Gene selection algorithms for microarray data based on least squares support vector machine

In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. A gene...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 7; no. 1; p. 95
Main Authors Tang, E Ke, Suganthan, PN, Yao, Xin
Format Journal Article
LanguageEnglish
Published England BioMed Central 27.02.2006
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-7-95

Cover

Abstract In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.
AbstractList In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.
In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.BACKGROUNDIn discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes.A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author.RESULTSA gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author.The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.CONCLUSIONThe proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.
In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.
Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. Results A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. Conclusion The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.
Abstract Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. Results A gene selection method searches for an optimal or near optimal subset of genes with respect to a given evaluation criterion. In this paper, we propose a new evaluation criterion, named the leave-one-out calculation (LOOC, A list of abbreviations appears just above the list of references) measure. A gene selection method, named leave-one-out calculation sequential forward selection (LOOCSFS) algorithm, is then presented by combining the LOOC measure with the sequential forward selection scheme. Further, a novel gene selection algorithm, the gradient-based leave-one-out gene selection (GLGS) algorithm, is also proposed. Both of the gene selection algorithms originate from an efficient and exact calculation of the leave-one-out cross-validation error of the least squares support vector machine (LS-SVM). The proposed approaches are applied to two microarray datasets and compared to other well-known gene selection methods using codes available from the second author. Conclusion The proposed gene selection approaches can provide gene subsets leading to more accurate classification results, while their computational complexity is comparable to the existing methods. The GLGS algorithm can also better scale to datasets with a very large number of genes.
ArticleNumber 95
Author Yao, Xin
Suganthan, PN
Tang, E Ke
AuthorAffiliation 2 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
1 School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore
AuthorAffiliation_xml – name: 1 School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore
– name: 2 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
Author_xml – sequence: 1
  givenname: E Ke
  surname: Tang
  fullname: Tang, E Ke
– sequence: 2
  givenname: PN
  surname: Suganthan
  fullname: Suganthan, PN
– sequence: 3
  givenname: Xin
  surname: Yao
  fullname: Yao, Xin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16504159$$D View this record in MEDLINE/PubMed
BookMark eNqFkstr3DAQxk1JaR7ttcfiU29ONLYe1qVQQpsEAr20px7ErDzaVdBaG8lO2P--dnfJo1D2JDH6vp9mPua0OOpjT0XxEdg5QCsvgCuoamCiUpUWb4qTp8LRi_txcZrzHWOgWibeFccgBeMg9Enx-4p6KjMFsoOPfYlhGZMfVutcupjKtbcpYkq4LTscsFxgpq6cdIEwD2W-HzFRLvO42cQ0lA8TZXahXfme3hdvHYZMH_bnWfHr-7efl9fV7Y-rm8uvt5UVIIdKdkqJum6V4lxzzpgQTpNjjWQdX1iha3Bd47iSdc2o0SSd5HWjG5TgOFBzVtzsuF3EO7NJfo1payJ687cQ09JgGrwNZCwA8Ia07RYL7phrNTQ1Z6BRCsWbbmJd7Fhjv8HtI4bwBARm5sjNnKqZUzXKaDE5vuwcm3Gxps5SPyQMr9p4_dL7lVnGh4nDdMtgAnzeA1K8HykPZu2zpRCwpzhmI9WcD8iDwhrqRmjBDwpBcyF5O3_96WXvz6Pu92MS8J1gWoOcEzlj_YDzpkyj-PD_TM7_sR0I8Q8NwNsm
CitedBy_id crossref_primary_10_3390_mi9100534
crossref_primary_10_1016_j_neucom_2012_01_013
crossref_primary_10_1016_j_neucom_2013_11_023
crossref_primary_10_1016_j_bbrc_2009_04_096
crossref_primary_10_1093_nar_gks209
crossref_primary_10_1007_s11682_021_00572_y
crossref_primary_10_1108_17563780910939246
crossref_primary_10_1109_TSMCC_2009_2036594
crossref_primary_10_1007_s00500_014_1507_2
crossref_primary_10_1089_omi_2009_0003
crossref_primary_10_1109_TCBB_2016_2631164
crossref_primary_10_1007_s11042_019_7181_8
crossref_primary_10_1007_s10957_008_9496_x
crossref_primary_10_4236_jsea_2011_47049
crossref_primary_10_1016_j_neucom_2010_02_025
crossref_primary_10_1016_j_csda_2007_12_011
crossref_primary_10_1155_2015_198363
crossref_primary_10_1186_1471_2164_10_S1_S3
crossref_primary_10_1016_j_ins_2013_04_027
crossref_primary_10_1155_2012_920920
crossref_primary_10_1186_1471_2105_9_S9_S9
crossref_primary_10_1186_1471_2105_8_370
crossref_primary_10_1158_0008_5472_CAN_07_1601
crossref_primary_10_3390_fi12060097
crossref_primary_10_1186_1471_2105_7_407
crossref_primary_10_1186_1471_2105_9_457
crossref_primary_10_1002_jmri_25961
crossref_primary_10_1089_cmb_2007_0211
crossref_primary_10_1109_TNB_2009_2035284
crossref_primary_10_1371_journal_pone_0081683
crossref_primary_10_3390_biology11091310
crossref_primary_10_1186_1471_2164_12_S5_S1
crossref_primary_10_1186_1748_7188_7_11
crossref_primary_10_1016_j_engappai_2012_12_009
crossref_primary_10_1016_j_neucom_2008_04_005
crossref_primary_10_20965_jaciii_2008_p0218
crossref_primary_10_1371_journal_pone_0011267
crossref_primary_10_1186_1471_2105_10_44
crossref_primary_10_1016_j_patcog_2007_02_007
crossref_primary_10_1016_j_jtbi_2009_04_013
Cites_doi 10.1093/nar/gkh563
10.1142/S0218001402002015
10.1093/bioinformatics/btg419
10.2174/1386207013330733
10.1162/089976600300015042
10.1142/9789812776655
10.1111/j.1365-3083.1995.tb03584.x
10.1002/0470854774
10.1093/jnci/95.1.14
10.1186/1471-2105-6-67
10.1007/978-0-387-21606-5
10.1186/1471-2105-6-76
10.1126/science.286.5439.531
10.1093/bioinformatics/bti216
10.1093/bioinformatics/bth383
10.1016/S0004-3702(97)00043-X
10.1109/4235.850656
10.1016/j.ygeno.2004.09.007
10.1186/1471-2105-6-148
10.1023/A:1012450327387
10.1023/A:1012487302797
10.7551/mitpress/4175.001.0001
10.1016/S0004-3702(97)00063-5
10.1023/A:1018628609742
10.1016/S0140-6736(03)12775-4
10.1016/j.neunet.2004.07.002
10.1073/pnas.102102699
ContentType Journal Article
Copyright Copyright © 2006 Tang et al; licensee BioMed Central Ltd. 2006 Tang et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2006 Tang et al; licensee BioMed Central Ltd. 2006 Tang et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-7-95
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Engineering Research Database
Engineering Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 95
ExternalDocumentID oai_doaj_org_article_c11143e9cdbb4f0f891324019a65743d
10.1186/1471-2105-7-95
PMC1409801
16504159
10_1186_1471_2105_7_95
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFFHD
AFKRA
ARAPS
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
LK8
M1P
M7P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c516t-6d77522877449440055f9ef0360d4bc5921fd3f476220e39e6f642393a61f41e3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:34:47 EDT 2025
Wed Oct 29 11:55:16 EDT 2025
Thu Aug 21 14:03:54 EDT 2025
Thu Sep 04 20:30:06 EDT 2025
Tue Oct 07 09:35:40 EDT 2025
Tue Oct 07 09:34:45 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Wed Oct 01 01:46:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-6d77522877449440055f9ef0360d4bc5921fd3f476220e39e6f642393a61f41e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-95
PMID 16504159
PQID 19456481
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c11143e9cdbb4f0f891324019a65743d
unpaywall_primary_10_1186_1471_2105_7_95
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1409801
proquest_miscellaneous_67775216
proquest_miscellaneous_21235954
proquest_miscellaneous_19456481
pubmed_primary_16504159
crossref_citationtrail_10_1186_1471_2105_7_95
crossref_primary_10_1186_1471_2105_7_95
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-02-27
PublicationDateYYYYMMDD 2006-02-27
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-27
  day: 27
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2006
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References 834_CR35
N Pochet (834_CR17) 2004; 20
T Van Gestel (834_CR34) 2003
T Cabrera (834_CR26) 1995; 41
XX Liu (834_CR24) 2005; 6
ML Raymer (834_CR11) 2000; 4
A Rakotomamonjy (834_CR14) 2003; 3
A Luntz (834_CR30) 1969
V Vapnik (834_CR31) 2000; 12
CL Nutt (834_CR3) 2003; 63
MF Li (834_CR25) 2005; 6
I Tsamardinos (834_CR9) 2003
GC Cawley (834_CR33) 2004; 17
TR Golub (834_CR1) 1999; 286
P Devijver (834_CR8) 1982
UM Braga-Neto (834_CR20) 2004; 20
X Zhou (834_CR15) 2005; 21
L Li (834_CR12) 2005; 85
N Iizuka (834_CR2) 2003; 361
C Ambroise (834_CR18) 2002; 99
R Simon (834_CR19) 2003; 95
AR Webb (834_CR10) 2002
B Schölkopf (834_CR27) 2001
JAK Suykens (834_CR28) 1999; 9
SB Cho (834_CR5) 2002; 16
R Kohavi (834_CR4) 1997; 97
AL Blum (834_CR6) 1997; 97
T Jirapech-Umpai (834_CR13) 2005; 6
I Guyon (834_CR7) 2002; 46
L Li (834_CR16) 2001; 4
X Li (834_CR23) 2004; 32
T Hastie (834_CR21) 2001
O Chapelle (834_CR32) 2002; 46
L Brieman (834_CR22) 1996; 24
JAK Suykens (834_CR29) 2002
J Platt (834_CR36) 2000
References_xml – volume: 24
  start-page: 123
  year: 1996
  ident: 834_CR22
  publication-title: Machine Learning
– volume: 32
  start-page: 2685
  year: 2004
  ident: 834_CR23
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh563
– volume: 16
  start-page: 831
  year: 2002
  ident: 834_CR5
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001402002015
– volume: 20
  start-page: 374
  year: 2004
  ident: 834_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg419
– volume-title: Pattern Recognition: A Statistical Approach
  year: 1982
  ident: 834_CR8
– volume: 4
  start-page: 727
  year: 2001
  ident: 834_CR16
  publication-title: Computational Chemistry High Throughput Screen
  doi: 10.2174/1386207013330733
– volume: 12
  start-page: 2013
  year: 2000
  ident: 834_CR31
  publication-title: Neural Computation
  doi: 10.1162/089976600300015042
– volume-title: Least Squares Support Vector Machines
  year: 2002
  ident: 834_CR29
  doi: 10.1142/9789812776655
– volume: 41
  start-page: 398
  year: 1995
  ident: 834_CR26
  publication-title: Scandinavian Journal of Immunology
  doi: 10.1111/j.1365-3083.1995.tb03584.x
– volume: 63
  start-page: 1602
  year: 2003
  ident: 834_CR3
  publication-title: Cancer Research
– volume-title: Statistical Pattern Recognition
  year: 2002
  ident: 834_CR10
  doi: 10.1002/0470854774
– volume: 95
  start-page: 14
  year: 2003
  ident: 834_CR19
  publication-title: Journal of National Cancer Institute
  doi: 10.1093/jnci/95.1.14
– volume: 6
  start-page: 67
  year: 2005
  ident: 834_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-67
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2001
  ident: 834_CR21
  doi: 10.1007/978-0-387-21606-5
– volume: 6
  start-page: 76
  year: 2005
  ident: 834_CR24
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-76
– volume-title: Technicheskaya Kibernatica
  year: 1969
  ident: 834_CR30
– volume-title: Advances of Large Margin Classifiers
  year: 2000
  ident: 834_CR36
– volume: 286
  start-page: 531
  year: 1999
  ident: 834_CR1
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 21
  start-page: 1559
  year: 2005
  ident: 834_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti216
– volume: 20
  start-page: 3185
  year: 2004
  ident: 834_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth383
– volume: 97
  start-page: 273
  year: 1997
  ident: 834_CR4
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 4
  start-page: 164
  year: 2000
  ident: 834_CR11
  publication-title: IEEE Transactions Evolutionary Computation
  doi: 10.1109/4235.850656
– volume: 85
  start-page: 16
  year: 2005
  ident: 834_CR12
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2004.09.007
– ident: 834_CR35
– volume: 6
  start-page: 148
  year: 2005
  ident: 834_CR13
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-148
– volume: 3
  start-page: 1357
  year: 2003
  ident: 834_CR14
  publication-title: Journal of Machine Learning Research
– volume: 46
  start-page: 131
  year: 2002
  ident: 834_CR32
  publication-title: Machine Learning
  doi: 10.1023/A:1012450327387
– volume: 46
  start-page: 389
  year: 2002
  ident: 834_CR7
  publication-title: Machine Learning
  doi: 10.1023/A:1012487302797
– volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
  year: 2001
  ident: 834_CR27
  doi: 10.7551/mitpress/4175.001.0001
– volume: 97
  start-page: 245
  year: 1997
  ident: 834_CR6
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 834_CR28
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– start-page: 1
  volume-title: Proc of the International Conference on Computational Intelligence for Financial Engineering (CIFER'03)
  year: 2003
  ident: 834_CR34
– volume: 361
  start-page: 923
  year: 2003
  ident: 834_CR2
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(03)12775-4
– volume-title: Ninth International Workshop on Artificial Intelligence and Statistics
  year: 2003
  ident: 834_CR9
– volume: 17
  start-page: 1467
  year: 2004
  ident: 834_CR33
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2004.07.002
– volume: 99
  start-page: 6562
  year: 2002
  ident: 834_CR18
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.102102699
SSID ssj0017805
Score 2.1446357
Snippet In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also...
Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult...
Abstract Background In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 95
SubjectTerms Algorithms
Artificial Intelligence
Gene Expression Profiling - methods
Least-Squares Analysis
Oligonucleotide Array Sequence Analysis - methods
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQJAQvaIxfYTD8gAQvVuvEduLHgagmpO2JSZV4sJzYppPStDTNUP977py0rIJqL7w69xCfz77v7LvvCHmvXOZKp1IG6Dww5Jlk2pWKZQIiN6EgIotFYpdX6uJafJ3K6Z1WX5gT1tMD94obVbAZReZ15cpShHHAZzXwQlxbJcH7OTx9x4XeBlPD-wEy9ce6opwzCGrkQNfICzXajTF8u9xzR5G1_19Q8--MyUdds7SbX7au77ijyTF5MuBIet7__1PywDcn5GHfWXLzjHxHOmnaxiY3oHlq6x-L1c16Nm8poFQ6xzQ8u1rZDcUUUYq-zFGQq7GVD21_dliWRNtuifCc3sarfTqPiZf-ObmefPn2-YINfRRYJblaM-XyHGBWAUhPaCGQditoH8B3jZ0oK6lTHlwWBJyL6dhn2qugkBcws7B-gvvsBTlqFo1_RWgaAqyfDODiJOx2UVqZl3BO5T5LZSpkQthWnaYaSMax10VtYrBRKIPqN6h-kxsN8h928sueXuOg5CdcnZ0U0mLHATAWMxiLuc9YEvJuu7YGthG-jdjGL7rWcI28OgU_LIE-XmopDkuoHPXMVUJe9tbyZ0qAgwEp6YTke3a0N5v9L83NLJJ9IyEZoIiEfNxZ3D2aev0_NHVKHveXTVi89YYcrVedfwvwa12exZ32G2UjJ2c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWWrhB74ZslfPqABBd3m8R26uOCWK2QqDhQaREHK47t3Yo0KWkCKr-emSQtW5YKDlyTF0V2xp438cwbQl5IG1tjZcSAnXuGOpNMWSNZzCFy4xIisrZI7P1Enk75uzNxtkcm61oYM8_MrOxFQ1GoeHi5DD3vqhywi4KrjhbWd4t-LI9C2GQZhC-C4YnkNbIvBXDzAdmfTj4cf2pLjHpAr9x49aEtz9QK-P-JdV5NnrzRFIt09T3N80ue6eQWKddj6hJSvgyb2gyzH7_JPf6_Qd8mN3sSS487q7tD9lxxl1zv2lqu7pHPqGVNl22HHfjsNM3Py2pWX8yXFN5N55gDmFZVuqKYn0rRkVoKuBz7CNHl1wZrouiyWWBsQL-15wp03mZ9uvtkevL245tT1jdxYJkIZc2kTRLgeGOgmVxxjppfXjkPjnNkucmEikJvY89hU45GLlZOeomihHEKxsNDFz8gg6Is3ENCI-_BeIQH_ypgq-EmFYmBTTJxcSQiLgLC1h9QZ73COTbayHUb6YylxgnTOGE60QrwLzf4RaftsRP5Gu1hg0JN7vZCWZ3rfonrDNwGj53KrDHcjzweAANfClUqBfA0G5Dna2vSsIbxYCYtXNksdahQ1Gcc7kYgwRBK8N0ImeA8hzIgh519_hoSkHCgaSogyZblbo1m-04xu2iVxlENDShMQF5tbPwvM_Xo36GPyUH3Pwvrw56QQV017ikwvNo865ftT1rxS_8
  priority: 102
  providerName: Unpaywall
Title Gene selection algorithms for microarray data based on least squares support vector machine
URI https://www.ncbi.nlm.nih.gov/pubmed/16504159
https://www.proquest.com/docview/19456481
https://www.proquest.com/docview/21235954
https://www.proquest.com/docview/67775216
https://pubmed.ncbi.nlm.nih.gov/PMC1409801
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-95
https://doaj.org/article/c11143e9cdbb4f0f891324019a65743d
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQvaHwHRvEDAl4MTWI79cM0FcQ0VdqEBJWGeLCS2N6Q0rRNGqD_PXdO2lFt1V6TaxWf7-Nnn_07Qt5IE5vMyIgBOncMeSaZMplkMYeVG5ewIvOXxE7P5MmYj87F-Q5ZHeXtFFjfuLTDflLjqvjwd748Aoc_9A4_kB9DCLAMli6CYTXy7WzOsKkUFl-7Dht3yB4kLoWdHU75VZEB6fz95aPu5x2n4_W_3MhZntr_Jjx6_Vjlvaacpcs_aVH8l7OO98mDDmzSYWsdD8mOLR-Ru237yeVj8hM5p2ntO-HA9NC0uIAhLS4nNQUoSyd4Vi-tqnRJ8RwpxYRnKMgV2O-H1vMG7y7Rupmh-uhvv_9PJ_50pn1Cxsdfvn8-YV2zBZaLUC6YNEkCWGwAcJArzpGbyynrIMH1Dc9yoaLQmdhxCJ5R38bKSieRPDBOYZJ5aOOnZLeclvY5oZFzMMnCQR4UEBJ4lookg2CW2DgSERcBYSt16rxjIseGGIX2K5KB1Kh-jerXiVYg_24tP2s5OLZKfsLZWUshd7Z_MK0udOeKOofwzmOrcpNl3PUdFmrBPEKVSgF4ygTk9WpuNfgaFlDS0k6bWocKyXcG4XYJBAJCCb5dQiao51AG5FlrLVdDArAMcEoFJNmwo43RbL4pf116RnBkLQOoEZD3a4u7RVMvbv3Al-R-u92E17cOyO6iauwrAGCLrEf2hsPRt1HPb2D0vFPBs_HZ1-GPf3B-Lxw
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWWrhB74ZslfPqABBd3m8R26uOCWK2QqDhQaREHK47t3Yo0KWkCKr-emSQtW5YKDlyTF0V2xp438cwbQl5IG1tjZcSAnXuGOpNMWSNZzCFy4xIisrZI7P1Enk75uzNxtkcm61oYM8_MrOxFQ1GoeHi5DD3vqhywi4KrjhbWd4t-LI9C2GQZhC-C4YnkNbIvBXDzAdmfTj4cf2pLjHpAr9x49aEtz9QK-P-JdV5NnrzRFIt09T3N80ue6eQWKddj6hJSvgyb2gyzH7_JPf6_Qd8mN3sSS487q7tD9lxxl1zv2lqu7pHPqGVNl22HHfjsNM3Py2pWX8yXFN5N55gDmFZVuqKYn0rRkVoKuBz7CNHl1wZrouiyWWBsQL-15wp03mZ9uvtkevL245tT1jdxYJkIZc2kTRLgeGOgmVxxjppfXjkPjnNkucmEikJvY89hU45GLlZOeomihHEKxsNDFz8gg6Is3ENCI-_BeIQH_ypgq-EmFYmBTTJxcSQiLgLC1h9QZ73COTbayHUb6YylxgnTOGE60QrwLzf4RaftsRP5Gu1hg0JN7vZCWZ3rfonrDNwGj53KrDHcjzweAANfClUqBfA0G5Dna2vSsIbxYCYtXNksdahQ1Gcc7kYgwRBK8N0ImeA8hzIgh519_hoSkHCgaSogyZblbo1m-04xu2iVxlENDShMQF5tbPwvM_Xo36GPyUH3Pwvrw56QQV017ikwvNo865ftT1rxS_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+algorithms+for+microarray+data+based+on+least+squares+support+vector+machine&rft.jtitle=BMC+bioinformatics&rft.au=Tang%2C+E+Ke&rft.au=Suganthan%2C+P+N&rft.au=Yao%2C+Xin&rft.date=2006-02-27&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=7&rft.spage=95&rft_id=info:doi/10.1186%2F1471-2105-7-95&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon