Learning (predictive) risk scores in the presence of censoring due to interventions
A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians’ ability to provide timely interve...
Saved in:
| Published in | Machine learning Vol. 102; no. 3; pp. 323 - 348 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2016
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6125 1573-0565 1573-0565 |
| DOI | 10.1007/s10994-015-5527-7 |
Cover
| Abstract | A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians’ ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109,
2013
). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient’s measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert’s ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches. |
|---|---|
| AbstractList | A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians’ ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109,
2013
). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient’s measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert’s ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches. Issue Title: Special Issue on Machine Learning for Health and Medicine; Guest Editors: Jenna Wiens and Byron C. Wallace A large and diverse set of measurements are regularly collected during a patient's hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians' ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109, 2013 ). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient's measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert's ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches. A large and diverse set of measurements are regularly collected during a patient's hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians' ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109, 2013). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient's measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert's ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches. |
| Author | Dyagilev, Kirill Saria, Suchi |
| Author_xml | – sequence: 1 givenname: Kirill surname: Dyagilev fullname: Dyagilev, Kirill email: kirilld@jhu.edu organization: Department of Computer Science, Johns Hopkins University – sequence: 2 givenname: Suchi surname: Saria fullname: Saria, Suchi organization: Department of Computer Science, Johns Hopkins University, Department of Health Policy and Management, Johns Hopkins University |
| BookMark | eNqNkMFu1DAURS1UJKaFD2BniU1ZBN5zYjuzRBWFSiN1Aawtx3kDLqkdbKdo_r6OpouqUhErL3zP073nlJ2EGIixtwgfEEB_zAjbbdcAykZKoRv9gm1Q6rYBqeQJ20Dfy0ahkK_Yac43ACBUrzbs245sCj785OdzotG74u_oPU8-_-bZxUSZ-8DLL-L1O1NwxOOeOwo5ppUaF-Il1kyhdEeh-Bjya_Zyb6dMbx7eM_bj8vP3i6_N7vrL1cWnXeMkytIMaoBR7K0i0feDsJJEN9it61E5wFYPIGUr6zjd2U6NnULnWiFGDbqTtrXtGRPHu0uY7eGvnSYzJ39r08EgmFWLOWoxVYtZtRhdofMjNKf4Z6FczK3PjqbJBopLNtgDdFtZTdXouyfRm7ikUCcZ1BqF7rHFmtLHlEsx50R743yxq4iSrJ_-WQWfkP9T_2Fznlf_lB51eha6B-y6oeM |
| CitedBy_id | crossref_primary_10_1136_bmjhci_2019_100109 crossref_primary_10_3390_healthcare12040439 crossref_primary_10_62347_WQWV9220 crossref_primary_10_1016_j_artmed_2019_101725 crossref_primary_10_1155_2017_7120691 crossref_primary_10_1136_bmjresp_2017_000234 crossref_primary_10_1038_s41551_018_0304_0 crossref_primary_10_1371_journal_pone_0284083 crossref_primary_10_1109_OJEMB_2022_3221306 crossref_primary_10_1109_TBME_2017_2698602 crossref_primary_10_1200_CCI_18_00137 crossref_primary_10_1126_scitranslmed_aab3719 crossref_primary_10_2200_S01137ED1V01Y202110HLT055 crossref_primary_10_1001_jamaneurol_2018_0809 crossref_primary_10_1038_s41746_022_00611_y crossref_primary_10_3389_fped_2019_00413 crossref_primary_10_1186_s12938_021_00872_w crossref_primary_10_1016_j_hlpt_2018_04_006 |
| Cites_doi | 10.1145/1148170.1148246 10.1109/CIC.2002.1166854 10.1007/s00134-012-2769-8 10.1145/1277741.1277808 10.1097/00003246-199510000-00007 10.1056/NEJM199701233360402 10.1145/775047.775067 10.1097/00003246-200102000-00012 10.1145/1277741.1277791 10.1111/j.1467-9868.2005.00503.x 10.1016/S2213-2600(14)70239-5 10.1162/neco.2007.19.3.792 10.1378/chest.11-0352 10.1097/CCM.0b013e31820a92c6 10.1137/1.9781611973440.93 10.1111/1467-9884.00351 10.1198/106186006X133933 10.1126/scitranslmed.aab3719 10.1186/cc10102 10.1038/clpt.2012.53 10.1097/01.CCM.0000287593.54658.89 10.1126/scitranslmed.3001304 10.1097/CCM.0b013e3181f96f81 10.1145/1102351.1102363 10.1097/00003246-198510000-00009 10.1007/BF01709751 10.1214/aos/1013203451 10.1007/s10791-009-9109-9 10.1145/2623330.2623754 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2015 The Author(s) 2016 |
| Copyright_xml | – notice: The Author(s) 2015 – notice: The Author(s) 2016 |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1007/s10994-015-5527-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 348 |
| ExternalDocumentID | 10.1007/s10994-015-5527-7 3974095371 10_1007_s10994_015_5527_7 |
| Genre | Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c515t-b6b0d2fa6e288b2a5e24ba9c816c0137b0553500774a46d461cc322d70745a3a3 |
| IEDL.DBID | BENPR |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Wed Oct 01 16:11:18 EDT 2025 Fri Sep 05 11:18:58 EDT 2025 Mon Jul 14 09:42:50 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Wed Oct 01 01:03:55 EDT 2025 Fri Feb 21 02:28:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Sepsis Severity score Ranking Gradient boosted regression trees MIMIC |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c515t-b6b0d2fa6e288b2a5e24ba9c816c0137b0553500774a46d461cc322d70745a3a3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-015-5527-7.pdf |
| PQID | 1771278131 |
| PQPubID | 54194 |
| PageCount | 26 |
| ParticipantIDs | unpaywall_primary_10_1007_s10994_015_5527_7 proquest_miscellaneous_1800495125 proquest_journals_1771278131 crossref_citationtrail_10_1007_s10994_015_5527_7 crossref_primary_10_1007_s10994_015_5527_7 springer_journals_10_1007_s10994_015_5527_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Wang, X., Sontag, D., & Wang, F. (2014). Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining, ACM (pp. 85–94). HothornTHornikKZeileisAUnbiased recursive partitioning: A conditional inference frameworkJournal of Computational and Graphical Statistics200615365167410.1198/106186006X1339332291267 Ghanem-Zoubi, N. O., Vardi, M., Laor, A., Weber, G., & Bitterman, H. (2011). Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments. Critical Care Medicine, 15(2), R95. SebatFMusthafaAAJohnsonDKramerAAShoffnerDEliasonMHenryKSpurlockBEffect of a rapid response system for patients in shock on time to treatment and mortality during 5 yearsCritical Care Medicine200735112568257510.1097/01.CCM.0000287593.54658.89 Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, (pp. 115–132). Cambridge: The MIT Press. Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems. MedsgerTBombardieriSCzirjakLScorzaRRossaABencivelliWAssessment of disease severity and prognosisClinical and Experimental Rheumatology2003213; SUPP/29S42S46 Paxton, C., Niculescu-Mizil, A., & Saria, S. (2013). Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings, American Medical Informatics Association, vol. 2013, p. 1109. FineMJAubleTEYealyDMHanusaBHWeissfeldLASingerDEColeyCMMarrieTJKapoorWNA prediction rule to identify low-risk patients with community-acquired pneumoniaNew England Journal of Medicine1997336424325010.1056/NEJM199701233360402 Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12). Qin, T., Zhang, X. D., Wang, D. S., Liu, T. Y., Lai, W., & Li, H. (2007). Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 279–286). SaeedMVillarroelMReisnerATCliffordGLehmanLWMoodyGHeldtTKyawTHMoodyBMarkRGMultiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit databaseCritical Care Medicine201139595210.1097/CCM.0b013e31820a92c6 VincentJLMorenoRTakalaJWillattsSDe MendonçaABruiningHReinhartCSuterPThijsLThe SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failureIntensive Care Medicine199622770771010.1007/BF01709751 AHRQ. (2015). Guideline syntheses. http://www.guideline.gov/syntheses/index.aspx. Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM. MinneLAbu-HannaAde JongeEEvaluation of SOFA-based models for predicting mortality in the ICU: A systematic reviewCritical Care Medicine2008126R161 Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function space. Advances in Neural Information Processing Systems, 12, 512–518. HenryKEHagerDNProvonostPJSariaSA targeted real-time early warning score (TREWScore) for septic shockScience Translational Medicine20157299ra12210.1126/scitranslmed.aab3719 Saeed, M., Lieu, C., Raber, G., & Mark, R. (2002). MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002, IEEE, (pp. 641–644). ChapelleOKeerthiSSEfficient algorithms for ranking with SVMsInformation Retrieval201013320121510.1007/s10791-009-9109-9 KnausWADraperEAWagnerDPZimmermanJEAPACHE II: A severity of disease classification systemCritical Care Medicine1985131081882910.1097/00003246-198510000-00009 PirracchioRPetersenMLCaroneMRigonMRChevretSvan der LaanMJMortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based studyThe Lancet Respiratory Medicine201531425210.1016/S2213-2600(14)70239-5 MouldDModels for disease progression: New approaches and usesClinical Pharmacology & Therapeutics201292112513110.1038/clpt.2012.53 Saria, S., Rajani, A. K., Gould, J., Koller, D., & Penn, A. A. (2010b). Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48), 48ra65–48ra65. Burges, C. J. (2010). From ranknet to lambdarank to lambdamart: An overview. Technical report, Microsoft Research. Burges, C. J., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp. 193–200). Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association KumarGKumarNTanejaAKaleekalTTarimaSMcGinleyEJimenezEMohanAKhanRAWhittleJNationwide trends of severe sepsis in the 21st century (2000–2007)CHEST Journal201114051223123110.1378/chest.11-0352 Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning, ACM, (pp. 89–96). DellingerRPLevyMMRhodesAAnnaneDGerlachHOpalSMSevranskyJESprungCLDouglasISJaeschkeRSurviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012Intensive Care Medicine201339216522810.1007/s00134-012-2769-8 ClermontGAngusDCDiRussoSMGriffinMLinde-ZwirbleWTPredicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression modelsCritical Care Medicine200129229129610.1097/00003246-200102000-00012 MarshallJCCookDJChristouNVBernardGRSprungCLSibbaldWJMultiple organ dysfunction score: A reliable descriptor of a complex clinical outcomeCritical Care Medicine199523101638165210.1097/00003246-199510000-00007 Hug, C. (2009). Detecting hazardous intensive care patient episodes using real-time mortality models. PhD thesis. Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, (pp. 133–142). Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. ZouHHastieTRegularization and variable selection via the elastic netJournal of the Royal Statistical Society: Series B (Statistical Methodology)200567230132010.1111/j.1467-9868.2005.00503.x21373271069.62054 JacksonCHSharplesLDThompsonSGDuffySWCoutoEMultistate Markov models for disease progression with classification errorJournal of the Royal Statistical Society: Series D (The Statistician)20035221932091977260 Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge, Citeseer, (pp. 77–89). ChuWKeerthiSSSupport vector ordinal regressionNeural Computation200719379281510.1162/neco.2007.19.3.79222953671127.68080 Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM. Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 383–390). Wiens, J., Horvitz, E., & Guttag, J. V. (2012). Patient risk stratification for hospital-associated c. diff as a time-series classification task. Advances in Neural Information Processing Systems, 25, 467–475. Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., & Sun, G. (2008). A general boosting method and its application to learning ranking functions for web search. In Advances in Neural Information Processing Systems, vol. 20, pp. 1697–1704. KeeganMTGajicOAfessaBSeverity of illness scoring systems in the intensive care unitCritical Care Medicine201139116316910.1097/CCM.0b013e3181f96f81 CH Jackson (5527_CR18) 2003; 52 O Chapelle (5527_CR5) 2010; 13 5527_CR3 5527_CR19 5527_CR4 M Saeed (5527_CR35) 2011; 39 5527_CR1 5527_CR2 W Chu (5527_CR6) 2007; 19 G Kumar (5527_CR22) 2011; 140 KE Henry (5527_CR13) 2015; 7 F Sebat (5527_CR38) 2007; 35 5527_CR31 JL Vincent (5527_CR40) 1996; 22 5527_CR15 R Pirracchio (5527_CR32) 2015; 3 5527_CR37 5527_CR14 5527_CR36 5527_CR17 5527_CR39 5527_CR11 5527_CR33 5527_CR9 5527_CR12 5527_CR34 D Mould (5527_CR30) 2012; 92 H Zou (5527_CR44) 2005; 67 JC Marshall (5527_CR24) 1995; 23 5527_CR29 T Medsger (5527_CR27) 2003; 21 RP Dellinger (5527_CR8) 2013; 39 G Clermont (5527_CR7) 2001; 29 L Minne (5527_CR28) 2008; 12 WA Knaus (5527_CR21) 1985; 13 5527_CR42 5527_CR41 MJ Fine (5527_CR10) 1997; 336 T Hothorn (5527_CR16) 2006; 15 5527_CR26 5527_CR25 MT Keegan (5527_CR20) 2011; 39 5527_CR43 5527_CR23 |
| References_xml | – reference: Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., & Sun, G. (2008). A general boosting method and its application to learning ranking functions for web search. In Advances in Neural Information Processing Systems, vol. 20, pp. 1697–1704. – reference: MarshallJCCookDJChristouNVBernardGRSprungCLSibbaldWJMultiple organ dysfunction score: A reliable descriptor of a complex clinical outcomeCritical Care Medicine199523101638165210.1097/00003246-199510000-00007 – reference: MinneLAbu-HannaAde JongeEEvaluation of SOFA-based models for predicting mortality in the ICU: A systematic reviewCritical Care Medicine2008126R161 – reference: Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. – reference: Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM. – reference: ZouHHastieTRegularization and variable selection via the elastic netJournal of the Royal Statistical Society: Series B (Statistical Methodology)200567230132010.1111/j.1467-9868.2005.00503.x21373271069.62054 – reference: VincentJLMorenoRTakalaJWillattsSDe MendonçaABruiningHReinhartCSuterPThijsLThe SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failureIntensive Care Medicine199622770771010.1007/BF01709751 – reference: Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 383–390). – reference: Ghanem-Zoubi, N. O., Vardi, M., Laor, A., Weber, G., & Bitterman, H. (2011). Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments. Critical Care Medicine, 15(2), R95. – reference: Wang, X., Sontag, D., & Wang, F. (2014). Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining, ACM (pp. 85–94). – reference: Paxton, C., Niculescu-Mizil, A., & Saria, S. (2013). Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings, American Medical Informatics Association, vol. 2013, p. 1109. – reference: Wiens, J., Horvitz, E., & Guttag, J. V. (2012). Patient risk stratification for hospital-associated c. diff as a time-series classification task. Advances in Neural Information Processing Systems, 25, 467–475. – reference: SebatFMusthafaAAJohnsonDKramerAAShoffnerDEliasonMHenryKSpurlockBEffect of a rapid response system for patients in shock on time to treatment and mortality during 5 yearsCritical Care Medicine200735112568257510.1097/01.CCM.0000287593.54658.89 – reference: KnausWADraperEAWagnerDPZimmermanJEAPACHE II: A severity of disease classification systemCritical Care Medicine1985131081882910.1097/00003246-198510000-00009 – reference: Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM. – reference: MedsgerTBombardieriSCzirjakLScorzaRRossaABencivelliWAssessment of disease severity and prognosisClinical and Experimental Rheumatology2003213; SUPP/29S42S46 – reference: Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association – reference: Burges, C. J., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp. 193–200). – reference: SaeedMVillarroelMReisnerATCliffordGLehmanLWMoodyGHeldtTKyawTHMoodyBMarkRGMultiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit databaseCritical Care Medicine201139595210.1097/CCM.0b013e31820a92c6 – reference: JacksonCHSharplesLDThompsonSGDuffySWCoutoEMultistate Markov models for disease progression with classification errorJournal of the Royal Statistical Society: Series D (The Statistician)20035221932091977260 – reference: KumarGKumarNTanejaAKaleekalTTarimaSMcGinleyEJimenezEMohanAKhanRAWhittleJNationwide trends of severe sepsis in the 21st century (2000–2007)CHEST Journal201114051223123110.1378/chest.11-0352 – reference: Burges, C. J. (2010). From ranknet to lambdarank to lambdamart: An overview. Technical report, Microsoft Research. – reference: Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems. – reference: HenryKEHagerDNProvonostPJSariaSA targeted real-time early warning score (TREWScore) for septic shockScience Translational Medicine20157299ra12210.1126/scitranslmed.aab3719 – reference: Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning, ACM, (pp. 89–96). – reference: Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, (pp. 115–132). Cambridge: The MIT Press. – reference: ChuWKeerthiSSSupport vector ordinal regressionNeural Computation200719379281510.1162/neco.2007.19.3.79222953671127.68080 – reference: AHRQ. (2015). Guideline syntheses. http://www.guideline.gov/syntheses/index.aspx. – reference: DellingerRPLevyMMRhodesAAnnaneDGerlachHOpalSMSevranskyJESprungCLDouglasISJaeschkeRSurviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012Intensive Care Medicine201339216522810.1007/s00134-012-2769-8 – reference: Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function space. Advances in Neural Information Processing Systems, 12, 512–518. – reference: FineMJAubleTEYealyDMHanusaBHWeissfeldLASingerDEColeyCMMarrieTJKapoorWNA prediction rule to identify low-risk patients with community-acquired pneumoniaNew England Journal of Medicine1997336424325010.1056/NEJM199701233360402 – reference: ChapelleOKeerthiSSEfficient algorithms for ranking with SVMsInformation Retrieval201013320121510.1007/s10791-009-9109-9 – reference: Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12). – reference: Hug, C. (2009). Detecting hazardous intensive care patient episodes using real-time mortality models. PhD thesis. – reference: Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, (pp. 133–142). – reference: HothornTHornikKZeileisAUnbiased recursive partitioning: A conditional inference frameworkJournal of Computational and Graphical Statistics200615365167410.1198/106186006X1339332291267 – reference: Qin, T., Zhang, X. D., Wang, D. S., Liu, T. Y., Lai, W., & Li, H. (2007). Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 279–286). – reference: Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge, Citeseer, (pp. 77–89). – reference: PirracchioRPetersenMLCaroneMRigonMRChevretSvan der LaanMJMortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based studyThe Lancet Respiratory Medicine201531425210.1016/S2213-2600(14)70239-5 – reference: Saeed, M., Lieu, C., Raber, G., & Mark, R. (2002). MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002, IEEE, (pp. 641–644). – reference: MouldDModels for disease progression: New approaches and usesClinical Pharmacology & Therapeutics201292112513110.1038/clpt.2012.53 – reference: ClermontGAngusDCDiRussoSMGriffinMLinde-ZwirbleWTPredicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression modelsCritical Care Medicine200129229129610.1097/00003246-200102000-00012 – reference: KeeganMTGajicOAfessaBSeverity of illness scoring systems in the intensive care unitCritical Care Medicine201139116316910.1097/CCM.0b013e3181f96f81 – reference: Saria, S., Rajani, A. K., Gould, J., Koller, D., & Penn, A. A. (2010b). Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48), 48ra65–48ra65. – ident: 5527_CR26 doi: 10.1145/1148170.1148246 – ident: 5527_CR34 doi: 10.1109/CIC.2002.1166854 – volume: 39 start-page: 165 issue: 2 year: 2013 ident: 5527_CR8 publication-title: Intensive Care Medicine doi: 10.1007/s00134-012-2769-8 – ident: 5527_CR39 doi: 10.1145/1277741.1277808 – volume: 23 start-page: 1638 issue: 10 year: 1995 ident: 5527_CR24 publication-title: Critical Care Medicine doi: 10.1097/00003246-199510000-00007 – ident: 5527_CR43 – volume: 336 start-page: 243 issue: 4 year: 1997 ident: 5527_CR10 publication-title: New England Journal of Medicine doi: 10.1056/NEJM199701233360402 – ident: 5527_CR19 doi: 10.1145/775047.775067 – ident: 5527_CR1 – volume: 29 start-page: 291 issue: 2 year: 2001 ident: 5527_CR7 publication-title: Critical Care Medicine doi: 10.1097/00003246-200102000-00012 – ident: 5527_CR33 doi: 10.1145/1277741.1277791 – ident: 5527_CR15 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 5527_CR44 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 3 start-page: 42 issue: 1 year: 2015 ident: 5527_CR32 publication-title: The Lancet Respiratory Medicine doi: 10.1016/S2213-2600(14)70239-5 – ident: 5527_CR3 – volume: 19 start-page: 792 issue: 3 year: 2007 ident: 5527_CR6 publication-title: Neural Computation doi: 10.1162/neco.2007.19.3.792 – volume: 140 start-page: 1223 issue: 5 year: 2011 ident: 5527_CR22 publication-title: CHEST Journal doi: 10.1378/chest.11-0352 – volume: 39 start-page: 952 issue: 5 year: 2011 ident: 5527_CR35 publication-title: Critical Care Medicine doi: 10.1097/CCM.0b013e31820a92c6 – ident: 5527_CR23 doi: 10.1137/1.9781611973440.93 – volume: 52 start-page: 193 issue: 2 year: 2003 ident: 5527_CR18 publication-title: Journal of the Royal Statistical Society: Series D (The Statistician) doi: 10.1111/1467-9884.00351 – volume: 15 start-page: 651 issue: 3 year: 2006 ident: 5527_CR16 publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186006X133933 – volume: 7 start-page: 299ra122 year: 2015 ident: 5527_CR13 publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.aab3719 – ident: 5527_CR17 – ident: 5527_CR12 doi: 10.1186/cc10102 – ident: 5527_CR36 – ident: 5527_CR25 – volume: 92 start-page: 125 issue: 1 year: 2012 ident: 5527_CR30 publication-title: Clinical Pharmacology & Therapeutics doi: 10.1038/clpt.2012.53 – volume: 35 start-page: 2568 issue: 11 year: 2007 ident: 5527_CR38 publication-title: Critical Care Medicine doi: 10.1097/01.CCM.0000287593.54658.89 – ident: 5527_CR37 doi: 10.1126/scitranslmed.3001304 – ident: 5527_CR9 – volume: 39 start-page: 163 issue: 1 year: 2011 ident: 5527_CR20 publication-title: Critical Care Medicine doi: 10.1097/CCM.0b013e3181f96f81 – ident: 5527_CR42 – ident: 5527_CR2 doi: 10.1145/1102351.1102363 – ident: 5527_CR29 – volume: 13 start-page: 818 issue: 10 year: 1985 ident: 5527_CR21 publication-title: Critical Care Medicine doi: 10.1097/00003246-198510000-00009 – volume: 22 start-page: 707 issue: 7 year: 1996 ident: 5527_CR40 publication-title: Intensive Care Medicine doi: 10.1007/BF01709751 – ident: 5527_CR11 doi: 10.1214/aos/1013203451 – volume: 13 start-page: 201 issue: 3 year: 2010 ident: 5527_CR5 publication-title: Information Retrieval doi: 10.1007/s10791-009-9109-9 – ident: 5527_CR14 – ident: 5527_CR4 – ident: 5527_CR41 doi: 10.1145/2623330.2623754 – volume: 21 start-page: S42 issue: 3; SUPP/29 year: 2003 ident: 5527_CR27 publication-title: Clinical and Experimental Rheumatology – volume: 12 start-page: R161 issue: 6 year: 2008 ident: 5527_CR28 publication-title: Critical Care Medicine – ident: 5527_CR31 |
| SSID | ssj0002686 |
| Score | 2.3338916 |
| Snippet | A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these... Issue Title: Special Issue on Machine Learning for Health and Medicine; Guest Editors: Jenna Wiens and Byron C. Wallace A large and diverse set of measurements... A large and diverse set of measurements are regularly collected during a patient's hospital stay to monitor their health status. Tools for integrating these... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 323 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Control Disease control Learning Mathematical models Mechatronics Medical services Natural Language Processing (NLP) Progressions Ranking Ratings & rankings Risk Robotics Sepsis Simulation Simulation and Modeling Training |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QHv8XplAg-qCPQpk3aPoo4hqAvOthbSdKbDEZX1g7xv_fStd0EP_C56SXc5ZJfuLvfEXIFICQom-c34ob5gM-dEGEHi3QUgqckyMgWJz89y_7AfxyKYVXHndfZ7nVIsjypV4rdShpbVzDLGsaCdbIhLJsXbuIBv2uOXy7L9o7oPYLZ67sOZX4n4utltESYTVB0m2zO00x9vKvJZOXe6e2RnQow0ruFhffJGqQHZLduxkAr3zwkLxVT6hu9zmY2-mLPsRtqU8dpbrkqczpOKcI9mpUVRwbodEQNvmLLFDyazIEWUzpeyYHMj8ig9_B632dVxwRmEJcUTEvtJHyEKuZhqLkSwH2tIhO60lhuQe0I4QlL4eMrXya-dI1Bj04CBBJCeco7Jq10msIJoaEAo3QETpAoHOyizFHENcoBtDq4beLUqotNRSduu1pM4iURstV2jNqOrbbjoE1um1-yBZfGb4M7tT3iyq3y2A0Clweh6-H0l81ndAgb5VApTOc4JrSvHsQxok26tR1XRPw8Ybcx9d_LO_2X7DOyhUBLLnLXOqRVzOZwjmCm0Bfl5v0ETQDphw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0fFAfqrUVr1XZQh9sJeflYzfJo4giQqXQHtinsLuZiHjkgpcg-td3Jh_nWbQiPu9mNruzH79lfvNbgK-IUqFmnl_mWSdAuu5EBDuc2MQR-lqhijk5-ce5Oh0FZxfyYgGOulyYmu3ehSSbnAZWacrLgyLNDuYS32pJW1c6rCDmhAMqXYQlJQmQ92BpdP7z8E-DH6XDZ3itmhoyU03JLrb5lJ3Hp9MD5JxFSVdhucoLfXerx-O5g-hkDdKuCw3_5HpQlWZg7_9Rd3xjH9fhXQtUxWEzs97DAuYbsNY9AiHaPeED_GoVWi_FXnHDUR_eP78JpqyLKWtkTsVVLghmiqLOdLIoJpmwdHuuqX8irVCUE3E1x72cfoTRyfHvo1OnfanBsYSHSscoM0y9jFzrRZHxtEQvMDq2kassaxqaoZS-ZOmgQAcqDZRrLe0kaUgARmpf-5vQyyc5boGIJFptYhyGqabKLtnMYs-QHaTZhm4fhp2HEtvKmPNrGuPkQYCZBy6hgUt44JKwD99nnxSNhsf_Km93bk_a5TxN3DB0vTByfWr-y6yYFiJHV3SOk4rqRHzbIvwk-7DfeXfOxPMN7s9m1Mu_9-lVtT_DCgE81XDmtqFX3lS4QyCqNLvtIvkLa-YR2w priority: 102 providerName: Unpaywall |
| Title | Learning (predictive) risk scores in the presence of censoring due to interventions |
| URI | https://link.springer.com/article/10.1007/s10994-015-5527-7 https://www.proquest.com/docview/1771278131 https://www.proquest.com/docview/1800495125 https://link.springer.com/content/pdf/10.1007/s10994-015-5527-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 102 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AMVHM dateStart: 20080107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0565 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED5t7QPwwG9Ex6iMxAMwWWuc2HEeECqoXQVqNQFF21NkOy6aVCXZ2grx33OXJml5YDxFURzHuvOdP-fO3wG89l4qbyjPbyEcjzxudzTCDp7YRPvQKK8SOpw8nanJPPp8IS8OYNachaG0ysYnVo46Kxz9Iz8N4jgQsQ7C4EN5zalqFEVXmxIapi6tkL2vKMYOoSuIGasD3Y-j2fnX1jcLVdV-RNOSnNb2Js65PUxX0eQGkhMrGY__Xql28LONmN6DO5u8NL9_meVyb1EaP4T7NZpkw636H8GBzx_Dg6ZSA6sN9wl8q2lUf7I35Q2FZsjJvWWUV85WRGS5Ylc5QyzIyuo4kvOsWDCHW9wqP49lG8_WBbvaS5BcPYX5ePT904TX5RS4Q9Cy5lbZQSYWKH-htRVGehFZkzgdKEfEg3YgZSiJ3ycykcoiFTiH5p7FiDKkCU34DDp5kfvnwLT0ztjED-LMYOMA-1wkwmI_HqeED3owaESXupprnEpeLNMdSzJJO0VppyTtNO7Bu_aVcku0cVvj40YfaW1zq3Q3Q3rwqn2M1kIhEJP7YoNtNG2JEOTIHpw0etzr4t8fPGlV_f_hHd0-vBdwF2GX2mayHUNnfbPxLxHarG0fDvX4rA_d4dnllxFdpz8m0349i_HpXAzxbj47H17-AaN7-hg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPCAPgl_hFHVNNFFJ4-22u20fiBGFHAIXo5DwVna3e4bk0lZ6F8I_59_GTG_bOx_EJ567nW5md746M78BeOOcVE5Tnd9I2CByGO4k6HYEqUkTF2rlVErNycdDNTiNvp3JsyX40_bCUFllqxMbRZ2Xlv6Rf-RxzEWc8JB_qn4HNDWKsqvtCA3tRyvkOw3EmG_sOHTXVxjC1TsHX_G83wqxv3fyZRD4KQOBRVs-CYwy_VyMcFsiSYzQ0onI6NQmXFnC4zN9KUNJsDeRjlQeKW4tSkEeo_GVOtQh0r0HK1EYpRj8rezuDb__6GyBUM2sSRRlGZAv0eZVZ817DSwvlwGhoAXx35Zx7u52Gdo1WJ0Wlb6-0uPxghHc34AH3ntln2fX7SEsueIRrLeTIZhXFI_hp4dt_cXeVZeUCiKl-p5RHTurCTizZhcFQ9-TVU37k3WsHDGLIXVTD8jyqWOTkl0sFGTWT-D0Thj7FJaLsnCbwBLprDap68e5xsUcaY5SYZCOwyvoeA_6Lesy67HNacTGOJujMhO3M-R2RtzO4h586F6pZsAety3eas8j8zJeZ_Mb2YPX3WOUTkq56MKVU1yTUAiGTpXswXZ7jgsk_v3B7e6o_7-9Z7dv7xWsDk6Oj7Kjg-Hhc7iPLp-aVdFtwfLkcupeoFs1MS_93WVwftficgOcty7O |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9lFerLhQwEkhAZXXtxE5yQAhRlpZChQSVegu246BKqyQ0u6r61_h1nclrlwPl1HMcxxrPMzPzDcAL75X2hur8cul46DHcidHt4IlNYh8Y7XVCzclfj_T-cfj5RJ2swJ--F4bKKnud2CjqrHT0j3xXRJGQUSwCsZt3ZRHf9ibvqt-cJkhRprUfp9GyyKG_OMfwrX57sId3_VLKyccfH_Z5N2GAO7TjM261HWcyxyPJOLbSKC9DaxIXC-0Ii8-OlQoUQd6EJtRZqIVzKAFZhIZXmcAEuO8NuBkRijt1qU8-DVZA6mbKJAqx4uRF9BnVtm2vAeQVihP-GY_-tokLR3fIza7B7XlRmYtzM50umb_JPVjv_Fb2vmW0-7Diiwdwt58JwToV8RC-d4Ctv9ir6oySQKROXzOqYGc1QWbW7LRg6HWyqml8cp6VOXMYTDeVgCybezYr2elSKWa9AcfXQtZNWC3Kwm8Bi5V3xiZ-HGUGFwvcM0-kxX08Mp8XIxj3pEtdh2pOwzWm6QKPmaidIrVTonYajeDN8ErVQnpctXi7v4-0k-46XfDiCJ4Pj1EuKdliCl_OcU1MwRe6U2oEO_09Lm3x7w_uDFf9_-M9uvp4z-AWCkn65eDo8DHcQV9Pt-Vz27A6O5v7J-hPzezThnEZ_LxuSbkEO1osaA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0fFAfqrUVr1XZQh9sJeflYzfJo4giQqXQHtinsLuZiHjkgpcg-td3Jh_nWbQiPu9mNruzH79lfvNbgK-IUqFmnl_mWSdAuu5EBDuc2MQR-lqhijk5-ce5Oh0FZxfyYgGOulyYmu3ehSSbnAZWacrLgyLNDuYS32pJW1c6rCDmhAMqXYQlJQmQ92BpdP7z8E-DH6XDZ3itmhoyU03JLrb5lJ3Hp9MD5JxFSVdhucoLfXerx-O5g-hkDdKuCw3_5HpQlWZg7_9Rd3xjH9fhXQtUxWEzs97DAuYbsNY9AiHaPeED_GoVWi_FXnHDUR_eP78JpqyLKWtkTsVVLghmiqLOdLIoJpmwdHuuqX8irVCUE3E1x72cfoTRyfHvo1OnfanBsYSHSscoM0y9jFzrRZHxtEQvMDq2kassaxqaoZS-ZOmgQAcqDZRrLe0kaUgARmpf-5vQyyc5boGIJFptYhyGqabKLtnMYs-QHaTZhm4fhp2HEtvKmPNrGuPkQYCZBy6hgUt44JKwD99nnxSNhsf_Km93bk_a5TxN3DB0vTByfWr-y6yYFiJHV3SOk4rqRHzbIvwk-7DfeXfOxPMN7s9m1Mu_9-lVtT_DCgE81XDmtqFX3lS4QyCqNLvtIvkLa-YR2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+%28predictive%29+risk+scores+in+the+presence+of+censoring+due+to+interventions&rft.jtitle=Machine+learning&rft.au=Dyagilev%2C+Kirill&rft.au=Saria%2C+Suchi&rft.date=2016-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=102&rft.issue=3&rft.spage=323&rft_id=info:doi/10.1007%2Fs10994-015-5527-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3974095371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |