07 09:19:48 EDT 2025
Tue Oct 07 09:50:52 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Wed Oct 01 01:46:24 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-d9c2b80b1a398e7b0c4fbc95b694969b2813a05580dbcf80ea3901f265392d683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-7-43
PMID 16438721
PQID 19449047
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f6d5cf48128241089c8d2ea53e7c9eed
unpaywall_primary_10_1186_1471_2105_7_43
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1373604
proquest_miscellaneous_67669386
proquest_miscellaneous_21238718
proquest_miscellaneous_19449047
pubmed_primary_16438721
crossref_primary_10_1186_1471_2105_7_43
crossref_citationtrail_10_1186_1471_2105_7_43
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-01-26
PublicationDateYYYYMMDD 2006-01-26
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-26
  day: 26
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2006
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References DJ Watts (782_CR12) 1998; 393
D Husmeier (782_CR7) 2003; 19
P Erdös (782_CR19) 1959; 6
JH Hofmeyr (782_CR23) 1997; 13
A Fersht (782_CR26) 1985
E Segal (782_CR6) 2001; 17
D Pe'er (782_CR5) 2001; 17
HW Ma (782_CR20) 2004; 32
I Nachman (782_CR4) 2004; 20
DM Rocke (782_CR27) 2001; 8
I Derényi (782_CR29) 2004; 334
B Bollobas (782_CR22) 2003
B Bollobás (782_CR28) 1985
Y Tamada (782_CR1) 2003; 19
N Guelzim (782_CR21) 2002; 31
T Reil (782_CR15) 1999
SS Shen-Orr (782_CR18) 2002; 31
R Milo (782_CR17) 2002; 298
N Friedman (782_CR3) 2004; 303
P Mendes (782_CR11) 2003; 19
P D'Haeseleer (782_CR2) 1999
DE Zak (782_CR9) 2001
YH Yang (782_CR25) 2002; 30
D Zhu (782_CR16) 2005; 6
C Knüpfer (782_CR10) 2004
Y Setty (782_CR24) 2003; 100
T Akutsu (782_CR14) 1999
VA Smith (782_CR8) 2002; 18
R Albert (782_CR13) 2000; 85
References_xml – volume: 17
  start-page: S215
  year: 2001
  ident: 782_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.suppl_1.S215
– volume: 31
  start-page: 64
  year: 2002
  ident: 782_CR18
  publication-title: Nat Genet
  doi: 10.1038/ng881
– volume: 8
  start-page: 557
  year: 2001
  ident: 782_CR27
  publication-title: J Comput Biol
  doi: 10.1089/106652701753307485
– volume: 334
  start-page: 583
  year: 2004
  ident: 782_CR29
  publication-title: Physica A
  doi: 10.1016/j.physa.2003.10.083
– start-page: 231
  volume-title: Proceedings of the Second International Conference on Systems Biology
  year: 2001
  ident: 782_CR9
– volume: 298
  start-page: 824
  year: 2002
  ident: 782_CR17
  publication-title: Science
  doi: 10.1126/science.298.5594.824
– volume: 18
  start-page: S216
  year: 2002
  ident: 782_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S216
– start-page: 132
  volume-title: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms
  year: 2003
  ident: 782_CR22
– volume: 19
  start-page: II227
  year: 2003
  ident: 782_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1082
– volume-title: Enzyme structure and mechanism
  year: 1985
  ident: 782_CR26
– volume: 85
  start-page: 5234
  year: 2000
  ident: 782_CR13
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.85.5234
– volume: 100
  start-page: 7702
  year: 2003
  ident: 782_CR24
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1230759100
– volume: 17
  start-page: S243
  year: 2001
  ident: 782_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.suppl_1.S243
– volume: 19
  start-page: 2271
  year: 2003
  ident: 782_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg313
– volume: 31
  start-page: 60
  year: 2002
  ident: 782_CR21
  publication-title: Nat Genet
  doi: 10.1038/ng873
– volume: 6
  start-page: 290
  year: 1959
  ident: 782_CR19
  publication-title: Publ Math Debrecen
  doi: 10.5486/PMD.1959.6.3-4.12
– volume: 13
  start-page: 377
  year: 1997
  ident: 782_CR23
  publication-title: Comput Appl Biosci
– volume-title: Random graphs
  year: 1985
  ident: 782_CR28
– start-page: 17
  volume-title: Pac Symp Biocomput
  year: 1999
  ident: 782_CR14
– start-page: 66
  volume-title: Artificial Gene Regulation: A Data Source for Validation of Reverse Bioengineering, Akademische Verlagsgesellschaft Aka, Berlin
  year: 2004
  ident: 782_CR10
– volume: 20
  start-page: I248
  year: 2004
  ident: 782_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth941
– volume: 19
  start-page: II122
  year: 2003
  ident: 782_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1069
– start-page: 457
  volume-title: European Conference on Artificial Life
  year: 1999
  ident: 782_CR15
– volume: 393
  start-page: 440
  year: 1998
  ident: 782_CR12
  publication-title: Nature
  doi: 10.1038/30918
– start-page: 41
  volume-title: Pac Symp Biocomput
  year: 1999
  ident: 782_CR2
– volume: 6
  start-page: 8
  year: 2005
  ident: 782_CR16
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-8
– volume: 32
  start-page: 6643
  year: 2004
  ident: 782_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh1009
– volume: 303
  start-page: 799
  year: 2004
  ident: 782_CR3
  publication-title: Science
  doi: 10.1126/science.1094068
– volume: 30
  start-page: e15
  year: 2002
  ident: 782_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.4.e15
SSID ssj0017805
Score 2.3543363
Snippet The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research....
Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics...
Abstract Background The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 43
SubjectTerms Algorithms
Artificial Intelligence
Benchmarking - methods
Computer Simulation
Databases, Factual
Gene Expression Regulation - physiology
Methodology
Models, Biological
Signal Transduction - physiology
Software
Software Validation
Transcription Factors - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQJQQXxJvl6QMSXKyu1-sXN0BUFRI9QCv1ZvmZVkqdqkkE-feMvZvQCKJeOOzFO5bWnrG_GXv2G4TeAsgw4bkllgpHCkIQx1Ii0rU8qBQAFsp5x7cjcXjSfz3lp9dKfZWcsIEeeJi4_SQC96kHHFIANq3SXoUuWs6i9Bo2-LL7Qus6mBrvDwpTf_2vSFICQQ0f6RqpEvubNiJJz7bgqLL2_8vV_Dtj8s4yX9rVTzudXoOjg_vo3uhH4o_D9z9At2J-iG4PlSVXj9Dsxyoff49HH7DFk8osDbE1niU8X2Vw-aBTbcbx15gIm3HJFcXgwuJQkzqwzQGegbKk9qxMs8uriMdKExNsp5PZ1fni7GL-GJ0cfDn-fEjG2grEcyoWJGjfOdU6aplWETTj--S85k7oXgvtOkWZbTlXbXA-qTbacjiSusJk2wWh2BO0l2c5PkM4AcpHbbkCzcB2wFTyniYnbbJt0NQ3iKyn2PiReLzUv5iaGoAoYYpKTFGJkaZnDXq3kb8cKDd2Sn4qGttIFars2gAGZEYDMjcZUIPerPVtYGmV-xKb42w5N1T3vW57uVui4D5EnGq3hJBCaKZEg54OFvRnSOALKoi_GyS3bGtrNNtv8vlZJQCnTDLR9g16v7HCG2bq-f-YqRfo7voAqhMv0R6YXXwFLtnCva6r7zcErTNp
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBceD_C0wckuLibxLFjc1sQqxUSFYKttJwiP7sV2aTqQ1B-PeM8ypalggOHXJyxZDtjzzfOzDcIvQAjQ7lhiqiEaxIsBNHUe5LrmFnhLZiFcN_xYcSPx9n7U3a6h0Z9Low-N3pad6Shgah4eDENvWyzHEIVBTc_mFnfbnrBDxI4ZAm4L4zkJKNX0D5ngM0HaH88-nj4pUkx6gQ65sbLnbYsU0Pg_yfUeTl48tqqmqn1N1WWFyzT0U1U93NqA1K-DldLPTQ_fqN7_H-TvoVudCAWH7ZadxvtueoOutqWtVzfRfXndXXyyY1eY4UnDa01OPa49nixrgBvQqemGbvvXRRuhUOgKoaBYdtElGBVWXhavpSmZ0Nzu5o73JW5mGBVTur5dHl2vriHxkfvTt4ek66wAzEs4UtipUm1iHWiqBQO1MJkXhvJNJeZ5FKnIqEqZkzEVhsvYqfCzYxPA41uarmg99Ggqiv3EGEPEMNJxYQRFs4iKrwxide58iq2MjERIv1HLUzHeh6Kb5RF4_0IXoRFLMIiFnmR0Qi93MjPWr6PnZJvgo5spAJPd9NQzydFt-0Lzy0zPgMUJQAqxULCMFOnGHW5kQBPIvS817AC9nX4WaMqV68WRSKzTMZZvlsigA5wd8VuCZ5zLqngEXrQ6uyvKQEQFeD8Ryjf0uat2Wy_qaZnDft4QnPK4yxCrzZ6_5eVevTvoo_R9f6OK-VP0ACUyz0F1LfUz7qt_BMNIVaa
  priority: 102
  providerName: Unpaywall
Title SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/16438721
https://www.proquest.com/docview/19449047
https://www.proquest.com/docview/21238718
https://www.proquest.com/docview/67669386
https://pubmed.ncbi.nlm.nih.gov/PMC1373604
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-43
https://doaj.org/article/f6d5cf48128241089c8d2ea53e7c9eed
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKK0QviDfLI_iAgIthd_1YGwmhgKiqSI0QbaRyWtleO0XabtI8RPPvGTublKiNesjFGUexZ2bnG3v2G4TeQpChwnJNdCYMCRGCGOo9KUzKK-krCAvhvOOoLw4HrHfKT3fQqpS33cDpjald6Cc1mNQfLy8WX8Hhv0SHl-JTBg9YAqkLJwVh9N34goSmUuHyte2wcQftQeBSobPDEbu6ZAh0_vHlo3Z6y-l4_Sc3Ylak9r8Jj14vq7w3b8Z68VfX9X8x6-ABut-CTdxdWsdDtOOaR-jusv3k4jEaHS-ak1-u_xlrPIz005CA45HH00UDuBAmxWHsLttq2QaHglIMOBdXsfID66aCz5LXJM6MdLTzicNtO4oh1vUQNmp2dj59ggYHP06-H5K2AQOxPBMzUimbG5maTFMlHajPMm-s4kYopoQyucyoTjmXaWWsl6nT4QTF54HuNq-EpE_RbjNq3HOEPUABpzSXVlbwzKDSW5t5U2iv00plNkFktcWlbdnJQ5OMuoxZihRlUEkZVFIWJaMJer-WHy95ObZKfgsaW0sFPu04MJoMy9Y9Sy8qbj0DtCMB0qRSwd_MnebUFVYBjEjQm5W-S_C_cKmiGzeaT8tMMaZSVmyXCOAA0lK5XUIUQigqRYKeLS3oakkAGCUk6QkqNmxrYzWb3zR_ziJLeEYLKlKWoA9rK7xlp17cuoSXaH91BJWLV2gXbMq9BlA2Mx201-32jnudeKjRiY4GY4P-z-7vfy0OObw
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBceD_C0wckuLibxLFjc1sQqxUSFYKttJwiP7sV2aTqQ1B-PeM8ypalggOHXJyxZDtjzzfOzDcIvQAjQ7lhiqiEaxIsBNHUe5LrmFnhLZiFcN_xYcSPx9n7U3a6h0Z9Low-N3pad6Shgah4eDENvWyzHEIVBTc_mFnfbnrBDxI4ZAm4L4zkJKNX0D5ngM0HaH88-nj4pUkx6gQ65sbLnbYsU0Pg_yfUeTl48tqqmqn1N1WWFyzT0U1U93NqA1K-DldLPTQ_fqN7_H-TvoVudCAWH7ZadxvtueoOutqWtVzfRfXndXXyyY1eY4UnDa01OPa49nixrgBvQqemGbvvXRRuhUOgKoaBYdtElGBVWXhavpSmZ0Nzu5o73JW5mGBVTur5dHl2vriHxkfvTt4ek66wAzEs4UtipUm1iHWiqBQO1MJkXhvJNJeZ5FKnIqEqZkzEVhsvYqfCzYxPA41uarmg99Ggqiv3EGEPEMNJxYQRFs4iKrwxide58iq2MjERIv1HLUzHeh6Kb5RF4_0IXoRFLMIiFnmR0Qi93MjPWr6PnZJvgo5spAJPd9NQzydFt-0Lzy0zPgMUJQAqxULCMFOnGHW5kQBPIvS817AC9nX4WaMqV68WRSKzTMZZvlsigA5wd8VuCZ5zLqngEXrQ6uyvKQEQFeD8Ryjf0uat2Wy_qaZnDft4QnPK4yxCrzZ6_5eVevTvoo_R9f6OK-VP0ACUyz0F1LfUz7qt_BMNIVaa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SynTReN%3A+a+generator+of+synthetic+gene+expression+data+for+design+and+analysis+of+structure+learning+algorithms&rft.jtitle=BMC+bioinformatics&rft.au=Van+den+Bulcke%2C+Tim&rft.au=Van+Leemput%2C+Koenraad&rft.au=Naudts%2C+Bart&rft.au=van+Remortel%2C+Piet&rft.date=2006-01-26&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=7&rft.spage=43&rft.epage=43&rft_id=info:doi/10.1186%2F1471-2105-7-43&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon