Construction of a confounder-free clinical MRI dataset in the Mass General Brigham system for classification of Alzheimer's disease

Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 129; p. 102309
Main Authors Leming, Matthew, Das, Sudeshna, Im, Hyungsoon
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2022.102309

Cover

Abstract Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis. •Applied deep learning to a large database of clinical brain MRIs•Alzheimer's, Mild Cognitive Impairment, and controls labeled using medication history•Describe unique algorithms to isolate datasets without confounding factors•Achieved >0.80 AUROC when distinguishing AD/MCI from controls
AbstractList Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis. •Applied deep learning to a large database of clinical brain MRIs•Alzheimer's, Mild Cognitive Impairment, and controls labeled using medication history•Describe unique algorithms to isolate datasets without confounding factors•Achieved >0.80 AUROC when distinguishing AD/MCI from controls
Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis.Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer's disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis.
Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high degree of heterogeneity and confounding factors that may introduce imbalances and biases to such processes. To address this, we developed and applied a data matching algorithm to 467,464 clinical brain magnetic resonance imaging (MRI) data from the Mass General Brigham (MGB) healthcare system for Alzheimer’s disease (AD) classification. We identified 18 technical and demographic confounding factors that can be readily distinguished by MRI or have significant correlations with AD status and isolated a training set free from these confounds. We then applied an ensemble of 3D ResNet-50 deep learning models to classify brain MRIs between groups of AD, mild cognitive impairment (MCI), and healthy controls. From a confounder-free matched dataset of 287,367 MRI files, we achieved an area under the receiver operating characteristic (AUROC) of 0.82 in distinguishing healthy controls from patients with AD or MCI. We also showed that confounding factors in heterogeneous clinical data could lead to artificial gains in model performance for disease classification, which our data matching approach could correct. This approach could accelerate using deep learning models for clinical diagnosis and find broad applications in medical image analysis.
ArticleNumber 102309
Author Im, Hyungsoon
Das, Sudeshna
Leming, Matthew
AuthorAffiliation b Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
c Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
d Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
a Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
AuthorAffiliation_xml – name: d Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
– name: a Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
– name: b Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
– name: c Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
Author_xml – sequence: 1
  givenname: Matthew
  surname: Leming
  fullname: Leming, Matthew
  email: mleming@mgh.harvard.edu
  organization: Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
– sequence: 2
  givenname: Sudeshna
  surname: Das
  fullname: Das, Sudeshna
  organization: Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
– sequence: 3
  givenname: Hyungsoon
  surname: Im
  fullname: Im, Hyungsoon
  email: im.hyungsoon@mgh.harvard.edu
  organization: Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35659387$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFf4CQb3DJYjuxnSCEVFZQKrVCQnC2HGfS9ZLYi-0ULVf-OC7pVtBLe7Lked8bzxsfoQPnHSD0nJIlJVS83ix1SCN0S0YYy1esJM0jtKC1LAtWC3KAFqQpy6IUXB6ioxg3hBBZUfEEHZZc8Kas5QL9XnkXU5hMst5h32ONjXe9n1wHoegDADaDddboAV98OcOdTjpCwtbhtAZ8oWPEp-Ag5Pr7YC_XesRxFxOMuPchs1lg-4zv_U-GX2uwI4SXEXc2QnZ7ih73eojw7OY8Rt8-fvi6-lScfz49W52cF4ZTkQoqRWWEbGUjJWtbSStWdVVtur6tpOaEcm5Mm6MRouqJqXtoiKxZ14i2lNA25THis-_ktnr3Uw-D2gY76rBTlKjrUNVGzaGq61DVHGrm3s3cdmpzzYBLedxb1mur_q84u1aX_ko1rOGE1dng1Y1B8D8miEmNNhoYBu3AT1ExIUveiIrTLH3xb6_bJvuNZUE1C0zwMQboHzrDmzuYsenvUvKL7fDAACBv58pCUNFYcAY6G8Ak1Xl7n8HbOwb7T_UddvfjfwAKk-tI
CitedBy_id crossref_primary_10_1371_journal_pone_0277572
crossref_primary_10_1016_j_artmed_2023_102510
crossref_primary_10_47992_IJCSBE_2581_6942_0190
crossref_primary_10_1016_j_eswa_2023_120655
crossref_primary_10_1186_s12991_024_00525_x
crossref_primary_10_1007_s11042_023_17288_4
crossref_primary_10_1038_s41746_023_00868_x
crossref_primary_10_1007_s11831_025_10246_3
crossref_primary_10_1038_s41591_024_02887_x
crossref_primary_10_1038_s41598_024_52185_2
Cites_doi 10.1016/j.neuroimage.2008.10.055
10.3389/fnins.2018.00777
10.1016/j.media.2017.10.005
10.1038/s41569-019-0202-5
10.1002/hbm.20991
10.1177/0049124106289164
10.1016/j.compmedimag.2018.09.009
10.1038/s41380-018-0228-9
10.1162/jocn.2009.21407
10.1016/j.neuroimage.2016.10.045
10.1016/j.nicl.2018.04.037
10.1093/brain/awr263
10.3389/fnins.2020.00259
10.1016/j.neuroimage.2015.05.018
10.1016/j.neuroimage.2020.117002
10.1214/09-STS313
10.1162/003465304323023651
10.1142/S0129065720500124
10.3389/fbioe.2020.534592
10.1016/j.nicl.2017.08.017
10.3389/fnins.2018.01018
10.3389/fnins.2013.00133
10.2307/2529684
10.1016/j.jalz.2013.05.1769
10.1080/01621459.1989.10478868
10.1093/pan/mpl013
10.1016/j.neuron.2017.12.018
10.1016/j.neuroimage.2017.12.073
10.1093/aje/kwj149
10.1097/WCO.0b013e32832d92de
10.1142/S0129065716500258
10.1016/j.neuroimage.2021.118409
10.3389/fnins.2018.00525
10.1017/S1041610209009405
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.artmed.2022.102309
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 102309
ExternalDocumentID oai:pubmedcentral.nih.gov:9295028
PMC9295028
35659387
10_1016_j_artmed_2022_102309
S0933365722000744
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c516t-1764c67b79772bb71424d48cdfb47a50155ccb016664f0c8fe90782d96b37eb93
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Sun Oct 26 03:47:46 EDT 2025
Tue Sep 30 16:52:41 EDT 2025
Thu Oct 02 06:12:01 EDT 2025
Thu Apr 03 07:09:44 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Sat Oct 25 05:18:13 EDT 2025
Fri Feb 23 02:40:35 EST 2024
Tue Oct 14 19:30:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Data matching
Magnetic resonance imaging
Mild cognitive impairment
Alzheimer's disease
Confounding factors
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
For personal use only. No other uses without permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-1764c67b79772bb71424d48cdfb47a50155ccb016664f0c8fe90782d96b37eb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9295028
PMID 35659387
PQID 2673596451
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_artmed_2022_102309
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9295028
proquest_miscellaneous_2673596451
pubmed_primary_35659387
crossref_primary_10_1016_j_artmed_2022_102309
crossref_citationtrail_10_1016_j_artmed_2022_102309
elsevier_sciencedirect_doi_10_1016_j_artmed_2022_102309
elsevier_clinicalkey_doi_10_1016_j_artmed_2022_102309
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (bb0185) 2018
Arbabshirani, Kiehl, Pearlson, Calhoun (bb0010) 2013; 7
Cheng, Liu, Fu, Wang (bb0235) 2017
Brookhart, Schneeweiss, Rothman, Glynn, Avorn, Stürmer (bb0160) 2006; 163
Stuart (bb0145) 2010; 25
Ho, Imai, King, Stuart (bb0170) 2007; 15
Alfaro-Almagro, McCarthy, Afyouni, Andersson, Bastiani, Miller (bb0065) 2021; 224
Ma, Zhang, Zanetti, Shena, Satterthwaite, Wolf (bb0075) 2018; 19
Korolev, Safiullin, Belyaev, Dodonova (bb0240) 2017
Copeland (bb0090) 2019
Salimans, Goodfellow, Zaremba, Cheung, Radford, Improved (bb0115) 2016
Schnack, van Haren, Brouwer, van Baal, Picchioni, Weisbrod (bb0080) 2010; 31
Dinga, Schmaal, Penninx, Veltman, Marquand (bb0105) 2020
Liu, Yadav, Fernandez-Granda, Razavian (bb0270) 2020
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion (bb0055) 2016; 147
Rubin (bb0140) 1973; 29
Lin, Tong, Gao, Guo, Du, Yang (bb0245) 2018; 12
Du, Fu, Calhoun (bb0275) 2018; 12
Zhao, Adeli, Pohl (bb0110) 2020; 11
Greenwood (bb0125) 1945
Folego, Weiler, Casseb, Pires, Rocha, ADN (bb0280) 2020; 8
He, Kong, Holmes, Sabuncu, Eickhoff, Bzdok (bb0060) 2018
Imbens (bb0165) 2004; 86
Ellis, Bush, Darby, De Fazio, Foster, Hudson (bb0205) 2009; 21
Andersson, Johnson, Benjamin, Levy, Vasan (bb0220) 2019; 16
Chintala, Denton, Arjovsky, Mathieu (bb0120) 2016
Leming, Suckling (bb0180) 2021; 241
Pan, Zeng, Jia, Huang, Frizzell, Song (bb0265) 2020; 14
Marcus, Fotenos, Csernansky, Morris, Buckner (bb0210) 2010; 22
Bae, Stocks, Heywood, Jung, Jenkins, Katsaggelos (bb0255) 2019
Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens (bb0175) 2009; 45
Cochran, Rubin (bb0135) 1973; 35
Smith, Nichols (bb0050) 2018; 97
Chapin (bb0130) 1947
Rosenbaum (bb0150) 1989; 84
Nunes, Schnack, Ching (bb0045) 2020; 25
Kazeminejad, Sotero (bb0035) 2019; 12
Weiner, Veitch, Aisen, Beckett, Cairns, Green (bb0200) 2013; 9
Tejwani, Liska, You, Reinen, Das (bb0025) 2017
Li, Liu (bb0250) 2018; 70
Quach (bb0095) 2018
Leming, Suckling (bb0195) 2020; 30
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzia (bb0030) 2018; 17
Van Horn, Toga (bb0070) 2009; 22
Liu, Zhang, Adeli, Shen (bb0230) 2018; 43
Kim, Calhoun, Shim, Lee (bb0015) 2016; 124
Yagis, AGS, Citi (bb0260) 2019
Morgan, Harding (bb0155) 2006; 35
Jovicich, Minati, Marizzoni, Marchitelli, Sala-Llonch, Bartres-Faz (bb0085) 2015; 124
Ju (bb0190) 2019
Wang, Kamata (bb0040) 2019
Beekly, Ramos, van Belle, Deitrich, Clark, Jacka (bb0215) 2004; 18
Oritz, Munilla, Gorriz, Ramirez (bb0020) 2016; 26
Parkes, Fulcher, Yucel, Fornito (bb0100) 2018; 171
Wen, Thibeau-Sutre, Diaz-Meloe, Samper-Gonzaleze, Routiere, Bottanie (bb0225) 2020
Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello (bb0005) 2011; 134
Jovicich (10.1016/j.artmed.2022.102309_bb0085) 2015; 124
Cheng (10.1016/j.artmed.2022.102309_bb0235) 2017
Ju (10.1016/j.artmed.2022.102309_bb0190) 2019
Parkes (10.1016/j.artmed.2022.102309_bb0100) 2018; 171
Morgan (10.1016/j.artmed.2022.102309_bb0155) 2006; 35
Beekly (10.1016/j.artmed.2022.102309_bb0215) 2004; 18
Stuart (10.1016/j.artmed.2022.102309_bb0145) 2010; 25
Schnack (10.1016/j.artmed.2022.102309_bb0080) 2010; 31
Ho (10.1016/j.artmed.2022.102309_bb0170) 2007; 15
Quach (10.1016/j.artmed.2022.102309_bb0095)
Korolev (10.1016/j.artmed.2022.102309_bb0240) 2017
Wen (10.1016/j.artmed.2022.102309_bb0225) 2020
Andersson (10.1016/j.artmed.2022.102309_bb0220) 2019; 16
Wang (10.1016/j.artmed.2022.102309_bb0040) 2019
Nunes (10.1016/j.artmed.2022.102309_bb0045) 2020; 25
Chapin (10.1016/j.artmed.2022.102309_bb0130) 1947
Anderson (10.1016/j.artmed.2022.102309_bb0005) 2011; 134
Marcus (10.1016/j.artmed.2022.102309_bb0210) 2010; 22
Li (10.1016/j.artmed.2022.102309_bb0250) 2018; 70
Zhao (10.1016/j.artmed.2022.102309_bb0110) 2020; 11
Smith (10.1016/j.artmed.2022.102309_bb0050) 2018; 97
Pan (10.1016/j.artmed.2022.102309_bb0265) 2020; 14
Van Horn (10.1016/j.artmed.2022.102309_bb0070) 2009; 22
Kazeminejad (10.1016/j.artmed.2022.102309_bb0035) 2019; 12
Ma (10.1016/j.artmed.2022.102309_bb0075) 2018; 19
Rosenbaum (10.1016/j.artmed.2022.102309_bb0150) 1989; 84
Bae (10.1016/j.artmed.2022.102309_bb0255) 2019
Liu (10.1016/j.artmed.2022.102309_bb0270) 2020
Imbens (10.1016/j.artmed.2022.102309_bb0165) 2004; 86
Oritz (10.1016/j.artmed.2022.102309_bb0020) 2016; 26
Abraham (10.1016/j.artmed.2022.102309_bb0055) 2016; 147
Ellis (10.1016/j.artmed.2022.102309_bb0205) 2009; 21
Liu (10.1016/j.artmed.2022.102309_bb0230) 2018; 43
Cochran (10.1016/j.artmed.2022.102309_bb0135) 1973; 35
Brookhart (10.1016/j.artmed.2022.102309_bb0160) 2006; 163
Yagis (10.1016/j.artmed.2022.102309_bb0260) 2019
Alfaro-Almagro (10.1016/j.artmed.2022.102309_bb0065) 2021; 224
Arbabshirani (10.1016/j.artmed.2022.102309_bb0010) 2013; 7
Tejwani (10.1016/j.artmed.2022.102309_bb0025) 2017
Dinga (10.1016/j.artmed.2022.102309_bb0105) 2020
Weiner (10.1016/j.artmed.2022.102309_bb0200) 2013; 9
Folego (10.1016/j.artmed.2022.102309_bb0280) 2020; 8
Leming (10.1016/j.artmed.2022.102309_bb0195) 2020; 30
Copeland (10.1016/j.artmed.2022.102309_bb0090)
Lin (10.1016/j.artmed.2022.102309_bb0245) 2018; 12
Du (10.1016/j.artmed.2022.102309_bb0275) 2018; 12
He (10.1016/j.artmed.2022.102309_bb0060) 2018
Woolrich (10.1016/j.artmed.2022.102309_bb0175) 2009; 45
(10.1016/j.artmed.2022.102309_bb0185) 2018
Greenwood (10.1016/j.artmed.2022.102309_bb0125) 1945
Rubin (10.1016/j.artmed.2022.102309_bb0140) 1973; 29
Kim (10.1016/j.artmed.2022.102309_bb0015) 2016; 124
Chintala (10.1016/j.artmed.2022.102309_bb0120) 2016
Heinsfeld (10.1016/j.artmed.2022.102309_bb0030) 2018; 17
Salimans (10.1016/j.artmed.2022.102309_bb0115) 2016
Leming (10.1016/j.artmed.2022.102309_bb0180) 2021; 241
References_xml – start-page: 215
  year: 2019
  end-page: 219
  ident: bb0040
  article-title: Classification of structural MRI images in ADHD using 3D fractal dimension complexity map
  publication-title: 2019 IEEE international conference on image processing (ICIP)
– volume: 25
  start-page: 1
  year: 2010
  end-page: 21
  ident: bb0145
  article-title: Matching methods for causal inference: a review and a look forward
  publication-title: Stat Sci
– volume: 16
  start-page: 687
  year: 2019
  end-page: 698
  ident: bb0220
  article-title: 70-year legacy of the Framingham heart study
  publication-title: Nat Rev Cardiol
– volume: 14
  year: 2020
  ident: bb0265
  article-title: Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning
  publication-title: Front Neurosci
– volume: 8
  year: 2020
  ident: bb0280
  publication-title: Front Bioeng Biotechnol
– volume: 11
  year: 2020
  ident: bb0110
  article-title: Training confounder-free deep learning models for medical applications
  publication-title: NatureCommunications
– volume: 35
  start-page: 3
  year: 2006
  end-page: 60
  ident: bb0155
  article-title: Matching estimators of causal effects: prospects and pitfalls in theory and practice
  publication-title: Sociol Methods Res
– volume: 22
  start-page: 370
  year: 2009
  end-page: 378
  ident: bb0070
  article-title: Multisite neuroimaging trials
  publication-title: Curr Opin Neurol
– year: 2017
  ident: bb0025
  article-title: Autism Classification Using Brain Functional Connectivity Dynamics and Machine Learning
– year: 2016
  ident: bb0115
  article-title: Techniques for Training GANs
– volume: 163
  start-page: 1149
  year: 2006
  end-page: 1156
  ident: bb0160
  article-title: Variable selection for propensity score models
  publication-title: Am J Epidemiol
– volume: 124
  start-page: 127
  year: 2016
  end-page: 146
  ident: bb0015
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
– year: 2019
  ident: bb0190
  article-title: contributors. keras-resnet3d
– volume: 19
  start-page: 476
  year: 2018
  end-page: 486
  ident: bb0075
  article-title: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning
  publication-title: NeuroImage: Clin
– start-page: 63
  year: 2020
  ident: bb0225
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation
  publication-title: Medical Image Analysis
– volume: 147
  start-page: 736
  year: 2016
  end-page: 745
  ident: bb0055
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: Neuroimage
– volume: 124
  start-page: 442
  year: 2015
  end-page: 454
  ident: bb0085
  article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study
  publication-title: Neuroimage
– volume: 9
  year: 2013
  ident: bb0200
  article-title: Alzheimer’s disease neuroimaging initiative. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception
  publication-title: Alzheimers Dement.
– volume: 241
  year: 2021
  ident: bb0180
  article-title: Deep learning for sex classification in resting-state and task functional brain networks from the UK biobank
  publication-title: Neuroimage
– volume: 84
  start-page: 1024
  year: 1989
  end-page: 1042
  ident: bb0150
  article-title: Optimal matching for observational studies
  publication-title: J Am Stat Assoc
– year: 2019
  ident: bb0255
  article-title: Transfer Learning for Predicting Conversion from Mild Cognitive Impairment to Dementia of Alzheimer’s Type based on 3D-Convolutional Neural Network
– volume: 12
  start-page: 525
  year: 2018
  ident: bb0275
  article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging
  publication-title: Front Neurosci
– volume: 29
  start-page: 159
  year: 1973
  end-page: 184
  ident: bb0140
  article-title: Matching to remove bias in observational studies
  publication-title: Biometrics
– volume: 30
  year: 2020
  ident: bb0195
  article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks
  publication-title: Int J Neural Syst
– start-page: 184
  year: 2020
  end-page: 201
  ident: bb0270
  article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease
  publication-title: Proceedings of the Machine Learning for Health NeurIPS Workshop. vol. 116 of Proceedings of Machine Learning Research
– volume: 35
  start-page: 417
  year: 1973
  end-page: 446
  ident: bb0135
  article-title: Controlling bias in observational studies: a review
  publication-title: <span/><span>Sankhya: Indian J Stat A</span>
– volume: 134
  start-page: 3742
  year: 2011
  end-page: 3754
  ident: bb0005
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
– volume: 12
  year: 2019
  ident: bb0035
  article-title: Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification
  publication-title: Front Neurosci
– volume: 97
  start-page: 263
  year: 2018
  end-page: 268
  ident: bb0050
  article-title: Statistical challenges in “Big data” human neuroimaging
  publication-title: Neuron
– year: 2018
  ident: bb0060
  article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence?
  publication-title: 2018 international workshop on pattern recognition in neuroimaging (PRNI)
– volume: 224
  year: 2021
  ident: bb0065
  article-title: Confound modelling in UK biobank brain imaging
  publication-title: Neuroimage
– year: 2019
  ident: bb0090
  article-title: Google’s ‘Project Nightingale’ Gathers Personal Health Data on Millions of Americans
– volume: 21
  start-page: 672
  year: 2009
  end-page: 687
  ident: bb0205
  article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease
  publication-title: Int. Psychogeriatr.
– volume: 7
  year: 2013
  ident: bb0010
  article-title: Classification of schizophrenia patients based on resting-state functional network connectivity
  publication-title: Front Neurosci
– year: 1947
  ident: bb0130
  article-title: Experimental designs in sociological research
– year: 1945
  ident: bb0125
  article-title: Experimental sociology: a study in method
– year: 2017
  ident: bb0240
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
– volume: 25
  start-page: 2130
  year: 2020
  end-page: 2143
  ident: bb0045
  article-title: Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group
  publication-title: Mol Psychiatry
– volume: 18
  start-page: 270
  year: 2004
  end-page: 277
  ident: bb0215
  article-title: The National Alzheimer’s coordinating center (NACC) database: an alzheimer disease database
  publication-title: Alzheimer Dis Assoc Disord
– volume: 15
  start-page: 199
  year: 2007
  end-page: 236
  ident: bb0170
  article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
  publication-title: Polit Anal
– volume: 26
  start-page: 1650025
  year: 2016
  ident: bb0020
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease
  publication-title: Int J Neural Syst
– volume: 86
  start-page: 4
  year: 2004
  end-page: 29
  ident: bb0165
  article-title: Nonparametric estimation of average treatment effects under exogeneity: a review
  publication-title: Rev Econ Stat
– volume: 12
  year: 2018
  ident: bb0245
  article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment
  publication-title: Front Neurosci
– volume: 70
  start-page: 101
  year: 2018
  end-page: 110
  ident: bb0250
  article-title: The Alzheimer’s disease neuroimaging initiative. Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks
  publication-title: Comput Med Imaging Graph
– volume: 171
  start-page: 415
  year: 2018
  end-page: 436
  ident: bb0100
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI
  publication-title: Neuroimage
– start-page: 1692
  year: 2019
  end-page: 1698
  ident: bb0260
  article-title: Generalization performance of deep learning models in neurodegenerative disease classification
  publication-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– year: 2016
  ident: bb0120
  article-title: How to Train a GAN? Tips and Tricks to Make GANs Work. NIPS2016
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: bb0030
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clin
– year: 2020
  ident: bb0105
  article-title: Controlling for effects of confounding variables on machine learning predictions
– volume: 45
  start-page: S173
  year: 2009
  end-page: S186
  ident: bb0175
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: Neuroimage
– volume: 31
  start-page: 1967
  year: 2010
  end-page: 1982
  ident: bb0080
  article-title: Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness
  publication-title: Hum Brain Mapp
– year: 2018
  ident: bb0185
  article-title: 2018d - Information Object Definitions
– year: 2018
  ident: bb0095
  article-title: IBM Watson dishes out ’dodgy cancer advice’, Google Translate isn’t better than humans yet, and other AI tidbits
– volume: 43
  start-page: 157
  year: 2018
  end-page: 168
  ident: bb0230
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Medical Image Analysis
– volume: 22
  start-page: 2677
  year: 2010
  end-page: 2684
  ident: bb0210
  article-title: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults
  publication-title: J Cogn Neurosci
– year: 2017
  ident: bb0235
  article-title: Classification of MR brain images by combination of multi-CNNs for AD diagnosis
  publication-title: Proceedings Volume 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017)
– volume: 45
  start-page: S173
  year: 2009
  ident: 10.1016/j.artmed.2022.102309_bb0175
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.055
– volume: 11
  year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0110
  article-title: Training confounder-free deep learning models for medical applications
  publication-title: NatureCommunications
– start-page: 1692
  year: 2019
  ident: 10.1016/j.artmed.2022.102309_bb0260
  article-title: Generalization performance of deep learning models in neurodegenerative disease classification
– year: 2017
  ident: 10.1016/j.artmed.2022.102309_bb0025
– volume: 124
  start-page: 442
  issue: Pt A
  year: 2015
  ident: 10.1016/j.artmed.2022.102309_bb0085
  article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study
  publication-title: Neuroimage
– volume: 12
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0245
  article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00777
– ident: 10.1016/j.artmed.2022.102309_bb0095
– volume: 43
  start-page: 157
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0230
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2017.10.005
– start-page: 184
  year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0270
  article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease
– volume: 16
  start-page: 687
  year: 2019
  ident: 10.1016/j.artmed.2022.102309_bb0220
  article-title: 70-year legacy of the Framingham heart study
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-019-0202-5
– volume: 31
  start-page: 1967
  year: 2010
  ident: 10.1016/j.artmed.2022.102309_bb0080
  article-title: Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20991
– volume: 35
  start-page: 3
  year: 2006
  ident: 10.1016/j.artmed.2022.102309_bb0155
  article-title: Matching estimators of causal effects: prospects and pitfalls in theory and practice
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124106289164
– volume: 70
  start-page: 101
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0250
  article-title: The Alzheimer’s disease neuroimaging initiative. Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2018.09.009
– volume: 25
  start-page: 2130
  year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0045
  article-title: Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-018-0228-9
– volume: 22
  start-page: 2677
  year: 2010
  ident: 10.1016/j.artmed.2022.102309_bb0210
  article-title: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2009.21407
– year: 1947
  ident: 10.1016/j.artmed.2022.102309_bb0130
– start-page: 63
  year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0225
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation
  publication-title: Medical Image Analysis
– volume: 147
  start-page: 736
  year: 2016
  ident: 10.1016/j.artmed.2022.102309_bb0055
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 19
  start-page: 476
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0075
  article-title: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning
  publication-title: NeuroImage: Clin
  doi: 10.1016/j.nicl.2018.04.037
– volume: 134
  start-page: 3742
  year: 2011
  ident: 10.1016/j.artmed.2022.102309_bb0005
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
  doi: 10.1093/brain/awr263
– volume: 14
  year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0265
  article-title: Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00259
– year: 1945
  ident: 10.1016/j.artmed.2022.102309_bb0125
– year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0105
– volume: 124
  start-page: 127
  year: 2016
  ident: 10.1016/j.artmed.2022.102309_bb0015
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.018
– ident: 10.1016/j.artmed.2022.102309_bb0090
– year: 2019
  ident: 10.1016/j.artmed.2022.102309_bb0190
– year: 2017
  ident: 10.1016/j.artmed.2022.102309_bb0240
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
– volume: 224
  year: 2021
  ident: 10.1016/j.artmed.2022.102309_bb0065
  article-title: Confound modelling in UK biobank brain imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117002
– volume: 18
  start-page: 270
  year: 2004
  ident: 10.1016/j.artmed.2022.102309_bb0215
  article-title: The National Alzheimer’s coordinating center (NACC) database: an alzheimer disease database
  publication-title: Alzheimer Dis Assoc Disord
– volume: 25
  start-page: 1
  year: 2010
  ident: 10.1016/j.artmed.2022.102309_bb0145
  article-title: Matching methods for causal inference: a review and a look forward
  publication-title: Stat Sci
  doi: 10.1214/09-STS313
– volume: 86
  start-page: 4
  year: 2004
  ident: 10.1016/j.artmed.2022.102309_bb0165
  article-title: Nonparametric estimation of average treatment effects under exogeneity: a review
  publication-title: Rev Econ Stat
  doi: 10.1162/003465304323023651
– volume: 35
  start-page: 417
  year: 1973
  ident: 10.1016/j.artmed.2022.102309_bb0135
  article-title: Controlling bias in observational studies: a review
  publication-title: Sankhya: Indian J Stat A
– year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0185
– volume: 30
  year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0195
  article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065720500124
– year: 2016
  ident: 10.1016/j.artmed.2022.102309_bb0115
– volume: 8
  year: 2020
  ident: 10.1016/j.artmed.2022.102309_bb0280
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.534592
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0030
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clin
  doi: 10.1016/j.nicl.2017.08.017
– volume: 12
  year: 2019
  ident: 10.1016/j.artmed.2022.102309_bb0035
  article-title: Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.01018
– volume: 7
  year: 2013
  ident: 10.1016/j.artmed.2022.102309_bb0010
  article-title: Classification of schizophrenia patients based on resting-state functional network connectivity
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2013.00133
– year: 2017
  ident: 10.1016/j.artmed.2022.102309_bb0235
  article-title: Classification of MR brain images by combination of multi-CNNs for AD diagnosis
– volume: 29
  start-page: 159
  year: 1973
  ident: 10.1016/j.artmed.2022.102309_bb0140
  article-title: Matching to remove bias in observational studies
  publication-title: Biometrics
  doi: 10.2307/2529684
– year: 2016
  ident: 10.1016/j.artmed.2022.102309_bb0120
– volume: 9
  year: 2013
  ident: 10.1016/j.artmed.2022.102309_bb0200
  article-title: Alzheimer’s disease neuroimaging initiative. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2013.05.1769
– volume: 84
  start-page: 1024
  year: 1989
  ident: 10.1016/j.artmed.2022.102309_bb0150
  article-title: Optimal matching for observational studies
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478868
– volume: 15
  start-page: 199
  year: 2007
  ident: 10.1016/j.artmed.2022.102309_bb0170
  article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
  publication-title: Polit Anal
  doi: 10.1093/pan/mpl013
– volume: 97
  start-page: 263
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0050
  article-title: Statistical challenges in “Big data” human neuroimaging
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.12.018
– volume: 171
  start-page: 415
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0100
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.073
– year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0060
  article-title: Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence?
– volume: 163
  start-page: 1149
  year: 2006
  ident: 10.1016/j.artmed.2022.102309_bb0160
  article-title: Variable selection for propensity score models
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj149
– volume: 22
  start-page: 370
  year: 2009
  ident: 10.1016/j.artmed.2022.102309_bb0070
  article-title: Multisite neuroimaging trials
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e32832d92de
– volume: 26
  start-page: 1650025
  year: 2016
  ident: 10.1016/j.artmed.2022.102309_bb0020
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065716500258
– start-page: 215
  year: 2019
  ident: 10.1016/j.artmed.2022.102309_bb0040
  article-title: Classification of structural MRI images in ADHD using 3D fractal dimension complexity map
– volume: 241
  year: 2021
  ident: 10.1016/j.artmed.2022.102309_bb0180
  article-title: Deep learning for sex classification in resting-state and task functional brain networks from the UK biobank
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118409
– volume: 12
  start-page: 525
  year: 2018
  ident: 10.1016/j.artmed.2022.102309_bb0275
  article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00525
– volume: 21
  start-page: 672
  year: 2009
  ident: 10.1016/j.artmed.2022.102309_bb0205
  article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease
  publication-title: Int. Psychogeriatr.
  doi: 10.1017/S1041610209009405
– year: 2019
  ident: 10.1016/j.artmed.2022.102309_bb0255
SSID ssj0007416
Score 2.3909547
Snippet Deep learning has the potential to standardize and automate diagnostics for complex medical imaging data, but real-world clinical images are plagued by a high...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102309
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Brain - diagnostic imaging
Cognitive Dysfunction - diagnostic imaging
Confounding factors
Data matching
Deep learning
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mild cognitive impairment
Neuroimaging - methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQS8MBhf5UtGQuLJXRLHcfJYENNA6oQmKo2nyHZsrSNNq34IsVf-ONeJHTGGtO0xim8ipye-J_W55wK8w_UuLaKioha5NU25TKjMpaKcJ0UkLYLAunrnyXF2NE2_nPLTHYhDLUwr2tdqNmrq-aiZnbXayuVcHwSd2AHmc45J8Q7sZhzp9wB2p8dfx99bTz3GKMtad884F4wmeRaFcrlW04UXwRyDX4VJ0noWOBni_9PRVbp5VTV5b9ss5a-fsq7_SkmHe3ASJtMpUX6Mths10hf_-DzearYP4YEnqGTcnXoEO6bZh73Q_IH4tWAf7k78rvxj-O26fgYfWrKwRBL8yrauYZNZUbsyhoQCTDI5-UycKnVtNmTWEKSfZIL8nXj7a_LB_Vsg56RzmCZIqTEWBzhFkwzXH9cXZ2Y2N6v3a-J3mJ7A9PDTt49H1Dd3oJrH2cYZU6Y6E0ogAU2UEq7irkpzXVmVCskdldNaRW5XM7WRzq0pHJupikwxYVTBnsKgWTTmOZAorvLIyqrAkFRignWegBVCTotKZokZAgu_cam987lrwFGXQeJ2XnbIKB0yyg4ZQ6B91LJz_rhmPA_wKcNDxXW4xNR0TZzo4zzr6djMDSLfBpSWuCi4nR7ZmMV2XSaZYPhypDwewrMOtf0cGFL4guUC73sJz_0AZzh--QwiszUe92AcwqhH_o0ezYvbBryE--6ok0W_ggFC2LxG8rdRb_zr_gePdFmp
  priority: 102
  providerName: Unpaywall
Title Construction of a confounder-free clinical MRI dataset in the Mass General Brigham system for classification of Alzheimer's disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365722000744
https://dx.doi.org/10.1016/j.artmed.2022.102309
https://www.ncbi.nlm.nih.gov/pubmed/35659387
https://www.proquest.com/docview/2673596451
https://pubmed.ncbi.nlm.nih.gov/PMC9295028
https://www.ncbi.nlm.nih.gov/pmc/articles/9295028
UnpaywallVersion submittedVersion
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelg20v3dZ9NPsoGgz2pMaxJMt-zMpKupEwtgW6JyPZEvVInZCklO6hL_3Hd2dL3kIHLXsycXROrDvd_YTufkfIO_B3IouykjnA1kxIHTOdasOkjLNIOzACh_XO40kymopPJ_JkixyGWhhMq_S-v_Xpjbf2d_p-NvuLqup_w704T6SK4yYQIieoEAq7GBxc_UnzQMTR8O1xznB0KJ9rcrzgeRBzYJcYxw2HAaYl_js83YSfN7MoH5zXC315oWezv0LU0WOy47ElHbZ__wnZsvUueRT6NlC_jHfJ_bE_UH9KrrFhZ6CQpXNHNYUNssNeS3bJ3NJaGmon6fjrMcWE0pVd06qmgBzpGKA39czV9ANu9PUZbcmhKaBhkIUBmIykw_OHs1-ntjqzy_cr6g-HnpHp0cfvhyPm-zKwQg6SNXJKiiJRRgF2jI1RWCxXirQonRFKS0RhRWEiPJAULipSZzMEImWWGK6syfhzsl3Pa7tHaDQo08jpMgMRoSE2Ip1fCdZSqFInse0RHtSRF560HHtnzPKQnfYzb5WYoxLzVok9wjqpRUvacct4GTSdh0kFF5pDVLlFTnVyG0Z7B8m3waByWM94SKNrOz9f5XGiuMwSIQc98qI1sO4dOKDvjKcKfnfD9LoByBW--U1dnTac4YCCJUDJHjnojPROU_Pyv1_xFXmIn9rU5tdkG2zZvgEAtzb7zQrdJ_eGx59HE7hOJ1-GP34Du7lHnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlEuPAqF5WkkJE7pZh073hxLRbWFpgdopd4sJ7HVoG12tbsVggMX_jgziR1YFakV18STh2fs-Uae-QbgLe53IouzKnKIrSMhDY_M2BSRlDyLjUMjcFTvnB-nk1Px8UyebcB-qIWhtEq_93d7ertb-ytDP5vDeV0Pv1AsnqRScd46QnELbgvJFUVguz__5HkQ5GgJ95IkouGhfq5N8sIHotPBMJHzlsSA8hL_7Z-u4s-raZRbl83cfP9mptO_fNTBA7jnwSXb677_IWzYZhvuh8YNzK_jbbiT-xP1R_CLOnYGDlk2c8wwjJAdNVuyi8gtrGWheJLlnw8ZZZQu7YrVDUPoyHLE3sxTV7P3FOmbC9axQzOEwyiLAygbyYTn701_nNv6wi7eLZk_HXoMpwcfTvYnkW_MEJVylK6IVFKUqSoUgkdeFIqq5SoxLitXCGUkwbCyLGI6kRQuLsfOZoREqiwtEmWLLNmBzWbW2KfA4lE1jp2pMhQRBp0j8flVaC6lqkzK7QCSoA5detZyap4x1SE97avulKhJibpT4gCiXmresXZcM14GTeswqbiHanQr18ipXm7Nam8g-SYYlMYFTac0prGzy6XmqUpklgo5GsCTzsD6f0gQfmfJWOF710yvH0Bk4et3mvq8JQ1HGCwRSw5gtzfSG03Ns__-xdewNTnJj_TR4fGn53CX7nR5zi9gE-3avkQ0typetav1N6qfR4I
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anQS8MBhf5UtGQuLJXRLHcfJYENNA6oQmKo2nyHZsrSNNq34IsVf-ONeJHTGGtO0xim8ipye-J_W55wK8w_UuLaKioha5NU25TKjMpaKcJ0UkLYLAunrnyXF2NE2_nPLTHYhDLUwr2tdqNmrq-aiZnbXayuVcHwSd2AHmc45J8Q7sZhzp9wB2p8dfx99bTz3GKMtad884F4wmeRaFcrlW04UXwRyDX4VJ0noWOBni_9PRVbp5VTV5b9ss5a-fsq7_SkmHe3ASJtMpUX6Mths10hf_-DzearYP4YEnqGTcnXoEO6bZh73Q_IH4tWAf7k78rvxj-O26fgYfWrKwRBL8yrauYZNZUbsyhoQCTDI5-UycKnVtNmTWEKSfZIL8nXj7a_LB_Vsg56RzmCZIqTEWBzhFkwzXH9cXZ2Y2N6v3a-J3mJ7A9PDTt49H1Dd3oJrH2cYZU6Y6E0ogAU2UEq7irkpzXVmVCskdldNaRW5XM7WRzq0pHJupikwxYVTBnsKgWTTmOZAorvLIyqrAkFRignWegBVCTotKZokZAgu_cam987lrwFGXQeJ2XnbIKB0yyg4ZQ6B91LJz_rhmPA_wKcNDxXW4xNR0TZzo4zzr6djMDSLfBpSWuCi4nR7ZmMV2XSaZYPhypDwewrMOtf0cGFL4guUC73sJz_0AZzh--QwiszUe92AcwqhH_o0ezYvbBryE--6ok0W_ggFC2LxG8rdRb_zr_gePdFmp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+confounder-free+clinical+MRI+dataset+in+the+Mass+General+Brigham+system+for+classification+of+Alzheimer%27s+disease&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Leming%2C+Matthew&rft.au=Das%2C+Sudeshna&rft.au=Im%2C+Hyungsoon&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=129&rft_id=info:doi/10.1016%2Fj.artmed.2022.102309&rft.externalDocID=S0933365722000744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon