Comparison of three QTL detection models on biochemical, sensory, and yield characters in Coffea canephora
Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean’s bioch...
Saved in:
| Published in | Tree genetics & genomes Vol. 10; no. 6; pp. 1541 - 1553 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.12.2014
Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1614-2942 1614-2950 1614-2950 |
| DOI | 10.1007/s11295-014-0778-1 |
Cover
| Abstract | Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean’s biochemical composition and field yield. Two segregating populations A and B, from crosses between a hybrid (Congolese × Guinean) FRT58 parental clone and a Congolese FRT51 genotype and between two Congolese parents FRT67 and FRT51, respectively, were used to characterize the quantitative trait loci (QTL) involved in agronomic and biochemical traits. A consensus genetic map was established using 249 SSRs covering 1,201 cM. Three QTL detection models per population with MapQTL (model I) and MCQTL (model II) followed by a connected population approach with MCQTL (model III) were compared based on their efficiency, precision for QTL detection, and their genetic effect assessment (additive, dominance, and parental-favorable allele). The analysis detected a total of 143 QTLs, 60 of which were shared between the three models; 28 found with two models; and two, 13, and 40 specific from models I, II, and III, respectively. The last model III based on connected populations is much more efficient in detecting QTLs with low variance explained and led to the genetic characterization of favorable allele. Thanks to this comparison of three QTL detection models on our quantitative genetic study, we will give a new insight for coffee breeding programs dedicated to managing complex agronomic or qualitative traits. |
|---|---|
| AbstractList | Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean's biochemical composition and field yield. Two segregating populations A and B, from crosses between a hybrid (Congolese×Guinean) FRT58 parental clone and a Congolese FRT51 genotype and between two Congolese parents FRT67 and FRT51, respectively, were used to characterize the quantitative trait loci (QTL) involved in agronomic and biochemical traits. A consensus genetic map was established using 249 SSRs covering 1,201 cM. Three QTL detection models per population with MapQTL (model I) and MCQTL (model II) followed by a connected population approach with MCQTL (model III) were compared based on their efficiency, precision for QTL detection, and their genetic effect assessment (additive, dominance, and parental-favorable allele). The analysis detected a total of 143 QTLs, 60 of which were shared between the three models; 28 found with two models; and two, 13, and 40 specific from models I, II, and III, respectively. The last model III based on connected populations is much more efficient in detecting QTLs with low variance explained and led to the genetic characterization of favorable allele. Thanks to this comparison of three QTL detection models on our quantitative genetic study, we will give a new insight for coffee breeding programs dedicated to managing complex agronomic or qualitative traits.[PUBLICATION ABSTRACT] Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean's biochemical composition and field yield. Two segregating populations A and B, from crosses between a hybrid (Congolese x Guinean) FRT58 parental clone and a Congolese FRT51 genotype and between two Congolese parents FRT67 and FRT51, respectively, were used to characterize the quantitative trait loci (QTL) involved in agronomic and biochemical traits. A consensus genetic map was established using 249 SSRs covering 1,201 cM. Three QTL detection models per population with MapQTL (model I) and MCQTL (model II) followed by a connected population approach with MCQTL (model III) were compared based on their efficiency, precision for QTL detection, and their genetic effect assessment (additive, dominance, and parental-favorable allele). The analysis detected a total of 143 QTLs, 60 of which were shared between the three models; 28 found with two models; and two, 13, and 40 specific from models I, II, and III, respectively. The last model III based on connected populations is much more efficient in detecting QTLs with low variance explained and led to the genetic characterization of favorable allele. Thanks to this comparison of three QTL detection models on our quantitative genetic study, we will give a new insight for coffee breeding programs dedicated to managing complex agronomic or qualitative traits. Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean’s biochemical composition and field yield. Two segregating populations A and B, from crosses between a hybrid (Congolese × Guinean) FRT58 parental clone and a Congolese FRT51 genotype and between two Congolese parents FRT67 and FRT51, respectively, were used to characterize the quantitative trait loci (QTL) involved in agronomic and biochemical traits. A consensus genetic map was established using 249 SSRs covering 1,201 cM. Three QTL detection models per population with MapQTL (model I) and MCQTL (model II) followed by a connected population approach with MCQTL (model III) were compared based on their efficiency, precision for QTL detection, and their genetic effect assessment (additive, dominance, and parental-favorable allele). The analysis detected a total of 143 QTLs, 60 of which were shared between the three models; 28 found with two models; and two, 13, and 40 specific from models I, II, and III, respectively. The last model III based on connected populations is much more efficient in detecting QTLs with low variance explained and led to the genetic characterization of favorable allele. Thanks to this comparison of three QTL detection models on our quantitative genetic study, we will give a new insight for coffee breeding programs dedicated to managing complex agronomic or qualitative traits. Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean's biochemical composition and field yield. Two segregating populations A and B, from crosses between a hybrid (CongoleseGuinean) FRT58 parental clone and a Congolese FRT51 genotype and between two Congolese parents FRT67 and FRT51, respectively, were used to characterize the quantitative trait loci (QTL) involved in agronomic and biochemical traits. A consensus genetic map was established using 249 SSRs covering 1,201 cM. Three QTL detection models per population with MapQTL (model I) and MCQTL (model II) followed by a connected population approach with MCQTL (model III) were compared based on their efficiency, precision for QTL detection, and their genetic effect assessment (additive, dominance, and parental-favorable allele). The analysis detected a total of 143 QTLs, 60 of which were shared between the three models; 28 found with two models; and two, 13, and 40 specific from models I, II, and III, respectively. The last model III based on connected populations is much more efficient in detecting QTLs with low variance explained and led to the genetic characterization of favorable allele. Thanks to this comparison of three QTL detection models on our quantitative genetic study, we will give a new insight for coffee breeding programs dedicated to managing complex agronomic or qualitative traits. Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean’s biochemical composition and field yield. Two segregating populations A and B, from crosses between a hybrid (Congolese × Guinean) FRT58 parental clone and a Congolese FRT51 genotype and between two Congolese parents FRT67 and FRT51, respectively, were used to characterize the quantitative trait loci (QTL) involved in agronomic and biochemical traits. A consensus genetic map was established using 249 SSRs covering 1,201 cM. Three QTL detection models per population with MapQTL (model I) and MCQTL (model II) followed by a connected population approach with MCQTL (model III) were compared based on their efficiency, precision for QTL detection, and their genetic effect assessment (additive, dominance, and parental-favorable allele). The analysis detected a total of 143 QTLs, 60 of which were shared between the three models; 28 found with two models; and two, 13, and 40 specific from models I, II, and III, respectively. The last model III based on connected populations is much more efficient in detecting QTLs with low variance explained and led to the genetic characterization of favorable allele. Thanks to this comparison of three QTL detection models on our quantitative genetic study, we will give a new insight for coffee breeding programs dedicated to managing complex agronomic or qualitative traits. Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee breeding programs have to focus on specific traits linked to these two key targets, such as quality character, largely depending on the bean’s biochemical composition and field yield. Two segregating populations A and B, from crosses between a hybrid (Congolese × Guinean) FRT58 parental clone and a Congolese FRT51 genotype and between two Congolese parents FRT67 and FRT51, respectively, were used to characterize the quantitative trait loci (QTL) involved in agronomic and biochemical traits. A consensus genetic map was established using 249 SSRs covering 1,201 cM. Three QTL detection models per population with MapQTL (model I) and MCQTL (model II) followed by a connected population approach with MCQTL (model III) were compared based on their efficiency, precision for QTL detection, and their genetic effect assessment (additive, dominance, and parental-favorable allele). The analysis detected a total of 143 QTLs, 60 of which were shared between the three models; 28 found with two models; and two, 13, and 40 specific from models I, II, and III, respectively. The last model III based on connected populations is much more efficient in detecting QTLs with low variance explained and led to the genetic characterization of favorable allele. Thanks to this comparison of three QTL detection models on our quantitative genetic study, we will give a new insight for coffee breeding programs dedicated to managing complex agronomic or qualitative traits. |
| Author | Crouzillat, Dominique Mangin, Brigitte Mérot-L’Anthoëne, Virginie Jasson, Sylvain Lefebvre-Pautigny, Florent Lambot, Charles Rigoreau, Michel Husson, Jwanro |
| Author_xml | – sequence: 1 fullname: Mérot-L’Anthoëne, Virginie – sequence: 2 fullname: Mangin, Brigitte – sequence: 3 fullname: Lefebvre-Pautigny, Florent – sequence: 4 fullname: Jasson, Sylvain – sequence: 5 fullname: Rigoreau, Michel – sequence: 6 fullname: Husson, Jwanro – sequence: 7 fullname: Lambot, Charles – sequence: 8 fullname: Crouzillat, Dominique |
| BackLink | https://hal.inrae.fr/hal-02636273$$DView record in HAL |
| BookMark | eNqNkk1rFTEUhgepYFv9Aa4MuFHoaL4mySzLRVvhgojtOpzJJJ1cZpJrMle5_94MU6p0UbrKyeF5Q86TnFUnIQZbVW8J_kQwlp8zIbRtakx4jaVUNXlRnRJRdqWLTx5qTl9VZznvMOYSC3Fa7TZx2kPyOQYUHZqHZC36cbNFvZ2tmX1pT7G3Y0al6nw0g528gfECZRtyTMcLBKFHR2_HHpkBEpjZpox8QJvonAVkINj9EBO8rl46GLN9c7-eV7dfv9xsruvt96tvm8ttbRoi5to4BowLLNqu7YUDJZwg1jKhTNc0YDgWnCpDnQJpJIFGAMGi4xw6YFi17Lyi67mHsIfjHxhHvU9-gnTUBOvFll5t6WJLL7Y0KaGPa2iAf3gEr68vt3rpYSqYoJL9XtgPK7tP8dfB5llPPhs7jmXSeMiaiIIS1TbiGSiVrVRcyIK-f4Tu4iGFYqpQhCrGOF6GkytlUsw5WaeNn2F5pzmBH5-ckDxKPsfKvcpc2HBn0393eiL0bg05iBruyt_Stz8pJg3GuFWCSfYXwPvOxg |
| CitedBy_id | crossref_primary_10_1111_pbr_13005 crossref_primary_10_3389_fpls_2020_612593 crossref_primary_10_1016_j_ympev_2017_02_009 crossref_primary_10_1038_s41598_017_18800_1 crossref_primary_10_1016_j_afres_2024_100567 crossref_primary_10_1007_s11033_022_07339_8 crossref_primary_10_1111_pbi_13066 crossref_primary_10_1007_s11295_017_1171_7 |
| Cites_doi | 10.1007/s00122-013-2227-1 10.1016/S0308-8146(01)00204-7 10.1007/s00299-010-0825-9 10.1111/j.1095-8339.2006.00584.x 10.1007/s00122-002-1008-z 10.1590/S1677-04202006000100016 10.1007/s00122-011-1743-0 10.1534/genetics.111.133447 10.1007/s11295-010-0272-3 10.1111/j.1095-8339.2011.01177.x 10.1139/G09-037 10.1007/s00122-011-1775-5 10.1007/s00122-010-1476-5 10.1007/s00122-008-0805-4 10.1016/j.foodchem.2004.01.020 10.1038/hdy.1996.23 10.1186/1471-2229-9-123 10.1186/1471-2148-9-167 10.1007/s00122-010-1284-y 10.1007/s11295-011-0374-6 10.1093/bioinformatics/bth481 10.1007/BF00211055 10.1093/bioinformatics/bts313 10.1007/BF00225725 10.1007/s10722-006-9195-0 10.1139/g02-125 10.1007/BF00223190 10.1371/journal.pone.0062831 10.1007/BF00022734 10.1007/s00122-006-0287-1 10.1139/G07-096 10.1007/s11295-013-0616-x 10.1038/hdy.1992.131 10.3923/ijpbg.2011.302.316 10.1016/j.aca.2005.01.064 10.1139/gen-44-4-589 10.2307/2533317 10.1098/rstb.2007.2170 10.1093/jhered/93.1.77 10.1093/genetics/137.4.1121 10.1093/genetics/149.1.383 10.1093/genetics/142.1.285 10.1093/genetics/136.4.1447 10.1093/genetics/135.1.205 10.1007/s10681-007-9607-z 10.1007/s00122-002-1018-x 10.1007/s11032-005-3445-2 10.1371/journal.pone.0061238 10.1007/s00122-003-1207-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2014 Springer-Verlag Berlin Heidelberg 2014 Attribution |
| Copyright_xml | – notice: The Author(s) 2014 – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Attribution |
| DBID | FBQ C6C AAYXX CITATION 3V. 7X2 8FD 8FE 8FH 8FK AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7S9 L.6 1XC VOOES ADTOC UNPAY |
| DOI | 10.1007/s11295-014-0778-1 |
| DatabaseName | AGRIS Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Agricultural Science Database AGRICOLA Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry Mathematics Computer Science |
| EISSN | 1614-2950 |
| EndPage | 1553 |
| ExternalDocumentID | 10.1007/s11295-014-0778-1 oai:HAL:hal-02636273v1 3463053451 10_1007_s11295_014_0778_1 US201500098637 |
| Genre | Feature |
| GeographicLocations | Uganda |
| GeographicLocations_xml | – name: Uganda |
| GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 5VS 67N 67Z 6NX 7X2 8FE 8FH 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EN4 ESBYG FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M0K M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P PF0 PT4 Q2X QOR QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z7U Z7V Z7W ZMTXR ZOVNA ~A9 AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU BSONS C6C H13 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 3V. 8FD 8FK AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7S9 L.6 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c516t-cf3a346069b9d6fa86f61ee368cb55ac406428c2f8a7c71a56a106b44aba30893 |
| IEDL.DBID | C6C |
| ISSN | 1614-2942 1614-2950 |
| IngestDate | Sun Oct 26 03:13:12 EDT 2025 Tue Oct 14 20:35:20 EDT 2025 Wed Oct 01 13:44:58 EDT 2025 Thu Sep 04 15:50:35 EDT 2025 Fri Jul 25 11:03:24 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Wed Oct 01 03:07:39 EDT 2025 Fri Feb 21 02:40:40 EST 2025 Wed Dec 27 19:21:30 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Bean biochemical composition Yield QTL detection models Coffea canephora |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-cf3a346069b9d6fa86f61ee368cb55ac406428c2f8a7c71a56a106b44aba30893 |
| Notes | http://dx.doi.org/10.1007/s11295-014-0778-1 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1007/s11295-014-0778-1 |
| PQID | 1612833409 |
| PQPubID | 326292 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1007_s11295_014_0778_1 hal_primary_oai_HAL_hal_02636273v1 proquest_miscellaneous_1663618956 proquest_miscellaneous_1627978467 proquest_journals_1612833409 crossref_citationtrail_10_1007_s11295_014_0778_1 crossref_primary_10_1007_s11295_014_0778_1 springer_journals_10_1007_s11295_014_0778_1 fao_agris_US201500098637 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Tree genetics & genomes |
| PublicationTitleAbbrev | Tree Genetics & Genomes |
| PublicationYear | 2014 |
| Publisher | Springer-Verlag Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer-Verlag – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | Pauly, Flajoulot, Garon, Julier, Beguier, Barre (CR44) 2012; 124 Lashermes, Combes, Prakash, Trouslot, Lorieux, Charrier (CR34) 2001; 44 Charcosset, Mangin, Moreau, Combes, Jourjon, Gallais (CR9) 2000; 96 Priyono (CR47) 2013; 3 Van Ooijen (CR56) 2009 Billotte, Jourjon, Marseillac, Berger, Flori, Asmady, Adon, Singh, Nouy, Potier, Cheah, Rohde, Ritter, Courtois, Charrier, Mangin (CR4) 2010; 120 Musoli, Cubry, Aluka, Billot, Dufour, De, Pot, Bieysse, Charrier, Leroy (CR41) 2009; 52 Coulibaly, Louarn, Lorieux, Charrier, Hamon, Noirot (CR13) 2003; 106 Ky, Louarn, Dussert, Guyot, Hamon, Noirot (CR30) 2001; 75 Development Core Team (CR17) 2012 Jansen, Stam (CR27) 1994; 136 Xie, He, Esguerra, Qiu, Ramanathan (CR59) 2014; 127 CR6 CR8 Leroy, De Bellis, Legnate, Kananura, Gonzales, Pereira, Andrade, Charmetant, Montagnon, Cubry, Marraccini, Pot, Kochko (CR38) 2011; 7 Davis, Tosh, Ruch, Fay (CR16) 2011; 167 N’Diaye, Noirot, Hamon, Poncet (CR42) 2007; 54 Coulibaly, Noirot, Lorieux, Charrier, Hamon, Louarn (CR12) 2002; 105 Van Ooijen (CR55) 2006 Rebai, Goffinet (CR49) 1993; 86 Haley, Knott (CR23) 1992; 69 Leroy, Montagnon, Charrier, Eskes (CR36) 1993; 67 Priyono, Rigoreau, Ducos, Sumirat, Mawardi, Lambot, Broun, Pétiard, Wahyudi, Crouzillat (CR48) 2010; 29 Kawamura, Hibrand-Saint, Crespel, Thouroude, Lalanne, Foucher (CR29) 2011; 122 Ky, Barre, Noirot (CR31) 2013; 9 Espinoza, Huguet, Julier (CR20) 2012; 124 Lariepe, Mangin, Jasson, Combes, Dumas, Jamin, Lariagon, Jolivot, Madur, Fievet, Gallais, Dubreuil, Charcosset, Moreau (CR32) 2012; 190 Campa, Ballester, Doulbeau, Dussert, Hamon, Noirot (CR7) 2004; 88 Akaffou, Ky, Barre, Hamon, Louarn, Noirot (CR1) 2003; 106 Ben Sadok, Celton, Essalouh, El Aabidine, Garcia, Martinez, Grati-Kamoun, Rebai, Costes, Khadari (CR2) 2013; 8 Leroy, Ribeyre, Bertrand, Charmetant, Dufour, Montagnon, Marraccini, Pot (CR37) 2006; 18 Blanc, Charcosset, Mangin, Gallais, Moreau (CR5) 2006; 113 Lefebvre-Pautigny, Wu, Philippot, Rigoreau, Priyono, Frasse, Bouzayen, Broun, Pétiard, Tanksley, Crouzillat (CR35) 2010; 6 CR19 Huck, Guggenbichler, Bonn (CR24) 2005; 538 CR58 CR57 Pierre, Huguet, Barre, Huyghe, Julier (CR45) 2008; 117 CR11 Gomez, Dussert, Hamon, Hamon, Kochko, Poncet (CR21) 2009; 9 CR53 Cubry, Musoli, Legnate, Pot, De, Poncet, Anthony, Dufour, Leroy (CR14) 2008; 51 CR52 Jourjon, Jasson, Marcel, Ngom, Mangin (CR28) 2005; 21 CR50 Muranty (CR40) 1996; 76 Plechakova, Tranchant-Dubreuil, Benedet, Couderc, Tinaut, Viader, De, Hamon, Campa, De, Hamon, Poncet (CR46) 2009; 9 Doerge, Churchill (CR18) 1996; 142 Clement, Risterucci, Motamayor, N’Goran, Lanaud (CR10) 2003; 46 Sosnowski, Charcosset, Joets (CR51) 2012; 28 Melchinger, Utz, Schon (CR39) 1998; 149 Davis, Govaerts, Bridson, Stoffelen (CR15) 2006; 152 CR25 Paillard, Lashermes, Pétiard (CR43) 1996; 93 Tessema, Alamerew, Kufa, Garedew (CR54) 2011; 5 Lashermes, Couturon, Moreau, Paillard, Louarn (CR33) 1996; 93 Jansen (CR26) 1993; 135 Berthaud (CR3) 1986 Grattapaglia, Sederoff (CR22) 1994; 137 C Campa (778_CR7) 2004; 88 T Leroy (778_CR38) 2011; 7 LC Espinoza (778_CR20) 2012; 124 778_CR50 K Kawamura (778_CR29) 2011; 122 AE Melchinger (778_CR39) 1998; 149 778_CR52 778_CR53 778_CR11 778_CR58 CW Huck (778_CR24) 2005; 538 T Leroy (778_CR37) 2006; 18 778_CR57 P Cubry (778_CR14) 2008; 51 H Muranty (778_CR40) 1996; 76 A Charcosset (778_CR9) 2000; 96 N Billotte (778_CR4) 2010; 120 778_CR19 C Gomez (778_CR21) 2009; 9 I Coulibaly (778_CR13) 2003; 106 FB Priyono (778_CR48) 2010; 29 A Lariepe (778_CR32) 2012; 190 A Tessema (778_CR54) 2011; 5 P Lashermes (778_CR33) 1996; 93 F Lefebvre-Pautigny (778_CR35) 2010; 6 J Berthaud (778_CR3) 1986 P Musoli (778_CR41) 2009; 52 M Paillard (778_CR43) 1996; 93 JW Ooijen Van (778_CR55) 2006 I Ben Sadok (778_CR2) 2013; 8 CL Ky (778_CR31) 2013; 9 AP Davis (778_CR16) 2011; 167 A Rebai (778_CR49) 1993; 86 RW Doerge (778_CR18) 1996; 142 778_CR25 F Xie (778_CR59) 2014; 127 DS Akaffou (778_CR1) 2003; 106 JW Ooijen Van (778_CR56) 2009 T Leroy (778_CR36) 1993; 67 RC Jansen (778_CR27) 1994; 136 A N’Diaye (778_CR42) 2007; 54 G Blanc (778_CR5) 2006; 113 778_CR8 778_CR6 O Plechakova (778_CR46) 2009; 9 P Lashermes (778_CR34) 2001; 44 L Pauly (778_CR44) 2012; 124 D Grattapaglia (778_CR22) 1994; 137 MF Jourjon (778_CR28) 2005; 21 R Development Core Team (778_CR17) 2012 O Sosnowski (778_CR51) 2012; 28 ND Priyono (778_CR47) 2013; 3 RC Jansen (778_CR26) 1993; 135 JB Pierre (778_CR45) 2008; 117 I Coulibaly (778_CR12) 2002; 105 D Clement (778_CR10) 2003; 46 AP Davis (778_CR15) 2006; 152 CL Ky (778_CR30) 2001; 75 CS Haley (778_CR23) 1992; 69 |
| References_xml | – volume: 127 start-page: 407 year: 2014 end-page: 417 ident: CR59 article-title: Determination of heterotic groups for tropical Indica hybrid rice germplasm publication-title: Theor Appl Genet doi: 10.1007/s00122-013-2227-1 – volume: 75 start-page: 223 year: 2001 end-page: 230 ident: CR30 article-title: Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions publication-title: Food Chem doi: 10.1016/S0308-8146(01)00204-7 – volume: 29 start-page: 343 year: 2010 end-page: 357 ident: CR48 article-title: Somatic embryogenesis and vegetative cutting capacity are under distinct genetic control in Coffea canephora Pierre publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0825-9 – volume: 152 start-page: 465 year: 2006 end-page: 512 ident: CR15 article-title: An annotated taxonomic conspectus of the genus Coffea (Rubiaceae) publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.2006.00584.x – volume: 105 start-page: 994 year: 2002 end-page: 999 ident: CR12 article-title: Introgression of self-compatibility from Coffea heterocalyx to the cultivated species Coffea canephora publication-title: Theor Appl Genet doi: 10.1007/s00122-002-1008-z – volume: 18 start-page: 229 year: 2006 end-page: 242 ident: CR37 article-title: Genetics of coffee quality publication-title: Braz J Plant Physiol doi: 10.1590/S1677-04202006000100016 – volume: 3 start-page: 296 year: 2013 end-page: 305 ident: CR47 article-title: Identification of quantitative trait loci (QTLs) determining flowering in the Robusta coffee ( Pierre) publication-title: J Agric Sci Technol B – ident: CR8 – ident: CR58 – volume: 124 start-page: 739 year: 2012 end-page: 754 ident: CR20 article-title: Multi-population QTL detection for aerial morphogenetic traits in the model legume Medicago truncatula publication-title: Theor Appl Genet doi: 10.1007/s00122-011-1743-0 – ident: CR25 – volume: 190 start-page: 795 year: 2012 end-page: 811 ident: CR32 article-title: The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.) publication-title: Genetics doi: 10.1534/genetics.111.133447 – volume: 6 start-page: 565 year: 2010 end-page: 577 ident: CR35 article-title: High resolution synteny maps allowing direct comparisons between the coffee and tomato genomes publication-title: Tree Genet Genomes doi: 10.1007/s11295-010-0272-3 – year: 1986 ident: CR3 publication-title: Les ressources génétiques pour l’amélioration des caféiers africains diploïdes – volume: 106 start-page: 311 year: 2003 end-page: 316 ident: CR13 article-title: Pollen viability restoration in a Coffea canephora P. and C. heterocalyx Stoffelen backcross. QTL identification for marker-assisted selection publication-title: Theor Appl Genet – ident: CR19 – volume: 167 start-page: 357 year: 2011 end-page: 377 ident: CR16 article-title: Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.2011.01177.x – volume: 52 start-page: 634 year: 2009 end-page: 646 ident: CR41 article-title: Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda publication-title: Genome doi: 10.1139/G09-037 – ident: CR50 – volume: 106 start-page: 1486 year: 2003 end-page: 1490 ident: CR1 article-title: Identification and mapping of a major gene (Ft1) involved in fructification time in the interspecific cross Coffea pseudozanguebariae x C. liberica var. Dewevrei: impact on caffeine content and seed weight publication-title: Theor Appl Genet – volume: 124 start-page: 1139 year: 2012 end-page: 1153 ident: CR44 article-title: Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.) publication-title: Theor Appl Genet doi: 10.1007/s00122-011-1775-5 – ident: CR11 – volume: 137 start-page: 1121 year: 1994 end-page: 1137 ident: CR22 article-title: Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers publication-title: Genetics – ident: CR57 – volume: 122 start-page: 661 year: 2011 end-page: 675 ident: CR29 article-title: Quantitative trait loci for flowering time and inflorescence architecture in rose publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1476-5 – volume: 117 start-page: 609 year: 2008 end-page: 620 ident: CR45 article-title: Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula publication-title: Theor Appl Genet doi: 10.1007/s00122-008-0805-4 – volume: 88 start-page: 39 year: 2004 end-page: 43 ident: CR7 article-title: Trigonelline and sucrose diversity in wild Coffea species publication-title: Food Chemistry doi: 10.1016/j.foodchem.2004.01.020 – volume: 76 start-page: 156 year: 1996 end-page: 165 ident: CR40 article-title: Power of tests for quantitative trait loci detection using full-sib families in different schemes publication-title: Heredity doi: 10.1038/hdy.1996.23 – volume: 149 start-page: 383 year: 1998 end-page: 403 ident: CR39 article-title: Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects publication-title: Genetics – volume: 9 start-page: 123 year: 2009 ident: CR46 article-title: MoccaDB—an integrative database for functional, comparative and diversity studies in the Rubiaceae family publication-title: BMC Plant Bio doi: 10.1186/1471-2229-9-123 – volume: 9 start-page: 167 year: 2009 ident: CR21 article-title: Current genetic differentiation of Coffea canephora Pierre ex A. Froehn in the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities publication-title: BMC Evol Biol doi: 10.1186/1471-2148-9-167 – volume: 120 start-page: 1673 year: 2010 end-page: 1687 ident: CR4 article-title: QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.) publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1284-y – ident: CR53 – volume: 142 start-page: 285 year: 1996 end-page: 294 ident: CR18 article-title: Permutation tests for multiple loci affecting a quantitative character publication-title: Genetics – volume: 7 start-page: 781 year: 2011 end-page: 798 ident: CR38 article-title: Improving the quality of African robustas: QTLs for yield- and quality-related traits in publication-title: Tree Genet Genomes doi: 10.1007/s11295-011-0374-6 – year: 2006 ident: CR55 publication-title: JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations – volume: 21 start-page: 128 year: 2005 end-page: 130 ident: CR28 article-title: MCQTL: multi-allelic QTL mapping in multi-cross design publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth481 – volume: 86 start-page: 1014 year: 1993 end-page: 1022 ident: CR49 article-title: Power of tests for QTL detection using replicated progenies derived from a diallel cross publication-title: Theor Appl Genet doi: 10.1007/BF00211055 – volume: 28 start-page: 2082 year: 2012 end-page: 2083 ident: CR51 article-title: BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts313 – volume: 96 start-page: 89 year: 2000 end-page: 98 ident: CR9 article-title: Heterosis in maize investigated using connected RIL populations publication-title: Quant Genet Breed Methods: the way ahead – ident: CR6 – volume: 136 start-page: 1447 year: 1994 end-page: 1455 ident: CR27 article-title: High resolution of quantitative traits into multiple loci via interval mapping publication-title: Genetics – volume: 93 start-page: 41 year: 1996 end-page: 47 ident: CR43 article-title: Construction of a molecular linkage map in coffee publication-title: Theor Appl Genet doi: 10.1007/BF00225725 – year: 2012 ident: CR17 publication-title: R : a language and environment for statistical computing – volume: 54 start-page: 1011 year: 2007 end-page: 1021 ident: CR42 article-title: Genetic basis of species differentiation between Coffea liberica Hiern and C. canephora Pierre: analysis of an interspecific cross publication-title: Genet Resour Crop Evol doi: 10.1007/s10722-006-9195-0 – volume: 46 start-page: 204 year: 2003 end-page: 212 ident: CR10 article-title: Mapping QTL for yield components, vigor, and resistance to Phytophthora palmivora in Theobroma cacao L. publication-title: Genome doi: 10.1139/g02-125 – volume: 135 start-page: 205 year: 1993 end-page: 211 ident: CR26 article-title: Interval mapping of multiple quantitative trait loci publication-title: Genetics – volume: 93 start-page: 458 year: 1996 end-page: 462 ident: CR33 article-title: Inheritance and genetic mapping of self-incompatibility in Coffea canephora Pierre publication-title: Theor Appl Genet doi: 10.1007/BF00223190 – volume: 8 start-page: e62831 year: 2013 ident: CR2 article-title: QTL mapping of flowering and fruiting traits in olive publication-title: PLoS One doi: 10.1371/journal.pone.0062831 – volume: 67 start-page: 113 year: 1993 end-page: 125 ident: CR36 article-title: Reciprocal recurrent selection applied to Coffea canephora Pierre. Characterization and evaluation of breeding populations and value of intergroup hybrids publication-title: Euphytica doi: 10.1007/BF00022734 – volume: 113 start-page: 206 year: 2006 end-page: 224 ident: CR5 article-title: Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0287-1 – volume: 51 start-page: 50 year: 2008 end-page: 63 ident: CR14 article-title: Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding publication-title: Genome doi: 10.1139/G07-096 – volume: 9 start-page: 1043 year: 2013 end-page: 1049 ident: CR31 article-title: Genetic investigations on the caffeine and chlorogenic acid relationship in an interspecific cross between Coffea liberica dewevrei and C. pseudozanguebariae publication-title: Tree Genet Genomes doi: 10.1007/s11295-013-0616-x – ident: CR52 – volume: 69 start-page: 315 year: 1992 end-page: 324 ident: CR23 article-title: A simple regression method for mapping quantitative trait loci in line crosses using flanking markers publication-title: Hered (Edinb) doi: 10.1038/hdy.1992.131 – volume: 5 start-page: 302 year: 2011 end-page: 316 ident: CR54 article-title: Variability and association of quality and biochemical attributes in some promising Coffea arabica germplasm collections in southwestern Ethiopia publication-title: Int. J. Plant Breeding Genet doi: 10.3923/ijpbg.2011.302.316 – volume: 538 start-page: 195 year: 2005 end-page: 203 ident: CR24 article-title: Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry publication-title: Anal Chim Acta doi: 10.1016/j.aca.2005.01.064 – volume: 44 start-page: 589 year: 2001 end-page: 596 ident: CR34 article-title: Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses publication-title: Genome doi: 10.1139/gen-44-4-589 – year: 2009 ident: CR56 publication-title: MapQTL ® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species – volume-title: MapQTL ® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species year: 2009 ident: 778_CR56 – volume: 124 start-page: 1139 year: 2012 ident: 778_CR44 publication-title: Theor Appl Genet doi: 10.1007/s00122-011-1775-5 – volume: 167 start-page: 357 year: 2011 ident: 778_CR16 publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.2011.01177.x – volume: 44 start-page: 589 year: 2001 ident: 778_CR34 publication-title: Genome doi: 10.1139/gen-44-4-589 – volume: 76 start-page: 156 year: 1996 ident: 778_CR40 publication-title: Heredity doi: 10.1038/hdy.1996.23 – volume: 18 start-page: 229 year: 2006 ident: 778_CR37 publication-title: Braz J Plant Physiol doi: 10.1590/S1677-04202006000100016 – ident: 778_CR50 doi: 10.2307/2533317 – volume: 93 start-page: 458 year: 1996 ident: 778_CR33 publication-title: Theor Appl Genet doi: 10.1007/BF00223190 – ident: 778_CR11 doi: 10.1098/rstb.2007.2170 – ident: 778_CR57 doi: 10.1093/jhered/93.1.77 – volume: 3 start-page: 296 year: 2013 ident: 778_CR47 publication-title: J Agric Sci Technol B – volume: 120 start-page: 1673 year: 2010 ident: 778_CR4 publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1284-y – volume: 105 start-page: 994 year: 2002 ident: 778_CR12 publication-title: Theor Appl Genet doi: 10.1007/s00122-002-1008-z – volume: 6 start-page: 565 year: 2010 ident: 778_CR35 publication-title: Tree Genet Genomes doi: 10.1007/s11295-010-0272-3 – volume: 137 start-page: 1121 year: 1994 ident: 778_CR22 publication-title: Genetics doi: 10.1093/genetics/137.4.1121 – volume: 5 start-page: 302 year: 2011 ident: 778_CR54 publication-title: Int. J. Plant Breeding Genet doi: 10.3923/ijpbg.2011.302.316 – volume: 21 start-page: 128 year: 2005 ident: 778_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth481 – volume: 28 start-page: 2082 year: 2012 ident: 778_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts313 – volume: 113 start-page: 206 year: 2006 ident: 778_CR5 publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0287-1 – volume: 149 start-page: 383 year: 1998 ident: 778_CR39 publication-title: Genetics doi: 10.1093/genetics/149.1.383 – volume: 142 start-page: 285 year: 1996 ident: 778_CR18 publication-title: Genetics doi: 10.1093/genetics/142.1.285 – volume: 86 start-page: 1014 year: 1993 ident: 778_CR49 publication-title: Theor Appl Genet doi: 10.1007/BF00211055 – volume: 93 start-page: 41 year: 1996 ident: 778_CR43 publication-title: Theor Appl Genet doi: 10.1007/BF00225725 – ident: 778_CR53 – volume: 127 start-page: 407 year: 2014 ident: 778_CR59 publication-title: Theor Appl Genet doi: 10.1007/s00122-013-2227-1 – volume: 8 start-page: e62831 year: 2013 ident: 778_CR2 publication-title: PLoS One doi: 10.1371/journal.pone.0062831 – ident: 778_CR19 – volume: 117 start-page: 609 year: 2008 ident: 778_CR45 publication-title: Theor Appl Genet doi: 10.1007/s00122-008-0805-4 – volume: 136 start-page: 1447 year: 1994 ident: 778_CR27 publication-title: Genetics doi: 10.1093/genetics/136.4.1447 – volume: 152 start-page: 465 year: 2006 ident: 778_CR15 publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.2006.00584.x – volume: 54 start-page: 1011 year: 2007 ident: 778_CR42 publication-title: Genet Resour Crop Evol doi: 10.1007/s10722-006-9195-0 – volume: 29 start-page: 343 year: 2010 ident: 778_CR48 publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0825-9 – volume: 9 start-page: 167 year: 2009 ident: 778_CR21 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-9-167 – volume: 51 start-page: 50 year: 2008 ident: 778_CR14 publication-title: Genome doi: 10.1139/G07-096 – volume: 190 start-page: 795 year: 2012 ident: 778_CR32 publication-title: Genetics doi: 10.1534/genetics.111.133447 – volume-title: JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations year: 2006 ident: 778_CR55 – ident: 778_CR25 – volume: 135 start-page: 205 year: 1993 ident: 778_CR26 publication-title: Genetics doi: 10.1093/genetics/135.1.205 – ident: 778_CR6 doi: 10.1007/s10681-007-9607-z – volume: 538 start-page: 195 year: 2005 ident: 778_CR24 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2005.01.064 – volume: 7 start-page: 781 year: 2011 ident: 778_CR38 publication-title: Tree Genet Genomes doi: 10.1007/s11295-011-0374-6 – volume: 96 start-page: 89 year: 2000 ident: 778_CR9 publication-title: Quant Genet Breed Methods: the way ahead – volume: 67 start-page: 113 year: 1993 ident: 778_CR36 publication-title: Euphytica doi: 10.1007/BF00022734 – volume-title: Les ressources génétiques pour l’amélioration des caféiers africains diploïdes year: 1986 ident: 778_CR3 – volume: 106 start-page: 311 year: 2003 ident: 778_CR13 publication-title: Theor Appl Genet doi: 10.1007/s00122-002-1018-x – volume: 75 start-page: 223 year: 2001 ident: 778_CR30 publication-title: Food Chem doi: 10.1016/S0308-8146(01)00204-7 – volume-title: R : a language and environment for statistical computing year: 2012 ident: 778_CR17 – volume: 88 start-page: 39 year: 2004 ident: 778_CR7 publication-title: Food Chemistry doi: 10.1016/j.foodchem.2004.01.020 – volume: 9 start-page: 1043 year: 2013 ident: 778_CR31 publication-title: Tree Genet Genomes doi: 10.1007/s11295-013-0616-x – ident: 778_CR58 doi: 10.1007/s11032-005-3445-2 – volume: 46 start-page: 204 year: 2003 ident: 778_CR10 publication-title: Genome doi: 10.1139/g02-125 – volume: 124 start-page: 739 year: 2012 ident: 778_CR20 publication-title: Theor Appl Genet doi: 10.1007/s00122-011-1743-0 – volume: 9 start-page: 123 year: 2009 ident: 778_CR46 publication-title: BMC Plant Bio doi: 10.1186/1471-2229-9-123 – volume: 122 start-page: 661 year: 2011 ident: 778_CR29 publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1476-5 – ident: 778_CR8 – volume: 69 start-page: 315 year: 1992 ident: 778_CR23 publication-title: Hered (Edinb) doi: 10.1038/hdy.1992.131 – volume: 52 start-page: 634 year: 2009 ident: 778_CR41 publication-title: Genome doi: 10.1139/G09-037 – ident: 778_CR52 doi: 10.1371/journal.pone.0061238 – volume: 106 start-page: 1486 year: 2003 ident: 778_CR1 publication-title: Theor Appl Genet doi: 10.1007/s00122-003-1207-2 |
| SSID | ssj0047066 |
| Score | 2.0792663 |
| Snippet | Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee... Coffea canephora is subject to enormous competitive challenges from other crops, especially for farmer sustainability and consumer requirements. Coffee... |
| SourceID | unpaywall hal proquest crossref springer fao |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1541 |
| SubjectTerms | Agricultural commodities alleles Beans Biochemical composition Biomedical and Life Sciences Biotechnology Caffeine chemical composition Coffea Coffea canephora Coffee Computer Science crops crossing farmers Forestry Gene mapping Genetic diversity Genomes genotype hybrids Life Sciences Mathematics microsatellite repeats Original Paper parents Plant Breeding/Biotechnology Plant Genetics and Genomics Quantitative genetics quantitative trait loci Tree Biology variance |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9tncTHA-JTCwxkEE9sFknsJM0DQqPaVKFR8bFKe7Mcx2abqqRbU1D_e-68JCsPlJeoSh1b8Z19d77L7wfwNrJoxV1e8DAvMy6di3khpeYujMrChjY3Hqz6yyQdT-Xns-RsCybdtzBUVtntiX6jLmtDZ-Tv0TNBSygwHPk4v-LEGkXZ1Y5CQ7fUCuUHDzG2DTsxIWMNYOfT0eTr925vllnos5fYmeRxLuMuz-k_pkPTR4VskocZhVZ_Waptp2u8nlO15Jor2mdP78PdZTXXq996NlszUMcP4UHrWbLDG1V4BFu2egx3iHqT-NyewOWopxxktWMNCtGyb6cnrLSNr8eqmKfFWTD8VVwQk5aHEjhgCwx16-vVAdNVyVZU8sZMh_O8YBcVG9XOWc1QSnZ-jjr1FKbHR6ejMW-ZFrhJorThxgktJMYyeZGXqdPD1KWRtSIdmiJJtJE-TDGxG-rMZJFOUo2hJAm10CJEl-cZDKq6srvARC7oVMmWWVpK4QqNLpsOHQ6APQ5lHkDYzaoyLQw5sWHM1C2AMglCoSAUCUJFAbzrH5nfYHBsaryLolL6J86nmv6I6USHQFNTkQXwBuXXd0HA2uPDE0X3MBJFS56JX_j8Xide1S7nhbpVvgBe93_jQqTsCs5tvaQ2cYYhORqeTW1wmGiIMWkA-53qrA3z75fa77Xr_1PwfPMrvIB7MWm5r8nZg0FzvbQv0bNqilftcvkDl9oZug priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tnQTjgZ-bVhjIIJ7Y0iVx4iSPVcVUoTGBWKXxZNmOzQZVUq0pqPz13KVJVhAMIV6iKHFs-fqld198_g7gZWDRi7tMe36WJ17kXOjpKFKe84NcW99mpharfnsqxpPozXl8vgGjdi9Mne3eLkmu9jSQSlNRHc1yd3S98Q3dFCWdRZ6fEA0a4N1N2BIxBuQ92Jqcvht-JKqFzscLs7qETnMed2ubv-vnJ--06VSJxwvKkFwLP7sV0ztwe1HM1PKbmk7XnNLxPcjb6axyUb4MFpUemO-_KD3-53zvw90maGXDFcoewIYtHsItqupJpeIewedRV82QlY5ViA_L3p-dsNxWdapXweqKO3OGZ_qSinTVKgWHbI4surxaHjJV5GxJ2XTMtBLSc3ZZsFHpnFUMAWBnFwjXHZgcvz4bjb2miINn4kBUnnFc8QhpUqazXDiVCicCa7lIjY5jZaKaAZnQpSoxSaBioZClEl604j5GU7vQK8rC7gHjGacPVjZPRB5xpxVGg8p3OAD2mEZZH_z2x5OmUTinQhtTea3NTHaUaEdJdpRBH151j8xW8h43Nd5DREj1Ce0pJx9C-lhEeqyCJ314gTDpuiDN7vHwRNI1JLkYJCT8Kz6_36JINv8Uc4mwxAiPI83uw_PuNr7jtHCDti0X1CZMkO2jT7upDQ4TpEh3-3DQAmptmD9P6qAD8d9N8PifWj-B7ZAwW2f_7EOvulrYpxjDVfpZ847-AIPGN_8 priority: 102 providerName: Unpaywall |
| Title | Comparison of three QTL detection models on biochemical, sensory, and yield characters in Coffea canephora |
| URI | https://link.springer.com/article/10.1007/s11295-014-0778-1 https://www.proquest.com/docview/1612833409 https://www.proquest.com/docview/1627978467 https://www.proquest.com/docview/1663618956 https://hal.inrae.fr/hal-02636273 https://link.springer.com/content/pdf/10.1007/s11295-014-0778-1.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-2950 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047066 issn: 1614-2950 databaseCode: AFBBN dateStart: 20050501 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-2950 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0047066 issn: 1614-2950 databaseCode: BENPR dateStart: 20050501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-2950 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047066 issn: 1614-2950 databaseCode: AGYKE dateStart: 20050101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-2950 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0047066 issn: 1614-2950 databaseCode: U2A dateStart: 20050501 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5RAEJ_YNvHjwfiZUmuzGp9sicAuCzzi5epF66VqL2mfNgvs2jYXuBROc_-9MxTwNFrjC0e4ZTc3M8vMj5n7DcAr36AXt0nmekkRucLawM2E0K71_CIznknylqz641ROZuL9aXjakUXTf2F-y9-_qSkeoPIy4XoRAZ4N2EIfJdu8rBz1D10ReW1aEuMX4QaJCPoE5p-m-MUFbVhd4fGcyiDXYswhLXoP7izLhV591_P5muc5fAD3u5CRpdc6fgi3TPkIblNPTWrU9hguR0MvQVZZ1qB2DPt0csQK07SFViVr-93UDM-yC2qR1XIEHLAaMWx1tTpguizYimrZWN4TONfsomSjylqjGYrfLM7RWJ7A7HB8Mpq4XQsFNw992bi55ZoLBClJlhTS6lha6RvDZZxnYahz0eKPPLCxjvLI16HUiBFJW5nmHsYyT2GzrEqzDYwnnF4XmSKSheA20xiLac_iAjhjLBIHvF6qKu_4xanNxVz9ZEYmRShUhCJFKN-B18Mti2tyjZsGb6OqlP6K8lSzLwG9qiE2VMkjB16i_oYpiDF7kh4puoYQE110xL_h_bu9elW3T2uF9oLxFUeQ68CL4WvcYZQ2QdlWSxoTRIi10aPcNAaX8WMEmw7s96aztszff9T-YF3_FsHOf839DO4GZPRt7c0ubDZXS_McI6gm24Ot9N3ZhzF-vh1Pjz_vtXsJj7MgxWuz6XF69gMsfhFr |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF4QHxqgQEGwQtbRBI7cfIwoVE2dayr-GilvRnHsfehKilLytR_jr-NuyzJygPlaS9RlTpxfHf23fnOvyPkjW9Ai9skdb0kEy63NnBTzpVrPT9LjWcSXYNVHw2j_ph_Pg6PV8jv9iwMplW2a2K9UGeFxj3y92CZgCZk4I58mP50sWoURlfbEhqqKa2Q7dQQY83BjkMzvwQXrtw5-AT8fhsE-3ujXt9tqgy4OvSjytWWKcbBjk_SJIusiiMb-cawKNZpGCrNaxNdBzZWQgtfhZECNwoHlCrmxQjGBCpgjTOegPO39nFv-OVbqwu48OpoKXw8d4OEB21ctT68B6oWE-e46wl05f7SjLesKuB6itmZC6ZvF629S9Zn-VTNL9VksqAQ9--Te40lS3evRO8BWTH5Q3IbS31i_bhH5LzXlTikhaUVCI2hX0cDmpmqzv_KaV2Gp6TwKz3Dyl01dME2LcG1Li7m21TlGZ1jih3VLa50Sc9y2iusNYqCVJjpKcjwYzK-EZo_Iat5kZsNQlnCcBfLZCLKOLOpAhNReRY6gDfGPHGI11JV6gb2HKtvTOQ1YDMyQgIjJDJC-g551z0yvcL8WNZ4A1gl1QnQU46_B7iDhCCtERMOeQ38616BQN793YHEe-D5guUg2C94frNlr2yWj1JeC7tDXnV_w8THaA7Qtphhm0AkAs3HZW2gGz8GH9ghW63oLHTz70FtddL1fxI8XT6El2S9PzoayMHB8PAZuROgxNf5QJtktbqYmedg1VXpi2bqUPLjpmfrHyTbVnI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJg14QHxqgQEGwQubtSR2vh4mNLpVHSvVgFXam3ESmw1VSVlSpv6L_FXceUlWHihPe6mq1onlu_N9-M6_I-SNp8GKmyRlbpJHTBjjs1QIxYzr5al2dZJZsOpPo3AwFh9Pg9MV8ru9C4Nlla1OtIo6LzM8I98BzwQsIYdwZMc0ZRHH-_33058MO0hhprVtp6GaNgv5roUbay55HOn5JYRz1e7hPvD-re_3D056A9Z0HGBZ4IU1ywxXXIBPn6RJHhoVhyb0tOZhnKVBoDJh3fXMN7GKsshTQaggpMLFpYq7MQIzgTlYw-QXKIm1Dwej4y-tXRCRazOnsBDB_ET4bY7VXuQDs4tFdIK5EYZ1f1nJW0aV8HmGlZoLbnCXub1Lbs-KqZpfqslkwTj275N7jVdL967E8AFZ0cVDso5tP7GX3CPyo9e1O6SloTUIkKafT4Y017WtBSuobclTUfiWnmMXLwtjsE0rCLPLi_k2VUVO51huR7MWY7qi5wXtlcZoRUFC9PQM5PkxGd8IzZ-Q1aIs9AahPOF4oqXzKMwFN6kCd1G5BiaAN8YicYjbUlVmDQQ6duKYyGvwZmSEBEZIZIT0HPKue2R6hf-xbPAGsEqq70BPOf7q42kSAraGPHLIa-Bf9woE9R7sDSX-BlEweBER_wXPb7bslY0qqeS14DvkVfc3KAHM7ABtyxmO8aMkQldy2RiYxoshHnbIVis6C9P8e1FbnXT9nwRPly_hJVmHXSuHh6OjZ-SOjwJvS4M2yWp9MdPPwcGr0xfNzqHk201v1j-DDFqh |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tnQTjgZ-bVhjIIJ7Y0iVx4iSPVcVUoTGBWKXxZNmOzQZVUq0pqPz13KVJVhAMIV6iKHFs-fqld198_g7gZWDRi7tMe36WJ17kXOjpKFKe84NcW99mpharfnsqxpPozXl8vgGjdi9Mne3eLkmu9jSQSlNRHc1yd3S98Q3dFCWdRZ6fEA0a4N1N2BIxBuQ92Jqcvht-JKqFzscLs7qETnMed2ubv-vnJ--06VSJxwvKkFwLP7sV0ztwe1HM1PKbmk7XnNLxPcjb6axyUb4MFpUemO-_KD3-53zvw90maGXDFcoewIYtHsItqupJpeIewedRV82QlY5ViA_L3p-dsNxWdapXweqKO3OGZ_qSinTVKgWHbI4surxaHjJV5GxJ2XTMtBLSc3ZZsFHpnFUMAWBnFwjXHZgcvz4bjb2miINn4kBUnnFc8QhpUqazXDiVCicCa7lIjY5jZaKaAZnQpSoxSaBioZClEl604j5GU7vQK8rC7gHjGacPVjZPRB5xpxVGg8p3OAD2mEZZH_z2x5OmUTinQhtTea3NTHaUaEdJdpRBH151j8xW8h43Nd5DREj1Ce0pJx9C-lhEeqyCJ314gTDpuiDN7vHwRNI1JLkYJCT8Kz6_36JINv8Uc4mwxAiPI83uw_PuNr7jtHCDti0X1CZMkO2jT7upDQ4TpEh3-3DQAmptmD9P6qAD8d9N8PifWj-B7ZAwW2f_7EOvulrYpxjDVfpZ847-AIPGN_8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+three+QTL+detection+models+on+biochemical%2C+sensory%2C+and+yield+characters+in+Coffea+canephora&rft.jtitle=Tree+genetics+%26+genomes&rft.au=M%C3%A9rot-L%E2%80%99Antho%C3%ABne%2C+Virginie&rft.au=Mangin%2C+Brigitte&rft.au=Lefebvre-Pautigny%2C+Florent&rft.au=Jasson%2C+Sylvain&rft.date=2014-12-01&rft.pub=Springer-Verlag&rft.issn=1614-2942&rft.eissn=1614-2950&rft.volume=10&rft.issue=6&rft.spage=1541&rft.epage=1553&rft_id=info:doi/10.1007%2Fs11295-014-0778-1&rft.externalDocID=US201500098637 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-2942&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-2942&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-2942&client=summon |