Construction of a confounder-free clinical MRI dataset in the Mass General Brigham system for classification of Alzheimer's disease
Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and...
Saved in:
| Published in | Artificial intelligence in medicine Vol. 129; p. 102309 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.07.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0933-3657 1873-2860 1873-2860 |
| DOI | 10.1016/j.artmed.2022.102309 |
Cover
| Abstract | Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis.
•Applied deep learning to a large database of clinical brain MRIs•Alzheimer's, Mild Cognitive Impairment, and controls labeled using medication history•Describe unique algorithms to isolate datasets without confounding factors•Achieved >0.80 AUROC when distinguishing AD/MCI from controls |
|---|---|
| AbstractList | Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis.
•Applied deep learning to a large database of clinical brain MRIs•Alzheimer's, Mild Cognitive Impairment, and controls labeled using medication history•Describe unique algorithms to isolate datasets without confounding factors•Achieved >0.80 AUROC when distinguishing AD/MCI from controls Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis.Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis. Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer’s disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis. |
| ArticleNumber | 102309 |
| Author | Im, Hyungsoon Das, Sudeshna Leming, Matthew |
| AuthorAffiliation | b Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA c Department of Neurology, Massachusetts General Hospital, Boston, MA, USA d Department of Radiology, Massachusetts General Hospital, Boston, MA, USA a Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA |
| AuthorAffiliation_xml | – name: d Department of Radiology, Massachusetts General Hospital, Boston, MA, USA – name: a Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA – name: b Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA – name: c Department of Neurology, Massachusetts General Hospital, Boston, MA, USA |
| Author_xml | – sequence: 1 givenname: Matthew surname: Leming fullname: Leming, Matthew email: mleming@mgh.harvard.edu organization: Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA – sequence: 2 givenname: Sudeshna surname: Das fullname: Das, Sudeshna organization: Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA – sequence: 3 givenname: Hyungsoon surname: Im fullname: Im, Hyungsoon email: im.hyungsoon@mgh.harvard.edu organization: Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35659387$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkFv1DAQhS1URLeFf4CQb3DJYjuxnSCEVFZQKrVCQnC2HGfS9ZLYi-0ULVf-OC7pVtBLe7Lked8bzxsfoQPnHSD0nJIlJVS83ix1SCN0S0YYy1esJM0jtKC1LAtWC3KAFqQpy6IUXB6ioxg3hBBZUfEEHZZc8Kas5QL9XnkXU5hMst5h32ONjXe9n1wHoegDADaDddboAV98OcOdTjpCwtbhtAZ8oWPEp-Ag5Pr7YC_XesRxFxOMuPchs1lg-4zv_U-GX2uwI4SXEXc2QnZ7ih73eojw7OY8Rt8-fvi6-lScfz49W52cF4ZTkQoqRWWEbGUjJWtbSStWdVVtur6tpOaEcm5Mm6MRouqJqXtoiKxZ14i2lNA25THis-_ktnr3Uw-D2gY76rBTlKjrUNVGzaGq61DVHGrm3s3cdmpzzYBLedxb1mur_q84u1aX_ko1rOGE1dng1Y1B8D8miEmNNhoYBu3AT1ExIUveiIrTLH3xb6_bJvuNZUE1C0zwMQboHzrDmzuYsenvUvKL7fDAACBv58pCUNFYcAY6G8Ak1Xl7n8HbOwb7T_UddvfjfwAKk-tI |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0277572 crossref_primary_10_1016_j_artmed_2023_102510 crossref_primary_10_47992_IJCSBE_2581_6942_0190 crossref_primary_10_1016_j_eswa_2023_120655 crossref_primary_10_1186_s12991_024_00525_x crossref_primary_10_1007_s11042_023_17288_4 crossref_primary_10_1038_s41746_023_00868_x crossref_primary_10_1007_s11831_025_10246_3 crossref_primary_10_1038_s41591_024_02887_x crossref_primary_10_1038_s41598_024_52185_2 |
| Cites_doi | 10.1016/j.neuroimage.2008.10.055 10.3389/fnins.2018.00777 10.1016/j.media.2017.10.005 10.1038/s41569-019-0202-5 10.1002/hbm.20991 10.1177/0049124106289164 10.1016/j.compmedimag.2018.09.009 10.1038/s41380-018-0228-9 10.1162/jocn.2009.21407 10.1016/j.neuroimage.2016.10.045 10.1016/j.nicl.2018.04.037 10.1093/brain/awr263 10.3389/fnins.2020.00259 10.1016/j.neuroimage.2015.05.018 10.1016/j.neuroimage.2020.117002 10.1214/09-STS313 10.1162/003465304323023651 10.1142/S0129065720500124 10.3389/fbioe.2020.534592 10.1016/j.nicl.2017.08.017 10.3389/fnins.2018.01018 10.3389/fnins.2013.00133 10.2307/2529684 10.1016/j.jalz.2013.05.1769 10.1080/01621459.1989.10478868 10.1093/pan/mpl013 10.1016/j.neuron.2017.12.018 10.1016/j.neuroimage.2017.12.073 10.1093/aje/kwj149 10.1097/WCO.0b013e32832d92de 10.1142/S0129065716500258 10.1016/j.neuroimage.2021.118409 10.3389/fnins.2018.00525 10.1017/S1041610209009405 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.artmed.2022.102309 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1873-2860 |
| EndPage | 102309 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:9295028 PMC9295028 35659387 10_1016_j_artmed_2022_102309 S0933365722000744 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c516t-1764c67b79772bb71424d48cdfb47a50155ccb016664f0c8fe90782d96b37eb93 |
| IEDL.DBID | .~1 |
| ISSN | 0933-3657 1873-2860 |
| IngestDate | Sun Oct 26 03:47:46 EDT 2025 Tue Sep 30 16:52:41 EDT 2025 Thu Oct 02 06:12:01 EDT 2025 Thu Apr 03 07:09:44 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Sat Oct 25 05:18:13 EDT 2025 Fri Feb 23 02:40:35 EST 2024 Tue Oct 14 19:30:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Data matching Magnetic resonance imaging Mild cognitive impairment Alzheimer's disease Confounding factors |
| Language | English |
| License | Copyright © 2022 Elsevier B.V. All rights reserved. For personal use only. No other uses without permission. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c516t-1764c67b79772bb71424d48cdfb47a50155ccb016664f0c8fe90782d96b37eb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9295028 |
| PMID | 35659387 |
| PQID | 2673596451 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1016_j_artmed_2022_102309 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9295028 proquest_miscellaneous_2673596451 pubmed_primary_35659387 crossref_primary_10_1016_j_artmed_2022_102309 crossref_citationtrail_10_1016_j_artmed_2022_102309 elsevier_sciencedirect_doi_10_1016_j_artmed_2022_102309 elsevier_clinicalkey_doi_10_1016_j_artmed_2022_102309 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Artificial intelligence in medicine |
| PublicationTitleAlternate | Artif Intell Med |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | (bb0185) 2018 Arbabshirani, Kiehl, Pearlson, Calhoun (bb0010) 2013; 7 Cheng, Liu, Fu, Wang (bb0235) 2017 Brookhart, Schneeweiss, Rothman, Glynn, Avorn, Stürmer (bb0160) 2006; 163 Stuart (bb0145) 2010; 25 Ho, Imai, King, Stuart (bb0170) 2007; 15 Alfaro-Almagro, McCarthy, Afyouni, Andersson, Bastiani, Miller (bb0065) 2021; 224 Ma, Zhang, Zanetti, Shena, Satterthwaite, Wolf (bb0075) 2018; 19 Korolev, Safiullin, Belyaev, Dodonova (bb0240) 2017 Copeland (bb0090) 2019 Salimans, Goodfellow, Zaremba, Cheung, Radford, Improved (bb0115) 2016 Schnack, van Haren, Brouwer, van Baal, Picchioni, Weisbrod (bb0080) 2010; 31 Dinga, Schmaal, Penninx, Veltman, Marquand (bb0105) 2020 Liu, Yadav, Fernandez-Granda, Razavian (bb0270) 2020 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion (bb0055) 2016; 147 Rubin (bb0140) 1973; 29 Lin, Tong, Gao, Guo, Du, Yang (bb0245) 2018; 12 Du, Fu, Calhoun (bb0275) 2018; 12 Zhao, Adeli, Pohl (bb0110) 2020; 11 Greenwood (bb0125) 1945 Folego, Weiler, Casseb, Pires, Rocha, ADN (bb0280) 2020; 8 He, Kong, Holmes, Sabuncu, Eickhoff, Bzdok (bb0060) 2018 Imbens (bb0165) 2004; 86 Ellis, Bush, Darby, De Fazio, Foster, Hudson (bb0205) 2009; 21 Andersson, Johnson, Benjamin, Levy, Vasan (bb0220) 2019; 16 Chintala, Denton, Arjovsky, Mathieu (bb0120) 2016 Leming, Suckling (bb0180) 2021; 241 Pan, Zeng, Jia, Huang, Frizzell, Song (bb0265) 2020; 14 Marcus, Fotenos, Csernansky, Morris, Buckner (bb0210) 2010; 22 Bae, Stocks, Heywood, Jung, Jenkins, Katsaggelos (bb0255) 2019 Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens (bb0175) 2009; 45 Cochran, Rubin (bb0135) 1973; 35 Smith, Nichols (bb0050) 2018; 97 Chapin (bb0130) 1947 Rosenbaum (bb0150) 1989; 84 Nunes, Schnack, Ching (bb0045) 2020; 25 Kazeminejad, Sotero (bb0035) 2019; 12 Weiner, Veitch, Aisen, Beckett, Cairns, Green (bb0200) 2013; 9 Tejwani, Liska, You, Reinen, Das (bb0025) 2017 Li, Liu (bb0250) 2018; 70 Quach (bb0095) 2018 Leming, Suckling (bb0195) 2020; 30 Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzia (bb0030) 2018; 17 Van Horn, Toga (bb0070) 2009; 22 Liu, Zhang, Adeli, Shen (bb0230) 2018; 43 Kim, Calhoun, Shim, Lee (bb0015) 2016; 124 Yagis, AGS, Citi (bb0260) 2019 Morgan, Harding (bb0155) 2006; 35 Jovicich, Minati, Marizzoni, Marchitelli, Sala-Llonch, Bartres-Faz (bb0085) 2015; 124 Ju (bb0190) 2019 Wang, Kamata (bb0040) 2019 Beekly, Ramos, van Belle, Deitrich, Clark, Jacka (bb0215) 2004; 18 Oritz, Munilla, Gorriz, Ramirez (bb0020) 2016; 26 Parkes, Fulcher, Yucel, Fornito (bb0100) 2018; 171 Wen, Thibeau-Sutre, Diaz-Meloe, Samper-Gonzaleze, Routiere, Bottanie (bb0225) 2020 Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello (bb0005) 2011; 134 Jovicich (10.1016/j.artmed.2022.102309_bb0085) 2015; 124 Cheng (10.1016/j.artmed.2022.102309_bb0235) 2017 Ju (10.1016/j.artmed.2022.102309_bb0190) 2019 Parkes (10.1016/j.artmed.2022.102309_bb0100) 2018; 171 Morgan (10.1016/j.artmed.2022.102309_bb0155) 2006; 35 Beekly (10.1016/j.artmed.2022.102309_bb0215) 2004; 18 Stuart (10.1016/j.artmed.2022.102309_bb0145) 2010; 25 Schnack (10.1016/j.artmed.2022.102309_bb0080) 2010; 31 Ho (10.1016/j.artmed.2022.102309_bb0170) 2007; 15 Quach (10.1016/j.artmed.2022.102309_bb0095) Korolev (10.1016/j.artmed.2022.102309_bb0240) 2017 Wen (10.1016/j.artmed.2022.102309_bb0225) 2020 Andersson (10.1016/j.artmed.2022.102309_bb0220) 2019; 16 Wang (10.1016/j.artmed.2022.102309_bb0040) 2019 Nunes (10.1016/j.artmed.2022.102309_bb0045) 2020; 25 Chapin (10.1016/j.artmed.2022.102309_bb0130) 1947 Anderson (10.1016/j.artmed.2022.102309_bb0005) 2011; 134 Marcus (10.1016/j.artmed.2022.102309_bb0210) 2010; 22 Li (10.1016/j.artmed.2022.102309_bb0250) 2018; 70 Zhao (10.1016/j.artmed.2022.102309_bb0110) 2020; 11 Smith (10.1016/j.artmed.2022.102309_bb0050) 2018; 97 Pan (10.1016/j.artmed.2022.102309_bb0265) 2020; 14 Van Horn (10.1016/j.artmed.2022.102309_bb0070) 2009; 22 Kazeminejad (10.1016/j.artmed.2022.102309_bb0035) 2019; 12 Ma (10.1016/j.artmed.2022.102309_bb0075) 2018; 19 Rosenbaum (10.1016/j.artmed.2022.102309_bb0150) 1989; 84 Bae (10.1016/j.artmed.2022.102309_bb0255) 2019 Liu (10.1016/j.artmed.2022.102309_bb0270) 2020 Imbens (10.1016/j.artmed.2022.102309_bb0165) 2004; 86 Oritz (10.1016/j.artmed.2022.102309_bb0020) 2016; 26 Abraham (10.1016/j.artmed.2022.102309_bb0055) 2016; 147 Ellis (10.1016/j.artmed.2022.102309_bb0205) 2009; 21 Liu (10.1016/j.artmed.2022.102309_bb0230) 2018; 43 Cochran (10.1016/j.artmed.2022.102309_bb0135) 1973; 35 Brookhart (10.1016/j.artmed.2022.102309_bb0160) 2006; 163 Yagis (10.1016/j.artmed.2022.102309_bb0260) 2019 Alfaro-Almagro (10.1016/j.artmed.2022.102309_bb0065) 2021; 224 Arbabshirani (10.1016/j.artmed.2022.102309_bb0010) 2013; 7 Tejwani (10.1016/j.artmed.2022.102309_bb0025) 2017 Dinga (10.1016/j.artmed.2022.102309_bb0105) 2020 Weiner (10.1016/j.artmed.2022.102309_bb0200) 2013; 9 Folego (10.1016/j.artmed.2022.102309_bb0280) 2020; 8 Leming (10.1016/j.artmed.2022.102309_bb0195) 2020; 30 Copeland (10.1016/j.artmed.2022.102309_bb0090) Lin (10.1016/j.artmed.2022.102309_bb0245) 2018; 12 Du (10.1016/j.artmed.2022.102309_bb0275) 2018; 12 He (10.1016/j.artmed.2022.102309_bb0060) 2018 Woolrich (10.1016/j.artmed.2022.102309_bb0175) 2009; 45 (10.1016/j.artmed.2022.102309_bb0185) 2018 Greenwood (10.1016/j.artmed.2022.102309_bb0125) 1945 Rubin (10.1016/j.artmed.2022.102309_bb0140) 1973; 29 Kim (10.1016/j.artmed.2022.102309_bb0015) 2016; 124 Chintala (10.1016/j.artmed.2022.102309_bb0120) 2016 Heinsfeld (10.1016/j.artmed.2022.102309_bb0030) 2018; 17 Salimans (10.1016/j.artmed.2022.102309_bb0115) 2016 Leming (10.1016/j.artmed.2022.102309_bb0180) 2021; 241 |
| References_xml | – start-page: 215 year: 2019 end-page: 219 ident: bb0040 article-title: Classification of structural MRI images in ADHD using 3D fractal dimension complexity map publication-title: 2019 IEEE international conference on image processing (ICIP) – volume: 25 start-page: 1 year: 2010 end-page: 21 ident: bb0145 article-title: Matching methods for causal inference: a review and a look forward publication-title: Stat Sci – volume: 16 start-page: 687 year: 2019 end-page: 698 ident: bb0220 article-title: 70-year legacy of the Framingham heart study publication-title: Nat Rev Cardiol – volume: 14 year: 2020 ident: bb0265 article-title: Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning publication-title: Front Neurosci – volume: 8 year: 2020 ident: bb0280 publication-title: Front Bioeng Biotechnol – volume: 11 year: 2020 ident: bb0110 article-title: Training confounder-free deep learning models for medical applications publication-title: NatureCommunications – volume: 35 start-page: 3 year: 2006 end-page: 60 ident: bb0155 article-title: Matching estimators of causal effects: prospects and pitfalls in theory and practice publication-title: Sociol Methods Res – volume: 22 start-page: 370 year: 2009 end-page: 378 ident: bb0070 article-title: Multisite neuroimaging trials publication-title: Curr Opin Neurol – year: 2017 ident: bb0025 article-title: Autism Classification Using Brain Functional Connectivity Dynamics and Machine Learning – year: 2016 ident: bb0115 article-title: Techniques for Training GANs – volume: 163 start-page: 1149 year: 2006 end-page: 1156 ident: bb0160 article-title: Variable selection for propensity score models publication-title: Am J Epidemiol – volume: 124 start-page: 127 year: 2016 end-page: 146 ident: bb0015 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage – year: 2019 ident: bb0190 article-title: contributors. keras-resnet3d – volume: 19 start-page: 476 year: 2018 end-page: 486 ident: bb0075 article-title: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning publication-title: NeuroImage: Clin – start-page: 63 year: 2020 ident: bb0225 article-title: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation publication-title: Medical Image Analysis – volume: 147 start-page: 736 year: 2016 end-page: 745 ident: bb0055 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: Neuroimage – volume: 124 start-page: 442 year: 2015 end-page: 454 ident: bb0085 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage – volume: 9 year: 2013 ident: bb0200 article-title: Alzheimer’s disease neuroimaging initiative. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception publication-title: Alzheimers Dement. – volume: 241 year: 2021 ident: bb0180 article-title: Deep learning for sex classification in resting-state and task functional brain networks from the UK biobank publication-title: Neuroimage – volume: 84 start-page: 1024 year: 1989 end-page: 1042 ident: bb0150 article-title: Optimal matching for observational studies publication-title: J Am Stat Assoc – year: 2019 ident: bb0255 article-title: Transfer Learning for Predicting Conversion from Mild Cognitive Impairment to Dementia of Alzheimer’s Type based on 3D-Convolutional Neural Network – volume: 12 start-page: 525 year: 2018 ident: bb0275 article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging publication-title: Front Neurosci – volume: 29 start-page: 159 year: 1973 end-page: 184 ident: bb0140 article-title: Matching to remove bias in observational studies publication-title: Biometrics – volume: 30 year: 2020 ident: bb0195 article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks publication-title: Int J Neural Syst – start-page: 184 year: 2020 end-page: 201 ident: bb0270 article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease publication-title: Proceedings of the Machine Learning for Health NeurIPS Workshop. vol. 116 of Proceedings of Machine Learning Research – volume: 35 start-page: 417 year: 1973 end-page: 446 ident: bb0135 article-title: Controlling bias in observational studies: a review publication-title: <span/><span>Sankhya: Indian J Stat A</span> – volume: 134 start-page: 3742 year: 2011 end-page: 3754 ident: bb0005 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain – volume: 12 year: 2019 ident: bb0035 article-title: Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification publication-title: Front Neurosci – volume: 97 start-page: 263 year: 2018 end-page: 268 ident: bb0050 article-title: Statistical challenges in “Big data” human neuroimaging publication-title: Neuron – year: 2018 ident: bb0060 article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? publication-title: 2018 international workshop on pattern recognition in neuroimaging (PRNI) – volume: 224 year: 2021 ident: bb0065 article-title: Confound modelling in UK biobank brain imaging publication-title: Neuroimage – year: 2019 ident: bb0090 article-title: Google’s ‘Project Nightingale’ Gathers Personal Health Data on Millions of Americans – volume: 21 start-page: 672 year: 2009 end-page: 687 ident: bb0205 article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease publication-title: Int. Psychogeriatr. – volume: 7 year: 2013 ident: bb0010 article-title: Classification of schizophrenia patients based on resting-state functional network connectivity publication-title: Front Neurosci – year: 1947 ident: bb0130 article-title: Experimental designs in sociological research – year: 1945 ident: bb0125 article-title: Experimental sociology: a study in method – year: 2017 ident: bb0240 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) – volume: 25 start-page: 2130 year: 2020 end-page: 2143 ident: bb0045 article-title: Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group publication-title: Mol Psychiatry – volume: 18 start-page: 270 year: 2004 end-page: 277 ident: bb0215 article-title: The National Alzheimer’s coordinating center (NACC) database: an alzheimer disease database publication-title: Alzheimer Dis Assoc Disord – volume: 15 start-page: 199 year: 2007 end-page: 236 ident: bb0170 article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference publication-title: Polit Anal – volume: 26 start-page: 1650025 year: 2016 ident: bb0020 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease publication-title: Int J Neural Syst – volume: 86 start-page: 4 year: 2004 end-page: 29 ident: bb0165 article-title: Nonparametric estimation of average treatment effects under exogeneity: a review publication-title: Rev Econ Stat – volume: 12 year: 2018 ident: bb0245 article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment publication-title: Front Neurosci – volume: 70 start-page: 101 year: 2018 end-page: 110 ident: bb0250 article-title: The Alzheimer’s disease neuroimaging initiative. Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks publication-title: Comput Med Imaging Graph – volume: 171 start-page: 415 year: 2018 end-page: 436 ident: bb0100 article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI publication-title: Neuroimage – start-page: 1692 year: 2019 end-page: 1698 ident: bb0260 article-title: Generalization performance of deep learning models in neurodegenerative disease classification publication-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – year: 2016 ident: bb0120 article-title: How to Train a GAN? Tips and Tricks to Make GANs Work. NIPS2016 – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: bb0030 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clin – year: 2020 ident: bb0105 article-title: Controlling for effects of confounding variables on machine learning predictions – volume: 45 start-page: S173 year: 2009 end-page: S186 ident: bb0175 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: Neuroimage – volume: 31 start-page: 1967 year: 2010 end-page: 1982 ident: bb0080 article-title: Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness publication-title: Hum Brain Mapp – year: 2018 ident: bb0185 article-title: 2018d - Information Object Definitions – year: 2018 ident: bb0095 article-title: IBM Watson dishes out ’dodgy cancer advice’, Google Translate isn’t better than humans yet, and other AI tidbits – volume: 43 start-page: 157 year: 2018 end-page: 168 ident: bb0230 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Medical Image Analysis – volume: 22 start-page: 2677 year: 2010 end-page: 2684 ident: bb0210 article-title: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults publication-title: J Cogn Neurosci – year: 2017 ident: bb0235 article-title: Classification of MR brain images by combination of multi-CNNs for AD diagnosis publication-title: Proceedings Volume 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017) – volume: 45 start-page: S173 year: 2009 ident: 10.1016/j.artmed.2022.102309_bb0175 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.055 – volume: 11 year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0110 article-title: Training confounder-free deep learning models for medical applications publication-title: NatureCommunications – start-page: 1692 year: 2019 ident: 10.1016/j.artmed.2022.102309_bb0260 article-title: Generalization performance of deep learning models in neurodegenerative disease classification – year: 2017 ident: 10.1016/j.artmed.2022.102309_bb0025 – volume: 124 start-page: 442 issue: Pt A year: 2015 ident: 10.1016/j.artmed.2022.102309_bb0085 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage – volume: 12 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0245 article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment publication-title: Front Neurosci doi: 10.3389/fnins.2018.00777 – ident: 10.1016/j.artmed.2022.102309_bb0095 – volume: 43 start-page: 157 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0230 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Medical Image Analysis doi: 10.1016/j.media.2017.10.005 – start-page: 184 year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0270 article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease – volume: 16 start-page: 687 year: 2019 ident: 10.1016/j.artmed.2022.102309_bb0220 article-title: 70-year legacy of the Framingham heart study publication-title: Nat Rev Cardiol doi: 10.1038/s41569-019-0202-5 – volume: 31 start-page: 1967 year: 2010 ident: 10.1016/j.artmed.2022.102309_bb0080 article-title: Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness publication-title: Hum Brain Mapp doi: 10.1002/hbm.20991 – volume: 35 start-page: 3 year: 2006 ident: 10.1016/j.artmed.2022.102309_bb0155 article-title: Matching estimators of causal effects: prospects and pitfalls in theory and practice publication-title: Sociol Methods Res doi: 10.1177/0049124106289164 – volume: 70 start-page: 101 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0250 article-title: The Alzheimer’s disease neuroimaging initiative. Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2018.09.009 – volume: 25 start-page: 2130 year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0045 article-title: Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group publication-title: Mol Psychiatry doi: 10.1038/s41380-018-0228-9 – volume: 22 start-page: 2677 year: 2010 ident: 10.1016/j.artmed.2022.102309_bb0210 article-title: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults publication-title: J Cogn Neurosci doi: 10.1162/jocn.2009.21407 – year: 1947 ident: 10.1016/j.artmed.2022.102309_bb0130 – start-page: 63 year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0225 article-title: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation publication-title: Medical Image Analysis – volume: 147 start-page: 736 year: 2016 ident: 10.1016/j.artmed.2022.102309_bb0055 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 19 start-page: 476 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0075 article-title: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning publication-title: NeuroImage: Clin doi: 10.1016/j.nicl.2018.04.037 – volume: 134 start-page: 3742 year: 2011 ident: 10.1016/j.artmed.2022.102309_bb0005 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain doi: 10.1093/brain/awr263 – volume: 14 year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0265 article-title: Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning publication-title: Front Neurosci doi: 10.3389/fnins.2020.00259 – year: 1945 ident: 10.1016/j.artmed.2022.102309_bb0125 – year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0105 – volume: 124 start-page: 127 year: 2016 ident: 10.1016/j.artmed.2022.102309_bb0015 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.018 – ident: 10.1016/j.artmed.2022.102309_bb0090 – year: 2019 ident: 10.1016/j.artmed.2022.102309_bb0190 – year: 2017 ident: 10.1016/j.artmed.2022.102309_bb0240 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification – volume: 224 year: 2021 ident: 10.1016/j.artmed.2022.102309_bb0065 article-title: Confound modelling in UK biobank brain imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117002 – volume: 18 start-page: 270 year: 2004 ident: 10.1016/j.artmed.2022.102309_bb0215 article-title: The National Alzheimer’s coordinating center (NACC) database: an alzheimer disease database publication-title: Alzheimer Dis Assoc Disord – volume: 25 start-page: 1 year: 2010 ident: 10.1016/j.artmed.2022.102309_bb0145 article-title: Matching methods for causal inference: a review and a look forward publication-title: Stat Sci doi: 10.1214/09-STS313 – volume: 86 start-page: 4 year: 2004 ident: 10.1016/j.artmed.2022.102309_bb0165 article-title: Nonparametric estimation of average treatment effects under exogeneity: a review publication-title: Rev Econ Stat doi: 10.1162/003465304323023651 – volume: 35 start-page: 417 year: 1973 ident: 10.1016/j.artmed.2022.102309_bb0135 article-title: Controlling bias in observational studies: a review publication-title: Sankhya: Indian J Stat A – year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0185 – volume: 30 year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0195 article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks publication-title: Int J Neural Syst doi: 10.1142/S0129065720500124 – year: 2016 ident: 10.1016/j.artmed.2022.102309_bb0115 – volume: 8 year: 2020 ident: 10.1016/j.artmed.2022.102309_bb0280 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.534592 – volume: 17 start-page: 16 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0030 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clin doi: 10.1016/j.nicl.2017.08.017 – volume: 12 year: 2019 ident: 10.1016/j.artmed.2022.102309_bb0035 article-title: Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification publication-title: Front Neurosci doi: 10.3389/fnins.2018.01018 – volume: 7 year: 2013 ident: 10.1016/j.artmed.2022.102309_bb0010 article-title: Classification of schizophrenia patients based on resting-state functional network connectivity publication-title: Front Neurosci doi: 10.3389/fnins.2013.00133 – year: 2017 ident: 10.1016/j.artmed.2022.102309_bb0235 article-title: Classification of MR brain images by combination of multi-CNNs for AD diagnosis – volume: 29 start-page: 159 year: 1973 ident: 10.1016/j.artmed.2022.102309_bb0140 article-title: Matching to remove bias in observational studies publication-title: Biometrics doi: 10.2307/2529684 – year: 2016 ident: 10.1016/j.artmed.2022.102309_bb0120 – volume: 9 year: 2013 ident: 10.1016/j.artmed.2022.102309_bb0200 article-title: Alzheimer’s disease neuroimaging initiative. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2013.05.1769 – volume: 84 start-page: 1024 year: 1989 ident: 10.1016/j.artmed.2022.102309_bb0150 article-title: Optimal matching for observational studies publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478868 – volume: 15 start-page: 199 year: 2007 ident: 10.1016/j.artmed.2022.102309_bb0170 article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference publication-title: Polit Anal doi: 10.1093/pan/mpl013 – volume: 97 start-page: 263 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0050 article-title: Statistical challenges in “Big data” human neuroimaging publication-title: Neuron doi: 10.1016/j.neuron.2017.12.018 – volume: 171 start-page: 415 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0100 article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.073 – year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0060 article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence? – volume: 163 start-page: 1149 year: 2006 ident: 10.1016/j.artmed.2022.102309_bb0160 article-title: Variable selection for propensity score models publication-title: Am J Epidemiol doi: 10.1093/aje/kwj149 – volume: 22 start-page: 370 year: 2009 ident: 10.1016/j.artmed.2022.102309_bb0070 article-title: Multisite neuroimaging trials publication-title: Curr Opin Neurol doi: 10.1097/WCO.0b013e32832d92de – volume: 26 start-page: 1650025 year: 2016 ident: 10.1016/j.artmed.2022.102309_bb0020 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease publication-title: Int J Neural Syst doi: 10.1142/S0129065716500258 – start-page: 215 year: 2019 ident: 10.1016/j.artmed.2022.102309_bb0040 article-title: Classification of structural MRI images in ADHD using 3D fractal dimension complexity map – volume: 241 year: 2021 ident: 10.1016/j.artmed.2022.102309_bb0180 article-title: Deep learning for sex classification in resting-state and task functional brain networks from the UK biobank publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118409 – volume: 12 start-page: 525 year: 2018 ident: 10.1016/j.artmed.2022.102309_bb0275 article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging publication-title: Front Neurosci doi: 10.3389/fnins.2018.00525 – volume: 21 start-page: 672 year: 2009 ident: 10.1016/j.artmed.2022.102309_bb0205 article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610209009405 – year: 2019 ident: 10.1016/j.artmed.2022.102309_bb0255 |
| SSID | ssj0007416 |
| Score | 2.3909547 |
| Snippet | Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102309 |
| SubjectTerms | Alzheimer Disease - diagnostic imaging Alzheimer's disease Brain - diagnostic imaging Cognitive Dysfunction - diagnostic imaging Confounding factors Data matching Deep learning Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Mild cognitive impairment Neuroimaging - methods |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQS8MBhf5UtGQuLJXRLHcfJYENNA6oQmKo2nyHZsrSNNq34IsVf-ONeJHTGGtO0xim8ipye-J_W55wK8w_UuLaKioha5NU25TKjMpaKcJ0UkLYLAunrnyXF2NE2_nPLTHYhDLUwr2tdqNmrq-aiZnbXayuVcHwSd2AHmc45J8Q7sZhzp9wB2p8dfx99bTz3GKMtad884F4wmeRaFcrlW04UXwRyDX4VJ0noWOBni_9PRVbp5VTV5b9ss5a-fsq7_SkmHe3ASJtMpUX6Mths10hf_-DzearYP4YEnqGTcnXoEO6bZh73Q_IH4tWAf7k78rvxj-O26fgYfWrKwRBL8yrauYZNZUbsyhoQCTDI5-UycKnVtNmTWEKSfZIL8nXj7a_LB_Vsg56RzmCZIqTEWBzhFkwzXH9cXZ2Y2N6v3a-J3mJ7A9PDTt49H1Dd3oJrH2cYZU6Y6E0ogAU2UEq7irkpzXVmVCskdldNaRW5XM7WRzq0pHJupikwxYVTBnsKgWTTmOZAorvLIyqrAkFRignWegBVCTotKZokZAgu_cam987lrwFGXQeJ2XnbIKB0yyg4ZQ6B91LJz_rhmPA_wKcNDxXW4xNR0TZzo4zzr6djMDSLfBpSWuCi4nR7ZmMV2XSaZYPhypDwewrMOtf0cGFL4guUC73sJz_0AZzh--QwiszUe92AcwqhH_o0ezYvbBryE--6ok0W_ggFC2LxG8rdRb_zr_gePdFmp priority: 102 providerName: Unpaywall |
| Title | Construction of a confounder-free clinical MRI dataset in the Mass General Brigham system for classification of Alzheimer's disease |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365722000744 https://dx.doi.org/10.1016/j.artmed.2022.102309 https://www.ncbi.nlm.nih.gov/pubmed/35659387 https://www.proquest.com/docview/2673596451 https://pubmed.ncbi.nlm.nih.gov/PMC9295028 https://www.ncbi.nlm.nih.gov/pmc/articles/9295028 |
| UnpaywallVersion | submittedVersion |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelg20v3dZ9NPsoGgz2pMaxJMt-zMpKupEwtgW6JyPZEvVInZCklO6hL_3Hd2dL3kIHLXsycXROrDvd_YTufkfIO_B3IouykjnA1kxIHTOdasOkjLNIOzACh_XO40kymopPJ_JkixyGWhhMq_S-v_Xpjbf2d_p-NvuLqup_w704T6SK4yYQIieoEAq7GBxc_UnzQMTR8O1xznB0KJ9rcrzgeRBzYJcYxw2HAaYl_js83YSfN7MoH5zXC315oWezv0LU0WOy47ElHbZ__wnZsvUueRT6NlC_jHfJ_bE_UH9KrrFhZ6CQpXNHNYUNssNeS3bJ3NJaGmon6fjrMcWE0pVd06qmgBzpGKA39czV9ANu9PUZbcmhKaBhkIUBmIykw_OHs1-ntjqzy_cr6g-HnpHp0cfvhyPm-zKwQg6SNXJKiiJRRgF2jI1RWCxXirQonRFKS0RhRWEiPJAULipSZzMEImWWGK6syfhzsl3Pa7tHaDQo08jpMgMRoSE2Ip1fCdZSqFInse0RHtSRF560HHtnzPKQnfYzb5WYoxLzVok9wjqpRUvacct4GTSdh0kFF5pDVLlFTnVyG0Z7B8m3waByWM94SKNrOz9f5XGiuMwSIQc98qI1sO4dOKDvjKcKfnfD9LoByBW--U1dnTac4YCCJUDJHjnojPROU_Pyv1_xFXmIn9rU5tdkG2zZvgEAtzb7zQrdJ_eGx59HE7hOJ1-GP34Du7lHnQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlEuPAqF5WkkJE7pZh073hxLRbWFpgdopd4sJ7HVoG12tbsVggMX_jgziR1YFakV18STh2fs-Uae-QbgLe53IouzKnKIrSMhDY_M2BSRlDyLjUMjcFTvnB-nk1Px8UyebcB-qIWhtEq_93d7ertb-ytDP5vDeV0Pv1AsnqRScd46QnELbgvJFUVguz__5HkQ5GgJ95IkouGhfq5N8sIHotPBMJHzlsSA8hL_7Z-u4s-raZRbl83cfP9mptO_fNTBA7jnwSXb677_IWzYZhvuh8YNzK_jbbiT-xP1R_CLOnYGDlk2c8wwjJAdNVuyi8gtrGWheJLlnw8ZZZQu7YrVDUPoyHLE3sxTV7P3FOmbC9axQzOEwyiLAygbyYTn701_nNv6wi7eLZk_HXoMpwcfTvYnkW_MEJVylK6IVFKUqSoUgkdeFIqq5SoxLitXCGUkwbCyLGI6kRQuLsfOZoREqiwtEmWLLNmBzWbW2KfA4lE1jp2pMhQRBp0j8flVaC6lqkzK7QCSoA5detZyap4x1SE97avulKhJibpT4gCiXmresXZcM14GTeswqbiHanQr18ipXm7Nam8g-SYYlMYFTac0prGzy6XmqUpklgo5GsCTzsD6f0gQfmfJWOF710yvH0Bk4et3mvq8JQ1HGCwRSw5gtzfSG03Ns__-xdewNTnJj_TR4fGn53CX7nR5zi9gE-3avkQ0typetav1N6qfR4I |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQS8MBhf5UtGQuLJXRLHcfJYENNA6oQmKo2nyHZsrSNNq34IsVf-ONeJHTGGtO0xim8ipye-J_W55wK8w_UuLaKioha5NU25TKjMpaKcJ0UkLYLAunrnyXF2NE2_nPLTHYhDLUwr2tdqNmrq-aiZnbXayuVcHwSd2AHmc45J8Q7sZhzp9wB2p8dfx99bTz3GKMtad884F4wmeRaFcrlW04UXwRyDX4VJ0noWOBni_9PRVbp5VTV5b9ss5a-fsq7_SkmHe3ASJtMpUX6Mths10hf_-DzearYP4YEnqGTcnXoEO6bZh73Q_IH4tWAf7k78rvxj-O26fgYfWrKwRBL8yrauYZNZUbsyhoQCTDI5-UycKnVtNmTWEKSfZIL8nXj7a_LB_Vsg56RzmCZIqTEWBzhFkwzXH9cXZ2Y2N6v3a-J3mJ7A9PDTt49H1Dd3oJrH2cYZU6Y6E0ogAU2UEq7irkpzXVmVCskdldNaRW5XM7WRzq0pHJupikwxYVTBnsKgWTTmOZAorvLIyqrAkFRignWegBVCTotKZokZAgu_cam987lrwFGXQeJ2XnbIKB0yyg4ZQ6B91LJz_rhmPA_wKcNDxXW4xNR0TZzo4zzr6djMDSLfBpSWuCi4nR7ZmMV2XSaZYPhypDwewrMOtf0cGFL4guUC73sJz_0AZzh--QwiszUe92AcwqhH_o0ezYvbBryE--6ok0W_ggFC2LxG8rdRb_zr_gePdFmp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+confounder-free+clinical+MRI+dataset+in+the+Mass+General+Brigham+system+for+classification+of+Alzheimer%27s+disease&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Leming%2C+Matthew&rft.au=Das%2C+Sudeshna&rft.au=Im%2C+Hyungsoon&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=129&rft_id=info:doi/10.1016%2Fj.artmed.2022.102309&rft.externalDocID=S0933365722000744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |