Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability

The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. H...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 9; no. 3; pp. 428 - 436
Main Authors Böhm, J., Scherzer, S., Shabala, S., Krol, E., Neher, E., Mueller, T.D., Hedrich, R.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 07.03.2016
Oxford University Press
Subjects
Online AccessGet full text
ISSN1674-2052
1752-9867
1752-9859
1752-9867
DOI10.1016/j.molp.2015.09.017

Cover

Abstract The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na^+- and K^+-permeable mutants function as ion channels rather than K^+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na^+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
AbstractList The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na^+- and K^+-permeable mutants function as ion channels rather than K^+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na^+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na+- and K+-permeable mutants function as ion channels rather than K+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na+- and K+-permeable mutants function as ion channels rather than K+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap. Based on biophysical- and structure-based analyses we here document that Dionaea glands operate a strictly Na+-selective, high-capacity ion channel. When challenged with high prey-derived sodium loads, DmHKT1 manages sodium uptake without confounding the action -potential-based information management of the Venus flytrap.
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na(+)- and K(+)-permeable mutants function as ion channels rather than K(+) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na(+)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na(+)- and K(+)-permeable mutants function as ion channels rather than K(+) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na(+)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na(+)- and K(+)-permeable mutants function as ion channels rather than K(+) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na(+)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na+- and K+-permeable mutants function as ion channels rather than K+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap. Based on biophysical- and structure-based analyses we here document that Dionaea glands operate a strictly Na+-selective, high-capacity ion channel. When challenged with high prey-derived sodium loads, DmHKT1 manages sodium uptake without confounding the action -potential-based information management of the Venus flytrap.
Author J. Bohm S. Scherzer S. Shabala E. Krol E. Neher T.D. Mueller R. Hedrich
AuthorAffiliation Julius-yon-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Wurzburg, Julius-von-Sachs Platz 2, 97082 Wurzburg, Germany School of Land and Food, University of Tasmania, Hobart TAS 7001, Australia Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
AuthorAffiliation_xml – name: 1 Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
– name: 2 School of Land and Food, University of Tasmania, Hobart TAS 7001, Australia
– name: 4 Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
– name: 3 Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
Author_xml – sequence: 1
  givenname: J.
  surname: Böhm
  fullname: Böhm, J.
  organization: Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
– sequence: 2
  givenname: S.
  surname: Scherzer
  fullname: Scherzer, S.
  organization: Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
– sequence: 3
  givenname: S.
  surname: Shabala
  fullname: Shabala, S.
  organization: School of Land and Food, University of Tasmania, Hobart TAS 7001, Australia
– sequence: 4
  givenname: E.
  surname: Krol
  fullname: Krol, E.
  organization: Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
– sequence: 5
  givenname: E.
  surname: Neher
  fullname: Neher, E.
  organization: Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
– sequence: 6
  givenname: T.D.
  surname: Mueller
  fullname: Mueller, T.D.
  email: mueller@botanik.uni-wuerzburg.de
  organization: Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
– sequence: 7
  givenname: R.
  surname: Hedrich
  fullname: Hedrich, R.
  email: hedrich@botanik.uni-wuerzburg.de
  organization: Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26455461$$D View this record in MEDLINE/PubMed
BookMark eNqNkttu1DAQhiNURA_wAlwgiytusthx7CQSQqpWW4qoRCW2cGk5zmTXi9dOHWdLnoDXxtEu5XBRuPJp_n9mvvFpcmSdhSR5TvCMYMJfb2ZbZ7pZhgmb4WqGSfEoOSEFy9Kq5MVR3PMiTzPMsuPktO83GHNccvokOc54zljOyUny_TPYoUcXZgxedujyw5Kky7EDNF9La8Gga-92uoEetc7HA4zok2v0sEU3XZBfAWkbHJpLb_XOeRetro20AX3RYe2GgObOtkaroO0K3cU7tDCggtdKGrT4pnSQtTY6jE-Tx600PTw7rGfJzcViOb9Mrz6-ez8_v0oVIyykMpdM1cAY4wWXtZI5x3lFeF6VlOK6wE2rKNS8IXXb1pSwlmU1rVjWYNZkgOlZQve-g-3keCeNEZ3XW-lHQbCYsIqNmLCKCavAlYhYo-rtXtUN9RYaBTbS-qV0Uos_X6xei5XbibyoSI7LaPDqYODd7QB9EFvdKzCRFURoMRnGOcaUsn-GkqLISOy5nFxf_F7WfT0_xxsDyn2A8q7vPbRiIh60m6rU5uGWs7-k_8XpzV4EcYQ7DV70SoNV0Ggfxy4apx-WvzzkXDu7uo1_5j4p51VOaRwo_QHwse83
CitedBy_id crossref_primary_10_1016_j_cub_2018_08_004
crossref_primary_10_1007_s00425_018_3059_7
crossref_primary_10_1016_j_bioelechem_2021_107810
crossref_primary_10_1101_gr_202200_115
crossref_primary_10_1111_nph_14352
crossref_primary_10_1093_plphys_kiab297
crossref_primary_10_1186_s12870_019_1909_5
crossref_primary_10_1016_j_bioelechem_2018_09_001
crossref_primary_10_1016_j_tplants_2017_12_004
crossref_primary_10_1371_journal_pbio_3000964
crossref_primary_10_1002_admt_202001182
crossref_primary_10_1371_journal_pbio_3000740
crossref_primary_10_3389_fphys_2017_00509
crossref_primary_10_1111_pce_14252
crossref_primary_10_1007_s11104_020_04463_x
crossref_primary_10_1093_aob_mcz177
crossref_primary_10_1111_nph_18960
crossref_primary_10_1073_pnas_1701860114
crossref_primary_10_1038_s41598_022_06915_z
crossref_primary_10_1007_s40626_019_00144_y
crossref_primary_10_1093_jxb_erad359
crossref_primary_10_1093_plphys_kiac232
crossref_primary_10_1007_s11104_015_2767_z
crossref_primary_10_1038_s41477_019_0465_1
crossref_primary_10_1016_j_plaphy_2019_11_013
crossref_primary_10_1007_s11104_022_05769_8
crossref_primary_10_1111_tpj_15946
crossref_primary_10_1016_j_asoc_2023_110153
crossref_primary_10_1016_j_molp_2024_01_007
crossref_primary_10_1038_s41598_021_81114_w
crossref_primary_10_1007_s12298_017_0483_2
crossref_primary_10_1016_j_pbi_2018_07_015
crossref_primary_10_3389_fpls_2022_970320
crossref_primary_10_1111_plb_13149
crossref_primary_10_1093_aob_mcz185
crossref_primary_10_1093_pcp_pcy187
crossref_primary_10_1111_nph_19958
crossref_primary_10_1111_pce_13391
crossref_primary_10_1111_nph_14404
crossref_primary_10_1111_nph_14888
crossref_primary_10_1007_s00018_017_2716_5
crossref_primary_10_1093_aob_mcab071
crossref_primary_10_1111_nph_14747
Cites_doi 10.1016/j.tplants.2006.06.001
10.1104/pp.111.193110
10.1007/s00442-013-2802-9
10.1104/pp.110.168047
10.1104/pp.113.1.111
10.3389/fpls.2012.00167
10.1111/j.1365-313X.2011.04701.x
10.1146/annurev.arplant.59.032607.092911
10.1073/pnas.1000698107
10.1104/pp.80.3.651
10.1074/jbc.M507647200
10.1152/physrev.00038.2011
10.1016/S0074-7696(07)57002-6
10.1016/j.tplants.2014.09.001
10.1126/science.270.5242.1660
10.1111/j.1469-8137.2010.03575.x
10.1104/pp.106.082388
10.1113/jphysiol.1971.sp009328
10.1007/s00018-010-0317-7
10.1046/j.0031-9317.2001.1140108.x
10.1038/nature03185
10.3390/ijms14047660
10.1016/0005-2736(75)90252-7
10.1016/j.cub.2013.07.028
10.1016/j.jplph.2010.12.006
10.1073/pnas.1507810112
10.1111/nph.13120
10.1038/nature12055
10.1016/j.pbi.2009.05.003
10.1111/j.1365-3040.2009.02056.x
10.1073/pnas.1112535108
10.1016/S0955-0674(00)00112-5
10.1038/370655a0
10.1126/science.138.3547.1338
10.1093/jxb/ert455
10.1046/j.1365-3040.2001.00661.x
10.1093/mp/sst169
ContentType Journal Article
Copyright 2016 The Authors
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
2016 The Authors 2016
Copyright_xml – notice: 2016 The Authors
– notice: Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2016 The Authors 2016
DBID 2RA
92L
CQIGP
W94
WU4
~WA
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1016/j.molp.2015.09.017
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability
EISSN 1752-9867
EndPage 436
ExternalDocumentID 10.1016/j.molp.2015.09.017
PMC4791408
26455461
10_1016_j_molp_2015_09_017
S1674205215003949
669433315
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--M
.2P
.I3
0R~
123
1RT
2RA
2WC
4.4
457
53G
6I.
7-5
70D
8P~
92L
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABXDB
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJBFU
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CKLRP
CQIGP
CS3
CW9
CZ4
DU5
E3Z
EBS
EDH
EE~
EFJIC
EFLBG
EJD
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NCXOZ
NU-
O0~
O9-
OAUVE
OK1
OVD
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TEORI
TR2
W8F
W94
WU4
X7H
~91
~G-
~WA
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
H13
TGP
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c515t-a4a5cbe555676abca4604916498330b70dfc3eb6d1bffb315f52b3952d05d2e03
IEDL.DBID UNPAY
ISSN 1674-2052
1752-9867
1752-9859
IngestDate Sun Oct 26 03:39:54 EDT 2025
Tue Sep 30 16:48:49 EDT 2025
Sun Sep 28 01:50:24 EDT 2025
Mon Sep 29 06:01:57 EDT 2025
Thu Apr 03 07:05:20 EDT 2025
Wed Oct 01 02:23:11 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Fri Feb 23 02:27:15 EST 2024
Wed Feb 14 10:17:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords HKT1
glands
sodium channel
sodium uptake
Dionaea muscipula
action potential
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-a4a5cbe555676abca4604916498330b70dfc3eb6d1bffb315f52b3952d05d2e03
Notes 31-2013/Q
sodium channel, HKT1, Dionaea muscipula, action potential, glands, sodium uptake
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na^+- and K^+-permeable mutants function as ion channels rather than K^+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na^+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this article.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S1674205215003949/pdf
PMID 26455461
PQID 1772149188
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_molp_2015_09_017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791408
proquest_miscellaneous_2000400335
proquest_miscellaneous_1772149188
pubmed_primary_26455461
crossref_citationtrail_10_1016_j_molp_2015_09_017
crossref_primary_10_1016_j_molp_2015_09_017
elsevier_sciencedirect_doi_10_1016_j_molp_2015_09_017
chongqing_primary_669433315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-07
PublicationDateYYYYMMDD 2016-03-07
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular plant
PublicationTitleAlternate Molecular Plant
PublicationYear 2016
Publisher Elsevier Inc
Oxford University Press
Publisher_xml – name: Elsevier Inc
– name: Oxford University Press
References Luan, Lan, Chul Lee (bib20) 2009; 12
Neher (bib23) 1975; 401
Schachtman, Schroeder (bib27) 1994; 370
Beilby (bib3) 2007; 257
Vieira-Pires, Szollosi, Morais-Cabral (bib38) 2013; 496
Shabala, Bose, Hedrich (bib34) 2014; 19
Jayakannan, Babourina, Rengel (bib15) 2011; 168
Escalante-Perez, Scherzer, Al-Rasheid, Dottinger, Neher, Hedrich (bib7) 2014; 7
Tholema, Vor der Bruggen, Maser, Nakamura, Schroeder, Kobayashi, Uozumi, Bakker (bib37) 2005; 280
Kruse, Gao, Honsel, Kreuzwieser, Burzlaff, Alfarraj, Hedrich, Rennenberg (bib18) 2014; 174
Gomez-Porras, Riano-Pachon, Benito, Haro, Sklodowski, Rodriguez-Navarro, Dreyer (bib10) 2012; 3
Platten, Cotsaftis, Berthomieu, Bohnert, Davenport, Fairbairn, Horie, Leigh, Lin, Luan (bib25) 2006; 11
Ali, Park, Ali, Oh, Aman, Kropornicka, Hong, Choi, Chung, Kim (bib1) 2012; 158
Mian, Oomen, Isayenkov, Sentenac, Maathuis, Very (bib21) 2011; 68
Hille (bib13) 1992
Balotin, Dipalma (bib2) 1962; 138
Shabala (bib30) 2011; 190
Blumwald (bib4) 2000; 12
Hedrich (bib12) 2012; 92
Scherzer, Krol, Kreuzer, Kruse, Karl, von Ruden, Escalante-Perez, Muller, Rennenberg, Al-Rasheid (bib28) 2013; 23
Newman (bib24) 2001; 24
Forterre, Skotheim, Dumais, Mahadevan (bib8) 2005; 433
Kingsbury, Epstein (bib16) 1986; 80
Kreuzwieser, Scheerer, Kruse, Burzlaff, Honsel, Alfarraj, Georgiev, Schnitzler, Ghirardo, Kreuzer (bib17) 2014; 65
Waters, Gilliham, Hrmova (bib39) 2013; 14
Horie, Brodsky, Costa, Kaneko, Lo Schiavo, Katsuhara, Schroeder (bib14) 2011; 156
Shabala, Demidchik, Shabala, Cuin, Smith, Miller, Davies, Newman (bib33) 2006; 141
Hauser, Horie (bib11) 2010; 33
Lan, Wang, Wang, Li, Buchanan, Lin, Gao, Luan (bib19) 2010; 107
Corratge-Faillie, Jabnoune, Zimmermann, Very, Fizames, Sentenac (bib5) 2010; 67
Takeuchi, Takeuchi (bib36) 1971; 212
Shabala, Newman, Morris (bib32) 1997; 113
Gao, Loeffler, Honsel, Kruse, Krol, Scherzer, Kreuzer, Bemm, Buegger, Burzlaff (bib9) 2015; 205
Rubio, Gassmann, Schroeder (bib26) 1995; 270
Böhm, Scherzer, Krol, Kreuzer, von Meyer, Lorey, Mueller, Shabala, Monte, Solano (bib40) 2016; 21
Munns, Tester (bib22) 2008; 59
Shabala, Shabala (bib31) 2002; 114
Escalante-Perez, Krol, Stange, Geiger, Al-Rasheid, Hause, Neher, Hedrich (bib6) 2011; 108
Scherzer, Bohm, Krol, Shabala, Kreuzer, Larisch, Bemm, Al-Rasheid, Shabala, Rennenberg (bib29) 2015; 112
Sheng, Kleyman (bib35) 2003; 84
Blumwald (10.1016/j.molp.2015.09.017_bib4) 2000; 12
Shabala (10.1016/j.molp.2015.09.017_bib32) 1997; 113
Shabala (10.1016/j.molp.2015.09.017_bib33) 2006; 141
Waters (10.1016/j.molp.2015.09.017_bib39) 2013; 14
Rubio (10.1016/j.molp.2015.09.017_bib26) 1995; 270
Sheng (10.1016/j.molp.2015.09.017_bib35) 2003; 84
Newman (10.1016/j.molp.2015.09.017_bib24) 2001; 24
Schachtman (10.1016/j.molp.2015.09.017_bib27) 1994; 370
Munns (10.1016/j.molp.2015.09.017_bib22) 2008; 59
Tholema (10.1016/j.molp.2015.09.017_bib37) 2005; 280
Mian (10.1016/j.molp.2015.09.017_bib21) 2011; 68
Scherzer (10.1016/j.molp.2015.09.017_bib29) 2015; 112
Luan (10.1016/j.molp.2015.09.017_bib20) 2009; 12
Beilby (10.1016/j.molp.2015.09.017_bib3) 2007; 257
Kingsbury (10.1016/j.molp.2015.09.017_bib16) 1986; 80
Shabala (10.1016/j.molp.2015.09.017_bib30) 2011; 190
Kreuzwieser (10.1016/j.molp.2015.09.017_bib17) 2014; 65
Ali (10.1016/j.molp.2015.09.017_bib1) 2012; 158
Hauser (10.1016/j.molp.2015.09.017_bib11) 2010; 33
Balotin (10.1016/j.molp.2015.09.017_bib2) 1962; 138
Escalante-Perez (10.1016/j.molp.2015.09.017_bib6) 2011; 108
Hille (10.1016/j.molp.2015.09.017_bib13) 1992
Shabala (10.1016/j.molp.2015.09.017_bib31) 2002; 114
Gomez-Porras (10.1016/j.molp.2015.09.017_bib10) 2012; 3
Gao (10.1016/j.molp.2015.09.017_bib9) 2015; 205
Vieira-Pires (10.1016/j.molp.2015.09.017_bib38) 2013; 496
Escalante-Perez (10.1016/j.molp.2015.09.017_bib7) 2014; 7
Horie (10.1016/j.molp.2015.09.017_bib14) 2011; 156
Kruse (10.1016/j.molp.2015.09.017_bib18) 2014; 174
Böhm (10.1016/j.molp.2015.09.017_bib40) 2016; 21
Corratge-Faillie (10.1016/j.molp.2015.09.017_bib5) 2010; 67
Lan (10.1016/j.molp.2015.09.017_bib19) 2010; 107
Jayakannan (10.1016/j.molp.2015.09.017_bib15) 2011; 168
Scherzer (10.1016/j.molp.2015.09.017_bib28) 2013; 23
Hedrich (10.1016/j.molp.2015.09.017_bib12) 2012; 92
Neher (10.1016/j.molp.2015.09.017_bib23) 1975; 401
Platten (10.1016/j.molp.2015.09.017_bib25) 2006; 11
Shabala (10.1016/j.molp.2015.09.017_bib34) 2014; 19
Takeuchi (10.1016/j.molp.2015.09.017_bib36) 1971; 212
Forterre (10.1016/j.molp.2015.09.017_bib8) 2005; 433
22238420 - Plant Physiol. 2012 Mar;158(3):1463-74
24420576 - J Exp Bot. 2014 Feb;65(2):755-66
17816557 - Science. 1962 Dec 21;138(3547):1338-9
16809061 - Trends Plant Sci. 2006 Aug;11(8):372-4
24285093 - Mol Plant. 2014 Apr;7(4):744-6
10873827 - Curr Opin Cell Biol. 2000 Aug;12(4):431-4
11762438 - Plant Cell Environ. 2001 Jan;24(1):1-14
23571493 - Int J Mol Sci. 2013;14(4):7660-80
23954430 - Curr Biol. 2013 Sep 9;23(17):1649-57
11982934 - Physiol Plant. 2002 Jan;114(1):47-56
19895406 - Plant Cell Environ. 2010 Apr;33(4):552-65
24141381 - Oecologia. 2014 Mar;174(3):839-51
23073631 - Physiol Rev. 2012 Oct;92(4):1777-811
7502075 - Science. 1995 Dec 8;270(5242):1660-3
23598340 - Nature. 2013 Apr 18;496(7445):323-8
21610181 - Plant Physiol. 2011 Jul;156(3):1493-507
16210320 - J Biol Chem. 2005 Dec 16;280(50):41146-54
20333436 - Cell Mol Life Sci. 2010 Aug;67(15):2511-32
18444910 - Annu Rev Plant Biol. 2008;59:651-81
5548011 - J Physiol. 1971 Jan;212(2):337-51
21563365 - New Phytol. 2011 Apr;190(2):289-98
16798942 - Plant Physiol. 2006 Aug;141(4):1653-65
22876252 - Front Plant Sci. 2012 Aug 02;3:167
21749504 - Plant J. 2011 Nov;68(3):468-79
12223594 - Plant Physiol. 1997 Jan;113(1):111-118
16664679 - Plant Physiol. 1986 Mar;80(3):651-4
21256620 - J Plant Physiol. 2011 Jul 1;168(10):1045-51
17280895 - Int Rev Cytol. 2007;257:43-82
25361704 - Trends Plant Sci. 2014 Nov;19(11):687-91
15674293 - Nature. 2005 Jan 27;433(7024):421-5
19501014 - Curr Opin Plant Biol. 2009 Jun;12(3):339-46
25997445 - Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7309-14
26804557 - Curr Biol. 2016 Feb 8;26(3):286-95
21896747 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15492-7
20351263 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):7089-94
8065452 - Nature. 1994 Aug 25;370(6491):655-8
25345872 - New Phytol. 2015 Feb;205(3):1320-9
References_xml – volume: 33
  start-page: 552
  year: 2010
  end-page: 565
  ident: bib11
  article-title: A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress
  publication-title: Plant Cell Environ.
– volume: 190
  start-page: 289
  year: 2011
  end-page: 298
  ident: bib30
  article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance
  publication-title: New Phytol.
– volume: 141
  start-page: 1653
  year: 2006
  end-page: 1665
  ident: bib33
  article-title: Extracellular Ca(2+) ameliorates NaCl-induced K(+) loss from
  publication-title: Plant Physiol.
– volume: 80
  start-page: 651
  year: 1986
  end-page: 654
  ident: bib16
  article-title: Salt sensitivity in wheat: a case for specific ion toxicity
  publication-title: Plant Physiol.
– volume: 174
  start-page: 839
  year: 2014
  end-page: 851
  ident: bib18
  article-title: Strategy of nitrogen acquisition and utilization by carnivorous
  publication-title: Oecologia
– volume: 19
  start-page: 687
  year: 2014
  end-page: 691
  ident: bib34
  article-title: Salt bladders: do they matter?
  publication-title: Trends Plant Sci.
– volume: 212
  start-page: 337
  year: 1971
  end-page: 351
  ident: bib36
  article-title: Anion interaction at the inhibitory post-synaptic membrane of the crayfish neuromuscular junction
  publication-title: J. Physiol.
– volume: 158
  start-page: 1463
  year: 2012
  end-page: 1474
  ident: bib1
  article-title: TsHKT1;2, a HKT1 homolog from the extremophile
  publication-title: Plant Physiol.
– volume: 3
  start-page: 167
  year: 2012
  ident: bib10
  article-title: Phylogenetic analysis of K(+) transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants
  publication-title: Front. Plant Sci.
– volume: 23
  start-page: 1649
  year: 2013
  end-page: 1657
  ident: bib28
  article-title: The
  publication-title: Curr. Biol.
– volume: 401
  start-page: 540
  year: 1975
  end-page: 544
  ident: bib23
  article-title: Ionic specificity of gramicidin channel and thallous ion
  publication-title: Biochim. Biophys. Acta
– volume: 168
  start-page: 1045
  year: 2011
  end-page: 1051
  ident: bib15
  article-title: Improved measurements of Na(+) fluxes in plants using calixarene-based microelectrodes
  publication-title: J. Plant Physiol.
– volume: 433
  start-page: 421
  year: 2005
  end-page: 425
  ident: bib8
  article-title: How the Venus flytrap snaps
  publication-title: Nature
– volume: 14
  start-page: 7660
  year: 2013
  end-page: 7680
  ident: bib39
  article-title: Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity
  publication-title: Int. J. Mol. Sci.
– volume: 370
  start-page: 655
  year: 1994
  end-page: 658
  ident: bib27
  article-title: Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants
  publication-title: Nature
– volume: 21
  year: 2016
  ident: bib40
  article-title: The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake
  publication-title: Curr. Biol.
– volume: 107
  start-page: 7089
  year: 2010
  end-page: 7094
  ident: bib19
  article-title: A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 84
  start-page: 530a
  year: 2003
  ident: bib35
  article-title: External Cd(2+) accessibility of introduced sulfhydryl groups at the selectivity filter of the epithelial Na(+) channel
  publication-title: Biophys. J.
– volume: 92
  start-page: 1777
  year: 2012
  end-page: 1811
  ident: bib12
  article-title: Ion channels in plants
  publication-title: Physiol. Rev.
– volume: 270
  start-page: 1660
  year: 1995
  end-page: 1663
  ident: bib26
  article-title: Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance
  publication-title: Science
– volume: 114
  start-page: 47
  year: 2002
  end-page: 56
  ident: bib31
  article-title: Kinetics of net H(+), Ca(2+), K(+), Na(+), NH(4+), and Cl(-) fluxes associated with post-chilling recovery of plasma membrane transporters in
  publication-title: Physiol. Plant.
– volume: 138
  start-page: 1338
  year: 1962
  end-page: 1339
  ident: bib2
  article-title: Spontaneous electrical activity of
  publication-title: Science
– volume: 67
  start-page: 2511
  year: 2010
  end-page: 2532
  ident: bib5
  article-title: Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family
  publication-title: Cell. Mol. Life Sci.
– volume: 7
  start-page: 744
  year: 2014
  end-page: 746
  ident: bib7
  article-title: Mechano-stimulation triggers turgor changes associated with trap closure in the Darwin plant
  publication-title: Mol. Plant
– volume: 65
  start-page: 755
  year: 2014
  end-page: 766
  ident: bib17
  article-title: The Venus flytrap attracts insects by the release of volatile organic compounds
  publication-title: J. Exp. Bot.
– volume: 24
  start-page: 1
  year: 2001
  end-page: 14
  ident: bib24
  article-title: Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function
  publication-title: Plant Cell Environ.
– volume: 68
  start-page: 468
  year: 2011
  end-page: 479
  ident: bib21
  article-title: Over-expression of an Na(+)-and K(+)-permeable HKT transporter in barley improves salt tolerance
  publication-title: Plant J.
– volume: 257
  start-page: 43
  year: 2007
  end-page: 82
  ident: bib3
  article-title: Action potential in charophytes
  publication-title: Int. Rev. Cytol.
– volume: 112
  start-page: 7309
  year: 2015
  end-page: 7314
  ident: bib29
  article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 280
  start-page: 41146
  year: 2005
  end-page: 41154
  ident: bib37
  article-title: All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K(+) uptake by the KtrAB system from
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 372
  year: 2006
  end-page: 374
  ident: bib25
  article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance
  publication-title: Trends Plant Sci.
– volume: 12
  start-page: 339
  year: 2009
  end-page: 346
  ident: bib20
  article-title: Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network
  publication-title: Curr. Opin. Plant Biol.
– volume: 496
  start-page: 323
  year: 2013
  end-page: 328
  ident: bib38
  article-title: The structure of the KtrAB potassium transporter
  publication-title: Nature
– year: 1992
  ident: bib13
  article-title: Ionic Channels of Excitable Membranes
– volume: 156
  start-page: 1493
  year: 2011
  end-page: 1507
  ident: bib14
  article-title: K(+) transport by the OsHKT2;4 transporter from rice with atypical Na(+) transport properties and competition in permeation of K(+) over Mg(2+) and Ca(2+) ions
  publication-title: Plant Physiol.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  ident: bib22
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
– volume: 108
  start-page: 15492
  year: 2011
  end-page: 15497
  ident: bib6
  article-title: A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 431
  year: 2000
  end-page: 434
  ident: bib4
  article-title: Sodium transport and salt tolerance in plants
  publication-title: Curr. Opin. Cell. Biol.
– volume: 205
  start-page: 1320
  year: 2015
  end-page: 1329
  ident: bib9
  article-title: Integration of trap- and root-derived nitrogen nutrition of carnivorous
  publication-title: New Phytol.
– volume: 113
  start-page: 111
  year: 1997
  end-page: 118
  ident: bib32
  article-title: Oscillations in H(+) and Ca(2+) ion fluxes around the elongation region of corn roots and effects of external pH
  publication-title: Plant Physiol.
– volume: 21
  year: 2016
  ident: 10.1016/j.molp.2015.09.017_bib40
  article-title: The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake
  publication-title: Curr. Biol.
– volume: 84
  start-page: 530a
  year: 2003
  ident: 10.1016/j.molp.2015.09.017_bib35
  article-title: External Cd(2+) accessibility of introduced sulfhydryl groups at the selectivity filter of the epithelial Na(+) channel
  publication-title: Biophys. J.
– volume: 11
  start-page: 372
  year: 2006
  ident: 10.1016/j.molp.2015.09.017_bib25
  article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2006.06.001
– volume: 158
  start-page: 1463
  year: 2012
  ident: 10.1016/j.molp.2015.09.017_bib1
  article-title: TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K(+) specificity in the presence of NaCl
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.193110
– volume: 174
  start-page: 839
  year: 2014
  ident: 10.1016/j.molp.2015.09.017_bib18
  article-title: Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula
  publication-title: Oecologia
  doi: 10.1007/s00442-013-2802-9
– volume: 156
  start-page: 1493
  year: 2011
  ident: 10.1016/j.molp.2015.09.017_bib14
  article-title: K(+) transport by the OsHKT2;4 transporter from rice with atypical Na(+) transport properties and competition in permeation of K(+) over Mg(2+) and Ca(2+) ions
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.168047
– volume: 113
  start-page: 111
  year: 1997
  ident: 10.1016/j.molp.2015.09.017_bib32
  article-title: Oscillations in H(+) and Ca(2+) ion fluxes around the elongation region of corn roots and effects of external pH
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.1.111
– volume: 3
  start-page: 167
  year: 2012
  ident: 10.1016/j.molp.2015.09.017_bib10
  article-title: Phylogenetic analysis of K(+) transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00167
– volume: 68
  start-page: 468
  year: 2011
  ident: 10.1016/j.molp.2015.09.017_bib21
  article-title: Over-expression of an Na(+)-and K(+)-permeable HKT transporter in barley improves salt tolerance
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04701.x
– volume: 59
  start-page: 651
  year: 2008
  ident: 10.1016/j.molp.2015.09.017_bib22
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 107
  start-page: 7089
  year: 2010
  ident: 10.1016/j.molp.2015.09.017_bib19
  article-title: A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1000698107
– volume: 80
  start-page: 651
  year: 1986
  ident: 10.1016/j.molp.2015.09.017_bib16
  article-title: Salt sensitivity in wheat: a case for specific ion toxicity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.80.3.651
– volume: 280
  start-page: 41146
  year: 2005
  ident: 10.1016/j.molp.2015.09.017_bib37
  article-title: All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K(+) uptake by the KtrAB system from Vibrio alginolyticus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507647200
– volume: 92
  start-page: 1777
  year: 2012
  ident: 10.1016/j.molp.2015.09.017_bib12
  article-title: Ion channels in plants
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00038.2011
– volume: 257
  start-page: 43
  year: 2007
  ident: 10.1016/j.molp.2015.09.017_bib3
  article-title: Action potential in charophytes
  publication-title: Int. Rev. Cytol.
  doi: 10.1016/S0074-7696(07)57002-6
– volume: 19
  start-page: 687
  year: 2014
  ident: 10.1016/j.molp.2015.09.017_bib34
  article-title: Salt bladders: do they matter?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.09.001
– volume: 270
  start-page: 1660
  year: 1995
  ident: 10.1016/j.molp.2015.09.017_bib26
  article-title: Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance
  publication-title: Science
  doi: 10.1126/science.270.5242.1660
– volume: 190
  start-page: 289
  year: 2011
  ident: 10.1016/j.molp.2015.09.017_bib30
  article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03575.x
– volume: 141
  start-page: 1653
  year: 2006
  ident: 10.1016/j.molp.2015.09.017_bib33
  article-title: Extracellular Ca(2+) ameliorates NaCl-induced K(+) loss from Arabidopsis root and leaf cells by controlling plasma membrane K(+) -permeable channels
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.082388
– volume: 212
  start-page: 337
  year: 1971
  ident: 10.1016/j.molp.2015.09.017_bib36
  article-title: Anion interaction at the inhibitory post-synaptic membrane of the crayfish neuromuscular junction
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1971.sp009328
– volume: 67
  start-page: 2511
  year: 2010
  ident: 10.1016/j.molp.2015.09.017_bib5
  article-title: Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-010-0317-7
– volume: 114
  start-page: 47
  year: 2002
  ident: 10.1016/j.molp.2015.09.017_bib31
  article-title: Kinetics of net H(+), Ca(2+), K(+), Na(+), NH(4+), and Cl(-) fluxes associated with post-chilling recovery of plasma membrane transporters in Zea mays leaf and root tissues
  publication-title: Physiol. Plant.
  doi: 10.1046/j.0031-9317.2001.1140108.x
– volume: 433
  start-page: 421
  year: 2005
  ident: 10.1016/j.molp.2015.09.017_bib8
  article-title: How the Venus flytrap snaps
  publication-title: Nature
  doi: 10.1038/nature03185
– volume: 14
  start-page: 7660
  year: 2013
  ident: 10.1016/j.molp.2015.09.017_bib39
  article-title: Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms14047660
– volume: 401
  start-page: 540
  year: 1975
  ident: 10.1016/j.molp.2015.09.017_bib23
  article-title: Ionic specificity of gramicidin channel and thallous ion
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(75)90252-7
– volume: 23
  start-page: 1649
  year: 2013
  ident: 10.1016/j.molp.2015.09.017_bib28
  article-title: The Dionaea muscipula ammonium channel DmAMT1 provides NH(4+) uptake associated with Venus flytrap's prey digestion
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.07.028
– volume: 168
  start-page: 1045
  year: 2011
  ident: 10.1016/j.molp.2015.09.017_bib15
  article-title: Improved measurements of Na(+) fluxes in plants using calixarene-based microelectrodes
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.12.006
– volume: 112
  start-page: 7309
  year: 2015
  ident: 10.1016/j.molp.2015.09.017_bib29
  article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1507810112
– volume: 205
  start-page: 1320
  year: 2015
  ident: 10.1016/j.molp.2015.09.017_bib9
  article-title: Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula
  publication-title: New Phytol.
  doi: 10.1111/nph.13120
– volume: 496
  start-page: 323
  year: 2013
  ident: 10.1016/j.molp.2015.09.017_bib38
  article-title: The structure of the KtrAB potassium transporter
  publication-title: Nature
  doi: 10.1038/nature12055
– volume: 12
  start-page: 339
  year: 2009
  ident: 10.1016/j.molp.2015.09.017_bib20
  article-title: Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2009.05.003
– year: 1992
  ident: 10.1016/j.molp.2015.09.017_bib13
– volume: 33
  start-page: 552
  year: 2010
  ident: 10.1016/j.molp.2015.09.017_bib11
  article-title: A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02056.x
– volume: 108
  start-page: 15492
  year: 2011
  ident: 10.1016/j.molp.2015.09.017_bib6
  article-title: A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112535108
– volume: 12
  start-page: 431
  year: 2000
  ident: 10.1016/j.molp.2015.09.017_bib4
  article-title: Sodium transport and salt tolerance in plants
  publication-title: Curr. Opin. Cell. Biol.
  doi: 10.1016/S0955-0674(00)00112-5
– volume: 370
  start-page: 655
  year: 1994
  ident: 10.1016/j.molp.2015.09.017_bib27
  article-title: Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants
  publication-title: Nature
  doi: 10.1038/370655a0
– volume: 138
  start-page: 1338
  year: 1962
  ident: 10.1016/j.molp.2015.09.017_bib2
  article-title: Spontaneous electrical activity of Dionaea muscipula
  publication-title: Science
  doi: 10.1126/science.138.3547.1338
– volume: 65
  start-page: 755
  year: 2014
  ident: 10.1016/j.molp.2015.09.017_bib17
  article-title: The Venus flytrap attracts insects by the release of volatile organic compounds
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert455
– volume: 24
  start-page: 1
  year: 2001
  ident: 10.1016/j.molp.2015.09.017_bib24
  article-title: Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2001.00661.x
– volume: 7
  start-page: 744
  year: 2014
  ident: 10.1016/j.molp.2015.09.017_bib7
  article-title: Mechano-stimulation triggers turgor changes associated with trap closure in the Darwin plant Dionaea muscipula
  publication-title: Mol. Plant
  doi: 10.1093/mp/sst169
– reference: 21610181 - Plant Physiol. 2011 Jul;156(3):1493-507
– reference: 24420576 - J Exp Bot. 2014 Feb;65(2):755-66
– reference: 18444910 - Annu Rev Plant Biol. 2008;59:651-81
– reference: 17280895 - Int Rev Cytol. 2007;257:43-82
– reference: 21749504 - Plant J. 2011 Nov;68(3):468-79
– reference: 23073631 - Physiol Rev. 2012 Oct;92(4):1777-811
– reference: 25345872 - New Phytol. 2015 Feb;205(3):1320-9
– reference: 20333436 - Cell Mol Life Sci. 2010 Aug;67(15):2511-32
– reference: 16664679 - Plant Physiol. 1986 Mar;80(3):651-4
– reference: 11982934 - Physiol Plant. 2002 Jan;114(1):47-56
– reference: 17816557 - Science. 1962 Dec 21;138(3547):1338-9
– reference: 16210320 - J Biol Chem. 2005 Dec 16;280(50):41146-54
– reference: 23571493 - Int J Mol Sci. 2013;14(4):7660-80
– reference: 23954430 - Curr Biol. 2013 Sep 9;23(17):1649-57
– reference: 16798942 - Plant Physiol. 2006 Aug;141(4):1653-65
– reference: 20351263 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):7089-94
– reference: 11762438 - Plant Cell Environ. 2001 Jan;24(1):1-14
– reference: 22876252 - Front Plant Sci. 2012 Aug 02;3:167
– reference: 19895406 - Plant Cell Environ. 2010 Apr;33(4):552-65
– reference: 25997445 - Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7309-14
– reference: 23598340 - Nature. 2013 Apr 18;496(7445):323-8
– reference: 19501014 - Curr Opin Plant Biol. 2009 Jun;12(3):339-46
– reference: 12223594 - Plant Physiol. 1997 Jan;113(1):111-118
– reference: 24141381 - Oecologia. 2014 Mar;174(3):839-51
– reference: 22238420 - Plant Physiol. 2012 Mar;158(3):1463-74
– reference: 24285093 - Mol Plant. 2014 Apr;7(4):744-6
– reference: 21896747 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15492-7
– reference: 5548011 - J Physiol. 1971 Jan;212(2):337-51
– reference: 25361704 - Trends Plant Sci. 2014 Nov;19(11):687-91
– reference: 21563365 - New Phytol. 2011 Apr;190(2):289-98
– reference: 10873827 - Curr Opin Cell Biol. 2000 Aug;12(4):431-4
– reference: 16809061 - Trends Plant Sci. 2006 Aug;11(8):372-4
– reference: 7502075 - Science. 1995 Dec 8;270(5242):1660-3
– reference: 21256620 - J Plant Physiol. 2011 Jul 1;168(10):1045-51
– reference: 15674293 - Nature. 2005 Jan 27;433(7024):421-5
– reference: 26804557 - Curr Biol. 2016 Feb 8;26(3):286-95
– reference: 8065452 - Nature. 1994 Aug 25;370(6491):655-8
SSID ssj0060863
Score 2.3418102
Snippet The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 428
SubjectTerms action potential
Animals
Biological Transport
carnivores
carnivorous plants
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
diet
Dionaea muscipula
Droseraceae - genetics
Droseraceae - metabolism
Droseraceae - physiology
Electrophysiological Phenomena
epithelium
glands
HKT1
information management
mutants
Mutation
oocytes
Plant Proteins - genetics
Plant Proteins - metabolism
potassium
Predatory Behavior
sodium
Sodium - metabolism
sodium channel
sodium channels
sodium uptake
transporters
Xenopus
兴奋性
捕蝇草
摄取
渠道
猎物
钠通道
非洲爪蟾卵母细胞
食肉植物
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGh7S9IL4pA2Qk3iBqXNv5eBxVq8LEhLQV9mbZibsFMifbEqB_Af82d_moqKZNiMckthP7zvfh3P2OkDdRbEyoGfd0GAUecIj1jEjBS5HAHML4Vjc4258Og_lCfDyRJ1tk0ufCYFhlJ_tbmd5I6-7OqFvNUZlloyOMnx9j7qnEBFMR3yHboH-iaEC29z8czA97gRyA1d7E2UN7Dzt0uTNtmNd5kSNsJZMN3CnWLdsBueNOL0Bz3KSrrtui10Mqd2pX6tVPned_6avZfXKvMzTpfjuXB2TLuofk7vsCjMHVI_L7i3X1FZ3lKxinpPODY-ahS0ox28DZnH5uM_SuKBi1cGFX9KhIs_qcLspKf7c0c1VBJ3is8qO4LGAorH5U0a9ZdVbUFZ302SbulOJRL5025XaQI-j0V5JVLTz46jFZzKbHk7nX1WTwErB8Kk8LLRNjpZRBGGiTaBGAjwE-Vxxx7pvQT5cJtyZImVkuDWdyKceGx3Kc-jIdW58_IQNXOPuMUKMROIjpME6sECaJ_cSkIdOW89QshR6SvTUlVNlib6ggiAXnMO6QsJ42KungzLGqRq76uLVvCmmrkLbKjxXQdkjervv0A97WWvYkVxssqUDb3Nrvdc8fCvYq_oDRzgIlFANXBjxSFkU3t8HUKYEV9mCGT1ueWn8rGK8YVMiGJNzgtnUDxArffOKyswYzXIQxuNLw3ndrvvyHJXj-n0uwR3bhKmhi9cIXZFBd1vYlGG-VedVtzj-D30TH
  priority: 102
  providerName: Elsevier
Title Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability
URI http://lib.cqvip.com/qk/90143B/201603/669433315.html
https://dx.doi.org/10.1016/j.molp.2015.09.017
https://www.ncbi.nlm.nih.gov/pubmed/26455461
https://www.proquest.com/docview/1772149188
https://www.proquest.com/docview/2000400335
https://pubmed.ncbi.nlm.nih.gov/PMC4791408
http://www.cell.com/article/S1674205215003949/pdf
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1752-9867
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060863
  issn: 1674-2052
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1752-9867
  dateEnd: 20241007
  omitProxy: true
  ssIdentifier: ssj0060863
  issn: 1674-2052
  databaseCode: ACRLP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1752-9867
  dateEnd: 20241007
  omitProxy: true
  ssIdentifier: ssj0060863
  issn: 1674-2052
  databaseCode: AIKHN
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Open Access Journals (Elsevier)
  customDbUrl:
  eissn: 1752-9867
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0060863
  issn: 1674-2052
  databaseCode: IXB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1752-9867
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060863
  issn: 1674-2052
  databaseCode: AKRWK
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLa2Fmm8cB-UQWUk3iBbLnYuj13VqqOimraVlSfLTpytLEvKlgDlD_C3OSeXiqnaNJ7aKCeOa3-1v2Od8x1C3vuBUp60HEN6vmsAQrShWAReCgdwMGVqWepsf564oyn7NOOzDdIULsSoSjyxLtfoeuz2jjFS3sYsU46ppCzYW0TxJmm7HOh3i7Snk8PeV3SswMxAuzIJkttG4JfF0urvrlcnzVTxXZdZgnqVFi91TrFg2RYsOOnZd9gybtuk1knoeizlVpEu5PKnTJJ_NqrhY3LUpPtU8SkXu0WudsPf6-qP9x-DJ-RRTVtpr7J7SjZ0-ow82M-AWi6fkz9fdFpc02GyhM4t6Gh8Yhno4FLMXUh1Qg-rfL9rChQZLvSSHmfRvLik00UuLzSdp3lG-3hI8yO7yqAprKWU09N5fp4VOe03uSvpGcWDYzooi_cgvujgVzjPK7Hx5QsyHQ5O-iOjrvBghMCjckMyyUOlOeeu50oVSuaCxwIeXOA7jqk8M4pDRys3slQcK8fiMbeVE3A7Mnlka9PZJq00S_UrQpVEGSJLekGoGVNhYIYq8iypHSdSMZMdsrOaXrGolDyE6wbMcaDdDrGaCRdhLY6ONToS0UTBfRMIGIGAEWYgADAd8mH1TNPgXda8wZGoyU1FWgTsXXc-964BnYB_PgJDphpmQljgGIF_a_n-7TaYiMWwXh_8wpcVUFd9BSqMIYpWh3g3ILwyQOXxm3fS-XmpQM68ABxzeO_HFdjvMQSv_898hzyEK7cM-PPekFZ-Vei3wABz1SXt3sF4NMHP8dHpuEs2D2b73Xol-AtSTltb
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGhlReEJ-jGx9G4g2ixrWdNI-jatXRrUJaC3uz7MTdApnTbSnQv4B_m7t8VFTTJsRjkrMT-87nO-fud4S860XGhJpxT4e9wAMJsZ4RCXgpEoRDGN_qEmf7eBKMZuLTqTzdIv0mFwbDKmvdX-n0UlvXdzr1bHYWado5wfj5LuaeSkwwFdE9siMkD2F17hwcjkeTRiEHYLWXcfZA72GDOnemCvO6yDOErWSyhDvFumUt0Dvu7BJ2jtv2qpu26M2QytbSLfTqp86yv_ar4SPysDY06UE1lsdky7on5P7HHIzB1VPy-4t1y2s6zFbQz4KOxlPmoUtKMdvA2Yx-rjL0rikYtXBhV_QkT9LlBZ0tCv3d0tQVOe3jscqP_CqHrrD6UUG_psV5vixov8k2cWcUj3rpoCy3gxJBB7_itKjgwVfPyGw4mPZHXl2TwYvB8ik8LbSMjZVSBmGgTaxFAD4G-FxRj3PfhH4yj7k1QcLMfG44k3PZNTyS3cSXSdf6_DnZdrmzLwg1GoGDmA6j2Aph4siPTRIybTlPzFzoNtlfc0ItKuwNFQSR4Bz6bRPW8EbFNZw5VtXIVBO39k0hbxXyVvmRAt62yft1m6bDu6hlw3K1IZIKdps7271t5EPBWsUfMNpZ4IRi4MqAR8p6vdtpMHVKYIU9GOFuJVPrbwXjFYMKWZuEG9K2JkCs8M0nLj0vMcNFGIErDe_9sJbLf5iCvf-cgjekNZoeH6mjw8l4nzyAJ0EZtxe-JNvF1dK-AkOuMK_rhfoHu9dHqA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVGhzRe-B6UATISb5AtbmwneRxVqwrENLEVxpNlJ85WljllS4DyB_jb3JuPiqnaNN4S5cZx7JP4XOvecwl5HcXGhJoFng4j6QFCrGd4Cl6KAHBw41td62x_3JOTKX9_JI7WSFe4EKMqcce6_ke3Y7dzgJHyA8wyFZhKyuOdeZrdIutSAP3ukfXp3v7uV3SswMxDuzoJUgy8OKqLpbXHMmyTZpr4rrMiR71KJmqdUyxYtgE_HHf8HZaMqxapVRK6Gku5Ubm5XvzUef7PQjW-Rz516T5NfMrpdlWa7eT3qvrjzcfgPrnb0la629g9IGvWPSS33xVALRePyJ_P1lUXdJwvoHNzOvlwyDx0cCnmLjib0_0m3--CAkWGE7ugB0U6q87odF7qU0tnrizoEDdpfhTnBTSFtZRK-mVWnhRVSYdd7oo7prhxTEd18R7EFx39SmZlIza-eEym49HhcOK1FR68BHhU6WmuRWKsEEKGUptEcwkeC3hwcRQEvgn9NEsCa2TKTJaZgIlMDEwQi0Hqi3Rg_WCT9Fzh7FNCjUYZIqbDOLGcmyT2E5OGTNsgSE3GdZ9sLadXzRslDyVlzIMA2u0T1k24SlpxdKzRkasuCu6bQsAoBIzyYwWA6ZM3y3u6Bq-zFh2OVEtuGtKiYO269r5XHegUfPkIDO0szIRi4BiBf8ui6GobTMTiWK8P3vBJA9RlX4EKY4gi65PwEoSXBqg8fvmKm53UCuQ8jMExh-e-XYL9BkPw7P_Mt8gdOJN1wF_4nPTK88q-AAZYmpftN_8Xq0NXJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Venus+Flytrap+HKT1-Type+Channel+Provides+for+Prey+Sodium+Uptake+into+Carnivorous+Plant+Without+Conflicting+with+Electrical+Excitability&rft.jtitle=%E5%88%86%E5%AD%90%E6%A4%8D%E7%89%A9%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=J.+Bohm+S.+Scherzer+S.+Shabala+E.+Krol+E.+Neher+T.D.+Mueller+R.+Hedrich&rft.date=2016-03-07&rft.issn=1674-2052&rft.eissn=1752-9867&rft.issue=3&rft.spage=428&rft.epage=436&rft_id=info:doi/10.1016%2Fj.molp.2015.09.017&rft.externalDocID=669433315
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90143B%2F90143B.jpg