Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease
Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the gene may provide insight into the efficacy of CETP inhibition. To test whether protein-truncating variants (...
Saved in:
Published in | Circulation research Vol. 121; no. 1; pp. 81 - 88 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Lippincott Williams & Wilkins Ovid Technologies
23.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-7330 1524-4571 1524-4571 |
DOI | 10.1161/CIRCRESAHA.117.311145 |
Cover
Abstract | Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the
gene may provide insight into the efficacy of CETP inhibition.
To test whether protein-truncating variants (PTVs) at the
gene were associated with plasma lipid levels and CHD.
We sequenced the exons of the
gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of
PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with
gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the
gene. Compared with noncarriers, carriers of PTV at
had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27;
<1.0×10
), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98;
=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22;
=0.043).
PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90;
=5.1×10
).
Compared with noncarriers, carriers of PTV at
displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD. |
---|---|
AbstractList | Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the
gene may provide insight into the efficacy of CETP inhibition.
To test whether protein-truncating variants (PTVs) at the
gene were associated with plasma lipid levels and CHD.
We sequenced the exons of the
gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of
PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with
gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the
gene. Compared with noncarriers, carriers of PTV at
had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27;
<1.0×10
), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98;
=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22;
=0.043).
PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90;
=5.1×10
).
Compared with noncarriers, carriers of PTV at
displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD. Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.RATIONALETherapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.OBJECTIVETo test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.We sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.0×10-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.1×10-3).METHODS AND RESULTSWe sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.0×10-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.1×10-3).Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD.CONCLUSIONSCompared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD. Rationale:Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.Objective:To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.Methods and Results:We sequenced the exons of the CETP gene in 58 469 participants from 12 case-control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case-control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18-27; P<1.010-4), lower low-density lipoprotein cholesterol (-12.2 mg/dL; 95% confidence interval, -23 to -0.98; P=0.033), and lower triglycerides (-6.3%; 95% confidence interval, -12 to -0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54-0.90; P=5.110-3).Conclusions:Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD. Rationale:Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA sequence variants that truncate the CETP gene may provide insight into the efficacy of CETP inhibition.Objective:To test whether protein-truncating variants (PTVs) at the CETP gene were associated with plasma lipid levels and CHD.Methods and Results:We sequenced the exons of the CETP gene in 58 469 participants from 12 case–control studies (18 817 CHD cases, 39 652 CHD-free controls). We defined PTV as those that lead to a premature stop, disrupt canonical splice sites, or lead to insertions/deletions that shift frame. We also genotyped 1 Japanese-specific PTV in 27561 participants from 3 case–control studies (14 286 CHD cases, 13 275 CHD-free controls). We tested association of CETP PTV carrier status with both plasma lipids and CHD. Among 58 469 participants with CETP gene-sequencing data available, average age was 51.5 years and 43% were women; 1 in 975 participants carried a PTV at the CETP gene. Compared with noncarriers, carriers of PTV at CETP had higher high-density lipoprotein cholesterol (effect size, 22.6 mg/dL; 95% confidence interval, 18–27; P<1.0×10−4), lower low-density lipoprotein cholesterol (−12.2 mg/dL; 95% confidence interval, −23 to −0.98; P=0.033), and lower triglycerides (−6.3%; 95% confidence interval, −12 to −0.22; P=0.043). CETP PTV carrier status was associated with reduced risk for CHD (summary odds ratio, 0.70; 95% confidence interval, 0.54–0.90; P=5.1×10−3).Conclusions:Compared with noncarriers, carriers of PTV at CETP displayed higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, lower triglycerides, and lower risk for CHD. |
Author | Wang, Jun-Sing Inazu, Akihiro Yamamoto, Ken Watkins, Hugh Zekavat, Seyedeh M. Lavage, Daniel R. Lin, Shih-Yi Elosua, Roberto Teslovich, Tanya M. Leader, Joseph B. Hsiung, Chao A. Kubo, Michiaki Farrall, Martin Hartze, Dustin N. Kato, Norihiro McPherson, Ruth Kawashiri, Masa-aki Ida Chen, Yii-Der Emdin, Connor A. Nakashima, Eitaro Nomura, Akihiro Schunkert, Heribert Lander, Eric S. Saleheen, Danish Asselta, Rosanna Takeuchi, Fumihiko Rader, Daniel J. Tada, Hayato Kirchner, H. Lester Juang, Jyh-Ming J. Kathiresan, Sekar Peloso, Gina M. Marrugat, Jaume Won, Hong-Hee Borecki, Ingrid B. Momozawa, Yukihide McCarthy, Shane Braund, Peter S. Kessler, Thorsten Wilson, James G. Hall, Alistair S. Samani, Nilesh J. Carey, David J. Yamagishi, Masakazu Yokota, Mitsuhiro Khera, Amit V. Merlini, Piera A. Natarajan, Pradeep Ardissino, Diego Willer, Cristen J. Abecasis, Goncalo R. Correa, Adolfo Ito, Kaoru Danesh, John Murray, Michael F. Dewey, Frederick E. Katsuya, Tomohiro Gabriel, Stacey Rotter, Jerome I. Nakatochi, Masahiro Gupta, Namrata Klarin, Derek Duga, St |
Author_xml | – sequence: 1 givenname: Akihiro surname: Nomura fullname: Nomura, Akihiro – sequence: 2 givenname: Hong-Hee surname: Won fullname: Won, Hong-Hee – sequence: 3 givenname: Amit V. surname: Khera fullname: Khera, Amit V. – sequence: 4 givenname: Fumihiko surname: Takeuchi fullname: Takeuchi, Fumihiko – sequence: 5 givenname: Kaoru surname: Ito fullname: Ito, Kaoru – sequence: 6 givenname: Shane surname: McCarthy fullname: McCarthy, Shane – sequence: 7 givenname: Connor A. surname: Emdin fullname: Emdin, Connor A. – sequence: 8 givenname: Derek surname: Klarin fullname: Klarin, Derek – sequence: 9 givenname: Pradeep surname: Natarajan fullname: Natarajan, Pradeep – sequence: 10 givenname: Seyedeh M. surname: Zekavat fullname: Zekavat, Seyedeh M. – sequence: 11 givenname: Namrata surname: Gupta fullname: Gupta, Namrata – sequence: 12 givenname: Gina M. surname: Peloso fullname: Peloso, Gina M. – sequence: 13 givenname: Ingrid B. surname: Borecki fullname: Borecki, Ingrid B. – sequence: 14 givenname: Tanya M. surname: Teslovich fullname: Teslovich, Tanya M. – sequence: 15 givenname: Rosanna surname: Asselta fullname: Asselta, Rosanna – sequence: 16 givenname: Stefano surname: Duga fullname: Duga, Stefano – sequence: 17 givenname: Piera A. surname: Merlini fullname: Merlini, Piera A. – sequence: 18 givenname: Adolfo surname: Correa fullname: Correa, Adolfo – sequence: 19 givenname: Thorsten surname: Kessler fullname: Kessler, Thorsten – sequence: 20 givenname: James G. surname: Wilson fullname: Wilson, James G. – sequence: 21 givenname: Matthew J. surname: Bown fullname: Bown, Matthew J. – sequence: 22 givenname: Alistair S. surname: Hall fullname: Hall, Alistair S. – sequence: 23 givenname: Peter S. surname: Braund fullname: Braund, Peter S. – sequence: 24 givenname: David J. surname: Carey fullname: Carey, David J. – sequence: 25 givenname: Michael F. surname: Murray fullname: Murray, Michael F. – sequence: 26 givenname: H. Lester surname: Kirchner fullname: Kirchner, H. Lester – sequence: 27 givenname: Joseph B. surname: Leader fullname: Leader, Joseph B. – sequence: 28 givenname: Daniel R. surname: Lavage fullname: Lavage, Daniel R. – sequence: 29 givenname: J. Neil surname: Manus fullname: Manus, J. Neil – sequence: 30 givenname: Dustin N. surname: Hartze fullname: Hartze, Dustin N. – sequence: 31 givenname: Nilesh J. surname: Samani fullname: Samani, Nilesh J. – sequence: 32 givenname: Heribert surname: Schunkert fullname: Schunkert, Heribert – sequence: 33 givenname: Jaume surname: Marrugat fullname: Marrugat, Jaume – sequence: 34 givenname: Roberto surname: Elosua fullname: Elosua, Roberto – sequence: 35 givenname: Ruth surname: McPherson fullname: McPherson, Ruth – sequence: 36 givenname: Martin surname: Farrall fullname: Farrall, Martin – sequence: 37 givenname: Hugh surname: Watkins fullname: Watkins, Hugh – sequence: 38 givenname: Jyh-Ming J. surname: Juang fullname: Juang, Jyh-Ming J. – sequence: 39 givenname: Chao A. surname: Hsiung fullname: Hsiung, Chao A. – sequence: 40 givenname: Shih-Yi surname: Lin fullname: Lin, Shih-Yi – sequence: 41 givenname: Jun-Sing surname: Wang fullname: Wang, Jun-Sing – sequence: 42 givenname: Hayato surname: Tada fullname: Tada, Hayato – sequence: 43 givenname: Masa-aki surname: Kawashiri fullname: Kawashiri, Masa-aki – sequence: 44 givenname: Akihiro surname: Inazu fullname: Inazu, Akihiro – sequence: 45 givenname: Masakazu surname: Yamagishi fullname: Yamagishi, Masakazu – sequence: 46 givenname: Tomohiro surname: Katsuya fullname: Katsuya, Tomohiro – sequence: 47 givenname: Eitaro surname: Nakashima fullname: Nakashima, Eitaro – sequence: 48 givenname: Masahiro surname: Nakatochi fullname: Nakatochi, Masahiro – sequence: 49 givenname: Ken surname: Yamamoto fullname: Yamamoto, Ken – sequence: 50 givenname: Mitsuhiro surname: Yokota fullname: Yokota, Mitsuhiro – sequence: 51 givenname: Yukihide surname: Momozawa fullname: Momozawa, Yukihide – sequence: 52 givenname: Jerome I. surname: Rotter fullname: Rotter, Jerome I. – sequence: 53 givenname: Eric S. surname: Lander fullname: Lander, Eric S. – sequence: 54 givenname: Daniel J. surname: Rader fullname: Rader, Daniel J. – sequence: 55 givenname: John surname: Danesh fullname: Danesh, John – sequence: 56 givenname: Diego surname: Ardissino fullname: Ardissino, Diego – sequence: 57 givenname: Stacey surname: Gabriel fullname: Gabriel, Stacey – sequence: 58 givenname: Cristen J. surname: Willer fullname: Willer, Cristen J. – sequence: 59 givenname: Goncalo R. surname: Abecasis fullname: Abecasis, Goncalo R. – sequence: 60 givenname: Danish surname: Saleheen fullname: Saleheen, Danish – sequence: 61 givenname: Michiaki surname: Kubo fullname: Kubo, Michiaki – sequence: 62 givenname: Norihiro surname: Kato fullname: Kato, Norihiro – sequence: 63 givenname: Yii-Der surname: Ida Chen fullname: Ida Chen, Yii-Der – sequence: 64 givenname: Frederick E. surname: Dewey fullname: Dewey, Frederick E. – sequence: 65 givenname: Sekar surname: Kathiresan fullname: Kathiresan, Sekar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28506971$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUsFuEzEUtFARTQufALLEhcsWP6-9toWEFC1pU6kSKASulrPxNi4bu7W9SP17HCUt0AOcnp88M57nNyfoyAdvEXoN5Ayggfft5aJdzL5O59PSi7MaABh_hibAKasYF3CEJoQQVYm6JsfoJKUbQoDVVL1Ax1Ry0igBE-S_xJCt89Uyjr4z2flr_N1EZ3xO2GScNxa3mzDYlG28H_BsV_EyGp_6cjiw8YX1Fhu_xguXfuA-RNyGGLyJ93huTcz4k0vWJPsSPe_NkOyrQz1F385ny3ZeXX2-uGynV1XHoclV17AVgJSSc2slIyvC-lqAJJI1jVgxJtaWS9HVslfGSENrJWgDRHCqamVNfYo-7nVvx9XWrjvrczSDvo1uWzzpYJz--8a7jb4OPzXnRYuRIvDuIBDD3Vim11uXOjsMxtswJg0KlGoACPs_VKqiyCnQAn37BHoTxujLT2hKSCMFVZQX1Js_zT-6fthaAXzYA7oYUoq2153LZXdhN4sbNBC9y4j-nZHSC73PSGHzJ-yHB_7N-wXwJ7-E |
CitedBy_id | crossref_primary_10_1146_annurev_med_041717_085853 crossref_primary_10_1212_WNL_0000000000011553 crossref_primary_10_1038_s10038_021_00929_7 crossref_primary_10_3390_genes10100782 crossref_primary_10_1253_circj_CJ_17_0706 crossref_primary_10_1001_jamacardio_2021_3728 crossref_primary_10_1016_j_jacc_2018_10_072 crossref_primary_10_1038_s41586_019_1793_z crossref_primary_10_2174_0113816128284695240219093612 crossref_primary_10_1016_j_atherosclerosis_2018_07_004 crossref_primary_10_1080_14656566_2018_1448061 crossref_primary_10_1016_j_gde_2018_01_003 crossref_primary_10_1007_s13237_023_00420_y crossref_primary_10_5551_jat_ED188 crossref_primary_10_1097_MOL_0000000000000854 crossref_primary_10_2217_pgs_2018_0007 crossref_primary_10_1161_CIR_0000000000000757 crossref_primary_10_1161_JAHA_123_031459 crossref_primary_10_1056_NEJMoa1706444 crossref_primary_10_1161_CIR_0000000000000950 crossref_primary_10_1038_nrcardio_2017_115 crossref_primary_10_1038_s41598_018_23074_2 crossref_primary_10_1161_CIR_0000000000001123 crossref_primary_10_1080_14656566_2024_2409324 crossref_primary_10_1161_CIR_0000000000001052 crossref_primary_10_1016_j_jjcc_2018_04_007 crossref_primary_10_1093_nargab_lqz012 crossref_primary_10_1194_jlr_R082735 crossref_primary_10_1016_j_jacbts_2018_08_001 crossref_primary_10_1038_s41598_019_47456_2 crossref_primary_10_1194_jlr_P120001000 crossref_primary_10_1093_eurheartj_ehac605 crossref_primary_10_1038_s41440_020_0401_9 crossref_primary_10_1038_s41569_023_00860_8 crossref_primary_10_1136_openhrt_2021_001710 crossref_primary_10_1016_j_dadm_2018_08_008 crossref_primary_10_1016_j_atherosclerosis_2018_09_033 crossref_primary_10_1016_j_medj_2024_10_005 crossref_primary_10_2174_1389202921999200630145241 crossref_primary_10_1016_j_ccl_2017_12_011 crossref_primary_10_1016_j_jacbts_2020_09_004 crossref_primary_10_1038_s10038_020_0818_7 crossref_primary_10_1161_ATVBAHA_121_317181 crossref_primary_10_1161_CIRCRESAHA_117_311978 crossref_primary_10_1373_clinchem_2018_299222 crossref_primary_10_3390_ijms23169417 crossref_primary_10_1038_nrcardio_2017_87 crossref_primary_10_1016_j_atherosclerosis_2018_09_035 crossref_primary_10_1210_clinem_dgad031 crossref_primary_10_1093_eurheartj_ehab863 crossref_primary_10_1161_CIR_0000000000000659 crossref_primary_10_5551_jat_RV17034 crossref_primary_10_12997_jla_2021_10_1_57 crossref_primary_10_1080_14656566_2017_1365838 crossref_primary_10_1038_s41440_024_01633_7 crossref_primary_10_1371_journal_pgen_1009501 crossref_primary_10_1016_j_jjcc_2021_09_005 crossref_primary_10_1210_en_2018_00591 crossref_primary_10_1186_s12872_024_03759_5 crossref_primary_10_1161_RES_0000000000000211 crossref_primary_10_1016_j_jacc_2022_09_027 |
Cites_doi | 10.1097/MOL.0000000000000332 10.1007/s10654-009-9334-y 10.1056/NEJMoa0902604 10.1016/j.jacc.2016.11.056 10.1161/CIRCULATIONAHA.107.704254 10.1172/JCI117537 10.1371/journal.pone.0138014 10.1056/NEJMoa1405386 10.1126/science.3513311 10.1016/j.jacc.2016.03.520 10.1056/NEJMoa1615664 10.1001/jama.299.23.2777 10.1056/NEJMoa1009744 10.1097/MOL.0b013e3283612454 10.1038/jhg.2015.171 10.1006/pmed.1998.0340 10.1056/NEJMoa072366 10.1093/clinchem/18.6.499 10.1194/jlr.M300520-JLR200 10.1016/j.jacc.2012.08.967 10.1056/NEJM199011013231803 10.1056/NEJMoa054013 10.1161/01.ATV.17.6.1053 10.1161/01.cir.0000051465.94572.d0 10.1056/NEJMoa0706628 10.1371/journal.pone.0046385 10.1056/NEJMoa1307095 10.1056/NEJMoa1507652 10.1093/oxfordjournals.aje.a115184 10.1016/j.cmet.2008.03.001 10.1056/NEJMc0707445 10.1126/science.1142447 10.1016/j.amjcard.2010.03.057 10.1056/NEJMoa1206797 10.1038/ng.2797 10.1161/CIRCGENETICS.108.817304 10.1093/clinchem/36.1.15 10.1016/j.jacc.2012.07.045 10.1093/bioinformatics/btq330 10.1093/hmg/ddw335 10.1056/NEJMoa1510926 10.1016/S0140-6736(12)60312-2 10.1161/01.ATV.0000161928.16334.dd 10.1161/01.ATV.21.3.415 10.1038/nature13917 10.1038/ng.806 10.1056/NEJMoa1410489 |
ContentType | Journal Article |
Copyright | 2017 American Heart Association, Inc. Copyright Lippincott Williams & Wilkins Ovid Technologies Jun 23, 2017 |
Copyright_xml | – notice: 2017 American Heart Association, Inc. – notice: Copyright Lippincott Williams & Wilkins Ovid Technologies Jun 23, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK H94 K9. 7X8 8FD FR3 P64 RC3 5PM |
DOI | 10.1161/CIRCRESAHA.117.311145 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 88 |
ExternalDocumentID | PMC5523940 28506971 10_1161_CIRCRESAHA_117_311145 |
Genre | Meta-Analysis Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HHSN268201300048C – fundername: NHLBI NIH HHS grantid: HHSN268201300046C – fundername: NHLBI NIH HHS grantid: K01 HL125751 – fundername: NHLBI NIH HHS grantid: T32 HL007734 – fundername: NCATS NIH HHS grantid: UL1 TR001881 – fundername: NHLBI NIH HHS grantid: R35 HL135824 – fundername: NHLBI NIH HHS grantid: R01 HL127564 – fundername: Medical Research Council grantid: MR/L003120/1 – fundername: British Heart Foundation grantid: CS/14/2/30841 – fundername: NHGRI NIH HHS grantid: U54 HG003067 |
GroupedDBID | --- -~X .-D .3C .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO AAYXX ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACNWC ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADGGA ADGHP ADHPY AE3 AE6 AEETU AENEX AFBFQ AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BOYCO BQLVK C45 CITATION CS3 DIK DIWNM DU5 E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W YFH YOC ZFV CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK ADSXY H94 K9. 7X8 ADKSD 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c516t-c64b1188855ee840b04f3718084667b447de587c38f9aa8a23972610752939ea3 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Thu Aug 21 13:20:14 EDT 2025 Mon Sep 08 06:36:26 EDT 2025 Mon Sep 08 14:30:41 EDT 2025 Wed Aug 13 04:25:49 EDT 2025 Mon Jul 21 05:50:22 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Tue Jul 01 04:27:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | coronary disease lipids cholesteryl ester transfer protein case-control studies |
Language | English |
License | 2017 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c516t-c64b1188855ee840b04f3718084667b447de587c38f9aa8a23972610752939ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Please see Appendix for author affiliations. |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.117.311145 |
PMID | 28506971 |
PQID | 2006872925 |
PQPubID | 41518 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5523940 proquest_miscellaneous_1919961104 proquest_miscellaneous_1899405212 proquest_journals_2006872925 pubmed_primary_28506971 crossref_citationtrail_10_1161_CIRCRESAHA_117_311145 crossref_primary_10_1161_CIRCRESAHA_117_311145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-23 |
PublicationDateYYYYMMDD | 2017-06-23 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hagerstown |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2017 |
Publisher | Lippincott Williams & Wilkins Ovid Technologies |
Publisher_xml | – name: Lippincott Williams & Wilkins Ovid Technologies |
References | e_1_3_6_30_2 e_1_3_6_32_2 e_1_3_6_19_2 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_40_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_46_2 Taylor HA (e_1_3_6_26_2) 2005; 15 e_1_3_6_31_2 e_1_3_6_10_2 e_1_3_6_50_2 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_41_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_24_2 e_1_3_6_47_2 |
References_xml | – ident: e_1_3_6_6_2 doi: 10.1097/MOL.0000000000000332 – ident: e_1_3_6_31_2 doi: 10.1007/s10654-009-9334-y – ident: e_1_3_6_30_2 doi: 10.1056/NEJMoa0902604 – ident: e_1_3_6_17_2 doi: 10.1016/j.jacc.2016.11.056 – ident: e_1_3_6_47_2 doi: 10.1161/CIRCULATIONAHA.107.704254 – ident: e_1_3_6_33_2 doi: 10.1172/JCI117537 – ident: e_1_3_6_22_2 doi: 10.1371/journal.pone.0138014 – ident: e_1_3_6_10_2 doi: 10.1056/NEJMoa1405386 – ident: e_1_3_6_46_2 doi: 10.1126/science.3513311 – ident: e_1_3_6_38_2 doi: 10.1016/j.jacc.2016.03.520 – ident: e_1_3_6_20_2 doi: 10.1056/NEJMoa1615664 – ident: e_1_3_6_14_2 doi: 10.1001/jama.299.23.2777 – ident: e_1_3_6_8_2 doi: 10.1056/NEJMoa1009744 – ident: e_1_3_6_5_2 doi: 10.1097/MOL.0b013e3283612454 – ident: e_1_3_6_34_2 doi: 10.1038/jhg.2015.171 – ident: e_1_3_6_12_2 doi: 10.1006/pmed.1998.0340 – ident: e_1_3_6_27_2 doi: 10.1056/NEJMoa072366 – ident: e_1_3_6_36_2 doi: 10.1093/clinchem/18.6.499 – ident: e_1_3_6_13_2 doi: 10.1194/jlr.M300520-JLR200 – ident: e_1_3_6_7_2 doi: 10.1016/j.jacc.2012.08.967 – ident: e_1_3_6_16_2 doi: 10.1056/NEJM199011013231803 – ident: e_1_3_6_9_2 doi: 10.1056/NEJMoa054013 – ident: e_1_3_6_15_2 doi: 10.1161/01.ATV.17.6.1053 – ident: e_1_3_6_23_2 doi: 10.1161/01.cir.0000051465.94572.d0 – ident: e_1_3_6_2_2 doi: 10.1056/NEJMoa0706628 – ident: e_1_3_6_35_2 doi: 10.1371/journal.pone.0046385 – ident: e_1_3_6_18_2 doi: 10.1056/NEJMoa1307095 – ident: e_1_3_6_28_2 doi: 10.1056/NEJMoa1507652 – ident: e_1_3_6_25_2 doi: 10.1093/oxfordjournals.aje.a115184 – volume: 15 start-page: S6-1 year: 2005 ident: e_1_3_6_26_2 article-title: The Jackson Heart Study: an overview. publication-title: Ethn Dis – ident: e_1_3_6_4_2 – ident: e_1_3_6_49_2 doi: 10.1016/j.cmet.2008.03.001 – ident: e_1_3_6_11_2 doi: 10.1056/NEJMc0707445 – ident: e_1_3_6_29_2 doi: 10.1126/science.1142447 – ident: e_1_3_6_48_2 doi: 10.1016/j.amjcard.2010.03.057 – ident: e_1_3_6_3_2 doi: 10.1056/NEJMoa1206797 – ident: e_1_3_6_42_2 doi: 10.1038/ng.2797 – ident: e_1_3_6_43_2 doi: 10.1161/CIRCGENETICS.108.817304 – ident: e_1_3_6_37_2 doi: 10.1093/clinchem/36.1.15 – ident: e_1_3_6_45_2 doi: 10.1016/j.jacc.2012.07.045 – ident: e_1_3_6_40_2 doi: 10.1093/bioinformatics/btq330 – ident: e_1_3_6_41_2 doi: 10.1093/hmg/ddw335 – ident: e_1_3_6_21_2 doi: 10.1056/NEJMoa1510926 – ident: e_1_3_6_44_2 doi: 10.1016/S0140-6736(12)60312-2 – ident: e_1_3_6_50_2 doi: 10.1161/01.ATV.0000161928.16334.dd – ident: e_1_3_6_32_2 doi: 10.1161/01.ATV.21.3.415 – ident: e_1_3_6_24_2 doi: 10.1038/nature13917 – ident: e_1_3_6_39_2 doi: 10.1038/ng.806 – ident: e_1_3_6_19_2 doi: 10.1056/NEJMoa1410489 |
SSID | ssj0014329 |
Score | 2.4974864 |
SecondaryResourceType | review_article |
Snippet | Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD). Human DNA... Rationale:Therapies that inhibit CETP (cholesteryl ester transfer protein) have failed to demonstrate a reduction in risk for coronary heart disease (CHD).... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 81 |
SubjectTerms | Adult Aged Cardiovascular disease Case-Control Studies CETP gene Cholesterol Cholesterol Ester Transfer Proteins - blood Cholesterol Ester Transfer Proteins - genetics Cholesteryl ester transfer protein Confidence intervals Coronary artery disease Coronary Disease - blood Coronary Disease - diagnosis Coronary Disease - genetics Exons Female Genetic Variation - genetics Health risk assessment Heart diseases Humans Lipids Low density lipoprotein Male Middle Aged Nucleotide sequence Proteins Risk Factors Triglycerides |
Title | Protein-Truncating Variants at the Cholesteryl Ester Transfer Protein Gene and Risk for Coronary Heart Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28506971 https://www.proquest.com/docview/2006872925 https://www.proquest.com/docview/1899405212 https://www.proquest.com/docview/1919961104 https://pubmed.ncbi.nlm.nih.gov/PMC5523940 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiDeBghaJW-QQ27u29xhZRQZUVFBa9Wb5saFWGrtK7QP8Fn4sM_uwE4h49GJHttfZeD5PZnZmviHkDZj0Xum7npOFQjgsWAonL31wXIuZW2ScY2IUZlt8CpJT9uGcn49GP7aylro2nxbf99aV3ESqcAzkilWy_yHZ_qZwAD6DfGELEobtP8n4BEkWqnqy2HTI7Ype_xn4viq1RRcpTmLsf4tkCN8uJ0e413TmS_hgRyPztK5TxDRzTDuMkdYA0-kSeA9aZOjsgziW1KDaFKbx18TwBQ3rys262-jl2lV1UW2aXvHrCH_S1F-dRPaI-oglYOryddVOzqbDYsJKYqsWZV93a7jVqtlepHBVRp2uI-4Vr3BC34RgpNG1HnMY1x1YemWs66V3UKdVq-7sYv-ko_3qP0D1H7__EgN858kcQ9JTH9S5pqzcgsTVWmHCQ8I-Yaawy7t9chxzrhrH3yK3vRAsMwz5fx5iVMz3hO3Thz_N1IfBHN7unQHyTpuv2zWCfvNsfk3Q3bJ4FvfJPeOq0LnG3QMykvVDcufYJGM8IrUBEB3gRy38aNZSgB_dgh9V8KMWftSORvhRgB9F-FGAH7Xwowp-1MDvMTl9d7SIE8e073AK7gatUwQsB_c1ijiXMmKzfMaWPphCMzB5gzBnLCwlj8LCj5Yiy6IMnnUI_jzYsGCCCpn5T8hB3dTyGaFS8lKC6ZkLt2S8KPJIcsFzLkvYgcc1Jsw-z7Qw3PbYYuUyVT5u4KaDRJDePtUSGZNpP-xKk7v8bcChFVZq9MA1NnINIvBRPTj9uj8NWhpDb1ktm-46dSMBQMI6-T9cI7AiAMxxNiZPtfz7WVngjEm4g4z-AmSJ3z1TVxeKLd6A-PmNR74gd4dX-pActJtOvgRLvM1fqRfiJzEg3FE |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+Truncating+Variants+at+the+Cholesteryl+Ester+Transfer+Protein+Gene+and+Risk+for+Coronary+Heart+Disease&rft.jtitle=Circulation+research&rft.au=Nomura%2C+Akihiro&rft.au=Won%2C+Hong-Hee&rft.au=Khera%2C+Amit+V.&rft.au=Takeuchi%2C+Fumihiko&rft.date=2017-06-23&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=121&rft.issue=1&rft.spage=81&rft.epage=88&rft_id=info:doi/10.1161%2FCIRCRESAHA.117.311145&rft_id=info%3Apmid%2F28506971&rft.externalDocID=PMC5523940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |