Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B1.1.7 (VOC 202012/01) variant that emerged in late 2020 in the United Kingdom has many changes in the spike protein gene. Three of these are associated with enhanced infectivity and transmissibility, and there are concerns that B.1.1....
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 371; no. 6534; pp. 1152 - 1153 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
12.03.2021
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abg6105 |
Cover
Abstract | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B1.1.7 (VOC 202012/01) variant that emerged in late 2020 in the United Kingdom has many changes in the spike protein gene. Three of these are associated with enhanced infectivity and transmissibility, and there are concerns that B.1.1.7 might compromise the effectiveness of the vaccine. Muik
et al.
compared the neutralization efficacy of sera from 40 subjects immunized with the BioNTech-Pfizer mRNA vaccine BNT162b2 against a pseudovirus bearing the Wuhan reference strain or the lineage B.1.1.7 spike protein (see the Perspective by Altmann
et al.
). Serum was derived from 40 subjects in two age groups 21 days after the booster shot. The vaccine remained effective against B.1.1.7 with a slight but significant decrease in neutralization that was more apparent in participants under 55 years of age. Thus, the vaccine provides a significant “cushion” of protection against this variant.
Science
, this issue p.
1152
; see also p.
1103
Despite the many genetic changes in the B.1.1.7 (VOC 202012/01) 2020 UK variant of SARS-CoV-2, the BioNTech-Pfizer mRNA vaccine remains protective.
Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA–based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection. |
---|---|
AbstractList | Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA-based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B1.1.7 (VOC 202012/01) variant that emerged in late 2020 in the United Kingdom has many changes in the spike protein gene. Three of these are associated with enhanced infectivity and transmissibility, and there are concerns that B.1.1.7 might compromise the effectiveness of the vaccine. Muik et al. compared the neutralization efficacy of sera from 40 subjects immunized with the BioNTech-Pfizer mRNA vaccine BNT162b2 against a pseudovirus bearing the Wuhan reference strain or the lineage B.1.1.7 spike protein (see the Perspective by Altmann et al.). Serum was derived from 40 subjects in two age groups 21 days after the booster shot. The vaccine remained effective against B.1.1.7 with a slight but significant decrease in neutralization that was more apparent in participants under 55 years of age. Thus, the vaccine provides a significant “cushion” of protection against this variant. Science, this issue p. 1152; see also p. 1103 Despite the many genetic changes in the B.1.1.7 (VOC 202012/01) 2020 UK variant of SARS-CoV-2, the BioNTech-Pfizer mRNA vaccine remains protective. Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA–based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection. Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA-based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection.Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA-based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection. Vaccine protects against B1.1.7 variantThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B1.1.7 (VOC 202012/01) variant that emerged in late 2020 in the United Kingdom has many changes in the spike protein gene. Three of these are associated with enhanced infectivity and transmissibility, and there are concerns that B.1.1.7 might compromise the effectiveness of the vaccine. Muik et al. compared the neutralization efficacy of sera from 40 subjects immunized with the BioNTech-Pfizer mRNA vaccine BNT162b2 against a pseudovirus bearing the Wuhan reference strain or the lineage B.1.1.7 spike protein (see the Perspective by Altmann et al.). Serum was derived from 40 subjects in two age groups 21 days after the booster shot. The vaccine remained effective against B.1.1.7 with a slight but significant decrease in neutralization that was more apparent in participants under 55 years of age. Thus, the vaccine provides a significant “cushion” of protection against this variant.Science, this issue p. 1152; see also p. 1103Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA–based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B1.1.7 (VOC 202012/01) variant that emerged in late 2020 in the United Kingdom has many changes in the spike protein gene. Three of these are associated with enhanced infectivity and transmissibility, and there are concerns that B.1.1.7 might compromise the effectiveness of the vaccine. Muik et al. compared the neutralization efficacy of sera from 40 subjects immunized with the BioNTech-Pfizer mRNA vaccine BNT162b2 against a pseudovirus bearing the Wuhan reference strain or the lineage B.1.1.7 spike protein (see the Perspective by Altmann et al. ). Serum was derived from 40 subjects in two age groups 21 days after the booster shot. The vaccine remained effective against B.1.1.7 with a slight but significant decrease in neutralization that was more apparent in participants under 55 years of age. Thus, the vaccine provides a significant “cushion” of protection against this variant. Science , this issue p. 1152 ; see also p. 1103 Despite the many genetic changes in the B.1.1.7 (VOC 202012/01) 2020 UK variant of SARS-CoV-2, the BioNTech-Pfizer mRNA vaccine remains protective. Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA–based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection. |
Author | Wallisch, Ann-Kathrin Chen, Wei Sarkar, Ritu Muik, Alexander Maurus, Daniel Türeci, Özlem Dormitzer, Philip R. Mühl, Julia Sänger, Bianca Şahin, Uğur Swanson, Kena A. Cai, Hui |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0003-4561-2273 surname: Muik fullname: Muik, Alexander organization: BioNTech, An der Goldgrube 12, 55131 Mainz, Germany – sequence: 2 givenname: Ann-Kathrin orcidid: 0000-0001-5450-3218 surname: Wallisch fullname: Wallisch, Ann-Kathrin organization: BioNTech, An der Goldgrube 12, 55131 Mainz, Germany – sequence: 3 givenname: Bianca orcidid: 0000-0002-4030-2500 surname: Sänger fullname: Sänger, Bianca organization: BioNTech, An der Goldgrube 12, 55131 Mainz, Germany – sequence: 4 givenname: Kena A. orcidid: 0000-0002-3389-8414 surname: Swanson fullname: Swanson, Kena A. organization: Pfizer, 401 N. Middletown Rd., Pearl River, NY 10960, USA – sequence: 5 givenname: Julia orcidid: 0000-0002-2222-3227 surname: Mühl fullname: Mühl, Julia organization: BioNTech, An der Goldgrube 12, 55131 Mainz, Germany – sequence: 6 givenname: Wei surname: Chen fullname: Chen, Wei organization: Pfizer, 401 N. Middletown Rd., Pearl River, NY 10960, USA – sequence: 7 givenname: Hui surname: Cai fullname: Cai, Hui organization: Pfizer, 401 N. Middletown Rd., Pearl River, NY 10960, USA – sequence: 8 givenname: Daniel orcidid: 0000-0003-2989-264X surname: Maurus fullname: Maurus, Daniel organization: BioNTech, An der Goldgrube 12, 55131 Mainz, Germany – sequence: 9 givenname: Ritu surname: Sarkar fullname: Sarkar, Ritu organization: Pfizer, 401 N. Middletown Rd., Pearl River, NY 10960, USA – sequence: 10 givenname: Özlem orcidid: 0000-0002-0623-1497 surname: Türeci fullname: Türeci, Özlem organization: BioNTech, An der Goldgrube 12, 55131 Mainz, Germany – sequence: 11 givenname: Philip R. orcidid: 0000-0003-0671-6360 surname: Dormitzer fullname: Dormitzer, Philip R. organization: Pfizer, 401 N. Middletown Rd., Pearl River, NY 10960, USA – sequence: 12 givenname: Uğur orcidid: 0000-0003-0363-1564 surname: Şahin fullname: Şahin, Uğur organization: BioNTech, An der Goldgrube 12, 55131 Mainz, Germany., TRON gGmbH – Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33514629$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9rVDEUxYNU7LS6dicBN27eNH8mLy8boR2sCqWCrW5DknczTXmTjMl7A3Xld-g39JOY2qloQbLI4v7O4Z57DtBeTBEQeknJnFLWHhUXIDqYG7tqKRFP0IwSJRrFCN9DM0J423REin10UMo1IXWm-DO0z7mgi5apGbLnMI3ZDOG7GUOKOHl8cfz5olmmrw3DQ4hgVoBP5rQ-iTcFpj5tQ54Ktjf45PyStswyvDXOVfTnj1sYggsj9PhqWpuIC2TzHD31ZijwYvcfoi-n7y6XH5qzT-8_Lo_PGieoGBvXt5QL6RUwAr2yhjPoCWl78MQLpqS1XBLa-95T17XcEq-YlVyqbmFbv-CH6O2972aya-gdxLtgepPD2uQbnUzQ_05iuNKrtNVSSSolrQZvdgY5fZugjHodioNhMBHSVDRbdLyjjKuuoq8foddpyrHG00wQIkSNQir16u-N_qzycP4KiHvA5VRKBq_r8X4XURcMg6ZE39WsdzXrXc1Vd_RI92D9P8UvHUitFg |
CitedBy_id | crossref_primary_10_1016_j_ebiom_2021_103762 crossref_primary_10_1038_s41467_021_25479_6 crossref_primary_10_1007_s12033_021_00353_4 crossref_primary_10_1016_j_cell_2021_03_036 crossref_primary_10_1038_s41598_023_48929_1 crossref_primary_10_1093_ofid_ofad431 crossref_primary_10_1016_j_jtbi_2022_111105 crossref_primary_10_1016_j_meegid_2021_104869 crossref_primary_10_1128_JVI_00404_21 crossref_primary_10_1021_acsanm_3c02880 crossref_primary_10_1016_j_celrep_2021_109415 crossref_primary_10_1001_jamanetworkopen_2021_47042 crossref_primary_10_1016_j_xcrm_2021_100405 crossref_primary_10_1007_s00508_021_01835_w crossref_primary_10_1056_NEJMoa2110345 crossref_primary_10_1038_s41591_021_01318_5 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1038_s42003_023_04589_5 crossref_primary_10_3390_molecules29235564 crossref_primary_10_1016_S2468_2667_21_00055_4 crossref_primary_10_1007_s12275_021_1348_5 crossref_primary_10_1515_mr_2021_0035 crossref_primary_10_1016_j_isci_2023_106562 crossref_primary_10_1016_j_ejmech_2023_115908 crossref_primary_10_3389_fimmu_2021_771011 crossref_primary_10_1016_j_chom_2021_03_002 crossref_primary_10_1128_mBio_00696_21 crossref_primary_10_1007_s13167_021_00267_w crossref_primary_10_3390_v13122391 crossref_primary_10_1002_jmv_27425 crossref_primary_10_1128_JVI_00966_21 crossref_primary_10_1208_s12249_021_02058_y crossref_primary_10_1002_jmv_29160 crossref_primary_10_3389_fimmu_2021_654165 crossref_primary_10_3390_v13101911 crossref_primary_10_3390_v13081421 crossref_primary_10_1038_s41392_021_00733_x crossref_primary_10_1186_s12916_021_02149_4 crossref_primary_10_1016_j_cell_2021_03_013 crossref_primary_10_1007_s11356_021_16415_8 crossref_primary_10_3389_fimmu_2021_809244 crossref_primary_10_1136_postgradmedj_2021_140685 crossref_primary_10_1186_s12985_021_01633_w crossref_primary_10_3389_fitd_2022_988665 crossref_primary_10_3390_v13071192 crossref_primary_10_1080_14737159_2021_1917998 crossref_primary_10_1038_s41467_021_25167_5 crossref_primary_10_1017_S0950268821002430 crossref_primary_10_1515_mr_2021_0021 crossref_primary_10_1002_ange_202110702 crossref_primary_10_1080_14760584_2021_1903879 crossref_primary_10_2139_ssrn_4114061 crossref_primary_10_3390_vaccines9060639 crossref_primary_10_1002_jmv_27310 crossref_primary_10_1111_joim_13372 crossref_primary_10_3390_jcm11071822 crossref_primary_10_1002_admt_202200387 crossref_primary_10_1016_j_apsb_2021_07_026 crossref_primary_10_1016_j_jcvp_2021_100016 crossref_primary_10_3390_vaccines12111238 crossref_primary_10_1016_S0140_6736_21_00947_8 crossref_primary_10_1093_infdis_jiab083 crossref_primary_10_3934_mbe_2022350 crossref_primary_10_1016_j_vaccine_2021_08_081 crossref_primary_10_1126_sciimmunol_ade9888 crossref_primary_10_3389_fimmu_2022_842468 crossref_primary_10_3390_ph14080751 crossref_primary_10_1002_rmv_2277 crossref_primary_10_1128_mSystems_00353_21 crossref_primary_10_1016_j_chom_2021_11_004 crossref_primary_10_3389_fimmu_2022_952229 crossref_primary_10_1016_j_ymthe_2023_02_012 crossref_primary_10_1128_mBio_02510_21 crossref_primary_10_1016_j_micpath_2022_105619 crossref_primary_10_1038_s41467_022_32665_7 crossref_primary_10_1007_s00705_021_05295_5 crossref_primary_10_1016_j_vaccine_2023_03_035 crossref_primary_10_1093_ajcp_aqab186 crossref_primary_10_1002_mef2_90 crossref_primary_10_1016_j_jbc_2022_101658 crossref_primary_10_3390_vaccines10091538 crossref_primary_10_3390_diseases10040112 crossref_primary_10_1146_annurev_med_042420_112725 crossref_primary_10_1128_jvi_01157_23 crossref_primary_10_3390_vaccines9070779 crossref_primary_10_3390_genes13122412 crossref_primary_10_1021_acsnano_1c01845 crossref_primary_10_1016_j_genrep_2021_101342 crossref_primary_10_1016_j_jconrel_2022_08_009 crossref_primary_10_3390_vaccines9101207 crossref_primary_10_1080_17576180_2024_2411920 crossref_primary_10_1080_21645515_2023_2273155 crossref_primary_10_3389_fcimb_2021_781429 crossref_primary_10_1016_j_imu_2021_100768 crossref_primary_10_3389_fmed_2022_849217 crossref_primary_10_1002_phar_2622 crossref_primary_10_1186_s13073_022_01098_8 crossref_primary_10_1002_anie_202110702 crossref_primary_10_3390_ijms241914622 crossref_primary_10_3390_pathogens10040429 crossref_primary_10_1016_j_cell_2023_09_022 crossref_primary_10_1038_s41421_021_00340_8 crossref_primary_10_1111_tme_12868 crossref_primary_10_1021_acsnano_3c08323 crossref_primary_10_1038_s41541_024_00815_1 crossref_primary_10_3390_vaccines10060874 crossref_primary_10_7554_eLife_72619 crossref_primary_10_1016_j_ijbiomac_2024_129284 crossref_primary_10_1038_s41598_021_99401_x crossref_primary_10_1016_j_cell_2021_05_005 crossref_primary_10_1038_s41541_021_00389_2 crossref_primary_10_1016_j_meegid_2021_105191 crossref_primary_10_1007_s40199_022_00446_8 crossref_primary_10_1080_21645515_2022_2057161 crossref_primary_10_1016_j_celrep_2021_110167 crossref_primary_10_1016_j_micpath_2021_105161 crossref_primary_10_1080_21645515_2023_2174755 crossref_primary_10_1111_sji_13345 crossref_primary_10_3390_v13040638 crossref_primary_10_34084_bshr_1200144 crossref_primary_10_1093_cid_ciab555 crossref_primary_10_1098_rsfs_2021_0008 crossref_primary_10_3390_ijerph19020689 crossref_primary_10_3390_ijms23042172 crossref_primary_10_3390_v13040633 crossref_primary_10_1016_j_intimp_2023_109968 crossref_primary_10_1038_s41392_022_00874_7 crossref_primary_10_1186_s42269_022_00787_z crossref_primary_10_1021_acssensors_3c02734 crossref_primary_10_1002_jmv_26924 crossref_primary_10_2174_1871526522666220818124416 crossref_primary_10_1126_science_abg4493 crossref_primary_10_1038_s41467_021_26401_w crossref_primary_10_1093_clinchem_hvac081 crossref_primary_10_3390_ijms23084376 crossref_primary_10_1177_15353702211014146 crossref_primary_10_1016_j_anrea_2021_04_006 crossref_primary_10_1126_science_abg7404 crossref_primary_10_3390_vaccines10101655 crossref_primary_10_1093_oxfimm_iqab005 crossref_primary_10_1007_s11468_022_01754_0 crossref_primary_10_1111_1462_2920_15549 crossref_primary_10_3389_fvets_2022_1085613 crossref_primary_10_1126_sciadv_abo4100 crossref_primary_10_1038_s41598_022_04950_4 crossref_primary_10_4103_ijmr_ijmr_2544_21 crossref_primary_10_1016_j_heliyon_2023_e16750 crossref_primary_10_1016_j_accpm_2021_100848 crossref_primary_10_3390_biomedicines9101303 crossref_primary_10_1016_j_cell_2022_01_001 crossref_primary_10_1016_j_ebiom_2021_103544 crossref_primary_10_1038_s41591_021_01449_9 crossref_primary_10_1016_j_trsl_2021_11_007 crossref_primary_10_1128_JCM_00859_21 crossref_primary_10_3390_medicina59030507 crossref_primary_10_1016_j_biomaterials_2022_121460 crossref_primary_10_1038_s41577_021_00592_1 crossref_primary_10_2174_0929867328666210902094254 crossref_primary_10_1093_ofid_ofac124 crossref_primary_10_1172_jci_insight_155789 crossref_primary_10_3389_fimmu_2022_990071 crossref_primary_10_1172_JCI149335 crossref_primary_10_1016_j_cell_2022_06_023 crossref_primary_10_1002_jmv_28563 crossref_primary_10_2174_1381612828666220506142117 crossref_primary_10_1371_journal_pone_0257464 crossref_primary_10_1128_jcm_00178_22 crossref_primary_10_3389_fmicb_2023_1199561 crossref_primary_10_1038_s41467_022_34439_7 crossref_primary_10_1134_S2079086421070069 crossref_primary_10_3389_fcimb_2021_690621 crossref_primary_10_1002_adfm_202401983 crossref_primary_10_1038_s41467_022_31556_1 crossref_primary_10_1016_j_ajpath_2021_07_002 crossref_primary_10_1002_jmv_27487 crossref_primary_10_1080_21645515_2022_2105611 crossref_primary_10_1038_s41541_021_00404_6 crossref_primary_10_1016_j_biopha_2021_112176 crossref_primary_10_1093_ofid_ofab143 crossref_primary_10_1126_science_abn7591 crossref_primary_10_1038_s41392_021_00796_w crossref_primary_10_1016_j_cell_2021_11_026 crossref_primary_10_3390_pathogens11020275 crossref_primary_10_1016_j_epidem_2022_100578 crossref_primary_10_1016_j_jconrel_2021_03_043 crossref_primary_10_21833_ijaas_2024_06_023 crossref_primary_10_1016_j_cell_2021_05_031 crossref_primary_10_1021_acs_analchem_4c01607 crossref_primary_10_3390_vaccines9040390 crossref_primary_10_3389_fmed_2021_806641 crossref_primary_10_3201_eid2711_211190 crossref_primary_10_1016_j_accpm_2021_100867 crossref_primary_10_3390_ijms23031646 crossref_primary_10_7759_cureus_28066 crossref_primary_10_7554_eLife_78633 crossref_primary_10_3390_vaccines9111211 crossref_primary_10_1016_j_str_2024_06_012 crossref_primary_10_1016_j_ebiom_2021_103805 crossref_primary_10_3390_v13071211 crossref_primary_10_1016_j_virol_2022_05_003 crossref_primary_10_3390_pathogens10060633 crossref_primary_10_1371_journal_pone_0257646 crossref_primary_10_1038_s41392_021_00644_x crossref_primary_10_3390_vaccines10081251 crossref_primary_10_1016_j_smim_2021_101533 crossref_primary_10_1039_D2SC06665C crossref_primary_10_1016_j_cell_2023_04_007 crossref_primary_10_1038_s41586_021_03412_7 crossref_primary_10_3390_vaccines10030349 crossref_primary_10_1186_s40779_021_00360_1 crossref_primary_10_1016_j_celrep_2024_114567 crossref_primary_10_1016_j_cell_2022_03_044 crossref_primary_10_1016_S2213_2600_21_00407_0 crossref_primary_10_1001_jama_2021_7563 crossref_primary_10_1056_NEJMoa2102214 crossref_primary_10_1126_science_abf4896 crossref_primary_10_1126_sciimmunol_abm3131 crossref_primary_10_14348_molcells_2021_0075 crossref_primary_10_3389_fimmu_2022_861050 crossref_primary_10_1038_s41586_021_03398_2 crossref_primary_10_1038_s41467_022_29477_0 crossref_primary_10_3389_fmed_2022_820544 crossref_primary_10_1016_j_jinf_2021_07_019 crossref_primary_10_1038_s41421_021_00282_1 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_1016_j_ajpath_2021_03_004 crossref_primary_10_1016_S1473_3099_21_00290_5 crossref_primary_10_3389_fimmu_2022_801522 crossref_primary_10_3390_v13071347 crossref_primary_10_1128_jvi_01578_21 crossref_primary_10_3390_vaccines11030682 crossref_primary_10_1016_j_mayocp_2021_08_013 crossref_primary_10_1038_s41586_021_03653_6 crossref_primary_10_3201_eid2708_210887 crossref_primary_10_1016_j_accpm_2021_100874 crossref_primary_10_1186_s41256_022_00245_3 crossref_primary_10_1371_journal_pone_0261229 crossref_primary_10_3390_ijms23062928 crossref_primary_10_1111_imr_13091 crossref_primary_10_1126_sciadv_abj6538 crossref_primary_10_1016_j_celrep_2023_112888 crossref_primary_10_1073_pnas_2102957118 crossref_primary_10_3390_microorganisms9081744 crossref_primary_10_1093_intimm_dxab061 crossref_primary_10_1016_j_isci_2022_103934 crossref_primary_10_1016_j_celrep_2021_109838 crossref_primary_10_1007_s11684_023_1034_6 crossref_primary_10_1111_jfbc_14354 crossref_primary_10_4049_jimmunol_2001287 crossref_primary_10_1016_j_jgg_2021_03_001 crossref_primary_10_1016_j_clim_2022_108999 crossref_primary_10_1038_s41421_022_00509_9 crossref_primary_10_1128_spectrum_03789_22 crossref_primary_10_2139_ssrn_3924614 crossref_primary_10_1126_sciimmunol_ade2283 crossref_primary_10_1016_j_celrep_2021_109385 crossref_primary_10_1126_sciadv_abl7682 crossref_primary_10_3389_fimmu_2022_816220 crossref_primary_10_1016_j_lanwpc_2022_100586 crossref_primary_10_51585_gjm_2021_2_0006 crossref_primary_10_3389_fimmu_2024_1259788 crossref_primary_10_1016_j_ijbiomac_2021_11_020 crossref_primary_10_1126_science_abh1766 crossref_primary_10_1038_s41467_021_24326_y crossref_primary_10_1038_s41467_022_30163_4 crossref_primary_10_1038_s41421_021_00315_9 crossref_primary_10_1002_14651858_CD013825_pub2 crossref_primary_10_3389_fimmu_2021_730766 crossref_primary_10_3389_fpubh_2021_730611 crossref_primary_10_1186_s43168_021_00090_x crossref_primary_10_3389_fimmu_2021_744242 crossref_primary_10_3390_v14050956 crossref_primary_10_1016_j_xcrm_2021_100355 crossref_primary_10_3390_cells10061434 crossref_primary_10_1111_all_15252 crossref_primary_10_3389_fimmu_2022_773982 crossref_primary_10_1128_mbio_02979_21 crossref_primary_10_1128_Spectrum_01017_21 crossref_primary_10_1371_journal_ppat_1010260 crossref_primary_10_1126_sciimmunol_abq2427 crossref_primary_10_1016_j_chom_2021_06_016 crossref_primary_10_1021_acs_biochem_1c00139 crossref_primary_10_3389_fmicb_2021_792514 crossref_primary_10_3389_fimmu_2021_687869 crossref_primary_10_1038_s41541_021_00411_7 crossref_primary_10_1016_S0140_6736_21_00675_9 crossref_primary_10_3390_v14061255 crossref_primary_10_26416_FARM_198_1_2021_4353 crossref_primary_10_1016_j_xcrm_2021_100286 crossref_primary_10_3892_etm_2022_11343 crossref_primary_10_1016_j_jconrel_2022_03_032 crossref_primary_10_1016_S0140_6736_21_00370_6 crossref_primary_10_1007_s42399_022_01168_3 crossref_primary_10_1016_j_mgene_2021_100967 crossref_primary_10_1038_s41559_022_01860_6 crossref_primary_10_1002_14651858_CD014945 crossref_primary_10_15252_embj_2021107786 crossref_primary_10_3389_fmed_2021_702066 crossref_primary_10_1021_acs_jmedchem_1c00311 crossref_primary_10_3390_vaccines10060919 crossref_primary_10_7759_cureus_19140 crossref_primary_10_1016_j_isci_2021_103467 crossref_primary_10_1021_acsinfecdis_1c00600 crossref_primary_10_1128_spectrum_01659_21 crossref_primary_10_1038_s41577_021_00657_1 crossref_primary_10_1126_sciadv_abj9815 crossref_primary_10_1007_s10875_022_01354_x crossref_primary_10_1093_ndt_gfab064 crossref_primary_10_1128_spectrum_01504_21 crossref_primary_10_3389_fimmu_2022_1033770 crossref_primary_10_3934_mbe_2022348 crossref_primary_10_1111_petr_14031 crossref_primary_10_1007_s00705_022_05365_2 crossref_primary_10_1038_s41541_022_00504_x crossref_primary_10_2217_fvl_2021_0100 crossref_primary_10_3390_v14081766 crossref_primary_10_3389_fimmu_2021_732693 crossref_primary_10_2174_0929867328666210526111318 crossref_primary_10_1126_sciadv_abj5365 crossref_primary_10_1172_jci_insight_150012 crossref_primary_10_1016_j_compbiomed_2023_106618 crossref_primary_10_1093_ve_veab061 crossref_primary_10_3389_fmicb_2021_817200 crossref_primary_10_3390_biom12070964 crossref_primary_10_3390_ijerph19137814 crossref_primary_10_1038_s41467_021_24339_7 crossref_primary_10_3390_jpm12030386 crossref_primary_10_1093_infdis_jiab283 crossref_primary_10_1093_ve_veac026 crossref_primary_10_1002_eji_202149470 crossref_primary_10_1002_14651858_CD014945_pub2 crossref_primary_10_1021_acs_jcim_1c00857 crossref_primary_10_1038_s41467_021_24909_9 crossref_primary_10_1038_s41586_021_03594_0 crossref_primary_10_1016_j_celrep_2022_111831 crossref_primary_10_1016_j_vetmic_2022_109395 crossref_primary_10_1016_j_cmi_2021_05_007 crossref_primary_10_1016_S2468_1253_21_00075_3 crossref_primary_10_1038_s41598_022_07960_4 crossref_primary_10_1016_j_ijmmb_2022_03_009 crossref_primary_10_3389_fpubh_2021_801763 crossref_primary_10_3390_v13091687 crossref_primary_10_1039_D2CP01893D crossref_primary_10_1093_cid_ciab492 crossref_primary_10_1016_j_addr_2023_114973 crossref_primary_10_1016_j_cell_2021_07_025 crossref_primary_10_1021_acs_chemrestox_1c00129 crossref_primary_10_3390_biomedicines9111740 crossref_primary_10_3390_vaccines9050467 crossref_primary_10_3390_vaccines9101195 crossref_primary_10_1134_S0006297922070021 crossref_primary_10_1016_j_chom_2021_06_009 crossref_primary_10_1007_s10273_021_2894_5 crossref_primary_10_3389_fimmu_2022_786586 crossref_primary_10_3389_fimmu_2022_915034 crossref_primary_10_1126_science_abh1282 |
Cites_doi | 10.1038/s41586-021-03275-y 10.1126/science.1097211 10.1097/INF.0b013e3182367662 10.1101/2020.12.09.20245175 10.1101/2021.01.07.425740 10.1101/2020.12.30.20249034 10.1016/j.chom.2020.06.021 10.1016/j.cell.2020.08.012 10.1126/science.abc4730 10.1371/journal.pone.0025858 10.1056/NEJMoa2034577 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2021 American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2021 American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abg6105 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Medicine |
EISSN | 1095-9203 |
EndPage | 1153 |
ExternalDocumentID | PMC7971771 33514629 10_1126_science_abg6105 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom China United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom – name: China – name: United Kingdom--UK |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ ALIPV ALSLI CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c515t-cd61357f9e20ed9ba32ed006def0f5297bb3701dfdf1c863b0f92b737984b6f43 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Tue Sep 30 16:33:02 EDT 2025 Sun Sep 28 03:15:47 EDT 2025 Fri Jul 25 10:46:18 EDT 2025 Mon Jul 21 05:47:42 EDT 2025 Wed Oct 01 02:17:19 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6534 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c515t-cd61357f9e20ed9ba32ed006def0f5297bb3701dfdf1c863b0f92b737984b6f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3389-8414 0000-0003-0671-6360 0000-0001-5450-3218 0000-0003-2989-264X 0000-0002-2222-3227 0000-0003-4561-2273 0000-0003-0363-1564 0000-0002-0623-1497 0000-0002-4030-2500 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7971771 |
PMID | 33514629 |
PQID | 2500551350 |
PQPubID | 1256 |
PageCount | 2 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7971771 proquest_miscellaneous_2483812398 proquest_journals_2500551350 pubmed_primary_33514629 crossref_citationtrail_10_1126_science_abg6105 crossref_primary_10_1126_science_abg6105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-12 |
PublicationDateYYYYMMDD | 2021-03-12 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science |
References | e_1_3_2_9_2 e_1_3_2_8_2 e_1_3_2_7_2 e_1_3_2_6_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 33707254 - Science. 2021 Mar 12;371(6534):1103-1104 |
References_xml | – ident: e_1_3_2_12_2 doi: 10.1038/s41586-021-03275-y – ident: e_1_3_2_9_2 doi: 10.1126/science.1097211 – ident: e_1_3_2_3_2 – ident: e_1_3_2_10_2 doi: 10.1097/INF.0b013e3182367662 – ident: e_1_3_2_8_2 doi: 10.1101/2020.12.09.20245175 – ident: e_1_3_2_7_2 doi: 10.1101/2021.01.07.425740 – ident: e_1_3_2_4_2 doi: 10.1101/2020.12.30.20249034 – ident: e_1_3_2_11_2 doi: 10.1016/j.chom.2020.06.021 – ident: e_1_3_2_5_2 doi: 10.1016/j.cell.2020.08.012 – ident: e_1_3_2_6_2 doi: 10.1126/science.abc4730 – ident: e_1_3_2_13_2 doi: 10.1371/journal.pone.0025858 – ident: e_1_3_2_2_2 doi: 10.1056/NEJMoa2034577 – reference: 33707254 - Science. 2021 Mar 12;371(6534):1103-1104 |
SSID | ssj0009593 |
Score | 2.7148905 |
Snippet | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B1.1.7 (VOC 202012/01) variant that emerged in late 2020 in the United Kingdom has many... Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to... Vaccine protects against B1.1.7 variantThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B1.1.7 (VOC 202012/01) variant that emerged in late... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1152 |
SubjectTerms | Adult Aged Amino acid sequence Amino acids Antibodies Antibodies, Neutralizing - blood Antibodies, Viral - blood Antisera China Coronaviridae Coronaviruses COVID-19 COVID-19 - blood COVID-19 - prevention & control COVID-19 - virology COVID-19 vaccines COVID-19 Vaccines - immunology Female Humans Immunization Infectivity Male Medicine Microbio Middle Aged mRNA Mutation Neutralization Neutralization Tests Neutralizing Proteins Respiratory diseases SARS-CoV-2 - genetics SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Spike protein United Kingdom Vaccines Young Adult |
Title | Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33514629 https://www.proquest.com/docview/2500551350 https://www.proquest.com/docview/2483812398 https://pubmed.ncbi.nlm.nih.gov/PMC7971771 |
Volume | 371 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCO) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1095-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009593 issn: 0036-8075 databaseCode: ABDBF dateStart: 19900105 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKJyRuEBt_hYGMxMVQlSqxEzu5TAfThLRe0A7tLopjByKmdGqboe2Kd-DZeAGehOPESd2xSgNVitrEcX_O13M-H58fhN56rlS-9CMnAHPj-MpXThgK6rg885UioczrwvMnE3Z86n88C856vV9W1FK1EqPs-ta8kv-RKpwDueos2X-QbDcpnIDnIF84goTheCcZT1RVOyquO943jT9NncP5Z4cMNX_UATnjkQcPPrxYqkrOL4tFtdScczyZeYwIMrxMM7253kY9UHVeZDUPbdr36TYRNoNtlQEw0263x5JxF7YYN8EFbayBuc1yPJxUxbeNFBvbt18smxZVcVk6OuBjUXQgntZ7-772RtbgrL0y3cXvaZvNBiYkHcYj261B6rguz_Z0tpWSG0PVaGdXN5YkLrXVN21auBicssD4Rht9DHyXWLYdXtLb7YbV6VKNUvEFWGWwNpFtWMANy9nFM9YrKcISM0FiJriHdghnjPTRTjx-Pz7aWg3a1Jyysrnaz7BJl_5aA90M5bW40ewRemgWNThuELqLeqrcQ_ebNqdXe2jXCH-JD0yV83ePkdgEL57neA1ebMCLDXixBV4srnALXmzA-_vHzxa2uIYt1rB9gk6PPswOjx3T8MPJgFavnEwCuQx4HiniKhmJlBIlwSxIlbt5QCIuBOWuJ3OZe1nIqHDziAhOeRT6guU-fYr65bxUzxGOmAqDSBIYSv2ckRTWMVnGoiyNfEYlGaBR-7smmamGr5uynCdbZDlAB90NF00hmO1D91tBJUZbLBNYari6mVLgDtCb7jLocr1Bl5ZqXsEYPwQCrStyDtCzRq7de1GdcsNINEB8Q-LdAF0nfvNKWXyt68XziHucey_u_g1eogfr_-Q-6q8WlXoF5HslXhso_wG4tNtR |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutralization+of+SARS-CoV-2+lineage+B.1.1.7+pseudovirus+by+BNT162b2+vaccine%E2%80%93elicited+human+sera&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Muik%2C+Alexander&rft.au=Wallisch%2C+Ann-Kathrin&rft.au=S%C3%A4nger%2C+Bianca&rft.au=Swanson%2C+Kena+A.&rft.date=2021-03-12&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=371&rft.issue=6534&rft.spage=1152&rft.epage=1153&rft_id=info:doi/10.1126%2Fscience.abg6105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abg6105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |