Learning (predictive) risk scores in the presence of censoring due to interventions

A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians’ ability to provide timely interve...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 102; no. 3; pp. 323 - 348
Main Authors Dyagilev, Kirill, Saria, Suchi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-015-5527-7

Cover

Abstract A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians’ ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109, 2013 ). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient’s measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert’s ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches.
AbstractList A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians’ ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109, 2013 ). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient’s measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert’s ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches.
Issue Title: Special Issue on Machine Learning for Health and Medicine; Guest Editors: Jenna Wiens and Byron C. Wallace A large and diverse set of measurements are regularly collected during a patient's hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians' ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109, 2013 ). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient's measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert's ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches.
A large and diverse set of measurements are regularly collected during a patient's hospital stay to monitor their health status. Tools for integrating these measurements into severity scores, that accurately track changes in illness severity, can improve clinicians' ability to provide timely interventions. Existing approaches for creating such scores either (1) rely on experts to fully specify the severity score, (2) infer a score using detailed models of disease progression, or (3) train a predictive score, using supervised learning, by regressing against a surrogate marker of severity such as the presence of downstream adverse events. The first approach does not extend to diseases where an accurate score cannot be elicited from experts. The second assumes that the progression of disease can be accurately modeled, limiting its application to populations with simple, well-understood disease dynamics. The third approach, also most commonly used, often produces scores that suffer from bias due to treatment-related censoring (Paxton et al. in AMIA annual symposium proceedings, American Medical Informatics Association, p 1109, 2013). Specifically, since the downstream outcomes used for their training are observed only noisily and are influenced by treatment administration patterns, these scores do not generalize well when treatment administration patterns change. We propose a novel ranking based framework for disease severity score learning (DSSL). DSSL exploits the following key observation: while it is challenging for experts to quantify the disease severity at any given time, it is often easy to compare the disease severity at two different times. Extending existing ranking algorithms, DSSL learns a function that maps a vector of patient's measurements to a scalar severity score subject to two constraints. First, the resulting score should be consistent with the expert's ranking of the disease severity state. Second, changes in score between consecutive periods should be smooth. We apply DSSL to the problem of learning a sepsis severity score using a large, real-world electronic health record dataset. The learned scores significantly outperform state-of-the-art clinical scores in ranking patient states by severity and in early detection of downstream adverse events. We also show that the learned disease severity trajectories are consistent with clinical expectations of disease evolution. Further, we simulate datasets containing different treatment administration patterns and show that DSSL shows better generalization performance to changes in treatment patterns compared to the above approaches.
Author Dyagilev, Kirill
Saria, Suchi
Author_xml – sequence: 1
  givenname: Kirill
  surname: Dyagilev
  fullname: Dyagilev, Kirill
  email: kirilld@jhu.edu
  organization: Department of Computer Science, Johns Hopkins University
– sequence: 2
  givenname: Suchi
  surname: Saria
  fullname: Saria, Suchi
  organization: Department of Computer Science, Johns Hopkins University, Department of Health Policy and Management, Johns Hopkins University
BookMark eNqNkMFu1DAURS1UJKaFD2BniU1ZBN5zYjuzRBWFSiN1Aawtx3kDLqkdbKdo_r6OpouqUhErL3zP073nlJ2EGIixtwgfEEB_zAjbbdcAykZKoRv9gm1Q6rYBqeQJ20Dfy0ahkK_Yac43ACBUrzbs245sCj785OdzotG74u_oPU8-_-bZxUSZ-8DLL-L1O1NwxOOeOwo5ppUaF-Il1kyhdEeh-Bjya_Zyb6dMbx7eM_bj8vP3i6_N7vrL1cWnXeMkytIMaoBR7K0i0feDsJJEN9it61E5wFYPIGUr6zjd2U6NnULnWiFGDbqTtrXtGRPHu0uY7eGvnSYzJ39r08EgmFWLOWoxVYtZtRhdofMjNKf4Z6FczK3PjqbJBopLNtgDdFtZTdXouyfRm7ikUCcZ1BqF7rHFmtLHlEsx50R743yxq4iSrJ_-WQWfkP9T_2Fznlf_lB51eha6B-y6oeM
CitedBy_id crossref_primary_10_1136_bmjhci_2019_100109
crossref_primary_10_3390_healthcare12040439
crossref_primary_10_62347_WQWV9220
crossref_primary_10_1016_j_artmed_2019_101725
crossref_primary_10_1155_2017_7120691
crossref_primary_10_1136_bmjresp_2017_000234
crossref_primary_10_1038_s41551_018_0304_0
crossref_primary_10_1371_journal_pone_0284083
crossref_primary_10_1109_OJEMB_2022_3221306
crossref_primary_10_1109_TBME_2017_2698602
crossref_primary_10_1200_CCI_18_00137
crossref_primary_10_1126_scitranslmed_aab3719
crossref_primary_10_2200_S01137ED1V01Y202110HLT055
crossref_primary_10_1001_jamaneurol_2018_0809
crossref_primary_10_1038_s41746_022_00611_y
crossref_primary_10_3389_fped_2019_00413
crossref_primary_10_1186_s12938_021_00872_w
crossref_primary_10_1016_j_hlpt_2018_04_006
Cites_doi 10.1145/1148170.1148246
10.1109/CIC.2002.1166854
10.1007/s00134-012-2769-8
10.1145/1277741.1277808
10.1097/00003246-199510000-00007
10.1056/NEJM199701233360402
10.1145/775047.775067
10.1097/00003246-200102000-00012
10.1145/1277741.1277791
10.1111/j.1467-9868.2005.00503.x
10.1016/S2213-2600(14)70239-5
10.1162/neco.2007.19.3.792
10.1378/chest.11-0352
10.1097/CCM.0b013e31820a92c6
10.1137/1.9781611973440.93
10.1111/1467-9884.00351
10.1198/106186006X133933
10.1126/scitranslmed.aab3719
10.1186/cc10102
10.1038/clpt.2012.53
10.1097/01.CCM.0000287593.54658.89
10.1126/scitranslmed.3001304
10.1097/CCM.0b013e3181f96f81
10.1145/1102351.1102363
10.1097/00003246-198510000-00009
10.1007/BF01709751
10.1214/aos/1013203451
10.1007/s10791-009-9109-9
10.1145/2623330.2623754
ContentType Journal Article
Copyright The Author(s) 2015
The Author(s) 2016
Copyright_xml – notice: The Author(s) 2015
– notice: The Author(s) 2016
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1007/s10994-015-5527-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 348
ExternalDocumentID 10.1007/s10994-015-5527-7
3974095371
10_1007_s10994_015_5527_7
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c515t-b6b0d2fa6e288b2a5e24ba9c816c0137b0553500774a46d461cc322d70745a3a3
IEDL.DBID BENPR
ISSN 0885-6125
1573-0565
IngestDate Wed Oct 01 16:11:18 EDT 2025
Fri Sep 05 11:18:58 EDT 2025
Mon Jul 14 09:42:50 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Wed Oct 01 01:03:55 EDT 2025
Fri Feb 21 02:28:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Sepsis
Severity score
Ranking
Gradient boosted regression trees
MIMIC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-b6b0d2fa6e288b2a5e24ba9c816c0137b0553500774a46d461cc322d70745a3a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-015-5527-7.pdf
PQID 1771278131
PQPubID 54194
PageCount 26
ParticipantIDs unpaywall_primary_10_1007_s10994_015_5527_7
proquest_miscellaneous_1800495125
proquest_journals_1771278131
crossref_citationtrail_10_1007_s10994_015_5527_7
crossref_primary_10_1007_s10994_015_5527_7
springer_journals_10_1007_s10994_015_5527_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wang, X., Sontag, D., & Wang, F. (2014). Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining, ACM (pp. 85–94).
HothornTHornikKZeileisAUnbiased recursive partitioning: A conditional inference frameworkJournal of Computational and Graphical Statistics200615365167410.1198/106186006X1339332291267
Ghanem-Zoubi, N. O., Vardi, M., Laor, A., Weber, G., & Bitterman, H. (2011). Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments. Critical Care Medicine, 15(2), R95.
SebatFMusthafaAAJohnsonDKramerAAShoffnerDEliasonMHenryKSpurlockBEffect of a rapid response system for patients in shock on time to treatment and mortality during 5 yearsCritical Care Medicine200735112568257510.1097/01.CCM.0000287593.54658.89
Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, (pp. 115–132). Cambridge: The MIT Press.
Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems.
MedsgerTBombardieriSCzirjakLScorzaRRossaABencivelliWAssessment of disease severity and prognosisClinical and Experimental Rheumatology2003213; SUPP/29S42S46
Paxton, C., Niculescu-Mizil, A., & Saria, S. (2013). Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings, American Medical Informatics Association, vol. 2013, p. 1109.
FineMJAubleTEYealyDMHanusaBHWeissfeldLASingerDEColeyCMMarrieTJKapoorWNA prediction rule to identify low-risk patients with community-acquired pneumoniaNew England Journal of Medicine1997336424325010.1056/NEJM199701233360402
Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12).
Qin, T., Zhang, X. D., Wang, D. S., Liu, T. Y., Lai, W., & Li, H. (2007). Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 279–286).
SaeedMVillarroelMReisnerATCliffordGLehmanLWMoodyGHeldtTKyawTHMoodyBMarkRGMultiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit databaseCritical Care Medicine201139595210.1097/CCM.0b013e31820a92c6
VincentJLMorenoRTakalaJWillattsSDe MendonçaABruiningHReinhartCSuterPThijsLThe SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failureIntensive Care Medicine199622770771010.1007/BF01709751
AHRQ. (2015). Guideline syntheses. http://www.guideline.gov/syntheses/index.aspx.
Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM.
MinneLAbu-HannaAde JongeEEvaluation of SOFA-based models for predicting mortality in the ICU: A systematic reviewCritical Care Medicine2008126R161
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function space. Advances in Neural Information Processing Systems, 12, 512–518.
HenryKEHagerDNProvonostPJSariaSA targeted real-time early warning score (TREWScore) for septic shockScience Translational Medicine20157299ra12210.1126/scitranslmed.aab3719
Saeed, M., Lieu, C., Raber, G., & Mark, R. (2002). MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002, IEEE, (pp. 641–644).
ChapelleOKeerthiSSEfficient algorithms for ranking with SVMsInformation Retrieval201013320121510.1007/s10791-009-9109-9
KnausWADraperEAWagnerDPZimmermanJEAPACHE II: A severity of disease classification systemCritical Care Medicine1985131081882910.1097/00003246-198510000-00009
PirracchioRPetersenMLCaroneMRigonMRChevretSvan der LaanMJMortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based studyThe Lancet Respiratory Medicine201531425210.1016/S2213-2600(14)70239-5
MouldDModels for disease progression: New approaches and usesClinical Pharmacology & Therapeutics201292112513110.1038/clpt.2012.53
Saria, S., Rajani, A. K., Gould, J., Koller, D., & Penn, A. A. (2010b). Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48), 48ra65–48ra65.
Burges, C. J. (2010). From ranknet to lambdarank to lambdamart: An overview. Technical report, Microsoft Research.
Burges, C. J., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp. 193–200).
Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association
KumarGKumarNTanejaAKaleekalTTarimaSMcGinleyEJimenezEMohanAKhanRAWhittleJNationwide trends of severe sepsis in the 21st century (2000–2007)CHEST Journal201114051223123110.1378/chest.11-0352
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning, ACM, (pp. 89–96).
DellingerRPLevyMMRhodesAAnnaneDGerlachHOpalSMSevranskyJESprungCLDouglasISJaeschkeRSurviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012Intensive Care Medicine201339216522810.1007/s00134-012-2769-8
ClermontGAngusDCDiRussoSMGriffinMLinde-ZwirbleWTPredicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression modelsCritical Care Medicine200129229129610.1097/00003246-200102000-00012
MarshallJCCookDJChristouNVBernardGRSprungCLSibbaldWJMultiple organ dysfunction score: A reliable descriptor of a complex clinical outcomeCritical Care Medicine199523101638165210.1097/00003246-199510000-00007
Hug, C. (2009). Detecting hazardous intensive care patient episodes using real-time mortality models. PhD thesis.
Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, (pp. 133–142).
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
ZouHHastieTRegularization and variable selection via the elastic netJournal of the Royal Statistical Society: Series B (Statistical Methodology)200567230132010.1111/j.1467-9868.2005.00503.x21373271069.62054
JacksonCHSharplesLDThompsonSGDuffySWCoutoEMultistate Markov models for disease progression with classification errorJournal of the Royal Statistical Society: Series D (The Statistician)20035221932091977260
Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge, Citeseer, (pp. 77–89).
ChuWKeerthiSSSupport vector ordinal regressionNeural Computation200719379281510.1162/neco.2007.19.3.79222953671127.68080
Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM.
Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 383–390).
Wiens, J., Horvitz, E., & Guttag, J. V. (2012). Patient risk stratification for hospital-associated c. diff as a time-series classification task. Advances in Neural Information Processing Systems, 25, 467–475.
Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., & Sun, G. (2008). A general boosting method and its application to learning ranking functions for web search. In Advances in Neural Information Processing Systems, vol. 20, pp. 1697–1704.
KeeganMTGajicOAfessaBSeverity of illness scoring systems in the intensive care unitCritical Care Medicine201139116316910.1097/CCM.0b013e3181f96f81
CH Jackson (5527_CR18) 2003; 52
O Chapelle (5527_CR5) 2010; 13
5527_CR3
5527_CR19
5527_CR4
M Saeed (5527_CR35) 2011; 39
5527_CR1
5527_CR2
W Chu (5527_CR6) 2007; 19
G Kumar (5527_CR22) 2011; 140
KE Henry (5527_CR13) 2015; 7
F Sebat (5527_CR38) 2007; 35
5527_CR31
JL Vincent (5527_CR40) 1996; 22
5527_CR15
R Pirracchio (5527_CR32) 2015; 3
5527_CR37
5527_CR14
5527_CR36
5527_CR17
5527_CR39
5527_CR11
5527_CR33
5527_CR9
5527_CR12
5527_CR34
D Mould (5527_CR30) 2012; 92
H Zou (5527_CR44) 2005; 67
JC Marshall (5527_CR24) 1995; 23
5527_CR29
T Medsger (5527_CR27) 2003; 21
RP Dellinger (5527_CR8) 2013; 39
G Clermont (5527_CR7) 2001; 29
L Minne (5527_CR28) 2008; 12
WA Knaus (5527_CR21) 1985; 13
5527_CR42
5527_CR41
MJ Fine (5527_CR10) 1997; 336
T Hothorn (5527_CR16) 2006; 15
5527_CR26
5527_CR25
MT Keegan (5527_CR20) 2011; 39
5527_CR43
5527_CR23
References_xml – reference: Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., & Sun, G. (2008). A general boosting method and its application to learning ranking functions for web search. In Advances in Neural Information Processing Systems, vol. 20, pp. 1697–1704.
– reference: MarshallJCCookDJChristouNVBernardGRSprungCLSibbaldWJMultiple organ dysfunction score: A reliable descriptor of a complex clinical outcomeCritical Care Medicine199523101638165210.1097/00003246-199510000-00007
– reference: MinneLAbu-HannaAde JongeEEvaluation of SOFA-based models for predicting mortality in the ICU: A systematic reviewCritical Care Medicine2008126R161
– reference: Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
– reference: Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM.
– reference: ZouHHastieTRegularization and variable selection via the elastic netJournal of the Royal Statistical Society: Series B (Statistical Methodology)200567230132010.1111/j.1467-9868.2005.00503.x21373271069.62054
– reference: VincentJLMorenoRTakalaJWillattsSDe MendonçaABruiningHReinhartCSuterPThijsLThe SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failureIntensive Care Medicine199622770771010.1007/BF01709751
– reference: Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 383–390).
– reference: Ghanem-Zoubi, N. O., Vardi, M., Laor, A., Weber, G., & Bitterman, H. (2011). Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments. Critical Care Medicine, 15(2), R95.
– reference: Wang, X., Sontag, D., & Wang, F. (2014). Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining, ACM (pp. 85–94).
– reference: Paxton, C., Niculescu-Mizil, A., & Saria, S. (2013). Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings, American Medical Informatics Association, vol. 2013, p. 1109.
– reference: Wiens, J., Horvitz, E., & Guttag, J. V. (2012). Patient risk stratification for hospital-associated c. diff as a time-series classification task. Advances in Neural Information Processing Systems, 25, 467–475.
– reference: SebatFMusthafaAAJohnsonDKramerAAShoffnerDEliasonMHenryKSpurlockBEffect of a rapid response system for patients in shock on time to treatment and mortality during 5 yearsCritical Care Medicine200735112568257510.1097/01.CCM.0000287593.54658.89
– reference: KnausWADraperEAWagnerDPZimmermanJEAPACHE II: A severity of disease classification systemCritical Care Medicine1985131081882910.1097/00003246-198510000-00009
– reference: Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM.
– reference: MedsgerTBombardieriSCzirjakLScorzaRRossaABencivelliWAssessment of disease severity and prognosisClinical and Experimental Rheumatology2003213; SUPP/29S42S46
– reference: Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association
– reference: Burges, C. J., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp. 193–200).
– reference: SaeedMVillarroelMReisnerATCliffordGLehmanLWMoodyGHeldtTKyawTHMoodyBMarkRGMultiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit databaseCritical Care Medicine201139595210.1097/CCM.0b013e31820a92c6
– reference: JacksonCHSharplesLDThompsonSGDuffySWCoutoEMultistate Markov models for disease progression with classification errorJournal of the Royal Statistical Society: Series D (The Statistician)20035221932091977260
– reference: KumarGKumarNTanejaAKaleekalTTarimaSMcGinleyEJimenezEMohanAKhanRAWhittleJNationwide trends of severe sepsis in the 21st century (2000–2007)CHEST Journal201114051223123110.1378/chest.11-0352
– reference: Burges, C. J. (2010). From ranknet to lambdarank to lambdamart: An overview. Technical report, Microsoft Research.
– reference: Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems.
– reference: HenryKEHagerDNProvonostPJSariaSA targeted real-time early warning score (TREWScore) for septic shockScience Translational Medicine20157299ra12210.1126/scitranslmed.aab3719
– reference: Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning, ACM, (pp. 89–96).
– reference: Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, (pp. 115–132). Cambridge: The MIT Press.
– reference: ChuWKeerthiSSSupport vector ordinal regressionNeural Computation200719379281510.1162/neco.2007.19.3.79222953671127.68080
– reference: AHRQ. (2015). Guideline syntheses. http://www.guideline.gov/syntheses/index.aspx.
– reference: DellingerRPLevyMMRhodesAAnnaneDGerlachHOpalSMSevranskyJESprungCLDouglasISJaeschkeRSurviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012Intensive Care Medicine201339216522810.1007/s00134-012-2769-8
– reference: Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function space. Advances in Neural Information Processing Systems, 12, 512–518.
– reference: FineMJAubleTEYealyDMHanusaBHWeissfeldLASingerDEColeyCMMarrieTJKapoorWNA prediction rule to identify low-risk patients with community-acquired pneumoniaNew England Journal of Medicine1997336424325010.1056/NEJM199701233360402
– reference: ChapelleOKeerthiSSEfficient algorithms for ranking with SVMsInformation Retrieval201013320121510.1007/s10791-009-9109-9
– reference: Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12).
– reference: Hug, C. (2009). Detecting hazardous intensive care patient episodes using real-time mortality models. PhD thesis.
– reference: Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, (pp. 133–142).
– reference: HothornTHornikKZeileisAUnbiased recursive partitioning: A conditional inference frameworkJournal of Computational and Graphical Statistics200615365167410.1198/106186006X1339332291267
– reference: Qin, T., Zhang, X. D., Wang, D. S., Liu, T. Y., Lai, W., & Li, H. (2007). Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 279–286).
– reference: Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge, Citeseer, (pp. 77–89).
– reference: PirracchioRPetersenMLCaroneMRigonMRChevretSvan der LaanMJMortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based studyThe Lancet Respiratory Medicine201531425210.1016/S2213-2600(14)70239-5
– reference: Saeed, M., Lieu, C., Raber, G., & Mark, R. (2002). MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002, IEEE, (pp. 641–644).
– reference: MouldDModels for disease progression: New approaches and usesClinical Pharmacology & Therapeutics201292112513110.1038/clpt.2012.53
– reference: ClermontGAngusDCDiRussoSMGriffinMLinde-ZwirbleWTPredicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression modelsCritical Care Medicine200129229129610.1097/00003246-200102000-00012
– reference: KeeganMTGajicOAfessaBSeverity of illness scoring systems in the intensive care unitCritical Care Medicine201139116316910.1097/CCM.0b013e3181f96f81
– reference: Saria, S., Rajani, A. K., Gould, J., Koller, D., & Penn, A. A. (2010b). Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48), 48ra65–48ra65.
– ident: 5527_CR26
  doi: 10.1145/1148170.1148246
– ident: 5527_CR34
  doi: 10.1109/CIC.2002.1166854
– volume: 39
  start-page: 165
  issue: 2
  year: 2013
  ident: 5527_CR8
  publication-title: Intensive Care Medicine
  doi: 10.1007/s00134-012-2769-8
– ident: 5527_CR39
  doi: 10.1145/1277741.1277808
– volume: 23
  start-page: 1638
  issue: 10
  year: 1995
  ident: 5527_CR24
  publication-title: Critical Care Medicine
  doi: 10.1097/00003246-199510000-00007
– ident: 5527_CR43
– volume: 336
  start-page: 243
  issue: 4
  year: 1997
  ident: 5527_CR10
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM199701233360402
– ident: 5527_CR19
  doi: 10.1145/775047.775067
– ident: 5527_CR1
– volume: 29
  start-page: 291
  issue: 2
  year: 2001
  ident: 5527_CR7
  publication-title: Critical Care Medicine
  doi: 10.1097/00003246-200102000-00012
– ident: 5527_CR33
  doi: 10.1145/1277741.1277791
– ident: 5527_CR15
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 5527_CR44
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 3
  start-page: 42
  issue: 1
  year: 2015
  ident: 5527_CR32
  publication-title: The Lancet Respiratory Medicine
  doi: 10.1016/S2213-2600(14)70239-5
– ident: 5527_CR3
– volume: 19
  start-page: 792
  issue: 3
  year: 2007
  ident: 5527_CR6
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.3.792
– volume: 140
  start-page: 1223
  issue: 5
  year: 2011
  ident: 5527_CR22
  publication-title: CHEST Journal
  doi: 10.1378/chest.11-0352
– volume: 39
  start-page: 952
  issue: 5
  year: 2011
  ident: 5527_CR35
  publication-title: Critical Care Medicine
  doi: 10.1097/CCM.0b013e31820a92c6
– ident: 5527_CR23
  doi: 10.1137/1.9781611973440.93
– volume: 52
  start-page: 193
  issue: 2
  year: 2003
  ident: 5527_CR18
  publication-title: Journal of the Royal Statistical Society: Series D (The Statistician)
  doi: 10.1111/1467-9884.00351
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  ident: 5527_CR16
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186006X133933
– volume: 7
  start-page: 299ra122
  year: 2015
  ident: 5527_CR13
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.aab3719
– ident: 5527_CR17
– ident: 5527_CR12
  doi: 10.1186/cc10102
– ident: 5527_CR36
– ident: 5527_CR25
– volume: 92
  start-page: 125
  issue: 1
  year: 2012
  ident: 5527_CR30
  publication-title: Clinical Pharmacology & Therapeutics
  doi: 10.1038/clpt.2012.53
– volume: 35
  start-page: 2568
  issue: 11
  year: 2007
  ident: 5527_CR38
  publication-title: Critical Care Medicine
  doi: 10.1097/01.CCM.0000287593.54658.89
– ident: 5527_CR37
  doi: 10.1126/scitranslmed.3001304
– ident: 5527_CR9
– volume: 39
  start-page: 163
  issue: 1
  year: 2011
  ident: 5527_CR20
  publication-title: Critical Care Medicine
  doi: 10.1097/CCM.0b013e3181f96f81
– ident: 5527_CR42
– ident: 5527_CR2
  doi: 10.1145/1102351.1102363
– ident: 5527_CR29
– volume: 13
  start-page: 818
  issue: 10
  year: 1985
  ident: 5527_CR21
  publication-title: Critical Care Medicine
  doi: 10.1097/00003246-198510000-00009
– volume: 22
  start-page: 707
  issue: 7
  year: 1996
  ident: 5527_CR40
  publication-title: Intensive Care Medicine
  doi: 10.1007/BF01709751
– ident: 5527_CR11
  doi: 10.1214/aos/1013203451
– volume: 13
  start-page: 201
  issue: 3
  year: 2010
  ident: 5527_CR5
  publication-title: Information Retrieval
  doi: 10.1007/s10791-009-9109-9
– ident: 5527_CR14
– ident: 5527_CR4
– ident: 5527_CR41
  doi: 10.1145/2623330.2623754
– volume: 21
  start-page: S42
  issue: 3; SUPP/29
  year: 2003
  ident: 5527_CR27
  publication-title: Clinical and Experimental Rheumatology
– volume: 12
  start-page: R161
  issue: 6
  year: 2008
  ident: 5527_CR28
  publication-title: Critical Care Medicine
– ident: 5527_CR31
SSID ssj0002686
Score 2.3338916
Snippet A large and diverse set of measurements are regularly collected during a patient’s hospital stay to monitor their health status. Tools for integrating these...
Issue Title: Special Issue on Machine Learning for Health and Medicine; Guest Editors: Jenna Wiens and Byron C. Wallace A large and diverse set of measurements...
A large and diverse set of measurements are regularly collected during a patient's hospital stay to monitor their health status. Tools for integrating these...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Control
Disease control
Learning
Mathematical models
Mechatronics
Medical services
Natural Language Processing (NLP)
Progressions
Ranking
Ratings & rankings
Risk
Robotics
Sepsis
Simulation
Simulation and Modeling
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QHv8XplAg-qCPQpk3aPoo4hqAvOthbSdKbDEZX1g7xv_fStd0EP_C56SXc5ZJfuLvfEXIFICQom-c34ob5gM-dEGEHi3QUgqckyMgWJz89y_7AfxyKYVXHndfZ7nVIsjypV4rdShpbVzDLGsaCdbIhLJsXbuIBv2uOXy7L9o7oPYLZ67sOZX4n4utltESYTVB0m2zO00x9vKvJZOXe6e2RnQow0ruFhffJGqQHZLduxkAr3zwkLxVT6hu9zmY2-mLPsRtqU8dpbrkqczpOKcI9mpUVRwbodEQNvmLLFDyazIEWUzpeyYHMj8ig9_B632dVxwRmEJcUTEvtJHyEKuZhqLkSwH2tIhO60lhuQe0I4QlL4eMrXya-dI1Bj04CBBJCeco7Jq10msIJoaEAo3QETpAoHOyizFHENcoBtDq4beLUqotNRSduu1pM4iURstV2jNqOrbbjoE1um1-yBZfGb4M7tT3iyq3y2A0Clweh6-H0l81ndAgb5VApTOc4JrSvHsQxok26tR1XRPw8Ybcx9d_LO_2X7DOyhUBLLnLXOqRVzOZwjmCm0Bfl5v0ETQDphw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0fFAfqrUVr1XZQh9sJeflYzfJo4giQqXQHtinsLuZiHjkgpcg-td3Jh_nWbQiPu9mNruzH79lfvNbgK-IUqFmnl_mWSdAuu5EBDuc2MQR-lqhijk5-ce5Oh0FZxfyYgGOulyYmu3ehSSbnAZWacrLgyLNDuYS32pJW1c6rCDmhAMqXYQlJQmQ92BpdP7z8E-DH6XDZ3itmhoyU03JLrb5lJ3Hp9MD5JxFSVdhucoLfXerx-O5g-hkDdKuCw3_5HpQlWZg7_9Rd3xjH9fhXQtUxWEzs97DAuYbsNY9AiHaPeED_GoVWi_FXnHDUR_eP78JpqyLKWtkTsVVLghmiqLOdLIoJpmwdHuuqX8irVCUE3E1x72cfoTRyfHvo1OnfanBsYSHSscoM0y9jFzrRZHxtEQvMDq2kassaxqaoZS-ZOmgQAcqDZRrLe0kaUgARmpf-5vQyyc5boGIJFptYhyGqabKLtnMYs-QHaTZhm4fhp2HEtvKmPNrGuPkQYCZBy6hgUt44JKwD99nnxSNhsf_Km93bk_a5TxN3DB0vTByfWr-y6yYFiJHV3SOk4rqRHzbIvwk-7DfeXfOxPMN7s9m1Mu_9-lVtT_DCgE81XDmtqFX3lS4QyCqNLvtIvkLa-YR2w
  priority: 102
  providerName: Unpaywall
Title Learning (predictive) risk scores in the presence of censoring due to interventions
URI https://link.springer.com/article/10.1007/s10994-015-5527-7
https://www.proquest.com/docview/1771278131
https://www.proquest.com/docview/1800495125
https://link.springer.com/content/pdf/10.1007/s10994-015-5527-7.pdf
UnpaywallVersion publishedVersion
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AMVHM
  dateStart: 20080107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED5t7QPwwG9Ex6iMxAMwWWuc2HEeECqoXQVqNQFF21NkOy6aVCXZ2grx33OXJml5YDxFURzHuvOdP-fO3wG89l4qbyjPbyEcjzxudzTCDp7YRPvQKK8SOpw8nanJPPp8IS8OYNachaG0ysYnVo46Kxz9Iz8N4jgQsQ7C4EN5zalqFEVXmxIapi6tkL2vKMYOoSuIGasD3Y-j2fnX1jcLVdV-RNOSnNb2Js65PUxX0eQGkhMrGY__Xql28LONmN6DO5u8NL9_meVyb1EaP4T7NZpkw636H8GBzx_Dg6ZSA6sN9wl8q2lUf7I35Q2FZsjJvWWUV85WRGS5Ylc5QyzIyuo4kvOsWDCHW9wqP49lG8_WBbvaS5BcPYX5ePT904TX5RS4Q9Cy5lbZQSYWKH-htRVGehFZkzgdKEfEg3YgZSiJ3ycykcoiFTiH5p7FiDKkCU34DDp5kfvnwLT0ztjED-LMYOMA-1wkwmI_HqeED3owaESXupprnEpeLNMdSzJJO0VppyTtNO7Bu_aVcku0cVvj40YfaW1zq3Q3Q3rwqn2M1kIhEJP7YoNtNG2JEOTIHpw0etzr4t8fPGlV_f_hHd0-vBdwF2GX2mayHUNnfbPxLxHarG0fDvX4rA_d4dnllxFdpz8m0349i_HpXAzxbj47H17-AaN7-hg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPCAPgl_hFHVNNFFJ4-22u20fiBGFHAIXo5DwVna3e4bk0lZ6F8I_59_GTG_bOx_EJ567nW5md746M78BeOOcVE5Tnd9I2CByGO4k6HYEqUkTF2rlVErNycdDNTiNvp3JsyX40_bCUFllqxMbRZ2Xlv6Rf-RxzEWc8JB_qn4HNDWKsqvtCA3tRyvkOw3EmG_sOHTXVxjC1TsHX_G83wqxv3fyZRD4KQOBRVs-CYwy_VyMcFsiSYzQ0onI6NQmXFnC4zN9KUNJsDeRjlQeKW4tSkEeo_GVOtQh0r0HK1EYpRj8rezuDb__6GyBUM2sSRRlGZAv0eZVZ817DSwvlwGhoAXx35Zx7u52Gdo1WJ0Wlb6-0uPxghHc34AH3ntln2fX7SEsueIRrLeTIZhXFI_hp4dt_cXeVZeUCiKl-p5RHTurCTizZhcFQ9-TVU37k3WsHDGLIXVTD8jyqWOTkl0sFGTWT-D0Thj7FJaLsnCbwBLprDap68e5xsUcaY5SYZCOwyvoeA_6Lesy67HNacTGOJujMhO3M-R2RtzO4h586F6pZsAety3eas8j8zJeZ_Mb2YPX3WOUTkq56MKVU1yTUAiGTpXswXZ7jgsk_v3B7e6o_7-9Z7dv7xWsDk6Oj7Kjg-Hhc7iPLp-aVdFtwfLkcupeoFs1MS_93WVwftficgOcty7O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9lFerLhQwEkhAZXXtxE5yQAhRlpZChQSVegu246BKqyQ0u6r61_h1nclrlwPl1HMcxxrPMzPzDcAL75X2hur8cul46DHcidHt4IlNYh8Y7XVCzclfj_T-cfj5RJ2swJ--F4bKKnud2CjqrHT0j3xXRJGQUSwCsZt3ZRHf9ibvqt-cJkhRprUfp9GyyKG_OMfwrX57sId3_VLKyccfH_Z5N2GAO7TjM261HWcyxyPJOLbSKC9DaxIXC-0Ii8-OlQoUQd6EJtRZqIVzKAFZhIZXmcAEuO8NuBkRijt1qU8-DVZA6mbKJAqx4uRF9BnVtm2vAeQVihP-GY_-tokLR3fIza7B7XlRmYtzM50umb_JPVjv_Fb2vmW0-7Diiwdwt58JwToV8RC-d4Ctv9ir6oySQKROXzOqYGc1QWbW7LRg6HWyqml8cp6VOXMYTDeVgCybezYr2elSKWa9AcfXQtZNWC3Kwm8Bi5V3xiZ-HGUGFwvcM0-kxX08Mp8XIxj3pEtdh2pOwzWm6QKPmaidIrVTonYajeDN8ErVQnpctXi7v4-0k-46XfDiCJ4Pj1EuKdliCl_OcU1MwRe6U2oEO_09Lm3x7w_uDFf9_-M9uvp4z-AWCkn65eDo8DHcQV9Pt-Vz27A6O5v7J-hPzezThnEZ_LxuSbkEO1osaA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0fFAfqrUVr1XZQh9sJeflYzfJo4giQqXQHtinsLuZiHjkgpcg-td3Jh_nWbQiPu9mNruzH79lfvNbgK-IUqFmnl_mWSdAuu5EBDuc2MQR-lqhijk5-ce5Oh0FZxfyYgGOulyYmu3ehSSbnAZWacrLgyLNDuYS32pJW1c6rCDmhAMqXYQlJQmQ92BpdP7z8E-DH6XDZ3itmhoyU03JLrb5lJ3Hp9MD5JxFSVdhucoLfXerx-O5g-hkDdKuCw3_5HpQlWZg7_9Rd3xjH9fhXQtUxWEzs97DAuYbsNY9AiHaPeED_GoVWi_FXnHDUR_eP78JpqyLKWtkTsVVLghmiqLOdLIoJpmwdHuuqX8irVCUE3E1x72cfoTRyfHvo1OnfanBsYSHSscoM0y9jFzrRZHxtEQvMDq2kassaxqaoZS-ZOmgQAcqDZRrLe0kaUgARmpf-5vQyyc5boGIJFptYhyGqabKLtnMYs-QHaTZhm4fhp2HEtvKmPNrGuPkQYCZBy6hgUt44JKwD99nnxSNhsf_Km93bk_a5TxN3DB0vTByfWr-y6yYFiJHV3SOk4rqRHzbIvwk-7DfeXfOxPMN7s9m1Mu_9-lVtT_DCgE81XDmtqFX3lS4QyCqNLvtIvkLa-YR2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+%28predictive%29+risk+scores+in+the+presence+of+censoring+due+to+interventions&rft.jtitle=Machine+learning&rft.au=Dyagilev%2C+Kirill&rft.au=Saria%2C+Suchi&rft.date=2016-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=102&rft.issue=3&rft.spage=323&rft_id=info:doi/10.1007%2Fs10994-015-5527-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3974095371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon