Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 4; pp. 1473 - 1478 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
28.01.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1312399111 |
Cover
Abstract | Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. |
---|---|
AbstractList | Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved a4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. The mitochondrion harbors a genome inherited from its prokaryotic ancestor. Damage to mtDNA causes severe consequences for the cell. Disease-causing mtDNA mutations can be inherited, or harmful changes in the mitochondrial genome can accumulate during treatment with anticancer or antiviral agents. Furthermore, mutation of mtDNA correlates with and may have a causal role in aging. We have used a single-celled organism in which many studies of mitochondrial function have been performed to investigate how pathways that sense the nutritional status of the cell determine the consequences of mtDNA damage. We found that the deletion of two protein phosphatases conserved across many eukaryotes has greatly beneficial effects on cells lacking a mitochondrial genome, suggesting a potential therapeutic approach for mitochondrial disease. Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved a4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. [PUBLICATION ABSTRACT] |
Author | Dunn, Cory D. Mutlu, Nebibe Garipler, Görkem Lack, Nathan A. |
Author_xml | – sequence: 1 givenname: Görkem surname: Garipler fullname: Garipler, Görkem – sequence: 2 givenname: Nebibe surname: Mutlu fullname: Mutlu, Nebibe – sequence: 3 givenname: Nathan A. surname: Lack fullname: Lack, Nathan A. – sequence: 4 givenname: Cory D. surname: Dunn fullname: Dunn, Cory D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24474773$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFMycgEhcuaT2xE8cXpKrlS6rgUHq2vM5k41USB9u7qDf-dBy220Il1JMtzW-e5s28I3IwuhEJeQn0BKhgp9OowwkwKJiUAPCELIBKyCsu6QFZUFqIvOYFPyRHIawppbKs6TNyWHAuuBBsQX5dYI_RujFzbWbcGNBvsckm7yLaMZs6F6ZORx0wZB636OdPgy2aGDIdgjNWx9Tw08YuG2x0pnNj463us4uvZ1mjB73CLCldaWM67d1wY5KCwSRmg9X4nDxtdR_wxe17TK4_fvh-_jm__Pbpy_nZZW5KKGMumYBGaFw2Sy0bVtUVpUIiCA6maBhL3nglqGhKyVvJUUtmlrzEggFFyUt2TN7vdKfNcsDG4Bi97tXk7aD9jXLaqn8ro-3Uym0Vk0CrQiaBd7cC3v3YYIhqsMFg3-sR3SYoqCkDYJzVj6NlOhhjkhePo1wWAqqymB28fYCu3caPaWkzxaWkZUUT9fpvn3cG9ydPQLkDjHcheGyVsVHPEUi2ba-Aqjlaao6Wuo9W6jt90LeX_n_HfpS5cEcDKJ4m_jPKqx2wDtH5-1GZqCSt5pW_2dVb7ZReeRvU9VVBId0eWM1ZyX4D63LucA |
CitedBy_id | crossref_primary_10_1016_j_gene_2019_05_001 crossref_primary_10_1038_s41598_020_59244_4 crossref_primary_10_1016_j_mito_2014_08_004 crossref_primary_10_1093_nar_gkz1128 crossref_primary_10_1038_s42255_021_00477_6 crossref_primary_10_1134_S1607672923600355 crossref_primary_10_1242_dmm_020438 crossref_primary_10_1016_j_mito_2015_07_001 crossref_primary_10_1016_j_arr_2014_12_007 crossref_primary_10_1016_j_yexcr_2015_05_008 crossref_primary_10_1002_ctm2_341 crossref_primary_10_1016_j_bbamcr_2020_118660 crossref_primary_10_1093_g3journal_jkad272 crossref_primary_10_7554_eLife_84282 crossref_primary_10_1186_s13062_017_0187_0 crossref_primary_10_1016_j_bbabio_2018_04_011 crossref_primary_10_1073_pnas_1505411112 crossref_primary_10_1111_febs_13778 crossref_primary_10_1371_journal_pone_0146511 crossref_primary_10_1534_g3_114_010330 crossref_primary_10_1039_D4NR03375B crossref_primary_10_1021_acs_inorgchem_1c00241 crossref_primary_10_1080_15384101_2016_1183846 |
Cites_doi | 10.1093/genetics/165.1.35 10.1016/j.cell.2010.12.015 10.1073/pnas.2135385100 10.1128/MCB.16.6.2744 10.1093/genetics/140.2.435 10.1073/pnas.252625599 10.1111/j.1365-2443.2009.01290.x 10.1038/nprot.2012.016 10.1016/S1097-2765(01)00386-0 10.1186/gb-2010-11-8-r86 10.1128/MCB.18.11.6273 10.1038/nature06322 10.1126/science.1244360 10.1016/S0091-679X(08)61620-9 10.1002/j.1460-2075.1995.tb00282.x 10.1016/S0021-9258(18)33621-4 10.1002/em.20586 10.1016/j.cell.2009.04.014 10.1083/jcb.147.4.699 10.1016/S0074-7696(08)62397-9 10.1126/scisignal.2001182 10.1093/genetics/122.1.19 10.1093/nar/gkr1029 10.1002/ana.21217 10.1074/jbc.273.36.22983 10.1091/mbc.12.2.297 10.1016/j.exger.2008.05.006 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 10.1016/j.molmed.2010.04.007 10.1074/mcp.M700098-MCP200 10.1073/pnas.1102758108 10.2741/2854 10.1016/j.molcel.2009.09.025 10.1128/MMBR.00049-05 10.1002/j.1460-2075.1985.tb03896.x 10.1534/genetics.113.149708 |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 28, 2014 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 28, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1312399111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | PP6 or PP2A loss benefits cells lacking mtDNA |
EISSN | 1091-6490 |
EndPage | 1478 |
ExternalDocumentID | PMC3910629 3207865701 24474773 10_1073_pnas_1312399111 111_4_1473 23769069 US201600138435 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c515t-9371d7aebdba9d36860079e1741c2d3300046707d594f94ea93cb45e2310e9453 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:35:13 EDT 2025 Thu Sep 04 22:45:05 EDT 2025 Fri Sep 05 03:42:07 EDT 2025 Fri Sep 05 02:50:11 EDT 2025 Mon Jun 30 10:09:23 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 Tue Jul 01 01:52:58 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Nov 11 00:30:31 EST 2020 Thu May 29 08:40:44 EDT 2025 Wed Dec 27 19:21:59 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | bioenergetics petite-negative TOR mitochondria nutrient signaling |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c515t-9371d7aebdba9d36860079e1741c2d3300046707d594f94ea93cb45e2310e9453 |
Notes | http://dx.doi.org/10.1073/pnas.1312399111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: C.D.D. designed research; G.G., N.M., N.A.L., and C.D.D. performed research; G.G., N.M., and C.D.D. contributed new reagents/analytic tools; G.G., N.M., N.A.L., and C.D.D. analyzed data; and C.D.D. wrote the paper. 1Present address: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109. Edited by Jasper Rine, University of California, Berkeley, CA, and approved December 23, 2013 (received for review June 30, 2013) |
PMID | 24474773 |
PQID | 1494990560 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1803113438 proquest_journals_1494990560 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3910629 jstor_primary_23769069 crossref_primary_10_1073_pnas_1312399111 crossref_citationtrail_10_1073_pnas_1312399111 proquest_miscellaneous_1512333942 pubmed_primary_24474773 fao_agris_US201600138435 pnas_primary_111_4_1473 proquest_miscellaneous_1492716525 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-28 |
PublicationDateYYYYMMDD | 2014-01-28 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Ruiz A (e_1_3_4_25_2) 2011; 108 Myers AM (e_1_3_4_22_2) 1985; 4 Sickmann A (e_1_3_4_30_2) 2003; 100 Goecks J (e_1_3_4_38_2) 2010; 11 Veatch JR (e_1_3_4_12_2) 2009; 137 Cherry JM (e_1_3_4_40_2) 2012; 40 Cunningham JT (e_1_3_4_4_2) 2007; 450 Sesaki H (e_1_3_4_41_2) 1999; 147 Johnson SC (e_1_3_4_8_2) 2013; 342 Epstein CB (e_1_3_4_20_2) 2001; 12 Bodenmiller B (e_1_3_4_33_2) 2010; 3 Jiang Y (e_1_3_4_18_2) 2006; 70 Luke MM (e_1_3_4_17_2) 1996; 16 McCartney RR (e_1_3_4_31_2) 2001; 276 Chen XJ (e_1_3_4_9_2) 2000; 194 Jacinto E (e_1_3_4_14_2) 2001; 8 Kukat A (e_1_3_4_3_2) 2009; 44 Hedbacker K (e_1_3_4_6_2) 2008; 13 Garipler G (e_1_3_4_23_2) 2013; 194 Kong M (e_1_3_4_15_2) 2009; 36 Goldring ES (e_1_3_4_37_2) 1970; 52 Schmidt O (e_1_3_4_29_2) 2011; 144 Treitel MA (e_1_3_4_26_2) 1998; 18 Reinders J (e_1_3_4_28_2) 2007; 6 Schaefer AM (e_1_3_4_1_2) 2008; 63 Reid GA (e_1_3_4_11_2) 1982; 257 Zong H (e_1_3_4_5_2) 2002; 99 Weber ER (e_1_3_4_27_2) 1995; 140 van Zyl W (e_1_3_4_16_2) 1992; 12 Miceli MV (e_1_3_4_21_2) 2011; 2 Tu J (e_1_3_4_32_2) 1995; 14 Adams A (e_1_3_4_34_2) 1997 Sikorski RS (e_1_3_4_35_2) 1989; 122 Brachmann CB (e_1_3_4_36_2) 1998; 14 Wallace DC (e_1_3_4_2_2) 2010; 51 Schon EA (e_1_3_4_7_2) 2010; 16 Trapnell C (e_1_3_4_39_2) 2012; 7 Buchet K (e_1_3_4_10_2) 1998; 273 Pringle JR (e_1_3_4_24_2) 1989; 31 Hanyu Y (e_1_3_4_19_2) 2009; 14 Dunn CD (e_1_3_4_13_2) 2003; 165 11486005 - J Biol Chem. 2001 Sep 28;276(39):36460-6 11741537 - Mol Cell. 2001 Nov;8(5):1017-26 23502676 - Genetics. 2013 May;194(1):285-90 17981722 - Front Biosci. 2008;13:2408-20 18046414 - Nature. 2007 Nov 29;450(7170):736-40 5485912 - J Mol Biol. 1970 Sep 14;52(2):323-35 8649382 - Mol Cell Biol. 1996 Jun;16(6):2744-55 19818709 - Mol Cell. 2009 Oct 9;36(1):51-60 20556877 - Trends Mol Med. 2010 Jun;16(6):268-76 14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12 21215441 - Cell. 2011 Jan 21;144(2):227-39 17761666 - Mol Cell Proteomics. 2007 Nov;6(11):1896-906 10562274 - J Cell Biol. 1999 Nov 15;147(4):699-706 2659436 - Genetics. 1989 May;122(1):19-27 16760309 - Microbiol Mol Biol Rev. 2006 Jun;70(2):440-9 20544884 - Environ Mol Mutagen. 2010 Jun;51(5):440-50 10494627 - Int Rev Cytol. 2000;194:197-238 19371376 - Genes Cells. 2009 May;14(5):539-54 2476649 - Methods Cell Biol. 1989;31:357-435 14504216 - Genetics. 2003 Sep;165(1):35-45 20738864 - Genome Biol. 2010;11(8):R86 17886296 - Ann Neurol. 2008 Jan;63(1):35-9 9483801 - Yeast. 1998 Jan 30;14(2):115-32 9722521 - J Biol Chem. 1998 Sep 4;273(36):22983-9 8846786 - EMBO J. 1995 Dec 1;14(23):5939-46 7498726 - Genetics. 1995 Jun;140(2):435-42 21464305 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6349-54 21177495 - Sci Signal. 2010;3(153):rs4 24231806 - Science. 2013 Dec 20;342(6165):1524-8 3905388 - EMBO J. 1985 Aug;4(8):2087-92 18585880 - Exp Gerontol. 2009 Jan-Feb;44(1-2):101-5 11179416 - Mol Biol Cell. 2001 Feb;12(2):297-308 6290491 - J Biol Chem. 1982 Nov 10;257(21):13056-61 1328868 - Mol Cell Biol. 1992 Nov;12(11):4946-59 22110037 - Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5 22303396 - Front Genet. 2012 Jan 10;2:102 19563757 - Cell. 2009 Jun 26;137(7):1247-58 22383036 - Nat Protoc. 2012 Mar;7(3):562-78 9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80 12444247 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15983-7 |
References_xml | – volume: 165 start-page: 35 year: 2003 ident: e_1_3_4_13_2 article-title: Suppression of a defect in mitochondrial protein import identifies cytosolic proteins required for viability of yeast cells lacking mitochondrial DNA publication-title: Genetics doi: 10.1093/genetics/165.1.35 – volume: 144 start-page: 227 year: 2011 ident: e_1_3_4_29_2 article-title: Regulation of mitochondrial protein import by cytosolic kinases publication-title: Cell doi: 10.1016/j.cell.2010.12.015 – volume: 100 start-page: 13207 year: 2003 ident: e_1_3_4_30_2 article-title: The proteome of Saccharomyces cerevisiae mitochondria publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2135385100 – volume: 16 start-page: 2744 year: 1996 ident: e_1_3_4_17_2 article-title: The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase publication-title: Mol Cell Biol doi: 10.1128/MCB.16.6.2744 – volume: 140 start-page: 435 year: 1995 ident: e_1_3_4_27_2 article-title: Mutations in the mitochondrial ATP synthase gamma subunit suppress a slow-growth phenotype of yme1 yeast lacking mitochondrial DNA publication-title: Genetics doi: 10.1093/genetics/140.2.435 – volume: 99 start-page: 15983 year: 2002 ident: e_1_3_4_5_2 article-title: AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.252625599 – volume: 14 start-page: 539 year: 2009 ident: e_1_3_4_19_2 article-title: Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor publication-title: Genes Cells doi: 10.1111/j.1365-2443.2009.01290.x – volume: 7 start-page: 562 year: 2012 ident: e_1_3_4_39_2 article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – volume: 8 start-page: 1017 year: 2001 ident: e_1_3_4_14_2 article-title: TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00386-0 – volume: 11 start-page: R86 year: 2010 ident: e_1_3_4_38_2 article-title: Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences publication-title: Genome Biol doi: 10.1186/gb-2010-11-8-r86 – volume: 18 start-page: 6273 year: 1998 ident: e_1_3_4_26_2 article-title: Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae publication-title: Mol Cell Biol doi: 10.1128/MCB.18.11.6273 – volume: 450 start-page: 736 year: 2007 ident: e_1_3_4_4_2 article-title: mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex publication-title: Nature doi: 10.1038/nature06322 – volume: 342 start-page: 1524 year: 2013 ident: e_1_3_4_8_2 article-title: mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome publication-title: Science doi: 10.1126/science.1244360 – volume: 31 start-page: 357 year: 1989 ident: e_1_3_4_24_2 article-title: Fluorescence microscopy methods for yeast publication-title: Methods Cell Biol doi: 10.1016/S0091-679X(08)61620-9 – volume: 14 start-page: 5939 year: 1995 ident: e_1_3_4_32_2 article-title: REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb00282.x – volume: 257 start-page: 13056 year: 1982 ident: e_1_3_4_11_2 article-title: Import of proteins into mitochondria. Yeast cells grown in the presence of carbonyl cyanide m-chlorophenylhydrazone accumulate massive amounts of some mitochondrial precursor polypeptides publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)33621-4 – volume: 276 start-page: 36460 year: 2001 ident: e_1_3_4_31_2 article-title: Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit publication-title: J Biol Chem – volume-title: Methods in Yeast Genetics year: 1997 ident: e_1_3_4_34_2 – volume: 51 start-page: 440 year: 2010 ident: e_1_3_4_2_2 article-title: Mitochondrial DNA mutations in disease and aging publication-title: Environ Mol Mutagen doi: 10.1002/em.20586 – volume: 137 start-page: 1247 year: 2009 ident: e_1_3_4_12_2 article-title: Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect publication-title: Cell doi: 10.1016/j.cell.2009.04.014 – volume: 12 start-page: 4946 year: 1992 ident: e_1_3_4_16_2 article-title: Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae publication-title: Mol Cell Biol – volume: 147 start-page: 699 year: 1999 ident: e_1_3_4_41_2 article-title: Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape publication-title: J Cell Biol doi: 10.1083/jcb.147.4.699 – volume: 194 start-page: 197 year: 2000 ident: e_1_3_4_9_2 article-title: The petite mutation in yeasts: 50 years on publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(08)62397-9 – volume: 3 start-page: rs4 year: 2010 ident: e_1_3_4_33_2 article-title: Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast publication-title: Sci Signal doi: 10.1126/scisignal.2001182 – volume: 122 start-page: 19 year: 1989 ident: e_1_3_4_35_2 article-title: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/122.1.19 – volume: 40 start-page: D700 year: 2012 ident: e_1_3_4_40_2 article-title: Saccharomyces Genome Database: The genomics resource of budding yeast publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1029 – volume: 63 start-page: 35 year: 2008 ident: e_1_3_4_1_2 article-title: Prevalence of mitochondrial DNA disease in adults publication-title: Ann Neurol doi: 10.1002/ana.21217 – volume: 273 start-page: 22983 year: 1998 ident: e_1_3_4_10_2 article-title: Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells publication-title: J Biol Chem doi: 10.1074/jbc.273.36.22983 – volume: 12 start-page: 297 year: 2001 ident: e_1_3_4_20_2 article-title: Genome-wide responses to mitochondrial dysfunction publication-title: Mol Biol Cell doi: 10.1091/mbc.12.2.297 – volume: 2 start-page: 102 year: 2011 ident: e_1_3_4_21_2 article-title: Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan publication-title: Front Genet – volume: 44 start-page: 101 year: 2009 ident: e_1_3_4_3_2 article-title: Somatic mtDNA mutations and aging—facts and fancies publication-title: Exp Gerontol doi: 10.1016/j.exger.2008.05.006 – volume: 14 start-page: 115 year: 1998 ident: e_1_3_4_36_2 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 – volume: 16 start-page: 268 year: 2010 ident: e_1_3_4_7_2 article-title: Therapeutic prospects for mitochondrial disease publication-title: Trends Mol Med doi: 10.1016/j.molmed.2010.04.007 – volume: 6 start-page: 1896 year: 2007 ident: e_1_3_4_28_2 article-title: Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M700098-MCP200 – volume: 52 start-page: 323 year: 1970 ident: e_1_3_4_37_2 article-title: The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide publication-title: J Mol Biol – volume: 108 start-page: 6349 year: 2011 ident: e_1_3_4_25_2 article-title: Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1102758108 – volume: 13 start-page: 2408 year: 2008 ident: e_1_3_4_6_2 article-title: SNF1/AMPK pathways in yeast publication-title: Front Biosci doi: 10.2741/2854 – volume: 36 start-page: 51 year: 2009 ident: e_1_3_4_15_2 article-title: Alpha4 is an essential regulator of PP2A phosphatase activity publication-title: Mol Cell doi: 10.1016/j.molcel.2009.09.025 – volume: 70 start-page: 440 year: 2006 ident: e_1_3_4_18_2 article-title: Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00049-05 – volume: 4 start-page: 2087 year: 1985 ident: e_1_3_4_22_2 article-title: Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb03896.x – volume: 194 start-page: 285 year: 2013 ident: e_1_3_4_23_2 article-title: Defects associated with mitochondrial DNA damage can be mitigated by increased vacuolar pH in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.113.149708 – reference: 11486005 - J Biol Chem. 2001 Sep 28;276(39):36460-6 – reference: 19371376 - Genes Cells. 2009 May;14(5):539-54 – reference: 10562274 - J Cell Biol. 1999 Nov 15;147(4):699-706 – reference: 2476649 - Methods Cell Biol. 1989;31:357-435 – reference: 12444247 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15983-7 – reference: 20544884 - Environ Mol Mutagen. 2010 Jun;51(5):440-50 – reference: 8846786 - EMBO J. 1995 Dec 1;14(23):5939-46 – reference: 11179416 - Mol Biol Cell. 2001 Feb;12(2):297-308 – reference: 23502676 - Genetics. 2013 May;194(1):285-90 – reference: 19818709 - Mol Cell. 2009 Oct 9;36(1):51-60 – reference: 1328868 - Mol Cell Biol. 1992 Nov;12(11):4946-59 – reference: 17886296 - Ann Neurol. 2008 Jan;63(1):35-9 – reference: 21464305 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6349-54 – reference: 9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80 – reference: 17981722 - Front Biosci. 2008;13:2408-20 – reference: 9483801 - Yeast. 1998 Jan 30;14(2):115-32 – reference: 18585880 - Exp Gerontol. 2009 Jan-Feb;44(1-2):101-5 – reference: 11741537 - Mol Cell. 2001 Nov;8(5):1017-26 – reference: 14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12 – reference: 7498726 - Genetics. 1995 Jun;140(2):435-42 – reference: 22303396 - Front Genet. 2012 Jan 10;2:102 – reference: 10494627 - Int Rev Cytol. 2000;194:197-238 – reference: 8649382 - Mol Cell Biol. 1996 Jun;16(6):2744-55 – reference: 20556877 - Trends Mol Med. 2010 Jun;16(6):268-76 – reference: 21215441 - Cell. 2011 Jan 21;144(2):227-39 – reference: 2659436 - Genetics. 1989 May;122(1):19-27 – reference: 9722521 - J Biol Chem. 1998 Sep 4;273(36):22983-9 – reference: 3905388 - EMBO J. 1985 Aug;4(8):2087-92 – reference: 5485912 - J Mol Biol. 1970 Sep 14;52(2):323-35 – reference: 6290491 - J Biol Chem. 1982 Nov 10;257(21):13056-61 – reference: 18046414 - Nature. 2007 Nov 29;450(7170):736-40 – reference: 16760309 - Microbiol Mol Biol Rev. 2006 Jun;70(2):440-9 – reference: 20738864 - Genome Biol. 2010;11(8):R86 – reference: 22110037 - Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5 – reference: 22383036 - Nat Protoc. 2012 Mar;7(3):562-78 – reference: 19563757 - Cell. 2009 Jun 26;137(7):1247-58 – reference: 14504216 - Genetics. 2003 Sep;165(1):35-45 – reference: 17761666 - Mol Cell Proteomics. 2007 Nov;6(11):1896-906 – reference: 24231806 - Science. 2013 Dec 20;342(6165):1524-8 – reference: 21177495 - Sci Signal. 2010;3(153):rs4 |
SSID | ssj0009580 |
Score | 2.250854 |
Snippet | Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore,... The mitochondrion harbors a genome inherited from its prokaryotic ancestor. Damage to mtDNA causes severe consequences for the cell. Disease-causing mtDNA... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1473 |
SubjectTerms | AMP-activated protein kinase biogenesis Biological Sciences Biosynthesis Cell growth cellular microenvironment DNA Damage DNA, Mitochondrial - genetics Electrochemistry Enzymes Flow Cytometry Fluorescence Genes Genetic mutation Genomes Kinases mammals Mitochondria Mitochondrial DNA mitochondrial genome Mutation Phenotypes Phosphatases Phosphoprotein Phosphatases - genetics Phosphoprotein Phosphatases - metabolism protein transport Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Sequence Deletion Signal transduction transcription (genetics) Transcriptome viability Yeast Yeasts |
Title | Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae |
URI | https://www.jstor.org/stable/23769069 http://www.pnas.org/content/111/4/1473.abstract https://www.ncbi.nlm.nih.gov/pubmed/24474773 https://www.proquest.com/docview/1494990560 https://www.proquest.com/docview/1492716525 https://www.proquest.com/docview/1512333942 https://www.proquest.com/docview/1803113438 https://pubmed.ncbi.nlm.nih.gov/PMC3910629 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2ceGCGDBWGMhIHIailCV24uZYNtiEoJq0TdotcmyXVrRJtbZIcOIf5H_iPSdxkrFNwKWqEtdx-76-H_b33iPkNTht4MRH2k-MNj7XJvPRLPiZHjAjheZK4X7H51F8csE_XkaXGxu_Wqyl9Srrqx835pX8j1ThGsgVs2T_QbJuUrgA70G-8AoShte_kvGRwdLZpcenkBZ99c1g2n-BLSy9xaRYLiZyBXYKzwaQfwFvtCkJHLKSS00_n8NfG1Rhrm0bj6PR0NNyjoQemOlMKszOKubfkb-lLDV4OZUdFtGps4TLmncwqjcah03aSqVLlp7vnY6aJsjHeGD_Lr76aubeMYTvi1nDGh6ZbJqB9lmvZmt3zW75e8O-90kql2x0iISBo76HXnl7OyNACkydHt6qBl6uzK2prcFDsKq8zLvum1Jpg8_jx7xsO-q0eqXDp-09C6ujA142T_nDeIC2w47HuVz2AxZg0m89SadM9zXz6UiNGErxFGffJPdCAa5cvXnkakAPyoyo6ivUlaYEe3vtoR0naXMsi5otiyV4YehN4dB1Vm_LTTp_SB5U8Q0dlmDdJhsmf0S261-Y7ldlzt88Jj9r9NJiTB16aYVe2kYvrdFLK_TSBr0U0Us76KWAXlqil8JMHfTSBr1PyMWH9-eHJ37VD8RX4HWvfCzdqIU0mc5kolk8wN4KiYGYOlChZsxmQosDoaOEjxNuZMJUxiODIYxJeMR2yFZe5GaX0EyFmQiM4oNIchngabtQKo7HAVhwrpMe6dcCSFVVLB97tsxSS9oQLEUxpI3EemTffWBR1om5feguSDSVX8CKpxdnIdZ4RL4ABC49smPF7KZAzlpyEMN6ntpZ3NQOaz2yV0MhrVQTPMzWnILY5qBHXrnbYDjwNFDmpljbMaEI4iiM7hgD4QBjLOHhHWMG4BcEjLMBLtIisFk-54ILXKToYNMNwOL23Tv5dGKL3DOIY-IweXbrF39O7jf6Y49sra7W5gUECKvspf3b_Qb1gxO3 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+conserved+protein+phosphatases+reverses+defects+associated+with+mitochondrial+DNA+damage+in+Saccharomyces+cerevisiae&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=G%C3%B6rkem+Garipler&rft.au=Nebibe+Mutlu&rft.au=Nathan+A.+Lack&rft.au=Cory+D.+Dunn&rft.date=2014-01-28&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=4&rft.spage=1473&rft_id=info:doi/10.1073%2Fpnas.1312399111&rft.externalDBID=n%2Fa&rft.externalDocID=111_4_1473 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif |