Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease

Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the gene may provide insight into the efficacy of CETP inhibition. To test whether protein-truncating variants (...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 121; no. 1; pp. 81 - 88
Main Authors Nomura, Akihiro, Won, Hong-Hee, Khera, Amit V., Takeuchi, Fumihiko, Ito, Kaoru, McCarthy, Shane, Emdin, Connor A., Klarin, Derek, Natarajan, Pradeep, Zekavat, Seyedeh M., Gupta, Namrata, Peloso, Gina M., Borecki, Ingrid B., Teslovich, Tanya M., Asselta, Rosanna, Duga, Stefano, Merlini, Piera A., Correa, Adolfo, Kessler, Thorsten, Wilson, James G., Bown, Matthew J., Hall, Alistair S., Braund, Peter S., Carey, David J., Murray, Michael F., Kirchner, H. Lester, Leader, Joseph B., Lavage, Daniel R., Manus, J. Neil, Hartze, Dustin N., Samani, Nilesh J., Schunkert, Heribert, Marrugat, Jaume, Elosua, Roberto, McPherson, Ruth, Farrall, Martin, Watkins, Hugh, Juang, Jyh-Ming J., Hsiung, Chao A., Lin, Shih-Yi, Wang, Jun-Sing, Tada, Hayato, Kawashiri, Masa-aki, Inazu, Akihiro, Yamagishi, Masakazu, Katsuya, Tomohiro, Nakashima, Eitaro, Nakatochi, Masahiro, Yamamoto, Ken, Yokota, Mitsuhiro, Momozawa, Yukihide, Rotter, Jerome I., Lander, Eric S., Rader, Daniel J., Danesh, John, Ardissino, Diego, Gabriel, Stacey, Willer, Cristen J., Abecasis, Goncalo R., Saleheen, Danish, Kubo, Michiaki, Kato, Norihiro, Ida Chen, Yii-Der, Dewey, Frederick E., Kathiresan, Sekar
Format Journal Article
LanguageEnglish
Published United States Lippincott Williams & Wilkins Ovid Technologies 23.06.2017
Subjects
Online AccessGet full text
ISSN0009-7330
1524-4571
1524-4571
DOI10.1161/CIRCRESAHA.117.311145

Cover

Abstract Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the gene may provide insight into the efficacy of CETP inhibition. To test whether protein-truncating variants (PTVs) at the gene were associated with plasma lipid levels and CHD. We sequenced the exons of the gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the gene. Compared with noncarriers, carriers of PTV at had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; <1.0×10 ), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; =0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; =0.043). PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; =5.1×10 ). Compared with noncarriers, carriers of PTV at displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.
AbstractList Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the gene may provide insight into the efficacy of CETP inhibition. To test whether protein-truncating variants (PTVs) at the gene were associated with plasma lipid levels and CHD. We sequenced the exons of the gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the gene. Compared with noncarriers, carriers of PTV at had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; <1.0×10 ), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; =0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; =0.043). PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; =5.1×10 ). Compared with noncarriers, carriers of PTV at displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.
Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.RATIONALETherapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.OBJECTIVETo test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.We sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.0×10-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.1×10-3).METHODS AND RESULTSWe sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.0×10-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.1×10-3).Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.CONCLUSIONSCompared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.
Rationale:Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.Objective:To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.Methods and Results:We sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.010-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.110-3).Conclusions:Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.
Rationale:Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.Objective:To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.Methods and Results:We sequenced the exons of the CETP gene in 58 469 participants from 12 case–control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case–control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18–27; P<1.0×10−4), lower low-density lipoprotein cholesterol (−12.2 mg/dL; 95% confidence interval, −23 to −0.98; P=0.033), and lower triglycerides (−6.3%; 95% confidence interval, −12 to −0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54–0.90; P=5.1×10−3).Conclusions:Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.
Author Wang, Jun-Sing
Inazu, Akihiro
Yamamoto, Ken
Watkins, Hugh
Zekavat, Seyedeh M.
Lavage, Daniel R.
Lin, Shih-Yi
Elosua, Roberto
Teslovich, Tanya M.
Leader, Joseph B.
Hsiung, Chao A.
Kubo, Michiaki
Farrall, Martin
Hartze, Dustin N.
Kato, Norihiro
McPherson, Ruth
Kawashiri, Masa-aki
Ida Chen, Yii-Der
Emdin, Connor A.
Nakashima, Eitaro
Nomura, Akihiro
Schunkert, Heribert
Lander, Eric S.
Saleheen, Danish
Asselta, Rosanna
Takeuchi, Fumihiko
Rader, Daniel J.
Tada, Hayato
Kirchner, H. Lester
Juang, Jyh-Ming J.
Kathiresan, Sekar
Peloso, Gina M.
Marrugat, Jaume
Won, Hong-Hee
Borecki, Ingrid B.
Momozawa, Yukihide
McCarthy, Shane
Braund, Peter S.
Kessler, Thorsten
Wilson, James G.
Hall, Alistair S.
Samani, Nilesh J.
Carey, David J.
Yamagishi, Masakazu
Yokota, Mitsuhiro
Khera, Amit V.
Merlini, Piera A.
Natarajan, Pradeep
Ardissino, Diego
Willer, Cristen J.
Abecasis, Goncalo R.
Correa, Adolfo
Ito, Kaoru
Danesh, John
Murray, Michael F.
Dewey, Frederick E.
Katsuya, Tomohiro
Gabriel, Stacey
Rotter, Jerome I.
Nakatochi, Masahiro
Gupta, Namrata
Klarin, Derek
Duga, St
Author_xml – sequence: 1
  givenname: Akihiro
  surname: Nomura
  fullname: Nomura, Akihiro
– sequence: 2
  givenname: Hong-Hee
  surname: Won
  fullname: Won, Hong-Hee
– sequence: 3
  givenname: Amit V.
  surname: Khera
  fullname: Khera, Amit V.
– sequence: 4
  givenname: Fumihiko
  surname: Takeuchi
  fullname: Takeuchi, Fumihiko
– sequence: 5
  givenname: Kaoru
  surname: Ito
  fullname: Ito, Kaoru
– sequence: 6
  givenname: Shane
  surname: McCarthy
  fullname: McCarthy, Shane
– sequence: 7
  givenname: Connor A.
  surname: Emdin
  fullname: Emdin, Connor A.
– sequence: 8
  givenname: Derek
  surname: Klarin
  fullname: Klarin, Derek
– sequence: 9
  givenname: Pradeep
  surname: Natarajan
  fullname: Natarajan, Pradeep
– sequence: 10
  givenname: Seyedeh M.
  surname: Zekavat
  fullname: Zekavat, Seyedeh M.
– sequence: 11
  givenname: Namrata
  surname: Gupta
  fullname: Gupta, Namrata
– sequence: 12
  givenname: Gina M.
  surname: Peloso
  fullname: Peloso, Gina M.
– sequence: 13
  givenname: Ingrid B.
  surname: Borecki
  fullname: Borecki, Ingrid B.
– sequence: 14
  givenname: Tanya M.
  surname: Teslovich
  fullname: Teslovich, Tanya M.
– sequence: 15
  givenname: Rosanna
  surname: Asselta
  fullname: Asselta, Rosanna
– sequence: 16
  givenname: Stefano
  surname: Duga
  fullname: Duga, Stefano
– sequence: 17
  givenname: Piera A.
  surname: Merlini
  fullname: Merlini, Piera A.
– sequence: 18
  givenname: Adolfo
  surname: Correa
  fullname: Correa, Adolfo
– sequence: 19
  givenname: Thorsten
  surname: Kessler
  fullname: Kessler, Thorsten
– sequence: 20
  givenname: James G.
  surname: Wilson
  fullname: Wilson, James G.
– sequence: 21
  givenname: Matthew J.
  surname: Bown
  fullname: Bown, Matthew J.
– sequence: 22
  givenname: Alistair S.
  surname: Hall
  fullname: Hall, Alistair S.
– sequence: 23
  givenname: Peter S.
  surname: Braund
  fullname: Braund, Peter S.
– sequence: 24
  givenname: David J.
  surname: Carey
  fullname: Carey, David J.
– sequence: 25
  givenname: Michael F.
  surname: Murray
  fullname: Murray, Michael F.
– sequence: 26
  givenname: H. Lester
  surname: Kirchner
  fullname: Kirchner, H. Lester
– sequence: 27
  givenname: Joseph B.
  surname: Leader
  fullname: Leader, Joseph B.
– sequence: 28
  givenname: Daniel R.
  surname: Lavage
  fullname: Lavage, Daniel R.
– sequence: 29
  givenname: J. Neil
  surname: Manus
  fullname: Manus, J. Neil
– sequence: 30
  givenname: Dustin N.
  surname: Hartze
  fullname: Hartze, Dustin N.
– sequence: 31
  givenname: Nilesh J.
  surname: Samani
  fullname: Samani, Nilesh J.
– sequence: 32
  givenname: Heribert
  surname: Schunkert
  fullname: Schunkert, Heribert
– sequence: 33
  givenname: Jaume
  surname: Marrugat
  fullname: Marrugat, Jaume
– sequence: 34
  givenname: Roberto
  surname: Elosua
  fullname: Elosua, Roberto
– sequence: 35
  givenname: Ruth
  surname: McPherson
  fullname: McPherson, Ruth
– sequence: 36
  givenname: Martin
  surname: Farrall
  fullname: Farrall, Martin
– sequence: 37
  givenname: Hugh
  surname: Watkins
  fullname: Watkins, Hugh
– sequence: 38
  givenname: Jyh-Ming J.
  surname: Juang
  fullname: Juang, Jyh-Ming J.
– sequence: 39
  givenname: Chao A.
  surname: Hsiung
  fullname: Hsiung, Chao A.
– sequence: 40
  givenname: Shih-Yi
  surname: Lin
  fullname: Lin, Shih-Yi
– sequence: 41
  givenname: Jun-Sing
  surname: Wang
  fullname: Wang, Jun-Sing
– sequence: 42
  givenname: Hayato
  surname: Tada
  fullname: Tada, Hayato
– sequence: 43
  givenname: Masa-aki
  surname: Kawashiri
  fullname: Kawashiri, Masa-aki
– sequence: 44
  givenname: Akihiro
  surname: Inazu
  fullname: Inazu, Akihiro
– sequence: 45
  givenname: Masakazu
  surname: Yamagishi
  fullname: Yamagishi, Masakazu
– sequence: 46
  givenname: Tomohiro
  surname: Katsuya
  fullname: Katsuya, Tomohiro
– sequence: 47
  givenname: Eitaro
  surname: Nakashima
  fullname: Nakashima, Eitaro
– sequence: 48
  givenname: Masahiro
  surname: Nakatochi
  fullname: Nakatochi, Masahiro
– sequence: 49
  givenname: Ken
  surname: Yamamoto
  fullname: Yamamoto, Ken
– sequence: 50
  givenname: Mitsuhiro
  surname: Yokota
  fullname: Yokota, Mitsuhiro
– sequence: 51
  givenname: Yukihide
  surname: Momozawa
  fullname: Momozawa, Yukihide
– sequence: 52
  givenname: Jerome I.
  surname: Rotter
  fullname: Rotter, Jerome I.
– sequence: 53
  givenname: Eric S.
  surname: Lander
  fullname: Lander, Eric S.
– sequence: 54
  givenname: Daniel J.
  surname: Rader
  fullname: Rader, Daniel J.
– sequence: 55
  givenname: John
  surname: Danesh
  fullname: Danesh, John
– sequence: 56
  givenname: Diego
  surname: Ardissino
  fullname: Ardissino, Diego
– sequence: 57
  givenname: Stacey
  surname: Gabriel
  fullname: Gabriel, Stacey
– sequence: 58
  givenname: Cristen J.
  surname: Willer
  fullname: Willer, Cristen J.
– sequence: 59
  givenname: Goncalo R.
  surname: Abecasis
  fullname: Abecasis, Goncalo R.
– sequence: 60
  givenname: Danish
  surname: Saleheen
  fullname: Saleheen, Danish
– sequence: 61
  givenname: Michiaki
  surname: Kubo
  fullname: Kubo, Michiaki
– sequence: 62
  givenname: Norihiro
  surname: Kato
  fullname: Kato, Norihiro
– sequence: 63
  givenname: Yii-Der
  surname: Ida Chen
  fullname: Ida Chen, Yii-Der
– sequence: 64
  givenname: Frederick E.
  surname: Dewey
  fullname: Dewey, Frederick E.
– sequence: 65
  givenname: Sekar
  surname: Kathiresan
  fullname: Kathiresan, Sekar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28506971$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFuEzEUtFARTQufALLEhcsWP6-9toWEFC1pU6kSKASulrPxNi4bu7W9SP17HCUt0AOcnp88M57nNyfoyAdvEXoN5Ayggfft5aJdzL5O59PSi7MaABh_hibAKasYF3CEJoQQVYm6JsfoJKUbQoDVVL1Ax1Ry0igBE-S_xJCt89Uyjr4z2flr_N1EZ3xO2GScNxa3mzDYlG28H_BsV_EyGp_6cjiw8YX1Fhu_xguXfuA-RNyGGLyJ93huTcz4k0vWJPsSPe_NkOyrQz1F385ny3ZeXX2-uGynV1XHoclV17AVgJSSc2slIyvC-lqAJJI1jVgxJtaWS9HVslfGSENrJWgDRHCqamVNfYo-7nVvx9XWrjvrczSDvo1uWzzpYJz--8a7jb4OPzXnRYuRIvDuIBDD3Vim11uXOjsMxtswJg0KlGoACPs_VKqiyCnQAn37BHoTxujLT2hKSCMFVZQX1Js_zT-6fthaAXzYA7oYUoq2153LZXdhN4sbNBC9y4j-nZHSC73PSGHzJ-yHB_7N-wXwJ7-E
CitedBy_id crossref_primary_10_1146_annurev_med_041717_085853
crossref_primary_10_1212_WNL_0000000000011553
crossref_primary_10_1038_s10038_021_00929_7
crossref_primary_10_3390_genes10100782
crossref_primary_10_1253_circj_CJ_17_0706
crossref_primary_10_1001_jamacardio_2021_3728
crossref_primary_10_1016_j_jacc_2018_10_072
crossref_primary_10_1038_s41586_019_1793_z
crossref_primary_10_2174_0113816128284695240219093612
crossref_primary_10_1016_j_atherosclerosis_2018_07_004
crossref_primary_10_1080_14656566_2018_1448061
crossref_primary_10_1016_j_gde_2018_01_003
crossref_primary_10_1007_s13237_023_00420_y
crossref_primary_10_5551_jat_ED188
crossref_primary_10_1097_MOL_0000000000000854
crossref_primary_10_2217_pgs_2018_0007
crossref_primary_10_1161_CIR_0000000000000757
crossref_primary_10_1161_JAHA_123_031459
crossref_primary_10_1056_NEJMoa1706444
crossref_primary_10_1161_CIR_0000000000000950
crossref_primary_10_1038_nrcardio_2017_115
crossref_primary_10_1038_s41598_018_23074_2
crossref_primary_10_1161_CIR_0000000000001123
crossref_primary_10_1080_14656566_2024_2409324
crossref_primary_10_1161_CIR_0000000000001052
crossref_primary_10_1016_j_jjcc_2018_04_007
crossref_primary_10_1093_nargab_lqz012
crossref_primary_10_1194_jlr_R082735
crossref_primary_10_1016_j_jacbts_2018_08_001
crossref_primary_10_1038_s41598_019_47456_2
crossref_primary_10_1194_jlr_P120001000
crossref_primary_10_1093_eurheartj_ehac605
crossref_primary_10_1038_s41440_020_0401_9
crossref_primary_10_1038_s41569_023_00860_8
crossref_primary_10_1136_openhrt_2021_001710
crossref_primary_10_1016_j_dadm_2018_08_008
crossref_primary_10_1016_j_atherosclerosis_2018_09_033
crossref_primary_10_1016_j_medj_2024_10_005
crossref_primary_10_2174_1389202921999200630145241
crossref_primary_10_1016_j_ccl_2017_12_011
crossref_primary_10_1016_j_jacbts_2020_09_004
crossref_primary_10_1038_s10038_020_0818_7
crossref_primary_10_1161_ATVBAHA_121_317181
crossref_primary_10_1161_CIRCRESAHA_117_311978
crossref_primary_10_1373_clinchem_2018_299222
crossref_primary_10_3390_ijms23169417
crossref_primary_10_1038_nrcardio_2017_87
crossref_primary_10_1016_j_atherosclerosis_2018_09_035
crossref_primary_10_1210_clinem_dgad031
crossref_primary_10_1093_eurheartj_ehab863
crossref_primary_10_1161_CIR_0000000000000659
crossref_primary_10_5551_jat_RV17034
crossref_primary_10_12997_jla_2021_10_1_57
crossref_primary_10_1080_14656566_2017_1365838
crossref_primary_10_1038_s41440_024_01633_7
crossref_primary_10_1371_journal_pgen_1009501
crossref_primary_10_1016_j_jjcc_2021_09_005
crossref_primary_10_1210_en_2018_00591
crossref_primary_10_1186_s12872_024_03759_5
crossref_primary_10_1161_RES_0000000000000211
crossref_primary_10_1016_j_jacc_2022_09_027
Cites_doi 10.1097/MOL.0000000000000332
10.1007/s10654-009-9334-y
10.1056/NEJMoa0902604
10.1016/j.jacc.2016.11.056
10.1161/CIRCULATIONAHA.107.704254
10.1172/JCI117537
10.1371/journal.pone.0138014
10.1056/NEJMoa1405386
10.1126/science.3513311
10.1016/j.jacc.2016.03.520
10.1056/NEJMoa1615664
10.1001/jama.299.23.2777
10.1056/NEJMoa1009744
10.1097/MOL.0b013e3283612454
10.1038/jhg.2015.171
10.1006/pmed.1998.0340
10.1056/NEJMoa072366
10.1093/clinchem/18.6.499
10.1194/jlr.M300520-JLR200
10.1016/j.jacc.2012.08.967
10.1056/NEJM199011013231803
10.1056/NEJMoa054013
10.1161/01.ATV.17.6.1053
10.1161/01.cir.0000051465.94572.d0
10.1056/NEJMoa0706628
10.1371/journal.pone.0046385
10.1056/NEJMoa1307095
10.1056/NEJMoa1507652
10.1093/oxfordjournals.aje.a115184
10.1016/j.cmet.2008.03.001
10.1056/NEJMc0707445
10.1126/science.1142447
10.1016/j.amjcard.2010.03.057
10.1056/NEJMoa1206797
10.1038/ng.2797
10.1161/CIRCGENETICS.108.817304
10.1093/clinchem/36.1.15
10.1016/j.jacc.2012.07.045
10.1093/bioinformatics/btq330
10.1093/hmg/ddw335
10.1056/NEJMoa1510926
10.1016/S0140-6736(12)60312-2
10.1161/01.ATV.0000161928.16334.dd
10.1161/01.ATV.21.3.415
10.1038/nature13917
10.1038/ng.806
10.1056/NEJMoa1410489
ContentType Journal Article
Copyright 2017 American Heart Association, Inc.
Copyright Lippincott Williams & Wilkins Ovid Technologies Jun 23, 2017
Copyright_xml – notice: 2017 American Heart Association, Inc.
– notice: Copyright Lippincott Williams & Wilkins Ovid Technologies Jun 23, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TK
H94
K9.
7X8
8FD
FR3
P64
RC3
5PM
DOI 10.1161/CIRCRESAHA.117.311145
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Genetics Abstracts
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 88
ExternalDocumentID PMC5523940
28506971
10_1161_CIRCRESAHA_117_311145
Genre Meta-Analysis
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HHSN268201300048C
– fundername: NHLBI NIH HHS
  grantid: HHSN268201300046C
– fundername: NHLBI NIH HHS
  grantid: K01 HL125751
– fundername: NHLBI NIH HHS
  grantid: T32 HL007734
– fundername: NCATS NIH HHS
  grantid: UL1 TR001881
– fundername: NHLBI NIH HHS
  grantid: R35 HL135824
– fundername: NHLBI NIH HHS
  grantid: R01 HL127564
– fundername: Medical Research Council
  grantid: MR/L003120/1
– fundername: British Heart Foundation
  grantid: CS/14/2/30841
– fundername: NHGRI NIH HHS
  grantid: U54 HG003067
GroupedDBID ---
-~X
.-D
.3C
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYXX
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADGGA
ADGHP
ADHPY
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BOYCO
BQLVK
C45
CITATION
CS3
DIK
DIWNM
DU5
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
YFH
YOC
ZFV
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TK
ADSXY
H94
K9.
7X8
ADKSD
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c516t-c64b1188855ee840b04f3718084667b447de587c38f9aa8a23972610752939ea3
ISSN 0009-7330
1524-4571
IngestDate Thu Aug 21 13:20:14 EDT 2025
Mon Sep 08 06:36:26 EDT 2025
Mon Sep 08 14:30:41 EDT 2025
Wed Aug 13 04:25:49 EDT 2025
Mon Jul 21 05:50:22 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Tue Jul 01 04:27:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords coronary disease
lipids
cholesteryl ester transfer protein
case-control studies
Language English
License 2017 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c516t-c64b1188855ee840b04f3718084667b447de587c38f9aa8a23972610752939ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Please see Appendix for author affiliations.
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.117.311145
PMID 28506971
PQID 2006872925
PQPubID 41518
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5523940
proquest_miscellaneous_1919961104
proquest_miscellaneous_1899405212
proquest_journals_2006872925
pubmed_primary_28506971
crossref_citationtrail_10_1161_CIRCRESAHA_117_311145
crossref_primary_10_1161_CIRCRESAHA_117_311145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-23
PublicationDateYYYYMMDD 2017-06-23
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hagerstown
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2017
Publisher Lippincott Williams & Wilkins Ovid Technologies
Publisher_xml – name: Lippincott Williams & Wilkins Ovid Technologies
References e_1_3_6_30_2
e_1_3_6_32_2
e_1_3_6_19_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_11_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_40_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
e_1_3_6_29_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_46_2
Taylor HA (e_1_3_6_26_2) 2005; 15
e_1_3_6_31_2
e_1_3_6_10_2
e_1_3_6_50_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_41_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
e_1_3_6_49_2
e_1_3_6_28_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_24_2
e_1_3_6_47_2
References_xml – ident: e_1_3_6_6_2
  doi: 10.1097/MOL.0000000000000332
– ident: e_1_3_6_31_2
  doi: 10.1007/s10654-009-9334-y
– ident: e_1_3_6_30_2
  doi: 10.1056/NEJMoa0902604
– ident: e_1_3_6_17_2
  doi: 10.1016/j.jacc.2016.11.056
– ident: e_1_3_6_47_2
  doi: 10.1161/CIRCULATIONAHA.107.704254
– ident: e_1_3_6_33_2
  doi: 10.1172/JCI117537
– ident: e_1_3_6_22_2
  doi: 10.1371/journal.pone.0138014
– ident: e_1_3_6_10_2
  doi: 10.1056/NEJMoa1405386
– ident: e_1_3_6_46_2
  doi: 10.1126/science.3513311
– ident: e_1_3_6_38_2
  doi: 10.1016/j.jacc.2016.03.520
– ident: e_1_3_6_20_2
  doi: 10.1056/NEJMoa1615664
– ident: e_1_3_6_14_2
  doi: 10.1001/jama.299.23.2777
– ident: e_1_3_6_8_2
  doi: 10.1056/NEJMoa1009744
– ident: e_1_3_6_5_2
  doi: 10.1097/MOL.0b013e3283612454
– ident: e_1_3_6_34_2
  doi: 10.1038/jhg.2015.171
– ident: e_1_3_6_12_2
  doi: 10.1006/pmed.1998.0340
– ident: e_1_3_6_27_2
  doi: 10.1056/NEJMoa072366
– ident: e_1_3_6_36_2
  doi: 10.1093/clinchem/18.6.499
– ident: e_1_3_6_13_2
  doi: 10.1194/jlr.M300520-JLR200
– ident: e_1_3_6_7_2
  doi: 10.1016/j.jacc.2012.08.967
– ident: e_1_3_6_16_2
  doi: 10.1056/NEJM199011013231803
– ident: e_1_3_6_9_2
  doi: 10.1056/NEJMoa054013
– ident: e_1_3_6_15_2
  doi: 10.1161/01.ATV.17.6.1053
– ident: e_1_3_6_23_2
  doi: 10.1161/01.cir.0000051465.94572.d0
– ident: e_1_3_6_2_2
  doi: 10.1056/NEJMoa0706628
– ident: e_1_3_6_35_2
  doi: 10.1371/journal.pone.0046385
– ident: e_1_3_6_18_2
  doi: 10.1056/NEJMoa1307095
– ident: e_1_3_6_28_2
  doi: 10.1056/NEJMoa1507652
– ident: e_1_3_6_25_2
  doi: 10.1093/oxfordjournals.aje.a115184
– volume: 15
  start-page: S6-1
  year: 2005
  ident: e_1_3_6_26_2
  article-title: The Jackson Heart Study: an overview.
  publication-title: Ethn Dis
– ident: e_1_3_6_4_2
– ident: e_1_3_6_49_2
  doi: 10.1016/j.cmet.2008.03.001
– ident: e_1_3_6_11_2
  doi: 10.1056/NEJMc0707445
– ident: e_1_3_6_29_2
  doi: 10.1126/science.1142447
– ident: e_1_3_6_48_2
  doi: 10.1016/j.amjcard.2010.03.057
– ident: e_1_3_6_3_2
  doi: 10.1056/NEJMoa1206797
– ident: e_1_3_6_42_2
  doi: 10.1038/ng.2797
– ident: e_1_3_6_43_2
  doi: 10.1161/CIRCGENETICS.108.817304
– ident: e_1_3_6_37_2
  doi: 10.1093/clinchem/36.1.15
– ident: e_1_3_6_45_2
  doi: 10.1016/j.jacc.2012.07.045
– ident: e_1_3_6_40_2
  doi: 10.1093/bioinformatics/btq330
– ident: e_1_3_6_41_2
  doi: 10.1093/hmg/ddw335
– ident: e_1_3_6_21_2
  doi: 10.1056/NEJMoa1510926
– ident: e_1_3_6_44_2
  doi: 10.1016/S0140-6736(12)60312-2
– ident: e_1_3_6_50_2
  doi: 10.1161/01.ATV.0000161928.16334.dd
– ident: e_1_3_6_32_2
  doi: 10.1161/01.ATV.21.3.415
– ident: e_1_3_6_24_2
  doi: 10.1038/nature13917
– ident: e_1_3_6_39_2
  doi: 10.1038/ng.806
– ident: e_1_3_6_19_2
  doi: 10.1056/NEJMoa1410489
SSID ssj0014329
Score 2.4974864
SecondaryResourceType review_article
Snippet Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA...
Rationale:Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD)....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 81
SubjectTerms Adult
Aged
Cardiovascular disease
Case-Control Studies
CETP gene
Cholesterol
Cholesterol Ester Transfer Proteins - blood
Cholesterol Ester Transfer Proteins - genetics
Cholesteryl ester transfer protein
Confidence intervals
Coronary artery disease
Coronary Disease - blood
Coronary Disease - diagnosis
Coronary Disease - genetics
Exons
Female
Genetic Variation - genetics
Health risk assessment
Heart diseases
Humans
Lipids
Low density lipoprotein
Male
Middle Aged
Nucleotide sequence
Proteins
Risk Factors
Triglycerides
Title Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/28506971
https://www.proquest.com/docview/2006872925
https://www.proquest.com/docview/1899405212
https://www.proquest.com/docview/1919961104
https://pubmed.ncbi.nlm.nih.gov/PMC5523940
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiDeBghaJW-QQ27u29xhZRQZUVFBa9Wb5saFWGrtK7QP8Fn4sM_uwE4h49GJHttfZeD5PZnZmviHkDZj0Xum7npOFQjgsWAonL31wXIuZW2ScY2IUZlt8CpJT9uGcn49GP7aylro2nxbf99aV3ESqcAzkilWy_yHZ_qZwAD6DfGELEobtP8n4BEkWqnqy2HTI7Ype_xn4viq1RRcpTmLsf4tkCN8uJ0e413TmS_hgRyPztK5TxDRzTDuMkdYA0-kSeA9aZOjsgziW1KDaFKbx18TwBQ3rys262-jl2lV1UW2aXvHrCH_S1F-dRPaI-oglYOryddVOzqbDYsJKYqsWZV93a7jVqtlepHBVRp2uI-4Vr3BC34RgpNG1HnMY1x1YemWs66V3UKdVq-7sYv-ko_3qP0D1H7__EgN858kcQ9JTH9S5pqzcgsTVWmHCQ8I-Yaawy7t9chxzrhrH3yK3vRAsMwz5fx5iVMz3hO3Thz_N1IfBHN7unQHyTpuv2zWCfvNsfk3Q3bJ4FvfJPeOq0LnG3QMykvVDcufYJGM8IrUBEB3gRy38aNZSgB_dgh9V8KMWftSORvhRgB9F-FGAH7Xwowp-1MDvMTl9d7SIE8e073AK7gatUwQsB_c1ijiXMmKzfMaWPphCMzB5gzBnLCwlj8LCj5Yiy6IMnnUI_jzYsGCCCpn5T8hB3dTyGaFS8lKC6ZkLt2S8KPJIcsFzLkvYgcc1Jsw-z7Qw3PbYYuUyVT5u4KaDRJDePtUSGZNpP-xKk7v8bcChFVZq9MA1NnINIvBRPTj9uj8NWhpDb1ktm-46dSMBQMI6-T9cI7AiAMxxNiZPtfz7WVngjEm4g4z-AmSJ3z1TVxeKLd6A-PmNR74gd4dX-pActJtOvgRLvM1fqRfiJzEg3FE
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+Truncating+Variants+at+the+Cholesteryl+Ester+Transfer+Protein+Gene+and+Risk+for+Coronary+Heart+Disease&rft.jtitle=Circulation+research&rft.au=Nomura%2C+Akihiro&rft.au=Won%2C+Hong-Hee&rft.au=Khera%2C+Amit+V.&rft.au=Takeuchi%2C+Fumihiko&rft.date=2017-06-23&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=121&rft.issue=1&rft.spage=81&rft.epage=88&rft_id=info:doi/10.1161%2FCIRCRESAHA.117.311145&rft_id=info%3Apmid%2F28506971&rft.externalDocID=PMC5523940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon