Fast and accurate face recognition system using MORSCMs-LBP on embedded circuits
Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to combat the spread of the new coronavirus. The systems that depend on using hands, such as fingerprint systems and PINs in ATM systems, could lea...
Saved in:
| Published in | PeerJ. Computer science Vol. 8; p. e1008 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
San Diego
PeerJ. Ltd
28.06.2022
PeerJ, Inc PeerJ Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2376-5992 2376-5992 |
| DOI | 10.7717/peerj-cs.1008 |
Cover
| Abstract | Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to combat the spread of the new coronavirus. The systems that depend on using hands, such as fingerprint systems and PINs in ATM systems, could lead to infection, so they have become undesirable and we can replace them by using facial recognition instead. With the development of technology and the availability of nano devices like the Raspberry Pi, such applications can be implemented easily. This study presents an efficient face recognition system in which the face image is taken by a standalone camera and then passed to the Raspberry Pi to extract the face features and then compare them with the database. This approach is named MORSCMs-LBP by combining two algorithms for feature extraction: Local Binary Pattern (LBP) as a local feature descriptor and radial substituted Chebyshev moments (MORSCMs) as a global feature descriptor. The significant advantage of this method is that it combines the local and global features into a single feature vector from the detected faces. The proposed approach MORSCMs-LBP has been implemented on the Raspberry Pi 4 computer model B with 1 GB of RAM using C++ OpenCV. We assessed our method on various benchmark datasets: face95 with an accuracy of 99.0278%, face96 with an accuracy of 99.4375%, and grimace with 100% accuracy. We evaluated the proposed MORSCMs-LBP technique against other recently published approaches; the comparison shows a significant improvement in favour of the proposed approach. |
|---|---|
| AbstractList | Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to combat the spread of the new coronavirus. The systems that depend on using hands, such as fingerprint systems and PINs in ATM systems, could lead to infection, so they have become undesirable and we can replace them by using facial recognition instead. With the development of technology and the availability of nano devices like the Raspberry Pi, such applications can be implemented easily. This study presents an efficient face recognition system in which the face image is taken by a standalone camera and then passed to the Raspberry Pi to extract the face features and then compare them with the database. This approach is named MORSCMs-LBP by combining two algorithms for feature extraction: Local Binary Pattern (LBP) as a local feature descriptor and radial substituted Chebyshev moments (MORSCMs) as a global feature descriptor. The significant advantage of this method is that it combines the local and global features into a single feature vector from the detected faces. The proposed approach MORSCMs-LBP has been implemented on the Raspberry Pi 4 computer model B with 1 GB of RAM using C++ OpenCV. We assessed our method on various benchmark datasets: face95 with an accuracy of 99.0278%, face96 with an accuracy of 99.4375%, and grimace with 100% accuracy. We evaluated the proposed MORSCMs-LBP technique against other recently published approaches; the comparison shows a significant improvement in favour of the proposed approach. Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to combat the spread of the new coronavirus. The systems that depend on using hands, such as fingerprint systems and PINs in ATM systems, could lead to infection, so they have become undesirable and we can replace them by using facial recognition instead. With the development of technology and the availability of nano devices like the Raspberry Pi, such applications can be implemented easily. This study presents an efficient face recognition system in which the face image is taken by a standalone camera and then passed to the Raspberry Pi to extract the face features and then compare them with the database. This approach is named MORSCMs-LBP by combining two algorithms for feature extraction: Local Binary Pattern (LBP) as a local feature descriptor and radial substituted Chebyshev moments (MORSCMs) as a global feature descriptor. The significant advantage of this method is that it combines the local and global features into a single feature vector from the detected faces. The proposed approach MORSCMs-LBP has been implemented on the Raspberry Pi 4 computer model B with 1 GB of RAM using C++ OpenCV. We assessed our method on various benchmark datasets: face95 with an accuracy of 99.0278%, face96 with an accuracy of 99.4375%, and grimace with 100% accuracy. We evaluated the proposed MORSCMs-LBP technique against other recently published approaches; the comparison shows a significant improvement in favour of the proposed approach.Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to combat the spread of the new coronavirus. The systems that depend on using hands, such as fingerprint systems and PINs in ATM systems, could lead to infection, so they have become undesirable and we can replace them by using facial recognition instead. With the development of technology and the availability of nano devices like the Raspberry Pi, such applications can be implemented easily. This study presents an efficient face recognition system in which the face image is taken by a standalone camera and then passed to the Raspberry Pi to extract the face features and then compare them with the database. This approach is named MORSCMs-LBP by combining two algorithms for feature extraction: Local Binary Pattern (LBP) as a local feature descriptor and radial substituted Chebyshev moments (MORSCMs) as a global feature descriptor. The significant advantage of this method is that it combines the local and global features into a single feature vector from the detected faces. The proposed approach MORSCMs-LBP has been implemented on the Raspberry Pi 4 computer model B with 1 GB of RAM using C++ OpenCV. We assessed our method on various benchmark datasets: face95 with an accuracy of 99.0278%, face96 with an accuracy of 99.4375%, and grimace with 100% accuracy. We evaluated the proposed MORSCMs-LBP technique against other recently published approaches; the comparison shows a significant improvement in favour of the proposed approach. |
| ArticleNumber | e1008 |
| Audience | Academic |
| Author | Mohamed, Ehab R. Elkomy, Osama Hosny, Khalid M. Hamad, Aya Y. |
| Author_xml | – sequence: 1 givenname: Khalid M. surname: Hosny fullname: Hosny, Khalid M. organization: Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt – sequence: 2 givenname: Aya Y. surname: Hamad fullname: Hamad, Aya Y. organization: Department of Information Technology/Information Technology and Computer Science, Sinai University, North Sinai, Al Arish, Egypt – sequence: 3 givenname: Osama surname: Elkomy fullname: Elkomy, Osama organization: Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt – sequence: 4 givenname: Ehab R. surname: Mohamed fullname: Mohamed, Ehab R. organization: Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt |
| BookMark | eNqFUk1v1DAQjVAR_aBH7pG4wCGL7SS2c0FqVxRW2qpVC2fLscfBq8Re7AS6_x5vt6KEC_bB1sx7zzNvfJodOe8gy95gtGAMsw9bgLApVFxghPiL7ISUjBZ105Cjv-7H2XmMG4QQrnFazavsuKw5q2lNTrLbKxnHXDqdS6WmIEfIjVSQB1C-c3a03uVxF0cY8ila1-XXN3f3y-tYrC9v85SDoQWtQefKBjXZMb7OXhrZRzh_Os-yb1efvi6_FOubz6vlxbpQNa7HQimlqaEScwmUNRKxtuWaNBgx0upUJtGIMSOrVitODK9p2RKtGmoY8Jar8ixbHXS1lxuxDXaQYSe8tOIx4EMnZBit6kGUhgMtjTIV5pVqS141sq0xh7YhGDhJWouD1uS2cvdL9v0fQYzE3mnx6LRQUeydToSPB8J2agfQCtwYZD-rYp5x9rvo_E_RkDQQxpLAuyeB4H9MEEcx2Kig76UDP0VBaFNVmNKqTNC3_0A3fgoueZtQHNOSl4g8ozqZOrbO-PSu2ouKC4Z4xdL0-XOjM1TaGgar0t8yNsVnhPczQsKM8DB2copRrO7v5tjigFXBxxjA_MfE36mk3Ec |
| Cites_doi | 10.22214/ijraset.2021.34896 10.1088/1742-6596/1916/1/012283 10.1109/CVPR.2001.990517 10.1093/ietisy/e89-d.7.2076 10.1109/TITS.2008.922882 10.1016/j.future.2017.11.013 10.52549/ijeei.v5i4.361 10.1109/ICBDACI.2017.8070803 10.1016/j.ijleo.2020.166007 10.1007/s10044-002-0179-1 10.48550/arXiv.1710.02726 10.1109/TPAMI.2007.70791 10.1142/S0219467822500371 10.1007/s11042-020-10244-6 10.48084/etasr.2492 10.1007/978-3-030-03000-1_7 10.31645/JISRC.37.19.2.4 10.5614/itbj.ict.res.appl.2015.9.1.1 10.1016/j.dsp.2016.12.008 10.1109/TPAMI.2002.1017623 10.1080/09720510.2019.1580905 10.1109/APACE47377.2019.9020758 10.1109/ACCESS.2019.2937810 10.1016/j.amc.2015.01.075 10.1016/0031-3203(95)00067-4 10.3390/s20030785 10.1007/s00521-020-05280-0 10.1080/08839514.2020.1723875 10.1109/TPAMI.2021.3067464 10.1007/978-3-540-75757-3 10.11591/ijeecs.v20.i3 10.1016/j.patcog.2018.11.014 10.1109/TPAMI.2006.68 10.1007/978-3-642-03767-2_41 10.1007/978-3-030-38445-6_1 10.1080/01431160500057723 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 PeerJ. Ltd. 2022 Hosny et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Hosny et al. 2022 Hosny et al. 2022 Hosny et al. |
| Copyright_xml | – notice: COPYRIGHT 2022 PeerJ. Ltd. – notice: 2022 Hosny et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Hosny et al. – notice: 2022 Hosny et al. 2022 Hosny et al. |
| DBID | AAYXX CITATION ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.7717/peerj-cs.1008 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_3f8e63fcf4184cb3849ab518eb921e82 10.7717/peerj-cs.1008 PMC9299277 A708470158 10_7717_peerj_cs_1008 |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RPM 3V. 7XB 8AL 8FK COVID JQ2 M0N PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC ARCSS UNPAY |
| ID | FETCH-LOGICAL-c515t-cccd6f6a18ae679a07bb8d291072bd1112d077fa4bdc82f8563b2dc96f7e8b8c3 |
| IEDL.DBID | UNPAY |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:42:45 EDT 2025 Sun Oct 26 03:20:31 EDT 2025 Tue Sep 30 15:46:01 EDT 2025 Thu Oct 02 05:50:17 EDT 2025 Sun Sep 07 03:53:57 EDT 2025 Mon Oct 20 21:56:57 EDT 2025 Mon Oct 20 16:12:52 EDT 2025 Thu Oct 16 14:15:05 EDT 2025 Wed Oct 01 03:10:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c515t-cccd6f6a18ae679a07bb8d291072bd1112d077fa4bdc82f8563b2dc96f7e8b8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj-cs.1008 |
| PMID | 35875652 |
| PQID | 2681638302 |
| PQPubID | 2045934 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3f8e63fcf4184cb3849ab518eb921e82 unpaywall_primary_10_7717_peerj_cs_1008 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299277 proquest_miscellaneous_2694416643 proquest_journals_2681638302 gale_infotracmisc_A708470158 gale_infotracacademiconefile_A708470158 gale_incontextgauss_ISR_A708470158 crossref_primary_10_7717_peerj_cs_1008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-28 |
| PublicationDateYYYYMMDD | 2022-06-28 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | San Diego |
| PublicationPlace_xml | – name: San Diego – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationYear | 2022 |
| Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
| References | Vamsi (10.7717/peerj-cs.1008/ref-56) 2019; 5 Mustakim (10.7717/peerj-cs.1008/ref-35) 2019 Spacek (10.7717/peerj-cs.1008/ref-51) 2009 Hosny (10.7717/peerj-cs.1008/ref-24) 2019; 88 Awais (10.7717/peerj-cs.1008/ref-5) 2019; 7 Kluckner (10.7717/peerj-cs.1008/ref-31) 2007 Turtinen (10.7717/peerj-cs.1008/ref-55) 2006; E89 Fasel (10.7717/peerj-cs.1008/ref-10) 2002 Pan (10.7717/peerj-cs.1008/ref-42) 2020; 2 Fatima (10.7717/peerj-cs.1008/ref-11) 2020; 25 Viola (10.7717/peerj-cs.1008/ref-58) 2001 Mäenpää (10.7717/peerj-cs.1008/ref-36) 2003; 6 Ismael (10.7717/peerj-cs.1008/ref-26) 2020; 20 Girdhar (10.7717/peerj-cs.1008/ref-14) 2019; 22 Ali (10.7717/peerj-cs.1008/ref-3) 2008 Kellokumpu (10.7717/peerj-cs.1008/ref-29) 2008 Vinay (10.7717/peerj-cs.1008/ref-57) 2017; 6 Nanni (10.7717/peerj-cs.1008/ref-37) 2008; 9 Ojala (10.7717/peerj-cs.1008/ref-38) 2002; 24 Suk (10.7717/peerj-cs.1008/ref-53) 2009; 5702 Sharma (10.7717/peerj-cs.1008/ref-49) 2019 Srivastava (10.7717/peerj-cs.1008/ref-52) 2017 Suresh Madhavan (10.7717/peerj-cs.1008/ref-54) 2019 Heikkila (10.7717/peerj-cs.1008/ref-21) 2006; 28 Pan (10.7717/peerj-cs.1008/ref-41) 2015; 9 Virmani (10.7717/peerj-cs.1008/ref-59) 2019; 9 Selvaraj (10.7717/peerj-cs.1008/ref-47) 2021 Kumar (10.7717/peerj-cs.1008/ref-32) 2021; 1 Majid (10.7717/peerj-cs.1008/ref-34) 2021; 666 Hasban (10.7717/peerj-cs.1008/ref-19) 2019 Ayoub (10.7717/peerj-cs.1008/ref-6) 2021; 19 Fisher (10.7717/peerj-cs.1008/ref-12) 2005; 26 Hadid (10.7717/peerj-cs.1008/ref-18) 2008 Oliver (10.7717/peerj-cs.1008/ref-40) 2007; 4791 Ranade (10.7717/peerj-cs.1008/ref-45) 2021; 80 Seredin (10.7717/peerj-cs.1008/ref-48) 2010; 6134 Gunawan (10.7717/peerj-cs.1008/ref-16) 2017; 5 Ojala (10.7717/peerj-cs.1008/ref-39) 1996; 29 Hosny (10.7717/peerj-cs.1008/ref-22) 2019 Darwish (10.7717/peerj-cs.1008/ref-9) 2020 Hosny (10.7717/peerj-cs.1008/ref-23) 2021; 33 Grangier (10.7717/peerj-cs.1008/ref-15) 2008; 30 Dang (10.7717/peerj-cs.1008/ref-8) 2017 Guo (10.7717/peerj-cs.1008/ref-17) 2017; 68 Hassan (10.7717/peerj-cs.1008/ref-20) 2021; 5 Rajendran (10.7717/peerj-cs.1008/ref-43) 2021; 25 Sajjad (10.7717/peerj-cs.1008/ref-46) 2020; 108 Wang (10.7717/peerj-cs.1008/ref-60) 2015; 256 Ranade (10.7717/peerj-cs.1008/ref-44) 2021; 80 Kirana (10.7717/peerj-cs.1008/ref-30) 2018 Alami (10.7717/peerj-cs.1008/ref-2) 2019 Gaikwad (10.7717/peerj-cs.1008/ref-13) 2020; 885 Karanwal (10.7717/peerj-cs.1008/ref-28) 2021; 226 Ahonen (10.7717/peerj-cs.1008/ref-1) 2004; 3021 SivaKumar (10.7717/peerj-cs.1008/ref-50) 2021; 1916 Karami (10.7717/peerj-cs.1008/ref-27) 2017 Ben (10.7717/peerj-cs.1008/ref-7) 2021; PP Lee (10.7717/peerj-cs.1008/ref-33) 2020; 20 Ambre (10.7717/peerj-cs.1008/ref-4) 2020; 885 Huijsmans (10.7717/peerj-cs.1008/ref-25) 2003 |
| References_xml | – volume: 5 start-page: 1320 issue: 2 year: 2019 ident: 10.7717/peerj-cs.1008/ref-56 article-title: Face recognition based door unlocking system using Raspberry Pi publication-title: International Journal of Advance Research, Ideas and Innovations in Technology doi: 10.22214/ijraset.2021.34896 – volume: 1916 start-page: 1916012043 year: 2021 ident: 10.7717/peerj-cs.1008/ref-50 article-title: Comparative analysis of CNN and Viola-Jones for face mask detection publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/1916/1/012283 – start-page: 1 year: 2008 ident: 10.7717/peerj-cs.1008/ref-18 article-title: The local binary pattern approach and its applications to face analysis – volume: 25 start-page: 9953 issue: 4 year: 2021 ident: 10.7717/peerj-cs.1008/ref-43 article-title: Drowsy driver detection using Viola-Jones algorithm publication-title: Annals of the Romanian Society for Cell Biology – year: 2001 ident: 10.7717/peerj-cs.1008/ref-58 article-title: Rapid object detection using a boosted cascade of features doi: 10.1109/CVPR.2001.990517 – start-page: 629 year: 2017 ident: 10.7717/peerj-cs.1008/ref-8 article-title: Review and comparison of face detection algorithms – volume: E89 start-page: 2076 issue: 7 year: 2006 ident: 10.7717/peerj-cs.1008/ref-55 article-title: Visual characterization of paper using iso map and local binary patterns publication-title: IEICE Transactions on Information and Systems doi: 10.1093/ietisy/e89-d.7.2076 – start-page: 1 year: 2007 ident: 10.7717/peerj-cs.1008/ref-31 article-title: A 3D teacher for car detection in aerial images – start-page: 1325 year: 2002 ident: 10.7717/peerj-cs.1008/ref-10 article-title: A comparison of face detection algorithms in visible – start-page: 253 year: 2019 ident: 10.7717/peerj-cs.1008/ref-54 article-title: Incremental methods in face recognition: a survey – start-page: 1 year: 2019 ident: 10.7717/peerj-cs.1008/ref-2 article-title: Color face recognition by using quaternion and deep neural networks – start-page: 3 year: 2003 ident: 10.7717/peerj-cs.1008/ref-25 article-title: Content-based indexing performance: size normalized precision, recall, generality evaluation – volume: 666 start-page: 873 volume-title: Face recognition using PCA implemented on raspberry PI year: 2021 ident: 10.7717/peerj-cs.1008/ref-34 – volume: 9 start-page: 365 year: 2008 ident: 10.7717/peerj-cs.1008/ref-37 article-title: Ensemble of multiple pedestrian representations publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2008.922882 – volume: 108 start-page: 995 year: 2020 ident: 10.7717/peerj-cs.1008/ref-46 article-title: Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.11.013 – year: 2009 ident: 10.7717/peerj-cs.1008/ref-51 article-title: Libor Spacek’s facial images databases – volume: 5 start-page: 317 issue: 4 year: 2017 ident: 10.7717/peerj-cs.1008/ref-16 article-title: Development of face recognition on raspberry Pi for security enhancement of smart home system publication-title: Indonesian Journal of Electrical Engineering and Informatics (IJEEI) doi: 10.52549/ijeei.v5i4.361 – start-page: 1 year: 2017 ident: 10.7717/peerj-cs.1008/ref-52 article-title: A survey on comparison of face recognition algorithms – volume: 6 start-page: 23 year: 2017 ident: 10.7717/peerj-cs.1008/ref-57 article-title: G-CNN and F-CNN: two CNN based architectures for face recognition publication-title: IEEE doi: 10.1109/ICBDACI.2017.8070803 – volume: 226 start-page: 166007 issue: 2 year: 2021 ident: 10.7717/peerj-cs.1008/ref-28 article-title: Two novel color local descriptors for face recognition doi: 10.1016/j.ijleo.2020.166007 – volume: 6 start-page: 169 issue: 3 year: 2003 ident: 10.7717/peerj-cs.1008/ref-36 article-title: Optimising colour and texture features for real-time visual inspection publication-title: Pattern Analysis & Applications doi: 10.1007/s10044-002-0179-1 – start-page: 88 year: 2008 ident: 10.7717/peerj-cs.1008/ref-29 article-title: Human activity recognition using a dynamic texture-based method – start-page: 15 volume-title: Faculty of Engineering and Applied Sciences year: 2017 ident: 10.7717/peerj-cs.1008/ref-27 article-title: Image matching using SIFT, SURF, BRIEF, and ORB: performance comparison for distorted images doi: 10.48550/arXiv.1710.02726 – start-page: 652 year: 2021 ident: 10.7717/peerj-cs.1008/ref-47 article-title: Raspberry Pi based automatic door control system – volume: 30 start-page: 1371 issue: 8 year: 2008 ident: 10.7717/peerj-cs.1008/ref-15 article-title: A discriminative kernel-based approach to rank images from text queries publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.70791 – volume: 5 start-page: 1 year: 2021 ident: 10.7717/peerj-cs.1008/ref-20 article-title: New set of invariant quaternion krawtchouk moments publication-title: International Journal of Image and Graphics doi: 10.1142/S0219467822500371 – volume: 80 start-page: 10797 year: 2021 ident: 10.7717/peerj-cs.1008/ref-45 article-title: Color face recognition using normalized-discriminant hybrid color space and quaternion moment vector features publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-10244-6 – volume: 9 start-page: 3933 issue: 2 year: 2019 ident: 10.7717/peerj-cs.1008/ref-59 article-title: FDREnet: face detection and recognition pipeline publication-title: Engineering, Technology & Applied Science Research doi: 10.48084/etasr.2492 – start-page: 169 volume-title: Face recognition using exact Gaussian-Hermit moments year: 2019 ident: 10.7717/peerj-cs.1008/ref-22 doi: 10.1007/978-3-030-03000-1_7 – volume: 19 start-page: 1 issue: 2 year: 2021 ident: 10.7717/peerj-cs.1008/ref-6 article-title: Efficient face re-identification through PSO based adaptive deeplearning models publication-title: Journal of Independent Studies and Research Computing doi: 10.31645/JISRC.37.19.2.4 – volume: 9 start-page: 1 issue: 1 year: 2015 ident: 10.7717/peerj-cs.1008/ref-41 article-title: Image description using radial associated laguerre moments publication-title: Journal of ICT Research and Applications doi: 10.5614/itbj.ict.res.appl.2015.9.1.1 – volume: 68 start-page: 152 year: 2017 ident: 10.7717/peerj-cs.1008/ref-17 article-title: Robust circularly orthogonal moment based on Chebyshev rational function publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2016.12.008 – start-page: 137 volume-title: Improved color image watermarking using logistic maps and quaternion Legendre-Fourier moments year: 2020 ident: 10.7717/peerj-cs.1008/ref-9 – volume: 2 start-page: 1337 year: 2020 ident: 10.7717/peerj-cs.1008/ref-42 article-title: Robust hand gesture recognition system based on a new set of quaternion Tchebichef moment invariants publication-title: Pattern Analysis and Applications doi: 10.5614/itbj.ict.res.appl.2015.9.1.1 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.7717/peerj-cs.1008/ref-38 article-title: Multiresolution gray-scale and rotation invariant texture publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2002.1017623 – volume: 80 start-page: 10797 year: 2021 ident: 10.7717/peerj-cs.1008/ref-44 article-title: Color face recognition using normalized-discriminant hybrid color space and quaternion moment vector features publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-10244-6 – volume: 22 start-page: 271 issue: 2 year: 2019 ident: 10.7717/peerj-cs.1008/ref-14 article-title: A hybrid fuzzy framework for face detection and recognition using behavioral traits publication-title: Journal of Statistics and Management Systems doi: 10.1080/09720510.2019.1580905 – start-page: 1 year: 2019 ident: 10.7717/peerj-cs.1008/ref-19 article-title: Face recognition for student attendance using raspberry pi publication-title: IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) doi: 10.1109/APACE47377.2019.9020758 – volume: 7 start-page: 121236 year: 2019 ident: 10.7717/peerj-cs.1008/ref-5 article-title: Real-time surveillance through face recognition using HOG and feedforward neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937810 – start-page: 406 year: 2018 ident: 10.7717/peerj-cs.1008/ref-30 article-title: Facial emotion recognition based on Viola-Jones algorithm in the learning environment – volume: 256 start-page: 951 year: 2015 ident: 10.7717/peerj-cs.1008/ref-60 article-title: Quaternion polar complex exponential for invariant color image description publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.01.075 – start-page: 1 year: 2019 ident: 10.7717/peerj-cs.1008/ref-35 article-title: Face recognition system based on raspberry Pi platform – volume: 29 start-page: 51 year: 1996 ident: 10.7717/peerj-cs.1008/ref-39 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recognition doi: 10.1016/0031-3203(95)00067-4 – start-page: 534 year: 2019 ident: 10.7717/peerj-cs.1008/ref-49 article-title: A static hand gesture and face recognition system – volume: 20 start-page: 1 year: 2020 ident: 10.7717/peerj-cs.1008/ref-33 article-title: Face recognition at a distance for a stand-alone access control system publication-title: Sensors doi: 10.3390/s20030785 – volume: 33 start-page: 5419 issue: 11 year: 2021 ident: 10.7717/peerj-cs.1008/ref-23 article-title: Color face recognition using novel fractional-order multi-channel exponent moments publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05280-0 – volume: 25 start-page: 456 issue: 4 year: 2020 ident: 10.7717/peerj-cs.1008/ref-11 article-title: Driver fatigue detection using Viola-Jones and principal component analysis publication-title: Applied Artificial Intelligence doi: 10.1080/08839514.2020.1723875 – volume: PP start-page: 1 issue: 99 year: 2021 ident: 10.7717/peerj-cs.1008/ref-7 article-title: Video-based facial micro-expression analysis: a survey of datasets, features and algorithms publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2021.3067464 – volume: 4791 start-page: 286 year: 2007 ident: 10.7717/peerj-cs.1008/ref-40 article-title: False positive reduction in mammographic mass detection using local binary patterns publication-title: Medical Image Computing and Computer-Assisted Intervention doi: 10.1007/978-3-540-75757-3 – start-page: 560 year: 2008 ident: 10.7717/peerj-cs.1008/ref-3 article-title: Visual tree detection for autonomous navigation in forest environment – volume: 20 start-page: 1513 issue: 3 year: 2020 ident: 10.7717/peerj-cs.1008/ref-26 article-title: Face recognition using Viola-Jones depending on python publication-title: Indonesian Journal of Electrical Engineering and Computer Science doi: 10.11591/ijeecs.v20.i3 – volume: 1 start-page: 369 volume-title: Drowsiness detection using viola-jones object detection algorithm for real-time data year: 2021 ident: 10.7717/peerj-cs.1008/ref-32 – volume: 88 start-page: 153 issue: 8 year: 2019 ident: 10.7717/peerj-cs.1008/ref-24 article-title: New set of multi-channel orthogonal moments for color image representation and recognition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.11.014 – volume: 28 start-page: 657 issue: 4 year: 2006 ident: 10.7717/peerj-cs.1008/ref-21 article-title: A texture-based method for modeling the background and detecting moving objects publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.68 – volume: 5702 volume-title: Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science year: 2009 ident: 10.7717/peerj-cs.1008/ref-53 article-title: Affine moment invariants of color images doi: 10.1007/978-3-642-03767-2_41 – volume: 3021 start-page: 469 volume-title: Computer Vision—ECCV 2004. ECCV 2004. Lecture Notes in Computer Science year: 2004 ident: 10.7717/peerj-cs.1008/ref-1 article-title: Face recognition with local binary patterns – volume: 885 volume-title: Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough. Studies in Computational Intelligence year: 2020 ident: 10.7717/peerj-cs.1008/ref-4 article-title: Face Recognition Using Raspberry PI doi: 10.1007/978-3-030-38445-6_1 – volume: 26 start-page: 2917 issue: 14 year: 2005 ident: 10.7717/peerj-cs.1008/ref-12 article-title: Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty publication-title: International Journal of Remote Sensing doi: 10.1080/01431160500057723 – volume: 6134 start-page: 200 year: 2010 ident: 10.7717/peerj-cs.1008/ref-48 article-title: Comparative testing of face detection algorithms – volume: 885 start-page: 1 volume-title: Face recognition using raspberry PI year: 2020 ident: 10.7717/peerj-cs.1008/ref-13 |
| SSID | ssj0001511119 |
| Score | 2.210747 |
| Snippet | Because of the current COVID-19 circumstances in the world and the tremendous technological developments, it has become necessary to use this technology to... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e1008 |
| SubjectTerms | Access control Accuracy Algorithms Algorithms and Analysis of Algorithms Analysis Biometry Cameras Chebyshev approximation Face recognition Facial recognition technology Feature extraction Health aspects Local binary pattern MORSCMs Object recognition Pattern recognition Raspberry pi Real-Time and Embedded Systems Technology application |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3DhG7FQkEGInqI6TuKPY1uxKoiFqqVSb5Y9tsuikl1tNkL8e8ZJdrVRJbhwzUwU5409fiONnwl556wWlXV5Biz4rLSVwzzoWZZ34uSFAGZToTj7Ik4vy09X1dXOVV-pJ6yXB-6BOyyiCqKIEEusRcAVqtTWVbkKTvM8qC77MqV3iqn-fHBKBboX1ZRYshwuQ1j9yKBJbQFqtAl1Wv23M_LtLsm7bb20v3_Zm5udLWj6kNwfuCM96sf8iNwJ9WPyYHMvAx2W6RNyNrXNmtraUwvQJi0IGi0Eum0WWtS0V3Cmqe39ms6-nl-czJrs8_EZRVv46QLmI09hvoJ2vm6eksvph28np9lwc0IGyE_WGQB4EYXNlQ1Casukc8pzpAaSO4_IcM-kjLZ0HhSPqhKF4x60iDIop6B4RvbqRR2eE1oxB0iywFfaleCVrXIRkJZYX2qpo5yQ9xsozbIXyDBYWCTMTYe5gSYJI6sJOU5Ab52SrnX3AKNthmibf0V7Qt6mMJmkXFGn1phr2zaN-Xhxbo4kw50WI49fOhic4gIjB3Y4aYA_lMSuRp77I09cWjA2b2aDGZZ2Y7hQicMWDAfzZmtOb6Z2tTos2uSjkWYKZHsTIkezaPT7Y0s9_97JeyNh1VwisAfb-fZ3ZF_8D2Rfkns8nexgIuNqn-ytV214hXxr7V53S-sPs64rQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZG9wAv3NEKAxmE2FO0xEls5wGhdVo1EC1Vx6S9Wb6lFI2kNI0Q_55z0qQjmrTX-ESJz82fk-PvEPLe6Iyn2kSBDb0LEp0ayIMuDKKGnDzmNtS4UZxM-fll8uUqvdoj0-4sDJZVdjmxSdSutPiN_JhxidAhDtmn1e8Au0bh39WuhYZuWyu4jw3F2D2yz5AZa0D2R2fT2fzmq0uKKSLbkm0K2Mocr7xf_wxsheUCsrc4NRz-tzP17erJ-3Wx0n__6Ovr_5am8WPysMWU9GTrBE_Ini-ekkddvwbahu8zMhvrakN14ShMpEaOCJpr6-muiKgs6JbZmWI5_IJOvs0vTidV8HU0ozDmfxkPecpRu1zbermpnpPL8dn30_Og7agQWMAtm8Ba63jOdSS15yLToTBGOgaQQTDjQDPMhULkOjHOSpbLlMeGOZvxXHhppI1fkEFRFv6A0DQ0FsCXdWlmEuukTiPuAa5ol2Qiy8WQfOhUqVZb4gwFGw7UuWp0rmyFhMlySEao6J0Q8l03F8r1QrXho-Jceh7nNk9gR2pNLJNMGzC0NxmLvGRD8g7NpJDRosCSmYWuq0p9vpirExHCCgyWhycdtUJ5CZazuj2BABNCEqye5GFPEkLO9oc7b1BtyFfqxkGH5O1uGO_EMrbClzXKZAA_OaDAIRE9L-pNvz9SLH80tN8AZDMmQLFHO3-7W7Mv737NV-QBw7McIQ-YPCSDzbr2rwFhbcybNmz-Aa_0KQo priority: 102 providerName: ProQuest |
| Title | Fast and accurate face recognition system using MORSCMs-LBP on embedded circuits |
| URI | https://www.proquest.com/docview/2681638302 https://www.proquest.com/docview/2694416643 https://pubmed.ncbi.nlm.nih.gov/PMC9299277 https://doi.org/10.7717/peerj-cs.1008 https://doaj.org/article/3f8e63fcf4184cb3849ab518eb921e82 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: 8FG dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdY-wAvjE9RGFVAiD1lJE7ij8d2WhmIlqqj0niK7LMzCiOtmkQI_nrOaVotVAJec2clPt-df47PPxPySivJEqVDHwJr_FglGvOgCfywJiePGATKLRTHE3Y-j99fJpdNEY07C3Nj_57jSuPNytr1Vx8Kt5svDkiXJQi5O6Q7n0wHn-uL4zjzEynphj9zv01rvqlp-feT735B5O0qX6mfP9T19Y3ZZnRIRtvv3BSZfDupSn0Cv_6gcPxnR-6Ruw3e9AYbB7lPbtn8ATnc3uXgNaH9kExHqig9lRtPAVSOP8LLFFhvV2C0zL0N67PnSuWvvPHH2cXpuPA_DKceyux3bTGHGQ8Wa6gWZfGIzEdnn07P_ea2BR8Q05Q-ABiWMRUKZRmXKuBaC0MRTnCqDaZEagLOMxVrA4JmImGRpgYky7gVWkD0mHTyZW6fEC8JNCAwA5NIHYMRKgmZRSijTCy5zHiPvN6OSbrakGqkuBhxdkprO6VQODJl0SNDN2I7JceFXT9Ay6ZNaKVRJiyLMshiXK2CjkQslU5CYbWkoRW0R1668U4d20XuymmuVFUU6buLWTrgAc7OiIjwTceNUrZEFwDVnE7ADjmCrJbmUUsTwxHa4q1bpU06KFLKhMO9UYAf82Indi1diVtul5XTkQhNGSLEHuEtd2x1vy3JF19qSnAEuZJyNOzxznH_btmn_635jNyh7shHwHwqjkinXFf2OQKxUvfJgRi97ZPu8GwynfXr3xn9JjR_A5NzN2c |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jBeuCMKAwwC9hQtdRLbeZjQOla1rC1Vt0l783xLKRpJaRpN-3P8No7TpCOatLe91qcXfz7X9Pg7CH1SMqaRVG1P-9Z4oYwU-EHje-2SnDyg2peuUByOaO8s_H4enW-gv_VdGNdWWfvE0lGbTLtn5HuEcpc6BD75Ov_jualR7t_VeoSGrEYrmP2SYqy62HFsr6-ghMv3-9_gvD8T0j06Pex51ZQBT0MsX3paa0MTKttcWspi6TOluCEQRhlRBlwBMT5jiQyV0ZwkPKKBIkbHNGGWK64D-NwHaCuEzUHxt9U5Go0nN095IueS4hW5J4PSaW9u7eKXp3PXnsAbwbCcGXA7Mtzu1twu0rm8vpKXl_-Fwu4T9KjKYfHBSumeog2bPkOP6_kQuHIXz9G4K_MllqnBAFzhOClwIrXF66alLMUrJmns2u-nePhjcnI4zL1BZ4xhzf5WFvyiwXq20MVsmb9AZ_eC7Uu0mWapfYVw5CsNyZ42UaxCbbiM2tRCeiQN4B4nrIW-1FCK-YqoQ0CB4zAXJeZC546gmbdQxwG9FnL82uUL2WIqKnMVQcItDRKdhFABaxXwMJYKFMuqmLQtJy300R2TcAwaqWvRmcoiz0X_ZCIOmA8RH04evmm3EkoyODktqxsPsCFHutWQ3GlIgonr5nKtDaJyMbm4MYgW-rBedu90bXOpzQonE0O6SyHrbCHW0KLG9psr6exnSTMOiXNMGAC7u9a3u5F9fffPfI-2e6fDgRj0R8dv0EPi7pH41CN8B20uF4V9C9ndUr2rTAiji_u22n_A5WdQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALb8RCAYOAnqJNnMR2Dgj1wdKl3VL1IfUW7LGzLCrJstmo6l_j1zHOJluiSr31Gk8eHs_TGX9DyHutEh4rHXjgW-NFKtZoB43vBTU4ecjBVy5RHO3znZPo22l8ukL-tmdhXFllaxNrQ20KcHvkfcalCx1Cn_WzpiziYHvwefrHcx2k3J_Wtp3GQkR27cU5pm_lp-E2rvUHxgZfjrd2vKbDgAfox-ceABiecRVIZblIlC-0loahCxVMGzQDzPhCZCrSBiTLZMxDzQwkPBNWagkhPvcWuS0cirs7pT74erm_EztjlCxgPQUmTf2ptbNfHpSuMEF23GDdLeCqT7hap3m3yqfq4lydnf3nBAcPyf0meqUbC3F7RFZs_pg8aDtD0MZQPCEHA1XOqcoNVQCVQ6OgmQJLl-VKRU4XGNLUFd6P6ej74dHWqPT2Ng8ojtnf2qJFNBQmM6gm8_IpObkRzj4jq3mR2-eExr4GDPPAxImOwEgVB9xiYKRMlIgkEz3ysWVlOl1AdKSY2jiepzXPUygdNLPskU3H6CWRQ9auLxSzcdooahpm0vIwgyzC3Bd0KKNE6TiQVicssJL1yDu3TKnDzsidFI5VVZbp8Ogw3RA--npceXzTekOUFbhyoJqzDjghB7fVoVzrUKJyQ3e4lYa0MS5leqkKPfJ2OezudAVzuS0qR5NgoMsx3uwR0ZGizvS7I_nkZw0wjiFzwgQydn0pb9dz9sX1n_mG3EFdTfeG-7svyT3mDpD43GNyjazOZ5V9hWHdXL-u9YeSHzetsP8ABEBk6g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELege4AXxqcoDGQQYk8ZiZP447GbqAaio9qoNJ4s--yMwkirJhGCv55zmlYLk4DX3Fmxz3fnn-Xzz4S8skbx3Ngkgti7KDO5xTzo4ihpyclTDrEJG8XJCT-eZe_P8_OuiCbchblyfi9wp_Fm6f3qawRVOM2XN8kOzxFyD8jO7GQ6-tw-HCd4lCvF1vyZ19v01puWlv968r1eEHmrKZfm5w9zeXlltRnvkvGmn-sik28HTW0P4NcfFI7_HMhdcqfDm3S0dpB75IYv75PdzVsOtAvtB2Q6NlVNTemoAWgCfwQtDHi6LTBalHTN-kxDqfwFnXw8PTuaVNGHwylFmf9uPeYwR2G-gmZeVw_JbPz209Fx1L22EAFimjoCAMcLbhJpPBfKxMJa6RjCCcGsw5TIXCxEYTLrQLJC5jy1zIHihfDSSkgfkUG5KP1jQvPYAgIzcLmyGThp8oR7hDLGZUqoQgzJ682c6OWaVEPjZiTYSbd20lAFMmU5JIdhxrZKgQu7_YCW1V1o6bSQnqcFFBnuVsGmMlPG5on0VrHESzYkL8N868B2UYZymgvTVJV-d3aqRyLG1RkREf5pv1MqFugCYLrbCTigQJDV09zraWI4Ql-8cSvdpYNKMy4D7k1j7MyLrTi0DCVupV80QUchNOWIEIdE9NyxN_y-pJx_aSnBEeQqJtCw-1vH_btln_y35lNym4UrHzGPmNwjg3rV-GcIxGr7vAvD32pJM_I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+accurate+face+recognition+system+using+MORSCMs-LBP+on+embedded+circuits&rft.jtitle=PeerJ.+Computer+science&rft.au=Hosny%2C+Khalid+M&rft.au=Hamad%2C+Aya+Y&rft.au=Elkomy%2C+Osama&rft.au=Mohamed%2C+Ehab+R&rft.date=2022-06-28&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e1008&rft_id=info:doi/10.7717%2Fpeerj-cs.1008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |