Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plan...
Saved in:
Published in | Microorganisms (Basel) Vol. 9; no. 7; p. 1491 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-2607 2076-2607 |
DOI | 10.3390/microorganisms9071491 |
Cover
Abstract | Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture. |
---|---|
AbstractList | Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture. Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture. |
Author | Reddy, Munagala S. Ramteke, Pramod W. Ramakrishna, Wusirika Rathore, Parikshita Pecoraro, Lorenzo Sagar, Alka |
AuthorAffiliation | 3 Faculty of Life Sciences, Mandsaur University, Mandsaur 458001, India 2 Department of Biochemistry, Central University of Punjab, Bathinda 151401, India; pari.rathore1@gmail.com 5 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China 1 Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India; alka2011sagar@gmail.com or 4 Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA; prof.m.s.reddy@gmail.com |
AuthorAffiliation_xml | – name: 4 Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA; prof.m.s.reddy@gmail.com – name: 3 Faculty of Life Sciences, Mandsaur University, Mandsaur 458001, India – name: 5 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China – name: 1 Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India; alka2011sagar@gmail.com or – name: 2 Department of Biochemistry, Central University of Punjab, Bathinda 151401, India; pari.rathore1@gmail.com |
Author_xml | – sequence: 1 givenname: Alka surname: Sagar fullname: Sagar, Alka – sequence: 2 givenname: Parikshita surname: Rathore fullname: Rathore, Parikshita – sequence: 3 givenname: Pramod W. surname: Ramteke fullname: Ramteke, Pramod W. – sequence: 4 givenname: Wusirika orcidid: 0000-0002-8571-5827 surname: Ramakrishna fullname: Ramakrishna, Wusirika – sequence: 5 givenname: Munagala S. surname: Reddy fullname: Reddy, Munagala S. – sequence: 6 givenname: Lorenzo orcidid: 0000-0002-3234-4698 surname: Pecoraro fullname: Pecoraro, Lorenzo |
BookMark | eNqFUtFu0zAUjdAQG2OfgGSJFx4oOLFjJyAhVdU2KlaYaN8tx7lOXaX2ZjtD5Q_5K5y1SGxC4Bdb9557zr33-Hl2ZJ2FLHuZ47eE1Pjd1ijvnO-kNWEbasxzWudPspMCczYpGOZHf7yPs7MQNjidOidVmT_LjgklLK8LfpL9vO6ljejSu-9xja6927pobIe-rc0P10gVwRv5Bk19MwQ19NKjxU4571Na9uhisJ1B0rZotQbj0XJnwXcmRKPQ3KbaRGCcDSg6NHPDIYLiGtAX6GQ0d4DOtQYVA3IaLWVvLKClMz1yFk07b5JmHDy8R59hhxZSjQ32kKIQ7nUXoNb7LbzInmrZBzg73KfZ6uJ8Nfs0ufp6OZ9NryaqzMs4aTktSU1qqiXXNeesLEkjm6poaKPyinKmq4oy0rRAFW6KtilIpTgwVTGNG3Kazfe0rZMbcePNVvqdcNKI-0AyRUif5u9BsCrXuqgwFEApUNJgSOJt3iqpMdZl4vq457oZmi20Cmz0sn9A-jBjzVp07k5UBPO6oong9YHAu9sBQhRbExT0yVNwQxAFI4wyXrLq_9CyrCnhBR6hrx5BN27wNi11RFGW06IctT_sUcmTEDxooUyUo92pVdOLHIvxr4q__tVUXT6q_j31v-t-ATrU-Vg |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e38683 crossref_primary_10_1016_j_jksus_2022_102366 crossref_primary_10_3390_agriculture13101865 crossref_primary_10_3390_ijpb15040067 crossref_primary_10_1007_s11356_022_19149_3 crossref_primary_10_1155_2024_9226715 crossref_primary_10_3390_plants12213703 crossref_primary_10_1093_lambio_ovac067 crossref_primary_10_1016_j_tfp_2024_100593 crossref_primary_10_1186_s43170_023_00168_0 crossref_primary_10_1007_s00284_023_03496_6 crossref_primary_10_3390_agronomy13020550 crossref_primary_10_3390_ijms24054781 crossref_primary_10_1590_s1413_415220210240 crossref_primary_10_1080_01904167_2023_2192780 crossref_primary_10_1080_00103624_2024_2391990 crossref_primary_10_3389_fsufs_2024_1495610 crossref_primary_10_1016_j_eti_2024_103900 crossref_primary_10_3390_su142416537 crossref_primary_10_1007_s42729_024_01640_0 crossref_primary_10_3390_plants13101420 crossref_primary_10_1016_j_envres_2023_116220 crossref_primary_10_1007_s10343_022_00668_5 crossref_primary_10_1111_pce_14403 crossref_primary_10_18016_ksutarimdoga_vi_1587723 crossref_primary_10_3390_jof9020233 crossref_primary_10_1007_s10658_024_02926_w crossref_primary_10_3390_agronomy12092082 crossref_primary_10_3390_horticulturae10111150 crossref_primary_10_3390_su141912250 crossref_primary_10_1007_s40588_023_00206_5 crossref_primary_10_3390_su142315984 crossref_primary_10_1038_s41598_024_71165_0 crossref_primary_10_1016_j_sajb_2024_08_055 crossref_primary_10_3390_microorganisms10010021 crossref_primary_10_3390_plants12183319 crossref_primary_10_3390_su151914643 crossref_primary_10_1007_s11104_024_07047_1 crossref_primary_10_1080_01904167_2024_2374279 crossref_primary_10_1016_j_micres_2024_127895 crossref_primary_10_3390_plants12173102 crossref_primary_10_1016_j_chemosphere_2022_134954 crossref_primary_10_3897_imafungus_16_144989 crossref_primary_10_1016_j_indcrop_2021_114327 crossref_primary_10_1590_1983_40632024v5479375 crossref_primary_10_1016_j_apsoil_2024_105596 crossref_primary_10_1016_j_jplph_2025_154455 crossref_primary_10_1590_2447_536x_v28i4_2498 crossref_primary_10_1007_s11104_022_05641_9 crossref_primary_10_1016_j_stress_2024_100661 crossref_primary_10_1002_ldr_4877 crossref_primary_10_3390_jof8010021 crossref_primary_10_3390_ijpb16010032 crossref_primary_10_1016_j_eti_2024_103886 crossref_primary_10_1007_s00299_022_02866_x crossref_primary_10_3389_fmicb_2024_1475485 crossref_primary_10_3389_fmicb_2024_1432637 crossref_primary_10_1007_s11356_024_33295_w crossref_primary_10_3389_fmicb_2023_1210890 crossref_primary_10_1515_opag_2022_0356 crossref_primary_10_1016_j_scienta_2022_111219 crossref_primary_10_3390_agronomy12092069 crossref_primary_10_1016_j_scitotenv_2024_176919 crossref_primary_10_15835_nbha50212677 crossref_primary_10_1007_s10343_022_00651_0 crossref_primary_10_1007_s00572_024_01165_5 crossref_primary_10_3390_microorganisms10061088 crossref_primary_10_1016_j_scitotenv_2024_170417 |
Cites_doi | 10.1007/s11274-017-2364-9 10.1007/s10658-007-9162-4 10.1016/j.jplph.2017.04.012 10.1007/s00299-018-2328-z 10.1186/s40694-019-0086-5 10.1111/j.1469-8137.2010.03540.x 10.1016/j.envexpbot.2020.104124 10.1016/j.rhisph.2017.04.012 10.1007/978-981-10-4115-0_4 10.1007/s13199-017-0477-4 10.3389/fsufs.2020.601004 10.3389/fpls.2018.01473 10.3389/fpls.2016.01890 10.1016/j.plaphy.2020.02.039 10.1016/bs.ampbs.2017.04.001 10.3109/07388551.2014.899964 10.17221/54/2010-PSE 10.1016/j.gexplo.2016.03.011 10.1104/pp.19.00560 10.1007/978-1-4614-6108-1_13 10.1016/j.jaridenv.2013.05.019 10.1007/s00344-017-9683-9 10.1007/s00344-009-9136-1 10.1007/s13205-017-0739-0 10.1093/jxb/erq089 10.1016/B978-0-12-818095-2.00007-2 10.1371/journal.pone.0231497 10.1016/B978-0-12-799963-0.00015-0 10.1007/978-3-319-57849-1_5 10.3923/ijar.2010.954.983 10.1016/j.apsoil.2019.02.019 10.1007/s00299-018-2341-2 10.1139/w11-044 10.1016/j.sjbs.2016.11.015 10.1007/s11099-015-0131-4 10.3389/fsufs.2020.00088 10.1007/s00344-016-9583-4 10.4014/jmb.1904.04026 10.3389/fpls.2019.00470 10.1139/W09-092 10.1038/s41564-018-0129-3 10.3389/fmicb.2016.01089 10.1002/jpln.201800262 10.3389/fpls.2017.01739 10.1007/s10343-019-00480-8 10.3389/fmicb.2019.01506 10.1007/s11104-019-04202-x 10.1016/j.plaphy.2013.01.020 10.1016/j.jare.2020.07.003 10.1111/j.1469-8137.2011.04045.x 10.1007/s12298-014-0251-5 10.1007/s12298-020-00852-9 10.1007/s00572-010-0353-z 10.1038/s41598-017-16697-4 10.4014/jmb.1712.12027 10.3389/fpls.2018.00813 10.17221/204/2009-PSE 10.1111/j.1365-2672.2009.04414.x 10.3389/fmicb.2018.00148 10.1016/j.micres.2017.03.006 10.1007/s11104-016-3007-x 10.15835/nsb346230 10.1016/j.chemosphere.2016.04.112 10.1016/j.jplph.2015.07.006 10.3390/ijms20174199 10.1007/s00344-018-9880-1 10.1080/01904160801895027 10.1016/j.plaphy.2012.11.024 10.1007/s00344-014-9455-8 10.1007/s13765-015-0072-4 10.1007/s11356-014-3739-1 10.1007/978-981-10-0388-2_3 10.1111/jam.14951 10.5958/0974-4479.2018.00009.6 10.3389/fpls.2017.00049 10.1134/S1021443717020078 10.1016/j.biotechadv.2016.08.005 10.1111/plb.12173 10.1080/15226514.2013.821447 10.1007/s00572-014-0582-7 10.1007/s11104-012-1402-5 10.1007/978-981-10-2854-0_8 10.1002/jobm.201200445 10.1007/s13199-012-0196-9 10.1038/srep42284 10.3389/fmicb.2019.02791 10.1007/s13213-012-0465-0 10.1080/00380768.2014.936037 10.1016/j.micres.2015.11.008 10.1007/s00344-011-9236-6 10.1002/jobm.200700365 10.1111/plb.13123 10.1016/j.sjbs.2019.10.008 10.4161/psb.24030 10.1104/pp.15.00284 10.1111/j.1365-2672.2006.03179.x 10.1007/s005720000055 10.1016/j.micres.2018.02.003 10.1016/j.micres.2015.08.002 10.1094/MPMI-23-8-1097 10.1016/j.jplph.2009.02.010 10.1007/s00248-009-9544-6 10.3389/fpls.2017.01768 10.1007/978-981-10-5514-0_4 10.1038/s41598-018-38026-z 10.1016/j.tplants.2013.06.004 10.1007/s00572-010-0311-9 10.3390/app10030945 10.2136/sssaj2008.0240 10.1007/s00248-007-9249-7 10.1016/j.apsoil.2017.05.033 10.1186/2193-1801-2-6 10.1186/s40538-017-0112-x 10.5897/AJB09.1176 10.1080/23311932.2014.1000714 10.1146/annurev.arplant.59.032607.092911 10.1016/j.scitotenv.2019.135062 10.1016/j.crvi.2011.05.001 10.1111/j.1365-2672.2009.04242.x 10.1101/2020.06.11.146126 10.1038/s41579-020-0412-1 10.1007/s12042-020-09265-0 10.1007/s13199-016-0387-x 10.1007/s00299-019-02374-5 10.1128/AEM.70.3.1836-1842.2004 10.1080/17429140903125848 10.1155/2016/6294098 10.3389/fmicb.2016.00867 10.1016/j.micres.2020.126439 10.1007/s11274-020-2804-9 10.1006/jtbi.1997.0532 10.1093/aob/mcw191 10.1016/j.micres.2017.11.004 10.1007/s11104-009-9895-2 10.1007/s13199-012-0191-1 10.1007/978-3-642-13612-2 10.3389/fpls.2019.01068 10.3389/fpls.2018.00297 10.1016/j.bjm.2016.04.001 10.5958/2455-7218.2020.00024.8 10.1016/j.jplph.2008.09.013 10.3389/fpls.2019.00863 10.1016/j.pmpp.2017.11.007 10.1007/s00203-016-1197-5 10.1007/s42729-019-00032-z 10.1007/s00344-007-9038-z 10.4067/S0718-58392013000300002 10.1007/s00203-009-0466-y 10.3390/su71215799 10.1007/s11104-009-0255-z 10.1007/s00572-016-0704-5 10.1186/s12866-019-1450-6 10.1080/03650340.2019.1584395 10.1016/j.jplph.2015.07.002 10.1016/j.scienta.2009.01.001 10.1016/j.apsoil.2011.09.003 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7T7 8FD 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/microorganisms9071491 |
DatabaseName | CrossRef Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Economics Agriculture |
EISSN | 2076-2607 |
ExternalDocumentID | oai_doaj_org_article_681ff280e2e44e43b0e745d1dcaf00f5 PMC8307984 10_3390_microorganisms9071491 |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ACPRK AFKRA AFPKN AFRAH AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ GS5 GX1 HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RNS RPM 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c515t-d74539394fa7f9776553bab82b4bc18476f88463bde4c0b2db238c7e6c86f0b3 |
IEDL.DBID | DOA |
ISSN | 2076-2607 |
IngestDate | Wed Aug 27 01:32:12 EDT 2025 Thu Aug 21 18:23:16 EDT 2025 Thu Sep 04 20:22:51 EDT 2025 Thu Sep 04 22:26:36 EDT 2025 Fri Jul 25 12:00:50 EDT 2025 Tue Jul 01 01:32:18 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-d74539394fa7f9776553bab82b4bc18476f88463bde4c0b2db238c7e6c86f0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3234-4698 0000-0002-8571-5827 |
OpenAccessLink | https://doaj.org/article/681ff280e2e44e43b0e745d1dcaf00f5 |
PMID | 34361927 |
PQID | 2554614254 |
PQPubID | 2032358 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_681ff280e2e44e43b0e745d1dcaf00f5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307984 proquest_miscellaneous_2636467568 proquest_miscellaneous_2559437208 proquest_journals_2554614254 crossref_citationtrail_10_3390_microorganisms9071491 crossref_primary_10_3390_microorganisms9071491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210713 |
PublicationDateYYYYMMDD | 2021-07-13 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210713 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Microorganisms (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Camoni (ref_80) 2018; 9 Etesami (ref_1) 2020; 178 Jha (ref_17) 2019; 38 Bhise (ref_94) 2017; 7 ref_136 ref_138 Hidri (ref_150) 2019; 182 Yoo (ref_62) 2019; 29 ref_12 Duffy (ref_39) 2004; 70 Zahir (ref_88) 2009; 191 ref_97 Ji (ref_42) 2019; 9 Singh (ref_55) 2017; 36 Etesami (ref_84) 2014; 20 Sukweenadhi (ref_65) 2018; 9 Afzal (ref_7) 2020; 13 (ref_119) 2009; 166 Rao (ref_68) 2018; 31 Bothe (ref_137) 2012; 58 Ramadoss (ref_2) 2013; 2 Mdel (ref_161) 2009; 58 Zuccarini (ref_120) 2008; 31 Ashrafi (ref_166) 2014; 60 (ref_36) 2013; Volume 2 Verhage (ref_170) 2010; 61 Nanjundappa (ref_168) 2019; 6 Gamalero (ref_169) 2015; 169 Nadeem (ref_103) 2016; 198 Wu (ref_118) 2010; 56 Naz (ref_63) 2009; 8 ref_24 Goswami (ref_102) 2015; 1 Mardukhi (ref_114) 2011; 334 Hajiboland (ref_117) 2010; 331 ref_22 Porcel (ref_141) 2016; 26 Forni (ref_70) 2017; 410 Saravanakumar (ref_104) 2007; 102 ref_121 ref_123 Glick (ref_75) 2007; 119 Olanrewaju (ref_37) 2017; 33 Baradar (ref_157) 2015; 8 Hassani (ref_159) 2014; 4 Khalloufi (ref_124) 2017; 214 Jahromi (ref_131) 2008; 55 Hajiboland (ref_126) 2015; 53 Verma (ref_31) 2010; 5 Li (ref_139) 2013; 8 Trivedi (ref_10) 2020; 18 ref_72 Chang (ref_101) 2014; 16 Wu (ref_122) 2009; 37 Zheng (ref_35) 2017; 7 Singh (ref_56) 2017; 73 ref_155 Kushwaha (ref_8) 2020; 36 Kronzucker (ref_15) 2011; 18 Hashem (ref_156) 2016; 7 Parihar (ref_3) 2015; 22 (ref_116) 2012; 194 Evelin (ref_16) 2019; 10 Estrada (ref_113) 2013; 97 Glick (ref_78) 1998; 190 Parray (ref_6) 2016; 35 Glick (ref_38) 2020; 235 (ref_148) 2000; 10 Bhise (ref_85) 2019; 65 Motaleb (ref_145) 2020; 72 Rajput (ref_53) 2013; 45 ref_149 Katiyar (ref_19) 2016; 4 Baha (ref_64) 2015; 34 Kumar (ref_111) 2015; 35 Majeed (ref_41) 2018; 37 Balliu (ref_110) 2015; 7 ref_142 ref_86 Chandrasekaran (ref_135) 2014; 24 (ref_147) 2010; 56 Orhan (ref_54) 2016; 47 Richardson (ref_151) 2009; 321 Kong (ref_69) 2017; 71 Yadav (ref_163) 2020; 150 Kumar (ref_127) 2010; 29 Hashem (ref_176) 2016; 2016 Sagar (ref_98) 2020; 100 Li (ref_67) 2017; 119 Zhang (ref_14) 2010; 23 Ramakrishna (ref_33) 2019; 138 ref_50 Sheng (ref_133) 2011; 21 Nadeem (ref_95) 2009; 55 Basu (ref_143) 2018; 102 Hussein (ref_66) 2018; 28 Cardinale (ref_60) 2015; 181 (ref_77) 2018; 37 Ye (ref_140) 2019; 10 Bal (ref_82) 2013; 53 ref_57 Bal (ref_83) 2013; 366 ref_172 Porcel (ref_125) 2015; 185 Campanelli (ref_115) 2013; 59 Mathimaran (ref_154) 2020; 4 Chakraborty (ref_40) 2009; 107 Siddikee (ref_100) 2012; 31 Backer (ref_29) 2018; 9 Tille (ref_173) 2017; 7 Santander (ref_109) 2019; 19 Kannahi (ref_34) 2014; 6 Upadhyay (ref_44) 2015; 17 Dhawi (ref_162) 2016; 157 Ahmad (ref_25) 2013; 63 Singh (ref_43) 2016; 69 Jha (ref_49) 2013; 73 Mathur (ref_128) 2010; 60 Nadeem (ref_91) 2013; 63 Dudhane (ref_134) 2011; 3 Nadeem (ref_89) 2010; 74 Hashem (ref_167) 2019; 26 Saghafi (ref_76) 2018; 18 Garg (ref_130) 2008; 27 Peng (ref_132) 2011; 21 Gupta (ref_74) 2019; 10 ref_164 Vaishnav (ref_11) 2019; 38 Egamberdieva (ref_4) 2019; 10 Paul (ref_81) 2008; 48 Li (ref_47) 2017; 64 Ramakrishna (ref_153) 2020; 711 Sagar (ref_87) 2020; 26 Nia (ref_90) 2012; 11 Singh (ref_92) 2015; 184 Hernandez (ref_23) 2012; 61 Etesami (ref_48) 2018; 9 Singh (ref_79) 2015; 6 Santoyo (ref_32) 2016; 183 Timmusk (ref_28) 2017; 8 Shah (ref_51) 2017; 174 Munns (ref_13) 2008; 59 Ahkami (ref_20) 2017; 3 Ahmad (ref_99) 2011; 57 Anzuay (ref_59) 2017; 199 Hunter (ref_175) 2019; 180 ref_30 Cabral (ref_112) 2020; 22 Arora (ref_171) 2020; 26 Ilangumaran (ref_18) 2017; 8 Qin (ref_45) 2016; 34 Kumar (ref_73) 2017; 207 Upadhyay (ref_52) 2012; 3 Numana (ref_71) 2018; 209 Akram (ref_58) 2016; 7 ref_106 Tank (ref_61) 2010; 5 ref_105 ref_107 Cameron (ref_174) 2013; 18 ref_46 Diagne (ref_165) 2020; 4 Glick (ref_21) 2012; 1 Hassen (ref_27) 2020; 5 Olivares (ref_26) 2017; 4 Lee (ref_158) 2015; 58 Zhalnina (ref_9) 2018; 3 Singh (ref_93) 2016; 7 Farooq (ref_96) 2014; 16 Hashem (ref_144) 2020; 27 Gamalero (ref_152) 2010; 108 Daei (ref_129) 2009; 166 ref_5 Begum (ref_108) 2019; 10 Chen (ref_146) 2017; 8 Younesi (ref_160) 2014; 60 |
References_xml | – volume: 16 start-page: 591 year: 2014 ident: ref_96 article-title: Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress publication-title: Int. J. Agric. Biol. – volume: 33 start-page: 197 year: 2017 ident: ref_37 article-title: Mechanisms of action of plant growth promoting bacteria publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-017-2364-9 – volume: 119 start-page: 329 year: 2007 ident: ref_75 article-title: Promotion of plant growth by ACC deaminase-producing soil bacteria publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-007-9162-4 – volume: 214 start-page: 134 year: 2017 ident: ref_124 article-title: The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2017.04.012 – volume: 37 start-page: 1557 year: 2018 ident: ref_77 article-title: Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. publication-title: Plant Cell Rep. doi: 10.1007/s00299-018-2328-z – volume: 6 start-page: 23 year: 2019 ident: ref_168 article-title: Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants publication-title: Fungal Biol. Biotechnol. doi: 10.1186/s40694-019-0086-5 – volume: 18 start-page: 54 year: 2011 ident: ref_15 article-title: Sodium transport in plants: A critical review publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03540.x – volume: 178 start-page: 104124 year: 2020 ident: ref_1 article-title: Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2020.104124 – volume: 3 start-page: 233 year: 2017 ident: ref_20 article-title: Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity publication-title: Rhizosphere doi: 10.1016/j.rhisph.2017.04.012 – ident: ref_138 doi: 10.1007/978-981-10-4115-0_4 – volume: 73 start-page: 213 year: 2017 ident: ref_56 article-title: Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat publication-title: Symbiosis doi: 10.1007/s13199-017-0477-4 – volume: 4 start-page: 266 year: 2020 ident: ref_165 article-title: Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.) publication-title: Front. Sustain. Food Syst. doi: 10.3389/fsufs.2020.601004 – volume: 9 start-page: 1473 year: 2018 ident: ref_29 article-title: Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01473 – volume: 7 start-page: 1890 year: 2016 ident: ref_93 article-title: A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01890 – volume: 150 start-page: 222 year: 2020 ident: ref_163 article-title: Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.02.039 – volume: 71 start-page: 97 year: 2017 ident: ref_69 article-title: The role of plant growth-promoting bacteria in metal phytoremediation publication-title: Adv. Microb. Physiol. doi: 10.1016/bs.ampbs.2017.04.001 – volume: 35 start-page: 461 year: 2015 ident: ref_111 article-title: Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: A biotechnological perspective publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2014.899964 – volume: 56 start-page: 470 year: 2010 ident: ref_118 article-title: Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: Changes in leaf antioxidant defense systems publication-title: Plant Soil Environ. doi: 10.17221/54/2010-PSE – volume: 174 start-page: 59 year: 2017 ident: ref_51 article-title: Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2016.03.011 – volume: 180 start-page: 2004 year: 2019 ident: ref_175 article-title: CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1 publication-title: Plant Physiol. doi: 10.1104/pp.19.00560 – ident: ref_106 doi: 10.1007/978-1-4614-6108-1_13 – volume: 97 start-page: 170 year: 2013 ident: ref_113 article-title: Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2013.05.019 – volume: 4 start-page: 244 year: 2014 ident: ref_159 article-title: Efficiency of mycorrhizal fungi and phosphate solubilizing bacteria on phosphorus uptake and chlorophyll index in potato plants publication-title: Int. J. Biosci. – volume: 36 start-page: 783 year: 2017 ident: ref_55 article-title: Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.) publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-017-9683-9 – volume: 29 start-page: 297 year: 2010 ident: ref_127 article-title: Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-009-9136-1 – volume: 7 start-page: 105 year: 2017 ident: ref_94 article-title: Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. publication-title: 3 Biotech doi: 10.1007/s13205-017-0739-0 – volume: 61 start-page: 2589 year: 2010 ident: ref_170 article-title: Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq089 – ident: ref_72 doi: 10.1016/B978-0-12-818095-2.00007-2 – ident: ref_149 doi: 10.1371/journal.pone.0231497 – ident: ref_107 doi: 10.1016/B978-0-12-799963-0.00015-0 – ident: ref_136 doi: 10.1007/978-3-319-57849-1_5 – volume: 5 start-page: 954 year: 2010 ident: ref_31 article-title: Impact of plant growth promoting rhizobacteria on crop production publication-title: Int. J. Agric. Res. doi: 10.3923/ijar.2010.954.983 – volume: 138 start-page: 10 year: 2019 ident: ref_33 article-title: Plant growth promoting bacteria in agriculture: Two sides of a coin publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.02.019 – volume: 37 start-page: 1599 year: 2018 ident: ref_41 article-title: Plant growth promoting bacteria: Role in soil improvement, abiotic and biotic stress management of crops publication-title: Plant Cell Rep. doi: 10.1007/s00299-018-2341-2 – volume: 57 start-page: 578 year: 2011 ident: ref_99 article-title: Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase publication-title: Can. J. Microbiol. doi: 10.1139/w11-044 – volume: 26 start-page: 38 year: 2019 ident: ref_167 article-title: Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2016.11.015 – volume: 53 start-page: 572 year: 2015 ident: ref_126 article-title: Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization publication-title: Photosynthetica doi: 10.1007/s11099-015-0131-4 – volume: 4 start-page: 88 year: 2020 ident: ref_154 article-title: Intercropping transplanted pigeon pea with finger millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input publication-title: Front. Sustain. Food Syst. doi: 10.3389/fsufs.2020.00088 – volume: 35 start-page: 877 year: 2016 ident: ref_6 article-title: Current perspectives on plant growth-promoting rhizobacteria publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-016-9583-4 – volume: 29 start-page: 1124 year: 2019 ident: ref_62 article-title: Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1904.04026 – volume: 10 start-page: 470 year: 2019 ident: ref_16 article-title: Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00470 – volume: 55 start-page: 1302 year: 2009 ident: ref_95 article-title: Rhizobacteria containing ACC-deaminase confers salt tolerance in maize grown on salt affected fields publication-title: Can. J. Microbiol. doi: 10.1139/W09-092 – volume: 8 start-page: 1 year: 2015 ident: ref_157 article-title: Effect of some bacteria and iron chelators on potato colonization by arbuscular mycorrhiza fungi inoculated by Rhizoctonia publication-title: Ind. J. Sci. Technol. – volume: 3 start-page: 470 year: 2018 ident: ref_9 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0129-3 – volume: 7 start-page: 1089 year: 2016 ident: ref_156 article-title: The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01089 – volume: 182 start-page: 451 year: 2019 ident: ref_150 article-title: Arbuscular mycorrhizal fungus and rhizobacteria affect the physiology and performance of Sulla coronaria plants subjected to salt stress by mitigation of ionic imbalance publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201800262 – volume: 8 start-page: 1739 year: 2017 ident: ref_146 article-title: Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01739 – volume: 72 start-page: 29 year: 2020 ident: ref_145 article-title: AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants publication-title: Gesunde Pflanz. doi: 10.1007/s10343-019-00480-8 – volume: 10 start-page: 1506 year: 2019 ident: ref_74 article-title: ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01506 – ident: ref_5 doi: 10.1007/s11104-019-04202-x – ident: ref_50 doi: 10.1016/j.plaphy.2013.01.020 – volume: 37 start-page: 133 year: 2009 ident: ref_122 article-title: Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress publication-title: Not. Bot. Horti Agrobot. – volume: 26 start-page: 69 year: 2020 ident: ref_171 article-title: Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils publication-title: J. Adv. Res. doi: 10.1016/j.jare.2020.07.003 – volume: 194 start-page: 536 year: 2012 ident: ref_116 article-title: The network structure of plant-arbuscular mycorrhizal fungi publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.04045.x – volume: 20 start-page: 425 year: 2014 ident: ref_84 article-title: Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-014-0251-5 – ident: ref_97 – volume: 5 start-page: 244 year: 2020 ident: ref_27 article-title: Rhizobacteria and their metabolites as a promising green approach for the treatment of pesticide contaminated agricultural soils publication-title: MOJ Ecol. Environ. Sci. – volume: 26 start-page: 1847 year: 2020 ident: ref_87 article-title: ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. ameliorates salt stress and promotes the growth of rice and millets under salt stress publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-020-00852-9 – volume: 21 start-page: 423 year: 2011 ident: ref_133 article-title: Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress publication-title: Mycorrhiza doi: 10.1007/s00572-010-0353-z – volume: 7 start-page: 16409 year: 2017 ident: ref_173 article-title: The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens publication-title: Sci. Rep. doi: 10.1038/s41598-017-16697-4 – volume: 45 start-page: 1955 year: 2013 ident: ref_53 article-title: Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil publication-title: Pak. J. Bot. – volume: 28 start-page: 938 year: 2018 ident: ref_66 article-title: Plant growth-promoting rhizobacteria improved salinity tolerance of Lactuca sativa and Raphanus sativus publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1712.12027 – volume: 9 start-page: 813 year: 2018 ident: ref_65 article-title: A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00813 – volume: 56 start-page: 318 year: 2010 ident: ref_147 article-title: Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae publication-title: Plant Soil Environ. doi: 10.17221/204/2009-PSE – ident: ref_86 – volume: 108 start-page: 236 year: 2010 ident: ref_152 article-title: Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2009.04414.x – volume: 9 start-page: 148 year: 2018 ident: ref_48 article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00148 – volume: 199 start-page: 98 year: 2017 ident: ref_59 article-title: Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.03.006 – volume: 410 start-page: 335 year: 2017 ident: ref_70 article-title: Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria publication-title: Plant Soil doi: 10.1007/s11104-016-3007-x – volume: 3 start-page: 71 year: 2011 ident: ref_134 article-title: Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition publication-title: Not. Sci. Biol. doi: 10.15835/nsb346230 – volume: 157 start-page: 33 year: 2016 ident: ref_162 article-title: Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.04.112 – volume: 185 start-page: 75 year: 2015 ident: ref_125 article-title: Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.07.006 – volume: 3 start-page: 73 year: 2012 ident: ref_52 article-title: Salinity tolerance in free-living plant growth promoting rhizobacteria publication-title: Indian J. Res. – ident: ref_172 doi: 10.3390/ijms20174199 – volume: 38 start-page: 650 year: 2019 ident: ref_11 article-title: Endophytic bacteria in plant salt stress tolerance: Current and future prospects publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-018-9880-1 – volume: 11 start-page: 113 year: 2012 ident: ref_90 article-title: Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil publication-title: J. Saudi Soc. Agric. Sci. – volume: 31 start-page: 497 year: 2008 ident: ref_120 article-title: Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress publication-title: J. Plant Nutr. doi: 10.1080/01904160801895027 – volume: 63 start-page: 170 year: 2013 ident: ref_25 article-title: Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.11.024 – volume: 34 start-page: 169 year: 2015 ident: ref_64 article-title: An approach of improving plant salt tolerance of Lucerne (Medicago sativa) grown under salt stress: Use of Bio-inoculants publication-title: J. Plant Growth. Regul. doi: 10.1007/s00344-014-9455-8 – volume: 58 start-page: 533 year: 2015 ident: ref_158 article-title: Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20 publication-title: J. Korean Soc. Appl. Biol. Chem. doi: 10.1007/s13765-015-0072-4 – volume: 22 start-page: 4056 year: 2015 ident: ref_3 article-title: Effect of salinity stress on plants and its tolerance strategies: A review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3739-1 – ident: ref_24 doi: 10.1007/978-981-10-0388-2_3 – ident: ref_164 doi: 10.1111/jam.14951 – volume: 31 start-page: 65 year: 2018 ident: ref_68 article-title: Threshold capacity of strawberry cultivars to salinity and rhizosphere bacterial population for tolerance publication-title: Indian J. Agric. Biochem. doi: 10.5958/0974-4479.2018.00009.6 – volume: 4 start-page: 426 year: 2016 ident: ref_19 article-title: Plant growth promoting Rhizobacteria-an efficient tool for agriculture promotion publication-title: Adv. Plants Agric. Res. – volume: 8 start-page: 49 year: 2017 ident: ref_28 article-title: Perspectives and challenges of microbial application for crop improvement publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00049 – volume: 64 start-page: 235 year: 2017 ident: ref_47 article-title: Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443717020078 – volume: 34 start-page: 1245 year: 2016 ident: ref_45 article-title: Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.08.005 – volume: 17 start-page: 288 year: 2015 ident: ref_44 article-title: Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment publication-title: Plant Biol. doi: 10.1111/plb.12173 – volume: 16 start-page: 1133 year: 2014 ident: ref_101 article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: Implications for phytoremediation of saline soils publication-title: Int. J. Phytoremed. doi: 10.1080/15226514.2013.821447 – volume: 24 start-page: 611 year: 2014 ident: ref_135 article-title: A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress publication-title: Mycorrhiza doi: 10.1007/s00572-014-0582-7 – ident: ref_22 – volume: 366 start-page: 93 year: 2013 ident: ref_83 article-title: Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress publication-title: Plant Soil doi: 10.1007/s11104-012-1402-5 – ident: ref_46 doi: 10.1007/978-981-10-2854-0_8 – volume: 53 start-page: 972 year: 2013 ident: ref_82 article-title: ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201200445 – volume: 58 start-page: 7 year: 2012 ident: ref_137 article-title: Arbuscular mycorrhiza and salt tolerance of plants publication-title: Symbiosis doi: 10.1007/s13199-012-0196-9 – volume: 7 start-page: 42284 year: 2017 ident: ref_35 article-title: Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil publication-title: Sci. Rep. doi: 10.1038/srep42284 – volume: 10 start-page: 2791 year: 2019 ident: ref_4 article-title: Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02791 – volume: 18 start-page: 253 year: 2018 ident: ref_76 article-title: Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress publication-title: J. Soil Sci. Plant Nutr. – volume: 63 start-page: 225 year: 2013 ident: ref_91 article-title: Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions publication-title: Ann. Microbiol. doi: 10.1007/s13213-012-0465-0 – volume: 60 start-page: 619 year: 2014 ident: ref_166 article-title: Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2014.936037 – volume: 183 start-page: 92 year: 2016 ident: ref_32 article-title: Plant growth-promoting bacterial endophytes publication-title: Microbiol. Res. doi: 10.1016/j.micres.2015.11.008 – volume: 6 start-page: 1142 year: 2014 ident: ref_34 article-title: Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity publication-title: J. Chem. Pharm. Res. – volume: 1 start-page: 15 year: 2012 ident: ref_21 article-title: Plant growth-promoting bacteria: Mechanisms and applications publication-title: Scientifica – volume: 31 start-page: 265 year: 2012 ident: ref_100 article-title: Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase- producing halotolerant bacteria publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-011-9236-6 – volume: 48 start-page: 378 year: 2008 ident: ref_81 article-title: Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils publication-title: J. Basic Microbiol. doi: 10.1002/jobm.200700365 – volume: 22 start-page: 863 year: 2020 ident: ref_112 article-title: Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre-and post-anthesis salinity stress publication-title: Plant Biol. doi: 10.1111/plb.13123 – volume: 27 start-page: 380 year: 2020 ident: ref_144 article-title: Arbuscular mycorrhizal fungi modulate dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2019.10.008 – volume: 60 start-page: 10 year: 2014 ident: ref_160 article-title: Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.) publication-title: Agriculture – volume: 8 start-page: e24030 year: 2013 ident: ref_139 article-title: Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance publication-title: Plant Signal. Behav. doi: 10.4161/psb.24030 – volume: 169 start-page: 13 year: 2015 ident: ref_169 article-title: Bacterial modulation of plant ethylene levels publication-title: Plant Physiol. doi: 10.1104/pp.15.00284 – volume: 102 start-page: 1283 year: 2007 ident: ref_104 article-title: ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2006.03179.x – volume: 10 start-page: 51 year: 2000 ident: ref_148 article-title: Growth of mycorrhizal tomato and mineral acquisition under salt stress publication-title: Mycorrhiza doi: 10.1007/s005720000055 – volume: 209 start-page: 21 year: 2018 ident: ref_71 article-title: Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.02.003 – volume: 181 start-page: 22 year: 2015 ident: ref_60 article-title: Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress publication-title: Microbiol. Res. doi: 10.1016/j.micres.2015.08.002 – volume: 60 start-page: 510 year: 2010 ident: ref_128 article-title: Arbuscular mycorrhizal fungi alleviate salt stress of Trichosanthes dioica Roxb publication-title: Soil Plant Sci. – volume: 23 start-page: 1097 year: 2010 ident: ref_14 article-title: Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03) publication-title: Mol. Plant Microb. Interact. doi: 10.1094/MPMI-23-8-1097 – volume: 166 start-page: 1350 year: 2009 ident: ref_119 article-title: Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2009.02.010 – volume: 58 start-page: 942 year: 2009 ident: ref_161 article-title: Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought publication-title: Microb. Ecol. doi: 10.1007/s00248-009-9544-6 – volume: 8 start-page: 1768 year: 2017 ident: ref_18 article-title: Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01768 – ident: ref_123 doi: 10.1007/978-981-10-5514-0_4 – volume: 9 start-page: 1044 year: 2019 ident: ref_42 article-title: Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma publication-title: Sci. Rep. doi: 10.1038/s41598-018-38026-z – volume: 18 start-page: 539 year: 2013 ident: ref_174 article-title: Mycorrhiza-induced resistance: More than the sum of its parts? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.06.004 – volume: 21 start-page: 27 year: 2011 ident: ref_132 article-title: The differential behavior of arbuscular mycrorrhizal fungi in interaction with Astragalus sinicus L. under salt stress publication-title: Mycorrhiza doi: 10.1007/s00572-010-0311-9 – ident: ref_155 doi: 10.3390/app10030945 – volume: 74 start-page: 533 year: 2010 ident: ref_89 article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0240 – volume: 55 start-page: 45 year: 2008 ident: ref_131 article-title: Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants publication-title: Microb. Ecol. doi: 10.1007/s00248-007-9249-7 – volume: 119 start-page: 26 year: 2017 ident: ref_67 article-title: Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4 publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.05.033 – volume: 2 start-page: 6 year: 2013 ident: ref_2 article-title: Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats publication-title: SpringerPlus doi: 10.1186/2193-1801-2-6 – volume: 4 start-page: 30 year: 2017 ident: ref_26 article-title: Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action publication-title: Chem. Biol. Technol. Agric. doi: 10.1186/s40538-017-0112-x – volume: 8 start-page: 5762 year: 2009 ident: ref_63 article-title: Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB09.1176 – volume: 1 start-page: 1000714 year: 2015 ident: ref_102 article-title: Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR) publication-title: Cogent Food Agric. doi: 10.1080/23311932.2014.1000714 – volume: 59 start-page: 651 year: 2008 ident: ref_13 article-title: Mechanisms of Salinity Tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 711 start-page: 135062 year: 2020 ident: ref_153 article-title: Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135062 – volume: 334 start-page: 564 year: 2011 ident: ref_114 article-title: Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions publication-title: C. R. Biol. doi: 10.1016/j.crvi.2011.05.001 – volume: 107 start-page: 625 year: 2009 ident: ref_40 article-title: Evaluation of Ochrobactrum anthropic TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2009.04242.x – ident: ref_142 doi: 10.1101/2020.06.11.146126 – volume: 18 start-page: 607 year: 2020 ident: ref_10 article-title: Plant-microbiome interactions: From community assembly to plant health publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0412-1 – volume: 13 start-page: 297 year: 2020 ident: ref_7 article-title: Mechanisms and signaling pathways of salt tolerance in crops: Understanding from the transgenic plants publication-title: Trop. Plant Biol. doi: 10.1007/s12042-020-09265-0 – volume: 69 start-page: 101 year: 2016 ident: ref_43 article-title: Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL-12 isolated from a salt lake publication-title: Symbiosis doi: 10.1007/s13199-016-0387-x – volume: 38 start-page: 255 year: 2019 ident: ref_17 article-title: Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes publication-title: Plant Cell Rep. doi: 10.1007/s00299-019-02374-5 – volume: 70 start-page: 1836 year: 2004 ident: ref_39 article-title: Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.3.1836-1842.2004 – volume: 5 start-page: 51 year: 2010 ident: ref_61 article-title: Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants publication-title: J. Plant Interact. doi: 10.1080/17429140903125848 – volume: 2016 start-page: 6294098 year: 2016 ident: ref_176 article-title: Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71) publication-title: BioMed. Res. Int. doi: 10.1155/2016/6294098 – volume: 7 start-page: 86714 year: 2016 ident: ref_58 article-title: Deciphering Staphylococcus sciuri SAT-17 mediated antioxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.) publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00867 – volume: 235 start-page: 126439 year: 2020 ident: ref_38 article-title: ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops publication-title: Microbiol. Res. doi: 10.1016/j.micres.2020.126439 – volume: 6 start-page: 937 year: 2015 ident: ref_79 article-title: Biochemistry and genetics of ACC deaminase: A weapon to “stress ethylene” produced in plants publication-title: Front. Microbiol. – volume: 36 start-page: 26 year: 2020 ident: ref_8 article-title: Bacterial endophyte mediated plant tolerance to salinity: Growth responses and mechanisms of action publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-020-2804-9 – volume: 190 start-page: 63 year: 1998 ident: ref_78 article-title: A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1997.0532 – ident: ref_12 doi: 10.1093/aob/mcw191 – volume: 207 start-page: 41 year: 2017 ident: ref_73 article-title: Does plant—Microbe interaction confer stress tolerance in plants: A review publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.11.004 – volume: 321 start-page: 305 year: 2009 ident: ref_151 article-title: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms publication-title: Plant Soil doi: 10.1007/s11104-009-9895-2 – volume: 59 start-page: 65 year: 2013 ident: ref_115 article-title: The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon publication-title: Symbiosis doi: 10.1007/s13199-012-0191-1 – volume: Volume 2 start-page: 1003 year: 2013 ident: ref_36 article-title: Potential plant-growth-promoting and nitrogen-fixing bacteria associated with pioneer plants growing on mine tailings publication-title: Molecular Microbial Ecology of the Rhizosphere – ident: ref_30 doi: 10.1007/978-3-642-13612-2 – volume: 10 start-page: 1068 year: 2019 ident: ref_108 article-title: Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01068 – volume: 9 start-page: 297 year: 2018 ident: ref_80 article-title: 14-3-3 proteins in plant hormone signaling: Doing several things at once publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00297 – volume: 47 start-page: 621 year: 2016 ident: ref_54 article-title: Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum) publication-title: Braz. J. Microbiol. doi: 10.1016/j.bjm.2016.04.001 – volume: 100 start-page: 30 year: 2020 ident: ref_98 article-title: Plant growth promotion of millets under abiotic stress using Enterobacter cloacae PR10 (KP226575) publication-title: J. Indian Bot. Soc. doi: 10.5958/2455-7218.2020.00024.8 – volume: 166 start-page: 617 year: 2009 ident: ref_129 article-title: Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2008.09.013 – volume: 10 start-page: 863 year: 2019 ident: ref_140 article-title: Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity-alkalinity stresses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00863 – volume: 102 start-page: 36 year: 2018 ident: ref_143 article-title: AMF: The future prospect for sustainable agriculture publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2017.11.007 – volume: 198 start-page: 379 year: 2016 ident: ref_103 article-title: Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance publication-title: Arch. Microbiol. doi: 10.1007/s00203-016-1197-5 – volume: 19 start-page: 321 year: 2019 ident: ref_109 article-title: Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance publication-title: J. Soil Sci. Plant Nutr. doi: 10.1007/s42729-019-00032-z – volume: 27 start-page: 115 year: 2008 ident: ref_130 article-title: Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea) publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-007-9038-z – volume: 73 start-page: 213 year: 2013 ident: ref_49 article-title: Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition publication-title: Chil. J. Agric. Res. doi: 10.4067/S0718-58392013000300002 – volume: 191 start-page: 415 year: 2009 ident: ref_88 article-title: Comparative effectiveness of Pseudomonas and Serratia sp containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions publication-title: Arch. Microbiol. doi: 10.1007/s00203-009-0466-y – volume: 7 start-page: 15967 year: 2015 ident: ref_110 article-title: AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings publication-title: Sustainability doi: 10.3390/su71215799 – volume: 331 start-page: 313 year: 2010 ident: ref_117 article-title: Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants publication-title: Plant Soil doi: 10.1007/s11104-009-0255-z – volume: 26 start-page: 673 year: 2016 ident: ref_141 article-title: Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution publication-title: Mycorrhiza doi: 10.1007/s00572-016-0704-5 – ident: ref_105 doi: 10.1186/s12866-019-1450-6 – volume: 65 start-page: 1955 year: 2019 ident: ref_85 article-title: Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2019.1584395 – ident: ref_57 – volume: 184 start-page: 57 year: 2015 ident: ref_92 article-title: The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.07.002 – ident: ref_121 doi: 10.1016/j.scienta.2009.01.001 – volume: 61 start-page: 171 year: 2012 ident: ref_23 article-title: The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—A comprehensive evaluation publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2011.09.003 |
SSID | ssj0000913851 |
Score | 2.4977326 |
SecondaryResourceType | review_article |
Snippet | Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1491 |
SubjectTerms | 1-aminocyclopropane-1-carboxylate deaminase Abiotic stress ACC deaminase Agribusiness Agricultural production Agriculture Amino acids Ammonia Arbuscular mycorrhizas bacteria Cell division cost effectiveness Crop yield Crops decline Economics Enzymes ethylene production Fungi Gene expression Germination green agriculture growth promotion Harvesting Inoculation Macromolecules Microorganisms Nitrogen Nutrient uptake Nutrients Pesticides Physiology Plant growth Profitability Review rhizosphere bacteria Saline soils Salinity Salinity effects Salinity tolerance Salt salt stress salt tolerance Saltiness Soil microorganisms soil quality Sustainable agriculture vesicular arbuscular mycorrhizae |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQ8ICggCgMZiUfKkthxEiSENrQygVpNa5H2FvlXukpbMpr0oX8i_xV3dlIWCY3X-JxYubP9nX33HSHvObdZEhmGx0vooBRiLONAgZcSa8CvqTQxJjhPZ-L0J_9-EV_skVmXC4Nhld2a6BZqU2k8Iz-MMJwqBAvjX25-jbFqFN6udiU0ZFtawXx2FGP3yH6EVZUHZP_4ZHZ2vjt1QRZMwBg-lYeBv394jXFvvoJSfV1nmM-Thb1NynH59wBoP3zy1n40eUIet0CSHnnNPyV7thySR0fLdUumYYfkvi80uR2SB13-cf2M_MY6RQ39Bv53c0nPfDheuaTnGH2nPHmz_AAvVhsfpEqnW3BR19AM35vA4rCisjR0gVcMdL7F5EHH9kzd6aJPlKhpU1HMd_dPKMBMOrNLxzJOPWNyTauCziXCXDqvVle0Kumt4X-iP-yWTqWLF3QlfG3tvju1mKyMv_E5WUxOFl9Px21Bh7EG2NSMTcJjlrGMFzIpAHiKOGZKqjRSXGlwNRNRpICHmDKW60BFRgGg0IkVOhVFoNgLMiir0r4kNMpUzLQEXVnGNXTnITeaScFlkslAjQjvFJjrluwca25c5eD0oN7zf-p9RD7uut14to__dThG69gJI1m3ewCCeTv3c5GGRRGlgY0sTA3OVGDhR5jQaFkEQRGPyEFnW3m7gtT5X3sfkXe7Zpj7eKEjS1ttnEyG965BeoeMYAI2w1iATNKz296g-y3l6tIxjaewA2Qpf3X3AF-ThxFG-iDdKDsgg2a9sW8AqjXqbTv__gDUgkjT priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_HieCL-Imrp4zgo3u2TZq2gsgprofSQ9w9uLeSpOnewl6r2y7YP9H_ypmku1g49cXXJrMfmZnkN83Mbxh7IYTNkqjk9HqJApRKTlUcaIxSYoP4NVVlTAXO-Zk8PRefLuKLA7YjVBgWsL02tKN-Uueb9fGP7_1bdPg3FHFiyP7qilLXfBOk9qrNqCSH6tlv4OEUkaHnA-J3m3MWcgQZvpbnz9KjU8qR-Y8Q6Dh_8rcDaXaH3R6QJJx41d9lB7a-x2763pL9ffaT2hF18BHD7O4Svvisu3oJXynJTnuOZvUSxfXW56JC3mMkusFh_NQZ7gErUHUJC7pJgHlPNYKO1BncS0RfD9FC1wCVtfsngGgSzuzSkYmDJ0ZuoalgrgjNwrxZraGp4WS5GSg_7Gv4bHvIlUsLdJ16beu-N7dUk0yL9YAtZh8W70-nQ9-GqUF01E3LRMQ845moVFIhvpRxzLXSaaSFNhhRJrJKEfZwXVphAh2VGnGDSaw0qawCzR-yw7qp7SMGUaZjbhRqxHJhUFyEojRcSaGSTAV6wsROTYUZOM2ptca6wNiGtFtcq90JO96LffOkHv8SeEc2sJ9MnNzuAU4sBhcvZBpWVZQGNrLoAYLrwOJClGFpVBUEVTxhRzsLKnZ2XkSUJRjixikm7Pl-GF2c7m1UbZutm5PR9WqQ_mWO5BLPvFjinGRknaMfPR6pV5eOUDzFjT5LxeP_8S-fsFsRpf0Q9yg_YofdZmufIm7r9DPnib8AIUNN4A priority: 102 providerName: Scholars Portal |
Title | Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms |
URI | https://www.proquest.com/docview/2554614254 https://www.proquest.com/docview/2559437208 https://www.proquest.com/docview/2636467568 https://pubmed.ncbi.nlm.nih.gov/PMC8307984 https://doaj.org/article/681ff280e2e44e43b0e745d1dcaf00f5 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBL6ZNumoYp9NhtZEt-qLekZBtadgnZLeRmJFneLCR2WXsP-xP7rzojOcsaSnPpxQdr5NeMpG-smW8Y-yilU1lcCvq9RA5KlY51wg16KYlF_JrrMqEE5-ksvfgpv18n13ulvigmLNADhw93kuZRVcU5d7HD60phuMtkUkal1RXnlWcv5YrvOVN-DlaRQCwRUnYE-vUndxTfFioltXetorwdFQ0WI8_ZPwCawzDJvXVn8pw96wEjnIYHfcEeufolexJKSG5fsd9UdaiDb-hNdzdwGYLr6iVcUSydCVTM-hN2N5sQcgrTLTqca2zGq05wqK9A1yUsaMMA5ltKBfTczeD_FYa0hxa6Bih7PZwBBI0wc0vPGQ6B_7iFpoK5JtAK82Z1C00Np8t1z-zhvsAPt4Wp9tF_viCva_19p45Sj-ljvWaLyfni68W4L88wtgiCunGJehBKKFnprEIYmSaJMNrksZHGouOYpVWO6EaY0knLTVwahAc2c6nN04ob8YYd1E3t3jKIlUmE1agRJ6TF7jKSpRU6lTpTmpsRk_dqKmxPXU4VNG4LdGFIu8VftTtin3fdfgXujoc6nJEN7ISJetufQMGiN8jiIYMcsaN7Cyr6-aAtYgoGjHB-lCP2YdeMI5m2Z3Ttmo2XUbSLyvN_yKQixaUtSVEmG1jn4KGHLfXqxvOG5zifq1we_o-3fMeexhTdQxSj4ogddOuNe4_wrDPH7PHZ-ezy6tiPSDxOZf4HrIlFQQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJjR4QFBAFAYcErxRlsbOP6QJbbDSsbWatiLtLbIdp6u0JaNJhfrh-AB8K-6cpCwSGk97je3Eyv23737H2FshTBS4CafjJQpQUr8nPUdhlOJp9F9DmXhU4Dwa-8Pv4tuZd7bGfjW1MJRW2ehEq6iTXNMZ-bZL6VR95DDx6epHj7pG0e1q00JD1q0Vkh0LMVYXdhya5U8M4Yqdgy9I73euO9iffB726i4DPY22vOwlgfB4xCORyiBFb8j3PK6kCl0llMb4J_DTEI00V4kR2lFuotDK6cD4OvRTR3F87R22gV4HR6Ha2NsfH5-sDnkIdBNdmqpyiPPI2b6kNLuqYVNxWURUPhT1WzbRtg5o-bvtbM1r5m_wkD2o_VbYrRjtEVszWYfd353Oa-wO02F3q76Wyw7bbMqdi8fsN7VFKuErhvvlORxX2X_ZFE4o2U9VWNHyPb5YLaqcWBgtMSKe4zB-b4C6aAYyS2BCNxpwuqRaRQsuDfYws6rLKKDMgcrrqyeAXi2MzdSCmkMF0FxAnsKpJK8aTvPZBeQZXNv-R0Aywkja9ETbMdgU9rsjQ7XR9BufsMltUPYpW8_yzDxj4EbK41oirQwXGpeLvkg0l76QQSQd1WWiIWCsa2x1avFxEWOMRXSP_0n3LvuwWnZVgYv8b8EeccdqMmGD2wc4Ma5VTeyH_TR1Q8e4BiVRcOUY_BFJP9EydZzU67KthrfiWmEV8V_x6rI3q2FUNXR_JDOTL-yciK55nfCGOT730fZ6Ps4JWnzb2nR7JJudW2DzEA1OFIrnN2_wNdscTkZH8dHB-PAFu-dSkhEhnfIttl7OF-YleomlelXLIrD4lqX_DzFAhOw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJr4eEBQQhQGHBG-UprHzhTShja1sjFbVWqS9RbbjdJW2ZDSpUP_E_VfcOUlZJTSe9hrbiZX7tu9-x9h7IUwUuAmn4yUKUFK_Iz1HYZTiafRfQ5l4VOA8GPqHP8X3U-90g101tTCUVtnoRKuok1zTGXnXpXSqHnKY6KZ1WsRov__l8leHOkjRTWvTTkPWbRaSHQs3Vhd5HJvlbwznip2jfaT9B9ftH0y-HnbqjgMdjXa97CSB8HjEI5HKIEXPyPc8rqQKXSWUxlgo8NMQDTZXiRHaUW6i0OLpwPg69FNHcXztHbYVoNFHYdvaOxiOTlYHPgTAie5NVUXEeeR0LyjlrmreVFwUEZUSRb01-2jbCKz5vuuZm9dMYf8xe1T7sLBbMd0TtmGyFnu4O53XOB6mxe5WPS6XLXa_KX0unrIrapFUwjcM_cszGFWZgNkUTijxT1W40fIjvlgtqvxYGCwxOp7jMH6vj3ppBjJLYEK3GzBeUt2iBZoGe7BZ1WgUUOZApfbVE0APF4ZmagHOoQJrLiBPYSzJw4ZxPjuHPINr2_8MSEYYSJuqaLsHm8J-d2CoTpp-4zM2uQ3KPmebWZ6ZFwzcSHlcS6SV4ULjctETiebSFzKIpKPaTDQEjHWNs07tPs5jjLeI7vE_6d5mn1bLLiugkf8t2CPuWE0mnHD7ACfGtdqJ_bCXpm7oGNegVAquHIM_IuklWqaOk3pttt3wVlwrryL-K2pt9m41jGqH7pJkZvKFnRPRla8T3jDH5z7aYc_HOcEa365ten0km51ZkPMQjU8Uipc3b_Atu4daIP5xNDx-xR64lG9EoKd8m22W84V5jQ5jqd7UoggsvmXh_wPs1okn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+Growth+Promoting+Rhizobacteria%2C+Arbuscular+Mycorrhizal+Fungi+and+Their+Synergistic+Interactions+to+Counteract+the+Negative+Effects+of+Saline+Soil+on+Agriculture%3A+Key+Macromolecules+and+Mechanisms&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Alka+Sagar&rft.au=Parikshita+Rathore&rft.au=Pramod+W.+Ramteke&rft.au=Wusirika+Ramakrishna&rft.date=2021-07-13&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=9&rft.issue=7&rft.spage=1491&rft_id=info:doi/10.3390%2Fmicroorganisms9071491&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_681ff280e2e44e43b0e745d1dcaf00f5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon |