Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms

Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plan...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 9; no. 7; p. 1491
Main Authors Sagar, Alka, Rathore, Parikshita, Ramteke, Pramod W., Ramakrishna, Wusirika, Reddy, Munagala S., Pecoraro, Lorenzo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.07.2021
MDPI
Subjects
Online AccessGet full text
ISSN2076-2607
2076-2607
DOI10.3390/microorganisms9071491

Cover

Abstract Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
AbstractList Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
Author Reddy, Munagala S.
Ramteke, Pramod W.
Ramakrishna, Wusirika
Rathore, Parikshita
Pecoraro, Lorenzo
Sagar, Alka
AuthorAffiliation 3 Faculty of Life Sciences, Mandsaur University, Mandsaur 458001, India
2 Department of Biochemistry, Central University of Punjab, Bathinda 151401, India; pari.rathore1@gmail.com
5 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
1 Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India; alka2011sagar@gmail.com or
4 Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA; prof.m.s.reddy@gmail.com
AuthorAffiliation_xml – name: 4 Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA; prof.m.s.reddy@gmail.com
– name: 3 Faculty of Life Sciences, Mandsaur University, Mandsaur 458001, India
– name: 5 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
– name: 1 Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India; alka2011sagar@gmail.com or
– name: 2 Department of Biochemistry, Central University of Punjab, Bathinda 151401, India; pari.rathore1@gmail.com
Author_xml – sequence: 1
  givenname: Alka
  surname: Sagar
  fullname: Sagar, Alka
– sequence: 2
  givenname: Parikshita
  surname: Rathore
  fullname: Rathore, Parikshita
– sequence: 3
  givenname: Pramod W.
  surname: Ramteke
  fullname: Ramteke, Pramod W.
– sequence: 4
  givenname: Wusirika
  orcidid: 0000-0002-8571-5827
  surname: Ramakrishna
  fullname: Ramakrishna, Wusirika
– sequence: 5
  givenname: Munagala S.
  surname: Reddy
  fullname: Reddy, Munagala S.
– sequence: 6
  givenname: Lorenzo
  orcidid: 0000-0002-3234-4698
  surname: Pecoraro
  fullname: Pecoraro, Lorenzo
BookMark eNqFUtFu0zAUjdAQG2OfgGSJFx4oOLFjJyAhVdU2KlaYaN8tx7lOXaX2ZjtD5Q_5K5y1SGxC4Bdb9557zr33-Hl2ZJ2FLHuZ47eE1Pjd1ijvnO-kNWEbasxzWudPspMCczYpGOZHf7yPs7MQNjidOidVmT_LjgklLK8LfpL9vO6ljejSu-9xja6927pobIe-rc0P10gVwRv5Bk19MwQ19NKjxU4571Na9uhisJ1B0rZotQbj0XJnwXcmRKPQ3KbaRGCcDSg6NHPDIYLiGtAX6GQ0d4DOtQYVA3IaLWVvLKClMz1yFk07b5JmHDy8R59hhxZSjQ32kKIQ7nUXoNb7LbzInmrZBzg73KfZ6uJ8Nfs0ufp6OZ9NryaqzMs4aTktSU1qqiXXNeesLEkjm6poaKPyinKmq4oy0rRAFW6KtilIpTgwVTGNG3Kazfe0rZMbcePNVvqdcNKI-0AyRUif5u9BsCrXuqgwFEApUNJgSOJt3iqpMdZl4vq457oZmi20Cmz0sn9A-jBjzVp07k5UBPO6oong9YHAu9sBQhRbExT0yVNwQxAFI4wyXrLq_9CyrCnhBR6hrx5BN27wNi11RFGW06IctT_sUcmTEDxooUyUo92pVdOLHIvxr4q__tVUXT6q_j31v-t-ATrU-Vg
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e38683
crossref_primary_10_1016_j_jksus_2022_102366
crossref_primary_10_3390_agriculture13101865
crossref_primary_10_3390_ijpb15040067
crossref_primary_10_1007_s11356_022_19149_3
crossref_primary_10_1155_2024_9226715
crossref_primary_10_3390_plants12213703
crossref_primary_10_1093_lambio_ovac067
crossref_primary_10_1016_j_tfp_2024_100593
crossref_primary_10_1186_s43170_023_00168_0
crossref_primary_10_1007_s00284_023_03496_6
crossref_primary_10_3390_agronomy13020550
crossref_primary_10_3390_ijms24054781
crossref_primary_10_1590_s1413_415220210240
crossref_primary_10_1080_01904167_2023_2192780
crossref_primary_10_1080_00103624_2024_2391990
crossref_primary_10_3389_fsufs_2024_1495610
crossref_primary_10_1016_j_eti_2024_103900
crossref_primary_10_3390_su142416537
crossref_primary_10_1007_s42729_024_01640_0
crossref_primary_10_3390_plants13101420
crossref_primary_10_1016_j_envres_2023_116220
crossref_primary_10_1007_s10343_022_00668_5
crossref_primary_10_1111_pce_14403
crossref_primary_10_18016_ksutarimdoga_vi_1587723
crossref_primary_10_3390_jof9020233
crossref_primary_10_1007_s10658_024_02926_w
crossref_primary_10_3390_agronomy12092082
crossref_primary_10_3390_horticulturae10111150
crossref_primary_10_3390_su141912250
crossref_primary_10_1007_s40588_023_00206_5
crossref_primary_10_3390_su142315984
crossref_primary_10_1038_s41598_024_71165_0
crossref_primary_10_1016_j_sajb_2024_08_055
crossref_primary_10_3390_microorganisms10010021
crossref_primary_10_3390_plants12183319
crossref_primary_10_3390_su151914643
crossref_primary_10_1007_s11104_024_07047_1
crossref_primary_10_1080_01904167_2024_2374279
crossref_primary_10_1016_j_micres_2024_127895
crossref_primary_10_3390_plants12173102
crossref_primary_10_1016_j_chemosphere_2022_134954
crossref_primary_10_3897_imafungus_16_144989
crossref_primary_10_1016_j_indcrop_2021_114327
crossref_primary_10_1590_1983_40632024v5479375
crossref_primary_10_1016_j_apsoil_2024_105596
crossref_primary_10_1016_j_jplph_2025_154455
crossref_primary_10_1590_2447_536x_v28i4_2498
crossref_primary_10_1007_s11104_022_05641_9
crossref_primary_10_1016_j_stress_2024_100661
crossref_primary_10_1002_ldr_4877
crossref_primary_10_3390_jof8010021
crossref_primary_10_3390_ijpb16010032
crossref_primary_10_1016_j_eti_2024_103886
crossref_primary_10_1007_s00299_022_02866_x
crossref_primary_10_3389_fmicb_2024_1475485
crossref_primary_10_3389_fmicb_2024_1432637
crossref_primary_10_1007_s11356_024_33295_w
crossref_primary_10_3389_fmicb_2023_1210890
crossref_primary_10_1515_opag_2022_0356
crossref_primary_10_1016_j_scienta_2022_111219
crossref_primary_10_3390_agronomy12092069
crossref_primary_10_1016_j_scitotenv_2024_176919
crossref_primary_10_15835_nbha50212677
crossref_primary_10_1007_s10343_022_00651_0
crossref_primary_10_1007_s00572_024_01165_5
crossref_primary_10_3390_microorganisms10061088
crossref_primary_10_1016_j_scitotenv_2024_170417
Cites_doi 10.1007/s11274-017-2364-9
10.1007/s10658-007-9162-4
10.1016/j.jplph.2017.04.012
10.1007/s00299-018-2328-z
10.1186/s40694-019-0086-5
10.1111/j.1469-8137.2010.03540.x
10.1016/j.envexpbot.2020.104124
10.1016/j.rhisph.2017.04.012
10.1007/978-981-10-4115-0_4
10.1007/s13199-017-0477-4
10.3389/fsufs.2020.601004
10.3389/fpls.2018.01473
10.3389/fpls.2016.01890
10.1016/j.plaphy.2020.02.039
10.1016/bs.ampbs.2017.04.001
10.3109/07388551.2014.899964
10.17221/54/2010-PSE
10.1016/j.gexplo.2016.03.011
10.1104/pp.19.00560
10.1007/978-1-4614-6108-1_13
10.1016/j.jaridenv.2013.05.019
10.1007/s00344-017-9683-9
10.1007/s00344-009-9136-1
10.1007/s13205-017-0739-0
10.1093/jxb/erq089
10.1016/B978-0-12-818095-2.00007-2
10.1371/journal.pone.0231497
10.1016/B978-0-12-799963-0.00015-0
10.1007/978-3-319-57849-1_5
10.3923/ijar.2010.954.983
10.1016/j.apsoil.2019.02.019
10.1007/s00299-018-2341-2
10.1139/w11-044
10.1016/j.sjbs.2016.11.015
10.1007/s11099-015-0131-4
10.3389/fsufs.2020.00088
10.1007/s00344-016-9583-4
10.4014/jmb.1904.04026
10.3389/fpls.2019.00470
10.1139/W09-092
10.1038/s41564-018-0129-3
10.3389/fmicb.2016.01089
10.1002/jpln.201800262
10.3389/fpls.2017.01739
10.1007/s10343-019-00480-8
10.3389/fmicb.2019.01506
10.1007/s11104-019-04202-x
10.1016/j.plaphy.2013.01.020
10.1016/j.jare.2020.07.003
10.1111/j.1469-8137.2011.04045.x
10.1007/s12298-014-0251-5
10.1007/s12298-020-00852-9
10.1007/s00572-010-0353-z
10.1038/s41598-017-16697-4
10.4014/jmb.1712.12027
10.3389/fpls.2018.00813
10.17221/204/2009-PSE
10.1111/j.1365-2672.2009.04414.x
10.3389/fmicb.2018.00148
10.1016/j.micres.2017.03.006
10.1007/s11104-016-3007-x
10.15835/nsb346230
10.1016/j.chemosphere.2016.04.112
10.1016/j.jplph.2015.07.006
10.3390/ijms20174199
10.1007/s00344-018-9880-1
10.1080/01904160801895027
10.1016/j.plaphy.2012.11.024
10.1007/s00344-014-9455-8
10.1007/s13765-015-0072-4
10.1007/s11356-014-3739-1
10.1007/978-981-10-0388-2_3
10.1111/jam.14951
10.5958/0974-4479.2018.00009.6
10.3389/fpls.2017.00049
10.1134/S1021443717020078
10.1016/j.biotechadv.2016.08.005
10.1111/plb.12173
10.1080/15226514.2013.821447
10.1007/s00572-014-0582-7
10.1007/s11104-012-1402-5
10.1007/978-981-10-2854-0_8
10.1002/jobm.201200445
10.1007/s13199-012-0196-9
10.1038/srep42284
10.3389/fmicb.2019.02791
10.1007/s13213-012-0465-0
10.1080/00380768.2014.936037
10.1016/j.micres.2015.11.008
10.1007/s00344-011-9236-6
10.1002/jobm.200700365
10.1111/plb.13123
10.1016/j.sjbs.2019.10.008
10.4161/psb.24030
10.1104/pp.15.00284
10.1111/j.1365-2672.2006.03179.x
10.1007/s005720000055
10.1016/j.micres.2018.02.003
10.1016/j.micres.2015.08.002
10.1094/MPMI-23-8-1097
10.1016/j.jplph.2009.02.010
10.1007/s00248-009-9544-6
10.3389/fpls.2017.01768
10.1007/978-981-10-5514-0_4
10.1038/s41598-018-38026-z
10.1016/j.tplants.2013.06.004
10.1007/s00572-010-0311-9
10.3390/app10030945
10.2136/sssaj2008.0240
10.1007/s00248-007-9249-7
10.1016/j.apsoil.2017.05.033
10.1186/2193-1801-2-6
10.1186/s40538-017-0112-x
10.5897/AJB09.1176
10.1080/23311932.2014.1000714
10.1146/annurev.arplant.59.032607.092911
10.1016/j.scitotenv.2019.135062
10.1016/j.crvi.2011.05.001
10.1111/j.1365-2672.2009.04242.x
10.1101/2020.06.11.146126
10.1038/s41579-020-0412-1
10.1007/s12042-020-09265-0
10.1007/s13199-016-0387-x
10.1007/s00299-019-02374-5
10.1128/AEM.70.3.1836-1842.2004
10.1080/17429140903125848
10.1155/2016/6294098
10.3389/fmicb.2016.00867
10.1016/j.micres.2020.126439
10.1007/s11274-020-2804-9
10.1006/jtbi.1997.0532
10.1093/aob/mcw191
10.1016/j.micres.2017.11.004
10.1007/s11104-009-9895-2
10.1007/s13199-012-0191-1
10.1007/978-3-642-13612-2
10.3389/fpls.2019.01068
10.3389/fpls.2018.00297
10.1016/j.bjm.2016.04.001
10.5958/2455-7218.2020.00024.8
10.1016/j.jplph.2008.09.013
10.3389/fpls.2019.00863
10.1016/j.pmpp.2017.11.007
10.1007/s00203-016-1197-5
10.1007/s42729-019-00032-z
10.1007/s00344-007-9038-z
10.4067/S0718-58392013000300002
10.1007/s00203-009-0466-y
10.3390/su71215799
10.1007/s11104-009-0255-z
10.1007/s00572-016-0704-5
10.1186/s12866-019-1450-6
10.1080/03650340.2019.1584395
10.1016/j.jplph.2015.07.002
10.1016/j.scienta.2009.01.001
10.1016/j.apsoil.2011.09.003
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7T7
8FD
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/microorganisms9071491
DatabaseName CrossRef
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Economics
Agriculture
EISSN 2076-2607
ExternalDocumentID oai_doaj_org_article_681ff280e2e44e43b0e745d1dcaf00f5
PMC8307984
10_3390_microorganisms9071491
GroupedDBID 53G
5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ACPRK
AFKRA
AFPKN
AFRAH
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
GS5
GX1
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RNS
RPM
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c515t-d74539394fa7f9776553bab82b4bc18476f88463bde4c0b2db238c7e6c86f0b3
IEDL.DBID DOA
ISSN 2076-2607
IngestDate Wed Aug 27 01:32:12 EDT 2025
Thu Aug 21 18:23:16 EDT 2025
Thu Sep 04 20:22:51 EDT 2025
Thu Sep 04 22:26:36 EDT 2025
Fri Jul 25 12:00:50 EDT 2025
Tue Jul 01 01:32:18 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-d74539394fa7f9776553bab82b4bc18476f88463bde4c0b2db238c7e6c86f0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3234-4698
0000-0002-8571-5827
OpenAccessLink https://doaj.org/article/681ff280e2e44e43b0e745d1dcaf00f5
PMID 34361927
PQID 2554614254
PQPubID 2032358
ParticipantIDs doaj_primary_oai_doaj_org_article_681ff280e2e44e43b0e745d1dcaf00f5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307984
proquest_miscellaneous_2636467568
proquest_miscellaneous_2559437208
proquest_journals_2554614254
crossref_citationtrail_10_3390_microorganisms9071491
crossref_primary_10_3390_microorganisms9071491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210713
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 7
  year: 2021
  text: 20210713
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Microorganisms (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Camoni (ref_80) 2018; 9
Etesami (ref_1) 2020; 178
Jha (ref_17) 2019; 38
Bhise (ref_94) 2017; 7
ref_136
ref_138
Hidri (ref_150) 2019; 182
Yoo (ref_62) 2019; 29
ref_12
Duffy (ref_39) 2004; 70
Zahir (ref_88) 2009; 191
ref_97
Ji (ref_42) 2019; 9
Singh (ref_55) 2017; 36
Etesami (ref_84) 2014; 20
Sukweenadhi (ref_65) 2018; 9
Afzal (ref_7) 2020; 13
(ref_119) 2009; 166
Rao (ref_68) 2018; 31
Bothe (ref_137) 2012; 58
Ramadoss (ref_2) 2013; 2
Mdel (ref_161) 2009; 58
Zuccarini (ref_120) 2008; 31
Ashrafi (ref_166) 2014; 60
(ref_36) 2013; Volume 2
Verhage (ref_170) 2010; 61
Nanjundappa (ref_168) 2019; 6
Gamalero (ref_169) 2015; 169
Nadeem (ref_103) 2016; 198
Wu (ref_118) 2010; 56
Naz (ref_63) 2009; 8
ref_24
Goswami (ref_102) 2015; 1
Mardukhi (ref_114) 2011; 334
Hajiboland (ref_117) 2010; 331
ref_22
Porcel (ref_141) 2016; 26
Forni (ref_70) 2017; 410
Saravanakumar (ref_104) 2007; 102
ref_121
ref_123
Glick (ref_75) 2007; 119
Olanrewaju (ref_37) 2017; 33
Baradar (ref_157) 2015; 8
Hassani (ref_159) 2014; 4
Khalloufi (ref_124) 2017; 214
Jahromi (ref_131) 2008; 55
Hajiboland (ref_126) 2015; 53
Verma (ref_31) 2010; 5
Li (ref_139) 2013; 8
Trivedi (ref_10) 2020; 18
ref_72
Chang (ref_101) 2014; 16
Wu (ref_122) 2009; 37
Zheng (ref_35) 2017; 7
Singh (ref_56) 2017; 73
ref_155
Kushwaha (ref_8) 2020; 36
Kronzucker (ref_15) 2011; 18
Hashem (ref_156) 2016; 7
Parihar (ref_3) 2015; 22
(ref_116) 2012; 194
Evelin (ref_16) 2019; 10
Estrada (ref_113) 2013; 97
Glick (ref_78) 1998; 190
Parray (ref_6) 2016; 35
Glick (ref_38) 2020; 235
(ref_148) 2000; 10
Bhise (ref_85) 2019; 65
Motaleb (ref_145) 2020; 72
Rajput (ref_53) 2013; 45
ref_149
Katiyar (ref_19) 2016; 4
Baha (ref_64) 2015; 34
Kumar (ref_111) 2015; 35
Majeed (ref_41) 2018; 37
Balliu (ref_110) 2015; 7
ref_142
ref_86
Chandrasekaran (ref_135) 2014; 24
(ref_147) 2010; 56
Orhan (ref_54) 2016; 47
Richardson (ref_151) 2009; 321
Kong (ref_69) 2017; 71
Yadav (ref_163) 2020; 150
Kumar (ref_127) 2010; 29
Hashem (ref_176) 2016; 2016
Sagar (ref_98) 2020; 100
Li (ref_67) 2017; 119
Zhang (ref_14) 2010; 23
Ramakrishna (ref_33) 2019; 138
ref_50
Sheng (ref_133) 2011; 21
Nadeem (ref_95) 2009; 55
Basu (ref_143) 2018; 102
Hussein (ref_66) 2018; 28
Cardinale (ref_60) 2015; 181
(ref_77) 2018; 37
Ye (ref_140) 2019; 10
Bal (ref_82) 2013; 53
ref_57
Bal (ref_83) 2013; 366
ref_172
Porcel (ref_125) 2015; 185
Campanelli (ref_115) 2013; 59
Mathimaran (ref_154) 2020; 4
Chakraborty (ref_40) 2009; 107
Siddikee (ref_100) 2012; 31
Backer (ref_29) 2018; 9
Tille (ref_173) 2017; 7
Santander (ref_109) 2019; 19
Kannahi (ref_34) 2014; 6
Upadhyay (ref_44) 2015; 17
Dhawi (ref_162) 2016; 157
Ahmad (ref_25) 2013; 63
Singh (ref_43) 2016; 69
Jha (ref_49) 2013; 73
Mathur (ref_128) 2010; 60
Nadeem (ref_91) 2013; 63
Dudhane (ref_134) 2011; 3
Nadeem (ref_89) 2010; 74
Hashem (ref_167) 2019; 26
Saghafi (ref_76) 2018; 18
Garg (ref_130) 2008; 27
Peng (ref_132) 2011; 21
Gupta (ref_74) 2019; 10
ref_164
Vaishnav (ref_11) 2019; 38
Egamberdieva (ref_4) 2019; 10
Paul (ref_81) 2008; 48
Li (ref_47) 2017; 64
Ramakrishna (ref_153) 2020; 711
Sagar (ref_87) 2020; 26
Nia (ref_90) 2012; 11
Singh (ref_92) 2015; 184
Hernandez (ref_23) 2012; 61
Etesami (ref_48) 2018; 9
Singh (ref_79) 2015; 6
Santoyo (ref_32) 2016; 183
Timmusk (ref_28) 2017; 8
Shah (ref_51) 2017; 174
Munns (ref_13) 2008; 59
Ahkami (ref_20) 2017; 3
Ahmad (ref_99) 2011; 57
Anzuay (ref_59) 2017; 199
Hunter (ref_175) 2019; 180
ref_30
Cabral (ref_112) 2020; 22
Arora (ref_171) 2020; 26
Ilangumaran (ref_18) 2017; 8
Qin (ref_45) 2016; 34
Kumar (ref_73) 2017; 207
Upadhyay (ref_52) 2012; 3
Numana (ref_71) 2018; 209
Akram (ref_58) 2016; 7
ref_106
Tank (ref_61) 2010; 5
ref_105
ref_107
Cameron (ref_174) 2013; 18
ref_46
Diagne (ref_165) 2020; 4
Glick (ref_21) 2012; 1
Hassen (ref_27) 2020; 5
Olivares (ref_26) 2017; 4
Lee (ref_158) 2015; 58
Zhalnina (ref_9) 2018; 3
Singh (ref_93) 2016; 7
Farooq (ref_96) 2014; 16
Hashem (ref_144) 2020; 27
Gamalero (ref_152) 2010; 108
Daei (ref_129) 2009; 166
ref_5
Begum (ref_108) 2019; 10
Chen (ref_146) 2017; 8
Younesi (ref_160) 2014; 60
References_xml – volume: 16
  start-page: 591
  year: 2014
  ident: ref_96
  article-title: Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress
  publication-title: Int. J. Agric. Biol.
– volume: 33
  start-page: 197
  year: 2017
  ident: ref_37
  article-title: Mechanisms of action of plant growth promoting bacteria
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-017-2364-9
– volume: 119
  start-page: 329
  year: 2007
  ident: ref_75
  article-title: Promotion of plant growth by ACC deaminase-producing soil bacteria
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-007-9162-4
– volume: 214
  start-page: 134
  year: 2017
  ident: ref_124
  article-title: The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2017.04.012
– volume: 37
  start-page: 1557
  year: 2018
  ident: ref_77
  article-title: Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-018-2328-z
– volume: 6
  start-page: 23
  year: 2019
  ident: ref_168
  article-title: Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-019-0086-5
– volume: 18
  start-page: 54
  year: 2011
  ident: ref_15
  article-title: Sodium transport in plants: A critical review
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03540.x
– volume: 178
  start-page: 104124
  year: 2020
  ident: ref_1
  article-title: Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2020.104124
– volume: 3
  start-page: 233
  year: 2017
  ident: ref_20
  article-title: Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2017.04.012
– ident: ref_138
  doi: 10.1007/978-981-10-4115-0_4
– volume: 73
  start-page: 213
  year: 2017
  ident: ref_56
  article-title: Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat
  publication-title: Symbiosis
  doi: 10.1007/s13199-017-0477-4
– volume: 4
  start-page: 266
  year: 2020
  ident: ref_165
  article-title: Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.)
  publication-title: Front. Sustain. Food Syst.
  doi: 10.3389/fsufs.2020.601004
– volume: 9
  start-page: 1473
  year: 2018
  ident: ref_29
  article-title: Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01473
– volume: 7
  start-page: 1890
  year: 2016
  ident: ref_93
  article-title: A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01890
– volume: 150
  start-page: 222
  year: 2020
  ident: ref_163
  article-title: Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.02.039
– volume: 71
  start-page: 97
  year: 2017
  ident: ref_69
  article-title: The role of plant growth-promoting bacteria in metal phytoremediation
  publication-title: Adv. Microb. Physiol.
  doi: 10.1016/bs.ampbs.2017.04.001
– volume: 35
  start-page: 461
  year: 2015
  ident: ref_111
  article-title: Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: A biotechnological perspective
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2014.899964
– volume: 56
  start-page: 470
  year: 2010
  ident: ref_118
  article-title: Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: Changes in leaf antioxidant defense systems
  publication-title: Plant Soil Environ.
  doi: 10.17221/54/2010-PSE
– volume: 174
  start-page: 59
  year: 2017
  ident: ref_51
  article-title: Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2016.03.011
– volume: 180
  start-page: 2004
  year: 2019
  ident: ref_175
  article-title: CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00560
– ident: ref_106
  doi: 10.1007/978-1-4614-6108-1_13
– volume: 97
  start-page: 170
  year: 2013
  ident: ref_113
  article-title: Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2013.05.019
– volume: 4
  start-page: 244
  year: 2014
  ident: ref_159
  article-title: Efficiency of mycorrhizal fungi and phosphate solubilizing bacteria on phosphorus uptake and chlorophyll index in potato plants
  publication-title: Int. J. Biosci.
– volume: 36
  start-page: 783
  year: 2017
  ident: ref_55
  article-title: Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.)
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-017-9683-9
– volume: 29
  start-page: 297
  year: 2010
  ident: ref_127
  article-title: Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L.
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-009-9136-1
– volume: 7
  start-page: 105
  year: 2017
  ident: ref_94
  article-title: Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L.
  publication-title: 3 Biotech
  doi: 10.1007/s13205-017-0739-0
– volume: 61
  start-page: 2589
  year: 2010
  ident: ref_170
  article-title: Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq089
– ident: ref_72
  doi: 10.1016/B978-0-12-818095-2.00007-2
– ident: ref_149
  doi: 10.1371/journal.pone.0231497
– ident: ref_107
  doi: 10.1016/B978-0-12-799963-0.00015-0
– ident: ref_136
  doi: 10.1007/978-3-319-57849-1_5
– volume: 5
  start-page: 954
  year: 2010
  ident: ref_31
  article-title: Impact of plant growth promoting rhizobacteria on crop production
  publication-title: Int. J. Agric. Res.
  doi: 10.3923/ijar.2010.954.983
– volume: 138
  start-page: 10
  year: 2019
  ident: ref_33
  article-title: Plant growth promoting bacteria in agriculture: Two sides of a coin
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.02.019
– volume: 37
  start-page: 1599
  year: 2018
  ident: ref_41
  article-title: Plant growth promoting bacteria: Role in soil improvement, abiotic and biotic stress management of crops
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-018-2341-2
– volume: 57
  start-page: 578
  year: 2011
  ident: ref_99
  article-title: Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w11-044
– volume: 26
  start-page: 38
  year: 2019
  ident: ref_167
  article-title: Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2016.11.015
– volume: 53
  start-page: 572
  year: 2015
  ident: ref_126
  article-title: Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization
  publication-title: Photosynthetica
  doi: 10.1007/s11099-015-0131-4
– volume: 4
  start-page: 88
  year: 2020
  ident: ref_154
  article-title: Intercropping transplanted pigeon pea with finger millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input
  publication-title: Front. Sustain. Food Syst.
  doi: 10.3389/fsufs.2020.00088
– volume: 35
  start-page: 877
  year: 2016
  ident: ref_6
  article-title: Current perspectives on plant growth-promoting rhizobacteria
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-016-9583-4
– volume: 29
  start-page: 1124
  year: 2019
  ident: ref_62
  article-title: Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1904.04026
– volume: 10
  start-page: 470
  year: 2019
  ident: ref_16
  article-title: Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00470
– volume: 55
  start-page: 1302
  year: 2009
  ident: ref_95
  article-title: Rhizobacteria containing ACC-deaminase confers salt tolerance in maize grown on salt affected fields
  publication-title: Can. J. Microbiol.
  doi: 10.1139/W09-092
– volume: 8
  start-page: 1
  year: 2015
  ident: ref_157
  article-title: Effect of some bacteria and iron chelators on potato colonization by arbuscular mycorrhiza fungi inoculated by Rhizoctonia
  publication-title: Ind. J. Sci. Technol.
– volume: 3
  start-page: 470
  year: 2018
  ident: ref_9
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0129-3
– volume: 7
  start-page: 1089
  year: 2016
  ident: ref_156
  article-title: The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01089
– volume: 182
  start-page: 451
  year: 2019
  ident: ref_150
  article-title: Arbuscular mycorrhizal fungus and rhizobacteria affect the physiology and performance of Sulla coronaria plants subjected to salt stress by mitigation of ionic imbalance
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201800262
– volume: 8
  start-page: 1739
  year: 2017
  ident: ref_146
  article-title: Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01739
– volume: 72
  start-page: 29
  year: 2020
  ident: ref_145
  article-title: AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants
  publication-title: Gesunde Pflanz.
  doi: 10.1007/s10343-019-00480-8
– volume: 10
  start-page: 1506
  year: 2019
  ident: ref_74
  article-title: ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01506
– ident: ref_5
  doi: 10.1007/s11104-019-04202-x
– ident: ref_50
  doi: 10.1016/j.plaphy.2013.01.020
– volume: 37
  start-page: 133
  year: 2009
  ident: ref_122
  article-title: Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress
  publication-title: Not. Bot. Horti Agrobot.
– volume: 26
  start-page: 69
  year: 2020
  ident: ref_171
  article-title: Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.07.003
– volume: 194
  start-page: 536
  year: 2012
  ident: ref_116
  article-title: The network structure of plant-arbuscular mycorrhizal fungi
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.04045.x
– volume: 20
  start-page: 425
  year: 2014
  ident: ref_84
  article-title: Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-014-0251-5
– ident: ref_97
– volume: 5
  start-page: 244
  year: 2020
  ident: ref_27
  article-title: Rhizobacteria and their metabolites as a promising green approach for the treatment of pesticide contaminated agricultural soils
  publication-title: MOJ Ecol. Environ. Sci.
– volume: 26
  start-page: 1847
  year: 2020
  ident: ref_87
  article-title: ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. ameliorates salt stress and promotes the growth of rice and millets under salt stress
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-020-00852-9
– volume: 21
  start-page: 423
  year: 2011
  ident: ref_133
  article-title: Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-010-0353-z
– volume: 7
  start-page: 16409
  year: 2017
  ident: ref_173
  article-title: The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16697-4
– volume: 45
  start-page: 1955
  year: 2013
  ident: ref_53
  article-title: Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil
  publication-title: Pak. J. Bot.
– volume: 28
  start-page: 938
  year: 2018
  ident: ref_66
  article-title: Plant growth-promoting rhizobacteria improved salinity tolerance of Lactuca sativa and Raphanus sativus
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1712.12027
– volume: 9
  start-page: 813
  year: 2018
  ident: ref_65
  article-title: A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00813
– volume: 56
  start-page: 318
  year: 2010
  ident: ref_147
  article-title: Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae
  publication-title: Plant Soil Environ.
  doi: 10.17221/204/2009-PSE
– ident: ref_86
– volume: 108
  start-page: 236
  year: 2010
  ident: ref_152
  article-title: Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2009.04414.x
– volume: 9
  start-page: 148
  year: 2018
  ident: ref_48
  article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00148
– volume: 199
  start-page: 98
  year: 2017
  ident: ref_59
  article-title: Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.03.006
– volume: 410
  start-page: 335
  year: 2017
  ident: ref_70
  article-title: Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3007-x
– volume: 3
  start-page: 71
  year: 2011
  ident: ref_134
  article-title: Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition
  publication-title: Not. Sci. Biol.
  doi: 10.15835/nsb346230
– volume: 157
  start-page: 33
  year: 2016
  ident: ref_162
  article-title: Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.04.112
– volume: 185
  start-page: 75
  year: 2015
  ident: ref_125
  article-title: Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.07.006
– volume: 3
  start-page: 73
  year: 2012
  ident: ref_52
  article-title: Salinity tolerance in free-living plant growth promoting rhizobacteria
  publication-title: Indian J. Res.
– ident: ref_172
  doi: 10.3390/ijms20174199
– volume: 38
  start-page: 650
  year: 2019
  ident: ref_11
  article-title: Endophytic bacteria in plant salt stress tolerance: Current and future prospects
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-018-9880-1
– volume: 11
  start-page: 113
  year: 2012
  ident: ref_90
  article-title: Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil
  publication-title: J. Saudi Soc. Agric. Sci.
– volume: 31
  start-page: 497
  year: 2008
  ident: ref_120
  article-title: Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160801895027
– volume: 63
  start-page: 170
  year: 2013
  ident: ref_25
  article-title: Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.11.024
– volume: 34
  start-page: 169
  year: 2015
  ident: ref_64
  article-title: An approach of improving plant salt tolerance of Lucerne (Medicago sativa) grown under salt stress: Use of Bio-inoculants
  publication-title: J. Plant Growth. Regul.
  doi: 10.1007/s00344-014-9455-8
– volume: 58
  start-page: 533
  year: 2015
  ident: ref_158
  article-title: Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20
  publication-title: J. Korean Soc. Appl. Biol. Chem.
  doi: 10.1007/s13765-015-0072-4
– volume: 22
  start-page: 4056
  year: 2015
  ident: ref_3
  article-title: Effect of salinity stress on plants and its tolerance strategies: A review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3739-1
– ident: ref_24
  doi: 10.1007/978-981-10-0388-2_3
– ident: ref_164
  doi: 10.1111/jam.14951
– volume: 31
  start-page: 65
  year: 2018
  ident: ref_68
  article-title: Threshold capacity of strawberry cultivars to salinity and rhizosphere bacterial population for tolerance
  publication-title: Indian J. Agric. Biochem.
  doi: 10.5958/0974-4479.2018.00009.6
– volume: 4
  start-page: 426
  year: 2016
  ident: ref_19
  article-title: Plant growth promoting Rhizobacteria-an efficient tool for agriculture promotion
  publication-title: Adv. Plants Agric. Res.
– volume: 8
  start-page: 49
  year: 2017
  ident: ref_28
  article-title: Perspectives and challenges of microbial application for crop improvement
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00049
– volume: 64
  start-page: 235
  year: 2017
  ident: ref_47
  article-title: Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443717020078
– volume: 34
  start-page: 1245
  year: 2016
  ident: ref_45
  article-title: Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.08.005
– volume: 17
  start-page: 288
  year: 2015
  ident: ref_44
  article-title: Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment
  publication-title: Plant Biol.
  doi: 10.1111/plb.12173
– volume: 16
  start-page: 1133
  year: 2014
  ident: ref_101
  article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: Implications for phytoremediation of saline soils
  publication-title: Int. J. Phytoremed.
  doi: 10.1080/15226514.2013.821447
– volume: 24
  start-page: 611
  year: 2014
  ident: ref_135
  article-title: A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-014-0582-7
– ident: ref_22
– volume: 366
  start-page: 93
  year: 2013
  ident: ref_83
  article-title: Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1402-5
– ident: ref_46
  doi: 10.1007/978-981-10-2854-0_8
– volume: 53
  start-page: 972
  year: 2013
  ident: ref_82
  article-title: ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201200445
– volume: 58
  start-page: 7
  year: 2012
  ident: ref_137
  article-title: Arbuscular mycorrhiza and salt tolerance of plants
  publication-title: Symbiosis
  doi: 10.1007/s13199-012-0196-9
– volume: 7
  start-page: 42284
  year: 2017
  ident: ref_35
  article-title: Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil
  publication-title: Sci. Rep.
  doi: 10.1038/srep42284
– volume: 10
  start-page: 2791
  year: 2019
  ident: ref_4
  article-title: Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02791
– volume: 18
  start-page: 253
  year: 2018
  ident: ref_76
  article-title: Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 63
  start-page: 225
  year: 2013
  ident: ref_91
  article-title: Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-012-0465-0
– volume: 60
  start-page: 619
  year: 2014
  ident: ref_166
  article-title: Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2014.936037
– volume: 183
  start-page: 92
  year: 2016
  ident: ref_32
  article-title: Plant growth-promoting bacterial endophytes
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2015.11.008
– volume: 6
  start-page: 1142
  year: 2014
  ident: ref_34
  article-title: Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity
  publication-title: J. Chem. Pharm. Res.
– volume: 1
  start-page: 15
  year: 2012
  ident: ref_21
  article-title: Plant growth-promoting bacteria: Mechanisms and applications
  publication-title: Scientifica
– volume: 31
  start-page: 265
  year: 2012
  ident: ref_100
  article-title: Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase- producing halotolerant bacteria
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-011-9236-6
– volume: 48
  start-page: 378
  year: 2008
  ident: ref_81
  article-title: Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.200700365
– volume: 22
  start-page: 863
  year: 2020
  ident: ref_112
  article-title: Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre-and post-anthesis salinity stress
  publication-title: Plant Biol.
  doi: 10.1111/plb.13123
– volume: 27
  start-page: 380
  year: 2020
  ident: ref_144
  article-title: Arbuscular mycorrhizal fungi modulate dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2019.10.008
– volume: 60
  start-page: 10
  year: 2014
  ident: ref_160
  article-title: Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.)
  publication-title: Agriculture
– volume: 8
  start-page: e24030
  year: 2013
  ident: ref_139
  article-title: Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.24030
– volume: 169
  start-page: 13
  year: 2015
  ident: ref_169
  article-title: Bacterial modulation of plant ethylene levels
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00284
– volume: 102
  start-page: 1283
  year: 2007
  ident: ref_104
  article-title: ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2006.03179.x
– volume: 10
  start-page: 51
  year: 2000
  ident: ref_148
  article-title: Growth of mycorrhizal tomato and mineral acquisition under salt stress
  publication-title: Mycorrhiza
  doi: 10.1007/s005720000055
– volume: 209
  start-page: 21
  year: 2018
  ident: ref_71
  article-title: Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.02.003
– volume: 181
  start-page: 22
  year: 2015
  ident: ref_60
  article-title: Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2015.08.002
– volume: 60
  start-page: 510
  year: 2010
  ident: ref_128
  article-title: Arbuscular mycorrhizal fungi alleviate salt stress of Trichosanthes dioica Roxb
  publication-title: Soil Plant Sci.
– volume: 23
  start-page: 1097
  year: 2010
  ident: ref_14
  article-title: Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03)
  publication-title: Mol. Plant Microb. Interact.
  doi: 10.1094/MPMI-23-8-1097
– volume: 166
  start-page: 1350
  year: 2009
  ident: ref_119
  article-title: Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2009.02.010
– volume: 58
  start-page: 942
  year: 2009
  ident: ref_161
  article-title: Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-009-9544-6
– volume: 8
  start-page: 1768
  year: 2017
  ident: ref_18
  article-title: Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01768
– ident: ref_123
  doi: 10.1007/978-981-10-5514-0_4
– volume: 9
  start-page: 1044
  year: 2019
  ident: ref_42
  article-title: Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38026-z
– volume: 18
  start-page: 539
  year: 2013
  ident: ref_174
  article-title: Mycorrhiza-induced resistance: More than the sum of its parts?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2013.06.004
– volume: 21
  start-page: 27
  year: 2011
  ident: ref_132
  article-title: The differential behavior of arbuscular mycrorrhizal fungi in interaction with Astragalus sinicus L. under salt stress
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-010-0311-9
– ident: ref_155
  doi: 10.3390/app10030945
– volume: 74
  start-page: 533
  year: 2010
  ident: ref_89
  article-title: Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0240
– volume: 55
  start-page: 45
  year: 2008
  ident: ref_131
  article-title: Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-007-9249-7
– volume: 119
  start-page: 26
  year: 2017
  ident: ref_67
  article-title: Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.05.033
– volume: 2
  start-page: 6
  year: 2013
  ident: ref_2
  article-title: Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-2-6
– volume: 4
  start-page: 30
  year: 2017
  ident: ref_26
  article-title: Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action
  publication-title: Chem. Biol. Technol. Agric.
  doi: 10.1186/s40538-017-0112-x
– volume: 8
  start-page: 5762
  year: 2009
  ident: ref_63
  article-title: Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L.
  publication-title: Afr. J. Biotechnol.
  doi: 10.5897/AJB09.1176
– volume: 1
  start-page: 1000714
  year: 2015
  ident: ref_102
  article-title: Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR)
  publication-title: Cogent Food Agric.
  doi: 10.1080/23311932.2014.1000714
– volume: 59
  start-page: 651
  year: 2008
  ident: ref_13
  article-title: Mechanisms of Salinity Tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 711
  start-page: 135062
  year: 2020
  ident: ref_153
  article-title: Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135062
– volume: 334
  start-page: 564
  year: 2011
  ident: ref_114
  article-title: Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2011.05.001
– volume: 107
  start-page: 625
  year: 2009
  ident: ref_40
  article-title: Evaluation of Ochrobactrum anthropic TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2009.04242.x
– ident: ref_142
  doi: 10.1101/2020.06.11.146126
– volume: 18
  start-page: 607
  year: 2020
  ident: ref_10
  article-title: Plant-microbiome interactions: From community assembly to plant health
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0412-1
– volume: 13
  start-page: 297
  year: 2020
  ident: ref_7
  article-title: Mechanisms and signaling pathways of salt tolerance in crops: Understanding from the transgenic plants
  publication-title: Trop. Plant Biol.
  doi: 10.1007/s12042-020-09265-0
– volume: 69
  start-page: 101
  year: 2016
  ident: ref_43
  article-title: Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL-12 isolated from a salt lake
  publication-title: Symbiosis
  doi: 10.1007/s13199-016-0387-x
– volume: 38
  start-page: 255
  year: 2019
  ident: ref_17
  article-title: Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-019-02374-5
– volume: 70
  start-page: 1836
  year: 2004
  ident: ref_39
  article-title: Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.3.1836-1842.2004
– volume: 5
  start-page: 51
  year: 2010
  ident: ref_61
  article-title: Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants
  publication-title: J. Plant Interact.
  doi: 10.1080/17429140903125848
– volume: 2016
  start-page: 6294098
  year: 2016
  ident: ref_176
  article-title: Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71)
  publication-title: BioMed. Res. Int.
  doi: 10.1155/2016/6294098
– volume: 7
  start-page: 86714
  year: 2016
  ident: ref_58
  article-title: Deciphering Staphylococcus sciuri SAT-17 mediated antioxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.)
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00867
– volume: 235
  start-page: 126439
  year: 2020
  ident: ref_38
  article-title: ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2020.126439
– volume: 6
  start-page: 937
  year: 2015
  ident: ref_79
  article-title: Biochemistry and genetics of ACC deaminase: A weapon to “stress ethylene” produced in plants
  publication-title: Front. Microbiol.
– volume: 36
  start-page: 26
  year: 2020
  ident: ref_8
  article-title: Bacterial endophyte mediated plant tolerance to salinity: Growth responses and mechanisms of action
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-020-2804-9
– volume: 190
  start-page: 63
  year: 1998
  ident: ref_78
  article-title: A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.1997.0532
– ident: ref_12
  doi: 10.1093/aob/mcw191
– volume: 207
  start-page: 41
  year: 2017
  ident: ref_73
  article-title: Does plant—Microbe interaction confer stress tolerance in plants: A review
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.11.004
– volume: 321
  start-page: 305
  year: 2009
  ident: ref_151
  article-title: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9895-2
– volume: 59
  start-page: 65
  year: 2013
  ident: ref_115
  article-title: The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon
  publication-title: Symbiosis
  doi: 10.1007/s13199-012-0191-1
– volume: Volume 2
  start-page: 1003
  year: 2013
  ident: ref_36
  article-title: Potential plant-growth-promoting and nitrogen-fixing bacteria associated with pioneer plants growing on mine tailings
  publication-title: Molecular Microbial Ecology of the Rhizosphere
– ident: ref_30
  doi: 10.1007/978-3-642-13612-2
– volume: 10
  start-page: 1068
  year: 2019
  ident: ref_108
  article-title: Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01068
– volume: 9
  start-page: 297
  year: 2018
  ident: ref_80
  article-title: 14-3-3 proteins in plant hormone signaling: Doing several things at once
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00297
– volume: 47
  start-page: 621
  year: 2016
  ident: ref_54
  article-title: Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum)
  publication-title: Braz. J. Microbiol.
  doi: 10.1016/j.bjm.2016.04.001
– volume: 100
  start-page: 30
  year: 2020
  ident: ref_98
  article-title: Plant growth promotion of millets under abiotic stress using Enterobacter cloacae PR10 (KP226575)
  publication-title: J. Indian Bot. Soc.
  doi: 10.5958/2455-7218.2020.00024.8
– volume: 166
  start-page: 617
  year: 2009
  ident: ref_129
  article-title: Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2008.09.013
– volume: 10
  start-page: 863
  year: 2019
  ident: ref_140
  article-title: Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity-alkalinity stresses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00863
– volume: 102
  start-page: 36
  year: 2018
  ident: ref_143
  article-title: AMF: The future prospect for sustainable agriculture
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2017.11.007
– volume: 198
  start-page: 379
  year: 2016
  ident: ref_103
  article-title: Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-016-1197-5
– volume: 19
  start-page: 321
  year: 2019
  ident: ref_109
  article-title: Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1007/s42729-019-00032-z
– volume: 27
  start-page: 115
  year: 2008
  ident: ref_130
  article-title: Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea)
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-007-9038-z
– volume: 73
  start-page: 213
  year: 2013
  ident: ref_49
  article-title: Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition
  publication-title: Chil. J. Agric. Res.
  doi: 10.4067/S0718-58392013000300002
– volume: 191
  start-page: 415
  year: 2009
  ident: ref_88
  article-title: Comparative effectiveness of Pseudomonas and Serratia sp containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-009-0466-y
– volume: 7
  start-page: 15967
  year: 2015
  ident: ref_110
  article-title: AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings
  publication-title: Sustainability
  doi: 10.3390/su71215799
– volume: 331
  start-page: 313
  year: 2010
  ident: ref_117
  article-title: Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0255-z
– volume: 26
  start-page: 673
  year: 2016
  ident: ref_141
  article-title: Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-016-0704-5
– ident: ref_105
  doi: 10.1186/s12866-019-1450-6
– volume: 65
  start-page: 1955
  year: 2019
  ident: ref_85
  article-title: Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2019.1584395
– ident: ref_57
– volume: 184
  start-page: 57
  year: 2015
  ident: ref_92
  article-title: The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.07.002
– ident: ref_121
  doi: 10.1016/j.scienta.2009.01.001
– volume: 61
  start-page: 171
  year: 2012
  ident: ref_23
  article-title: The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—A comprehensive evaluation
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2011.09.003
SSID ssj0000913851
Score 2.4977326
SecondaryResourceType review_article
Snippet Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1491
SubjectTerms 1-aminocyclopropane-1-carboxylate deaminase
Abiotic stress
ACC deaminase
Agribusiness
Agricultural production
Agriculture
Amino acids
Ammonia
Arbuscular mycorrhizas
bacteria
Cell division
cost effectiveness
Crop yield
Crops
decline
Economics
Enzymes
ethylene production
Fungi
Gene expression
Germination
green agriculture
growth promotion
Harvesting
Inoculation
Macromolecules
Microorganisms
Nitrogen
Nutrient uptake
Nutrients
Pesticides
Physiology
Plant growth
Profitability
Review
rhizosphere bacteria
Saline soils
Salinity
Salinity effects
Salinity tolerance
Salt
salt stress
salt tolerance
Saltiness
Soil microorganisms
soil quality
Sustainable agriculture
vesicular arbuscular mycorrhizae
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQ8ICggCgMZiUfKkthxEiSENrQygVpNa5H2FvlXukpbMpr0oX8i_xV3dlIWCY3X-JxYubP9nX33HSHvObdZEhmGx0vooBRiLONAgZcSa8CvqTQxJjhPZ-L0J_9-EV_skVmXC4Nhld2a6BZqU2k8Iz-MMJwqBAvjX25-jbFqFN6udiU0ZFtawXx2FGP3yH6EVZUHZP_4ZHZ2vjt1QRZMwBg-lYeBv394jXFvvoJSfV1nmM-Thb1NynH59wBoP3zy1n40eUIet0CSHnnNPyV7thySR0fLdUumYYfkvi80uR2SB13-cf2M_MY6RQ39Bv53c0nPfDheuaTnGH2nPHmz_AAvVhsfpEqnW3BR19AM35vA4rCisjR0gVcMdL7F5EHH9kzd6aJPlKhpU1HMd_dPKMBMOrNLxzJOPWNyTauCziXCXDqvVle0Kumt4X-iP-yWTqWLF3QlfG3tvju1mKyMv_E5WUxOFl9Px21Bh7EG2NSMTcJjlrGMFzIpAHiKOGZKqjRSXGlwNRNRpICHmDKW60BFRgGg0IkVOhVFoNgLMiir0r4kNMpUzLQEXVnGNXTnITeaScFlkslAjQjvFJjrluwca25c5eD0oN7zf-p9RD7uut14to__dThG69gJI1m3ewCCeTv3c5GGRRGlgY0sTA3OVGDhR5jQaFkEQRGPyEFnW3m7gtT5X3sfkXe7Zpj7eKEjS1ttnEyG965BeoeMYAI2w1iATNKz296g-y3l6tIxjaewA2Qpf3X3AF-ThxFG-iDdKDsgg2a9sW8AqjXqbTv__gDUgkjT
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_HieCL-Imrp4zgo3u2TZq2gsgprofSQ9w9uLeSpOnewl6r2y7YP9H_ypmku1g49cXXJrMfmZnkN83Mbxh7IYTNkqjk9HqJApRKTlUcaIxSYoP4NVVlTAXO-Zk8PRefLuKLA7YjVBgWsL02tKN-Uueb9fGP7_1bdPg3FHFiyP7qilLXfBOk9qrNqCSH6tlv4OEUkaHnA-J3m3MWcgQZvpbnz9KjU8qR-Y8Q6Dh_8rcDaXaH3R6QJJx41d9lB7a-x2763pL9ffaT2hF18BHD7O4Svvisu3oJXynJTnuOZvUSxfXW56JC3mMkusFh_NQZ7gErUHUJC7pJgHlPNYKO1BncS0RfD9FC1wCVtfsngGgSzuzSkYmDJ0ZuoalgrgjNwrxZraGp4WS5GSg_7Gv4bHvIlUsLdJ16beu-N7dUk0yL9YAtZh8W70-nQ9-GqUF01E3LRMQ845moVFIhvpRxzLXSaaSFNhhRJrJKEfZwXVphAh2VGnGDSaw0qawCzR-yw7qp7SMGUaZjbhRqxHJhUFyEojRcSaGSTAV6wsROTYUZOM2ptca6wNiGtFtcq90JO96LffOkHv8SeEc2sJ9MnNzuAU4sBhcvZBpWVZQGNrLoAYLrwOJClGFpVBUEVTxhRzsLKnZ2XkSUJRjixikm7Pl-GF2c7m1UbZutm5PR9WqQ_mWO5BLPvFjinGRknaMfPR6pV5eOUDzFjT5LxeP_8S-fsFsRpf0Q9yg_YofdZmufIm7r9DPnib8AIUNN4A
  priority: 102
  providerName: Scholars Portal
Title Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms
URI https://www.proquest.com/docview/2554614254
https://www.proquest.com/docview/2559437208
https://www.proquest.com/docview/2636467568
https://pubmed.ncbi.nlm.nih.gov/PMC8307984
https://doaj.org/article/681ff280e2e44e43b0e745d1dcaf00f5
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBL6ZNumoYp9NhtZEt-qLekZBtadgnZLeRmJFneLCR2WXsP-xP7rzojOcsaSnPpxQdr5NeMpG-smW8Y-yilU1lcCvq9RA5KlY51wg16KYlF_JrrMqEE5-ksvfgpv18n13ulvigmLNADhw93kuZRVcU5d7HD60phuMtkUkal1RXnlWcv5YrvOVN-DlaRQCwRUnYE-vUndxTfFioltXetorwdFQ0WI8_ZPwCawzDJvXVn8pw96wEjnIYHfcEeufolexJKSG5fsd9UdaiDb-hNdzdwGYLr6iVcUSydCVTM-hN2N5sQcgrTLTqca2zGq05wqK9A1yUsaMMA5ltKBfTczeD_FYa0hxa6Bih7PZwBBI0wc0vPGQ6B_7iFpoK5JtAK82Z1C00Np8t1z-zhvsAPt4Wp9tF_viCva_19p45Sj-ljvWaLyfni68W4L88wtgiCunGJehBKKFnprEIYmSaJMNrksZHGouOYpVWO6EaY0knLTVwahAc2c6nN04ob8YYd1E3t3jKIlUmE1agRJ6TF7jKSpRU6lTpTmpsRk_dqKmxPXU4VNG4LdGFIu8VftTtin3fdfgXujoc6nJEN7ISJetufQMGiN8jiIYMcsaN7Cyr6-aAtYgoGjHB-lCP2YdeMI5m2Z3Ttmo2XUbSLyvN_yKQixaUtSVEmG1jn4KGHLfXqxvOG5zifq1we_o-3fMeexhTdQxSj4ogddOuNe4_wrDPH7PHZ-ezy6tiPSDxOZf4HrIlFQQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJjR4QFBAFAYcErxRlsbOP6QJbbDSsbWatiLtLbIdp6u0JaNJhfrh-AB8K-6cpCwSGk97je3Eyv23737H2FshTBS4CafjJQpQUr8nPUdhlOJp9F9DmXhU4Dwa-8Pv4tuZd7bGfjW1MJRW2ehEq6iTXNMZ-bZL6VR95DDx6epHj7pG0e1q00JD1q0Vkh0LMVYXdhya5U8M4Yqdgy9I73euO9iffB726i4DPY22vOwlgfB4xCORyiBFb8j3PK6kCl0llMb4J_DTEI00V4kR2lFuotDK6cD4OvRTR3F87R22gV4HR6Ha2NsfH5-sDnkIdBNdmqpyiPPI2b6kNLuqYVNxWURUPhT1WzbRtg5o-bvtbM1r5m_wkD2o_VbYrRjtEVszWYfd353Oa-wO02F3q76Wyw7bbMqdi8fsN7VFKuErhvvlORxX2X_ZFE4o2U9VWNHyPb5YLaqcWBgtMSKe4zB-b4C6aAYyS2BCNxpwuqRaRQsuDfYws6rLKKDMgcrrqyeAXi2MzdSCmkMF0FxAnsKpJK8aTvPZBeQZXNv-R0Aywkja9ETbMdgU9rsjQ7XR9BufsMltUPYpW8_yzDxj4EbK41oirQwXGpeLvkg0l76QQSQd1WWiIWCsa2x1avFxEWOMRXSP_0n3LvuwWnZVgYv8b8EeccdqMmGD2wc4Ma5VTeyH_TR1Q8e4BiVRcOUY_BFJP9EydZzU67KthrfiWmEV8V_x6rI3q2FUNXR_JDOTL-yciK55nfCGOT730fZ6Ps4JWnzb2nR7JJudW2DzEA1OFIrnN2_wNdscTkZH8dHB-PAFu-dSkhEhnfIttl7OF-YleomlelXLIrD4lqX_DzFAhOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJr4eEBQQhQGHBG-UprHzhTShja1sjFbVWqS9RbbjdJW2ZDSpUP_E_VfcOUlZJTSe9hrbiZX7tu9-x9h7IUwUuAmn4yUKUFK_Iz1HYZTiafRfQ5l4VOA8GPqHP8X3U-90g101tTCUVtnoRKuok1zTGXnXpXSqHnKY6KZ1WsRov__l8leHOkjRTWvTTkPWbRaSHQs3Vhd5HJvlbwznip2jfaT9B9ftH0y-HnbqjgMdjXa97CSB8HjEI5HKIEXPyPc8rqQKXSWUxlgo8NMQDTZXiRHaUW6i0OLpwPg69FNHcXztHbYVoNFHYdvaOxiOTlYHPgTAie5NVUXEeeR0LyjlrmreVFwUEZUSRb01-2jbCKz5vuuZm9dMYf8xe1T7sLBbMd0TtmGyFnu4O53XOB6mxe5WPS6XLXa_KX0unrIrapFUwjcM_cszGFWZgNkUTijxT1W40fIjvlgtqvxYGCwxOp7jMH6vj3ppBjJLYEK3GzBeUt2iBZoGe7BZ1WgUUOZApfbVE0APF4ZmagHOoQJrLiBPYSzJw4ZxPjuHPINr2_8MSEYYSJuqaLsHm8J-d2CoTpp-4zM2uQ3KPmebWZ6ZFwzcSHlcS6SV4ULjctETiebSFzKIpKPaTDQEjHWNs07tPs5jjLeI7vE_6d5mn1bLLiugkf8t2CPuWE0mnHD7ACfGtdqJ_bCXpm7oGNegVAquHIM_IuklWqaOk3pttt3wVlwrryL-K2pt9m41jGqH7pJkZvKFnRPRla8T3jDH5z7aYc_HOcEa365ten0km51ZkPMQjU8Uipc3b_Atu4daIP5xNDx-xR64lG9EoKd8m22W84V5jQ5jqd7UoggsvmXh_wPs1okn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+Growth+Promoting+Rhizobacteria%2C+Arbuscular+Mycorrhizal+Fungi+and+Their+Synergistic+Interactions+to+Counteract+the+Negative+Effects+of+Saline+Soil+on+Agriculture%3A+Key+Macromolecules+and+Mechanisms&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Alka+Sagar&rft.au=Parikshita+Rathore&rft.au=Pramod+W.+Ramteke&rft.au=Wusirika+Ramakrishna&rft.date=2021-07-13&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=9&rft.issue=7&rft.spage=1491&rft_id=info:doi/10.3390%2Fmicroorganisms9071491&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_681ff280e2e44e43b0e745d1dcaf00f5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon