Gene selection algorithms for microarray data based on least squares support vector machine
In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. A gene...
Saved in:
| Published in | BMC bioinformatics Vol. 7; no. 1; p. 95 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
BioMed Central
27.02.2006
BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-7-95 |
Cover
| Abstract | In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.
A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author.
The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes. |
|---|---|
| AbstractList | In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.
A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author.
The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes. In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.BACKGROUNDIn discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author.RESULTSA gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author.The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.CONCLUSIONThe proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes. In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes. Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. Results A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. Conclusion The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes. Abstract Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. Results A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. Conclusion The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes. |
| ArticleNumber | 95 |
| Author | Yao, Xin Suganthan, PN Tang, E Ke |
| AuthorAffiliation | 2 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK 1 School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore |
| AuthorAffiliation_xml | – name: 1 School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore – name: 2 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK |
| Author_xml | – sequence: 1 givenname: E Ke surname: Tang fullname: Tang, E Ke – sequence: 2 givenname: PN surname: Suganthan fullname: Suganthan, PN – sequence: 3 givenname: Xin surname: Yao fullname: Yao, Xin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16504159$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstr3DAQxk1JaR7ttcfiU29ONLYe1qVQQpsEAr20px7ErDzaVdBaG8lO2P--dnfJo1D2JDH6vp9mPua0OOpjT0XxEdg5QCsvgCuoamCiUpUWb4qTp8LRi_txcZrzHWOgWibeFccgBeMg9Enx-4p6KjMFsoOPfYlhGZMfVutcupjKtbcpYkq4LTscsFxgpq6cdIEwD2W-HzFRLvO42cQ0lA8TZXahXfme3hdvHYZMH_bnWfHr-7efl9fV7Y-rm8uvt5UVIIdKdkqJum6V4lxzzpgQTpNjjWQdX1iha3Bd47iSdc2o0SSd5HWjG5TgOFBzVtzsuF3EO7NJfo1payJ687cQ09JgGrwNZCwA8Ia07RYL7phrNTQ1Z6BRCsWbbmJd7Fhjv8HtI4bwBARm5sjNnKqZUzXKaDE5vuwcm3Gxps5SPyQMr9p4_dL7lVnGh4nDdMtgAnzeA1K8HykPZu2zpRCwpzhmI9WcD8iDwhrqRmjBDwpBcyF5O3_96WXvz6Pu92MS8J1gWoOcEzlj_YDzpkyj-PD_TM7_sR0I8Q8NwNsm |
| CitedBy_id | crossref_primary_10_3390_mi9100534 crossref_primary_10_1016_j_neucom_2012_01_013 crossref_primary_10_1016_j_neucom_2013_11_023 crossref_primary_10_1016_j_bbrc_2009_04_096 crossref_primary_10_1093_nar_gks209 crossref_primary_10_1007_s11682_021_00572_y crossref_primary_10_1108_17563780910939246 crossref_primary_10_1109_TSMCC_2009_2036594 crossref_primary_10_1007_s00500_014_1507_2 crossref_primary_10_1089_omi_2009_0003 crossref_primary_10_1109_TCBB_2016_2631164 crossref_primary_10_1007_s11042_019_7181_8 crossref_primary_10_1007_s10957_008_9496_x crossref_primary_10_4236_jsea_2011_47049 crossref_primary_10_1016_j_neucom_2010_02_025 crossref_primary_10_1016_j_csda_2007_12_011 crossref_primary_10_1155_2015_198363 crossref_primary_10_1186_1471_2164_10_S1_S3 crossref_primary_10_1016_j_ins_2013_04_027 crossref_primary_10_1155_2012_920920 crossref_primary_10_1186_1471_2105_9_S9_S9 crossref_primary_10_1186_1471_2105_8_370 crossref_primary_10_1158_0008_5472_CAN_07_1601 crossref_primary_10_3390_fi12060097 crossref_primary_10_1186_1471_2105_7_407 crossref_primary_10_1186_1471_2105_9_457 crossref_primary_10_1002_jmri_25961 crossref_primary_10_1089_cmb_2007_0211 crossref_primary_10_1109_TNB_2009_2035284 crossref_primary_10_1371_journal_pone_0081683 crossref_primary_10_3390_biology11091310 crossref_primary_10_1186_1471_2164_12_S5_S1 crossref_primary_10_1186_1748_7188_7_11 crossref_primary_10_1016_j_engappai_2012_12_009 crossref_primary_10_1016_j_neucom_2008_04_005 crossref_primary_10_20965_jaciii_2008_p0218 crossref_primary_10_1371_journal_pone_0011267 crossref_primary_10_1186_1471_2105_10_44 crossref_primary_10_1016_j_patcog_2007_02_007 crossref_primary_10_1016_j_jtbi_2009_04_013 |
| Cites_doi | 10.1093/nar/gkh563 10.1142/S0218001402002015 10.1093/bioinformatics/btg419 10.2174/1386207013330733 10.1162/089976600300015042 10.1142/9789812776655 10.1111/j.1365-3083.1995.tb03584.x 10.1002/0470854774 10.1093/jnci/95.1.14 10.1186/1471-2105-6-67 10.1007/978-0-387-21606-5 10.1186/1471-2105-6-76 10.1126/science.286.5439.531 10.1093/bioinformatics/bti216 10.1093/bioinformatics/bth383 10.1016/S0004-3702(97)00043-X 10.1109/4235.850656 10.1016/j.ygeno.2004.09.007 10.1186/1471-2105-6-148 10.1023/A:1012450327387 10.1023/A:1012487302797 10.7551/mitpress/4175.001.0001 10.1016/S0004-3702(97)00063-5 10.1023/A:1018628609742 10.1016/S0140-6736(03)12775-4 10.1016/j.neunet.2004.07.002 10.1073/pnas.102102699 |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 Tang et al; licensee BioMed Central Ltd. 2006 Tang et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2006 Tang et al; licensee BioMed Central Ltd. 2006 Tang et al; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-7-95 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database Engineering Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 95 |
| ExternalDocumentID | oai_doaj_org_article_c11143e9cdbb4f0f891324019a65743d 10.1186/1471-2105-7-95 PMC1409801 16504159 10_1186_1471_2105_7_95 |
| Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB ALIPV CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFFHD AFKRA ARAPS AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK K6V K7- LK8 M1P M7P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY |
| ID | FETCH-LOGICAL-c516t-6d77522877449440055f9ef0360d4bc5921fd3f476220e39e6f642393a61f41e3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:34:47 EDT 2025 Wed Oct 29 11:55:16 EDT 2025 Thu Aug 21 14:03:54 EDT 2025 Thu Sep 04 20:30:06 EDT 2025 Tue Oct 07 09:35:40 EDT 2025 Tue Oct 07 09:34:45 EDT 2025 Thu Apr 03 07:06:49 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Wed Oct 01 01:46:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-6d77522877449440055f9ef0360d4bc5921fd3f476220e39e6f642393a61f41e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-95 |
| PMID | 16504159 |
| PQID | 19456481 |
| PQPubID | 23462 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c11143e9cdbb4f0f891324019a65743d unpaywall_primary_10_1186_1471_2105_7_95 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1409801 proquest_miscellaneous_67775216 proquest_miscellaneous_21235954 proquest_miscellaneous_19456481 pubmed_primary_16504159 crossref_citationtrail_10_1186_1471_2105_7_95 crossref_primary_10_1186_1471_2105_7_95 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-02-27 |
| PublicationDateYYYYMMDD | 2006-02-27 |
| PublicationDate_xml | – month: 02 year: 2006 text: 2006-02-27 day: 27 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2006 |
| Publisher | BioMed Central BMC |
| Publisher_xml | – name: BioMed Central – name: BMC |
| References | 834_CR35 N Pochet (834_CR17) 2004; 20 T Van Gestel (834_CR34) 2003 T Cabrera (834_CR26) 1995; 41 XX Liu (834_CR24) 2005; 6 ML Raymer (834_CR11) 2000; 4 A Rakotomamonjy (834_CR14) 2003; 3 A Luntz (834_CR30) 1969 V Vapnik (834_CR31) 2000; 12 CL Nutt (834_CR3) 2003; 63 MF Li (834_CR25) 2005; 6 I Tsamardinos (834_CR9) 2003 GC Cawley (834_CR33) 2004; 17 TR Golub (834_CR1) 1999; 286 P Devijver (834_CR8) 1982 UM Braga-Neto (834_CR20) 2004; 20 X Zhou (834_CR15) 2005; 21 L Li (834_CR12) 2005; 85 N Iizuka (834_CR2) 2003; 361 C Ambroise (834_CR18) 2002; 99 R Simon (834_CR19) 2003; 95 AR Webb (834_CR10) 2002 B Schölkopf (834_CR27) 2001 JAK Suykens (834_CR28) 1999; 9 SB Cho (834_CR5) 2002; 16 R Kohavi (834_CR4) 1997; 97 AL Blum (834_CR6) 1997; 97 T Jirapech-Umpai (834_CR13) 2005; 6 I Guyon (834_CR7) 2002; 46 L Li (834_CR16) 2001; 4 X Li (834_CR23) 2004; 32 T Hastie (834_CR21) 2001 O Chapelle (834_CR32) 2002; 46 L Brieman (834_CR22) 1996; 24 JAK Suykens (834_CR29) 2002 J Platt (834_CR36) 2000 |
| References_xml | – volume: 24 start-page: 123 year: 1996 ident: 834_CR22 publication-title: Machine Learning – volume: 32 start-page: 2685 year: 2004 ident: 834_CR23 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh563 – volume: 16 start-page: 831 year: 2002 ident: 834_CR5 publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001402002015 – volume: 20 start-page: 374 year: 2004 ident: 834_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg419 – volume-title: Pattern Recognition: A Statistical Approach year: 1982 ident: 834_CR8 – volume: 4 start-page: 727 year: 2001 ident: 834_CR16 publication-title: Computational Chemistry High Throughput Screen doi: 10.2174/1386207013330733 – volume: 12 start-page: 2013 year: 2000 ident: 834_CR31 publication-title: Neural Computation doi: 10.1162/089976600300015042 – volume-title: Least Squares Support Vector Machines year: 2002 ident: 834_CR29 doi: 10.1142/9789812776655 – volume: 41 start-page: 398 year: 1995 ident: 834_CR26 publication-title: Scandinavian Journal of Immunology doi: 10.1111/j.1365-3083.1995.tb03584.x – volume: 63 start-page: 1602 year: 2003 ident: 834_CR3 publication-title: Cancer Research – volume-title: Statistical Pattern Recognition year: 2002 ident: 834_CR10 doi: 10.1002/0470854774 – volume: 95 start-page: 14 year: 2003 ident: 834_CR19 publication-title: Journal of National Cancer Institute doi: 10.1093/jnci/95.1.14 – volume: 6 start-page: 67 year: 2005 ident: 834_CR25 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-67 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2001 ident: 834_CR21 doi: 10.1007/978-0-387-21606-5 – volume: 6 start-page: 76 year: 2005 ident: 834_CR24 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-76 – volume-title: Technicheskaya Kibernatica year: 1969 ident: 834_CR30 – volume-title: Advances of Large Margin Classifiers year: 2000 ident: 834_CR36 – volume: 286 start-page: 531 year: 1999 ident: 834_CR1 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 21 start-page: 1559 year: 2005 ident: 834_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti216 – volume: 20 start-page: 3185 year: 2004 ident: 834_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth383 – volume: 97 start-page: 273 year: 1997 ident: 834_CR4 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – volume: 4 start-page: 164 year: 2000 ident: 834_CR11 publication-title: IEEE Transactions Evolutionary Computation doi: 10.1109/4235.850656 – volume: 85 start-page: 16 year: 2005 ident: 834_CR12 publication-title: Genomics doi: 10.1016/j.ygeno.2004.09.007 – ident: 834_CR35 – volume: 6 start-page: 148 year: 2005 ident: 834_CR13 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-148 – volume: 3 start-page: 1357 year: 2003 ident: 834_CR14 publication-title: Journal of Machine Learning Research – volume: 46 start-page: 131 year: 2002 ident: 834_CR32 publication-title: Machine Learning doi: 10.1023/A:1012450327387 – volume: 46 start-page: 389 year: 2002 ident: 834_CR7 publication-title: Machine Learning doi: 10.1023/A:1012487302797 – volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond year: 2001 ident: 834_CR27 doi: 10.7551/mitpress/4175.001.0001 – volume: 97 start-page: 245 year: 1997 ident: 834_CR6 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00063-5 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 834_CR28 publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – start-page: 1 volume-title: Proc of the International Conference on Computational Intelligence for Financial Engineering (CIFER'03) year: 2003 ident: 834_CR34 – volume: 361 start-page: 923 year: 2003 ident: 834_CR2 publication-title: The Lancet doi: 10.1016/S0140-6736(03)12775-4 – volume-title: Ninth International Workshop on Artificial Intelligence and Statistics year: 2003 ident: 834_CR9 – volume: 17 start-page: 1467 year: 2004 ident: 834_CR33 publication-title: Neural Networks doi: 10.1016/j.neunet.2004.07.002 – volume: 99 start-page: 6562 year: 2002 ident: 834_CR18 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.102102699 |
| SSID | ssj0017805 |
| Score | 2.1446357 |
| Snippet | In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also... Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult... Abstract Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 95 |
| SubjectTerms | Algorithms Artificial Intelligence Gene Expression Profiling - methods Least-Squares Analysis Oligonucleotide Array Sequence Analysis - methods Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQJAQvaIxfYTD8gAQvVuvEduLHgagmpO2JSZV4sJzYppPStDTNUP977py0rIJqL7w69xCfz77v7LvvCHmvXOZKp1IG6Dww5Jlk2pWKZQIiN6EgIotFYpdX6uJafJ3K6Z1WX5gT1tMD94obVbAZReZ15cpShHHAZzXwQlxbJcH7OTx9x4XeBlPD-wEy9ce6opwzCGrkQNfICzXajTF8u9xzR5G1_19Q8--MyUdds7SbX7au77ijyTF5MuBIet7__1PywDcn5GHfWXLzjHxHOmnaxiY3oHlq6x-L1c16Nm8poFQ6xzQ8u1rZDcUUUYq-zFGQq7GVD21_dliWRNtuifCc3sarfTqPiZf-ObmefPn2-YINfRRYJblaM-XyHGBWAUhPaCGQditoH8B3jZ0oK6lTHlwWBJyL6dhn2qugkBcws7B-gvvsBTlqFo1_RWgaAqyfDODiJOx2UVqZl3BO5T5LZSpkQthWnaYaSMax10VtYrBRKIPqN6h-kxsN8h928sueXuOg5CdcnZ0U0mLHATAWMxiLuc9YEvJuu7YGthG-jdjGL7rWcI28OgU_LIE-XmopDkuoHPXMVUJe9tbyZ0qAgwEp6YTke3a0N5v9L83NLJJ9IyEZoIiEfNxZ3D2aev0_NHVKHveXTVi89YYcrVedfwvwa12exZ32G2UjJ2c priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWWrhB74ZslfPqABBd3m8R26uOCWK2QqDhQaREHK47t3Yo0KWkCKr-emSQtW5YKDlyTF0V2xp438cwbQl5IG1tjZcSAnXuGOpNMWSNZzCFy4xIisrZI7P1Enk75uzNxtkcm61oYM8_MrOxFQ1GoeHi5DD3vqhywi4KrjhbWd4t-LI9C2GQZhC-C4YnkNbIvBXDzAdmfTj4cf2pLjHpAr9x49aEtz9QK-P-JdV5NnrzRFIt09T3N80ue6eQWKddj6hJSvgyb2gyzH7_JPf6_Qd8mN3sSS487q7tD9lxxl1zv2lqu7pHPqGVNl22HHfjsNM3Py2pWX8yXFN5N55gDmFZVuqKYn0rRkVoKuBz7CNHl1wZrouiyWWBsQL-15wp03mZ9uvtkevL245tT1jdxYJkIZc2kTRLgeGOgmVxxjppfXjkPjnNkucmEikJvY89hU45GLlZOeomihHEKxsNDFz8gg6Is3ENCI-_BeIQH_ypgq-EmFYmBTTJxcSQiLgLC1h9QZ73COTbayHUb6YylxgnTOGE60QrwLzf4RaftsRP5Gu1hg0JN7vZCWZ3rfonrDNwGj53KrDHcjzweAANfClUqBfA0G5Dna2vSsIbxYCYtXNksdahQ1Gcc7kYgwRBK8N0ImeA8hzIgh519_hoSkHCgaSogyZblbo1m-04xu2iVxlENDShMQF5tbPwvM_Xo36GPyUH3Pwvrw56QQV017ikwvNo865ftT1rxS_8 priority: 102 providerName: Unpaywall |
| Title | Gene selection algorithms for microarray data based on least squares support vector machine |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16504159 https://www.proquest.com/docview/19456481 https://www.proquest.com/docview/21235954 https://www.proquest.com/docview/67775216 https://pubmed.ncbi.nlm.nih.gov/PMC1409801 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-95 https://doaj.org/article/c11143e9cdbb4f0f891324019a65743d |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQvaHwHRvEDAl4MTWI79cM0FcQ0VdqEBJWGeLCS2N6Q0rRNGqD_PXdO2lFt1V6TaxWf7-Nnn_07Qt5IE5vMyIgBOncMeSaZMplkMYeVG5ewIvOXxE7P5MmYj87F-Q5ZHeXtFFjfuLTDflLjqvjwd748Aoc_9A4_kB9DCLAMli6CYTXy7WzOsKkUFl-7Dht3yB4kLoWdHU75VZEB6fz95aPu5x2n4_W_3MhZntr_Jjx6_Vjlvaacpcs_aVH8l7OO98mDDmzSYWsdD8mOLR-Ru237yeVj8hM5p2ntO-HA9NC0uIAhLS4nNQUoSyd4Vi-tqnRJ8RwpxYRnKMgV2O-H1vMG7y7Rupmh-uhvv_9PJ_50pn1Cxsdfvn8-YV2zBZaLUC6YNEkCWGwAcJArzpGbyynrIMH1Dc9yoaLQmdhxCJ5R38bKSieRPDBOYZJ5aOOnZLeclvY5oZFzMMnCQR4UEBJ4lookg2CW2DgSERcBYSt16rxjIseGGIX2K5KB1Kh-jerXiVYg_24tP2s5OLZKfsLZWUshd7Z_MK0udOeKOofwzmOrcpNl3PUdFmrBPEKVSgF4ygTk9WpuNfgaFlDS0k6bWocKyXcG4XYJBAJCCb5dQiao51AG5FlrLVdDArAMcEoFJNmwo43RbL4pf116RnBkLQOoEZD3a4u7RVMvbv3Al-R-u92E17cOyO6iauwrAGCLrEf2hsPRt1HPb2D0vFPBs_HZ1-GPf3B-Lxw |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWWrhB74ZslfPqABBd3m8R26uOCWK2QqDhQaREHK47t3Yo0KWkCKr-emSQtW5YKDlyTF0V2xp438cwbQl5IG1tjZcSAnXuGOpNMWSNZzCFy4xIisrZI7P1Enk75uzNxtkcm61oYM8_MrOxFQ1GoeHi5DD3vqhywi4KrjhbWd4t-LI9C2GQZhC-C4YnkNbIvBXDzAdmfTj4cf2pLjHpAr9x49aEtz9QK-P-JdV5NnrzRFIt09T3N80ue6eQWKddj6hJSvgyb2gyzH7_JPf6_Qd8mN3sSS487q7tD9lxxl1zv2lqu7pHPqGVNl22HHfjsNM3Py2pWX8yXFN5N55gDmFZVuqKYn0rRkVoKuBz7CNHl1wZrouiyWWBsQL-15wp03mZ9uvtkevL245tT1jdxYJkIZc2kTRLgeGOgmVxxjppfXjkPjnNkucmEikJvY89hU45GLlZOeomihHEKxsNDFz8gg6Is3ENCI-_BeIQH_ypgq-EmFYmBTTJxcSQiLgLC1h9QZ73COTbayHUb6YylxgnTOGE60QrwLzf4RaftsRP5Gu1hg0JN7vZCWZ3rfonrDNwGj53KrDHcjzweAANfClUqBfA0G5Dna2vSsIbxYCYtXNksdahQ1Gcc7kYgwRBK8N0ImeA8hzIgh519_hoSkHCgaSogyZblbo1m-04xu2iVxlENDShMQF5tbPwvM_Xo36GPyUH3Pwvrw56QQV017ikwvNo865ftT1rxS_8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+algorithms+for+microarray+data+based+on+least+squares+support+vector+machine&rft.jtitle=BMC+bioinformatics&rft.au=Tang%2C+E+Ke&rft.au=Suganthan%2C+P+N&rft.au=Yao%2C+Xin&rft.date=2006-02-27&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=7&rft.spage=95&rft_id=info:doi/10.1186%2F1471-2105-7-95&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |