Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae

Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 4; pp. 1473 - 1478
Main Authors Garipler, Görkem, Mutlu, Nebibe, Lack, Nathan A., Dunn, Cory D.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 28.01.2014
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1312399111

Cover

Abstract Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
AbstractList Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved a4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
The mitochondrion harbors a genome inherited from its prokaryotic ancestor. Damage to mtDNA causes severe consequences for the cell. Disease-causing mtDNA mutations can be inherited, or harmful changes in the mitochondrial genome can accumulate during treatment with anticancer or antiviral agents. Furthermore, mutation of mtDNA correlates with and may have a causal role in aging. We have used a single-celled organism in which many studies of mitochondrial function have been performed to investigate how pathways that sense the nutritional status of the cell determine the consequences of mtDNA damage. We found that the deletion of two protein phosphatases conserved across many eukaryotes has greatly beneficial effects on cells lacking a mitochondrial genome, suggesting a potential therapeutic approach for mitochondrial disease. Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved a4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. [PUBLICATION ABSTRACT]
Author Dunn, Cory D.
Mutlu, Nebibe
Garipler, Görkem
Lack, Nathan A.
Author_xml – sequence: 1
  givenname: Görkem
  surname: Garipler
  fullname: Garipler, Görkem
– sequence: 2
  givenname: Nebibe
  surname: Mutlu
  fullname: Mutlu, Nebibe
– sequence: 3
  givenname: Nathan A.
  surname: Lack
  fullname: Lack, Nathan A.
– sequence: 4
  givenname: Cory D.
  surname: Dunn
  fullname: Dunn, Cory D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24474773$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFMycgEhcuaT2xE8cXpKrlS6rgUHq2vM5k41USB9u7qDf-dBy220Il1JMtzW-e5s28I3IwuhEJeQn0BKhgp9OowwkwKJiUAPCELIBKyCsu6QFZUFqIvOYFPyRHIawppbKs6TNyWHAuuBBsQX5dYI_RujFzbWbcGNBvsckm7yLaMZs6F6ZORx0wZB636OdPgy2aGDIdgjNWx9Tw08YuG2x0pnNj463us4uvZ1mjB73CLCldaWM67d1wY5KCwSRmg9X4nDxtdR_wxe17TK4_fvh-_jm__Pbpy_nZZW5KKGMumYBGaFw2Sy0bVtUVpUIiCA6maBhL3nglqGhKyVvJUUtmlrzEggFFyUt2TN7vdKfNcsDG4Bi97tXk7aD9jXLaqn8ro-3Uym0Vk0CrQiaBd7cC3v3YYIhqsMFg3-sR3SYoqCkDYJzVj6NlOhhjkhePo1wWAqqymB28fYCu3caPaWkzxaWkZUUT9fpvn3cG9ydPQLkDjHcheGyVsVHPEUi2ba-Aqjlaao6Wuo9W6jt90LeX_n_HfpS5cEcDKJ4m_jPKqx2wDtH5-1GZqCSt5pW_2dVb7ZReeRvU9VVBId0eWM1ZyX4D63LucA
CitedBy_id crossref_primary_10_1016_j_gene_2019_05_001
crossref_primary_10_1038_s41598_020_59244_4
crossref_primary_10_1016_j_mito_2014_08_004
crossref_primary_10_1093_nar_gkz1128
crossref_primary_10_1038_s42255_021_00477_6
crossref_primary_10_1134_S1607672923600355
crossref_primary_10_1242_dmm_020438
crossref_primary_10_1016_j_mito_2015_07_001
crossref_primary_10_1016_j_arr_2014_12_007
crossref_primary_10_1016_j_yexcr_2015_05_008
crossref_primary_10_1002_ctm2_341
crossref_primary_10_1016_j_bbamcr_2020_118660
crossref_primary_10_1093_g3journal_jkad272
crossref_primary_10_7554_eLife_84282
crossref_primary_10_1186_s13062_017_0187_0
crossref_primary_10_1016_j_bbabio_2018_04_011
crossref_primary_10_1073_pnas_1505411112
crossref_primary_10_1111_febs_13778
crossref_primary_10_1371_journal_pone_0146511
crossref_primary_10_1534_g3_114_010330
crossref_primary_10_1039_D4NR03375B
crossref_primary_10_1021_acs_inorgchem_1c00241
crossref_primary_10_1080_15384101_2016_1183846
Cites_doi 10.1093/genetics/165.1.35
10.1016/j.cell.2010.12.015
10.1073/pnas.2135385100
10.1128/MCB.16.6.2744
10.1093/genetics/140.2.435
10.1073/pnas.252625599
10.1111/j.1365-2443.2009.01290.x
10.1038/nprot.2012.016
10.1016/S1097-2765(01)00386-0
10.1186/gb-2010-11-8-r86
10.1128/MCB.18.11.6273
10.1038/nature06322
10.1126/science.1244360
10.1016/S0091-679X(08)61620-9
10.1002/j.1460-2075.1995.tb00282.x
10.1016/S0021-9258(18)33621-4
10.1002/em.20586
10.1016/j.cell.2009.04.014
10.1083/jcb.147.4.699
10.1016/S0074-7696(08)62397-9
10.1126/scisignal.2001182
10.1093/genetics/122.1.19
10.1093/nar/gkr1029
10.1002/ana.21217
10.1074/jbc.273.36.22983
10.1091/mbc.12.2.297
10.1016/j.exger.2008.05.006
10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
10.1016/j.molmed.2010.04.007
10.1074/mcp.M700098-MCP200
10.1073/pnas.1102758108
10.2741/2854
10.1016/j.molcel.2009.09.025
10.1128/MMBR.00049-05
10.1002/j.1460-2075.1985.tb03896.x
10.1534/genetics.113.149708
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 28, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 28, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1312399111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
CrossRef


MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate PP6 or PP2A loss benefits cells lacking mtDNA
EISSN 1091-6490
EndPage 1478
ExternalDocumentID PMC3910629
3207865701
24474773
10_1073_pnas_1312399111
111_4_1473
23769069
US201600138435
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c515t-9371d7aebdba9d36860079e1741c2d3300046707d594f94ea93cb45e2310e9453
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:35:13 EDT 2025
Thu Sep 04 22:45:05 EDT 2025
Fri Sep 05 03:42:07 EDT 2025
Fri Sep 05 02:50:11 EDT 2025
Mon Jun 30 10:09:23 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 01:52:58 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Nov 11 00:30:31 EST 2020
Thu May 29 08:40:44 EDT 2025
Wed Dec 27 19:21:59 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords bioenergetics
petite-negative
TOR
mitochondria
nutrient signaling
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c515t-9371d7aebdba9d36860079e1741c2d3300046707d594f94ea93cb45e2310e9453
Notes http://dx.doi.org/10.1073/pnas.1312399111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: C.D.D. designed research; G.G., N.M., N.A.L., and C.D.D. performed research; G.G., N.M., and C.D.D. contributed new reagents/analytic tools; G.G., N.M., N.A.L., and C.D.D. analyzed data; and C.D.D. wrote the paper.
1Present address: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.
Edited by Jasper Rine, University of California, Berkeley, CA, and approved December 23, 2013 (received for review June 30, 2013)
PMID 24474773
PQID 1494990560
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1803113438
proquest_journals_1494990560
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3910629
jstor_primary_23769069
crossref_primary_10_1073_pnas_1312399111
crossref_citationtrail_10_1073_pnas_1312399111
proquest_miscellaneous_1512333942
pubmed_primary_24474773
fao_agris_US201600138435
pnas_primary_111_4_1473
proquest_miscellaneous_1492716525
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-28
PublicationDateYYYYMMDD 2014-01-28
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Ruiz A (e_1_3_4_25_2) 2011; 108
Myers AM (e_1_3_4_22_2) 1985; 4
Sickmann A (e_1_3_4_30_2) 2003; 100
Goecks J (e_1_3_4_38_2) 2010; 11
Veatch JR (e_1_3_4_12_2) 2009; 137
Cherry JM (e_1_3_4_40_2) 2012; 40
Cunningham JT (e_1_3_4_4_2) 2007; 450
Sesaki H (e_1_3_4_41_2) 1999; 147
Johnson SC (e_1_3_4_8_2) 2013; 342
Epstein CB (e_1_3_4_20_2) 2001; 12
Bodenmiller B (e_1_3_4_33_2) 2010; 3
Jiang Y (e_1_3_4_18_2) 2006; 70
Luke MM (e_1_3_4_17_2) 1996; 16
McCartney RR (e_1_3_4_31_2) 2001; 276
Chen XJ (e_1_3_4_9_2) 2000; 194
Jacinto E (e_1_3_4_14_2) 2001; 8
Kukat A (e_1_3_4_3_2) 2009; 44
Hedbacker K (e_1_3_4_6_2) 2008; 13
Garipler G (e_1_3_4_23_2) 2013; 194
Kong M (e_1_3_4_15_2) 2009; 36
Goldring ES (e_1_3_4_37_2) 1970; 52
Schmidt O (e_1_3_4_29_2) 2011; 144
Treitel MA (e_1_3_4_26_2) 1998; 18
Reinders J (e_1_3_4_28_2) 2007; 6
Schaefer AM (e_1_3_4_1_2) 2008; 63
Reid GA (e_1_3_4_11_2) 1982; 257
Zong H (e_1_3_4_5_2) 2002; 99
Weber ER (e_1_3_4_27_2) 1995; 140
van Zyl W (e_1_3_4_16_2) 1992; 12
Miceli MV (e_1_3_4_21_2) 2011; 2
Tu J (e_1_3_4_32_2) 1995; 14
Adams A (e_1_3_4_34_2) 1997
Sikorski RS (e_1_3_4_35_2) 1989; 122
Brachmann CB (e_1_3_4_36_2) 1998; 14
Wallace DC (e_1_3_4_2_2) 2010; 51
Schon EA (e_1_3_4_7_2) 2010; 16
Trapnell C (e_1_3_4_39_2) 2012; 7
Buchet K (e_1_3_4_10_2) 1998; 273
Pringle JR (e_1_3_4_24_2) 1989; 31
Hanyu Y (e_1_3_4_19_2) 2009; 14
Dunn CD (e_1_3_4_13_2) 2003; 165
11486005 - J Biol Chem. 2001 Sep 28;276(39):36460-6
11741537 - Mol Cell. 2001 Nov;8(5):1017-26
23502676 - Genetics. 2013 May;194(1):285-90
17981722 - Front Biosci. 2008;13:2408-20
18046414 - Nature. 2007 Nov 29;450(7170):736-40
5485912 - J Mol Biol. 1970 Sep 14;52(2):323-35
8649382 - Mol Cell Biol. 1996 Jun;16(6):2744-55
19818709 - Mol Cell. 2009 Oct 9;36(1):51-60
20556877 - Trends Mol Med. 2010 Jun;16(6):268-76
14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12
21215441 - Cell. 2011 Jan 21;144(2):227-39
17761666 - Mol Cell Proteomics. 2007 Nov;6(11):1896-906
10562274 - J Cell Biol. 1999 Nov 15;147(4):699-706
2659436 - Genetics. 1989 May;122(1):19-27
16760309 - Microbiol Mol Biol Rev. 2006 Jun;70(2):440-9
20544884 - Environ Mol Mutagen. 2010 Jun;51(5):440-50
10494627 - Int Rev Cytol. 2000;194:197-238
19371376 - Genes Cells. 2009 May;14(5):539-54
2476649 - Methods Cell Biol. 1989;31:357-435
14504216 - Genetics. 2003 Sep;165(1):35-45
20738864 - Genome Biol. 2010;11(8):R86
17886296 - Ann Neurol. 2008 Jan;63(1):35-9
9483801 - Yeast. 1998 Jan 30;14(2):115-32
9722521 - J Biol Chem. 1998 Sep 4;273(36):22983-9
8846786 - EMBO J. 1995 Dec 1;14(23):5939-46
7498726 - Genetics. 1995 Jun;140(2):435-42
21464305 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6349-54
21177495 - Sci Signal. 2010;3(153):rs4
24231806 - Science. 2013 Dec 20;342(6165):1524-8
3905388 - EMBO J. 1985 Aug;4(8):2087-92
18585880 - Exp Gerontol. 2009 Jan-Feb;44(1-2):101-5
11179416 - Mol Biol Cell. 2001 Feb;12(2):297-308
6290491 - J Biol Chem. 1982 Nov 10;257(21):13056-61
1328868 - Mol Cell Biol. 1992 Nov;12(11):4946-59
22110037 - Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5
22303396 - Front Genet. 2012 Jan 10;2:102
19563757 - Cell. 2009 Jun 26;137(7):1247-58
22383036 - Nat Protoc. 2012 Mar;7(3):562-78
9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80
12444247 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15983-7
References_xml – volume: 165
  start-page: 35
  year: 2003
  ident: e_1_3_4_13_2
  article-title: Suppression of a defect in mitochondrial protein import identifies cytosolic proteins required for viability of yeast cells lacking mitochondrial DNA
  publication-title: Genetics
  doi: 10.1093/genetics/165.1.35
– volume: 144
  start-page: 227
  year: 2011
  ident: e_1_3_4_29_2
  article-title: Regulation of mitochondrial protein import by cytosolic kinases
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.015
– volume: 100
  start-page: 13207
  year: 2003
  ident: e_1_3_4_30_2
  article-title: The proteome of Saccharomyces cerevisiae mitochondria
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2135385100
– volume: 16
  start-page: 2744
  year: 1996
  ident: e_1_3_4_17_2
  article-title: The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.6.2744
– volume: 140
  start-page: 435
  year: 1995
  ident: e_1_3_4_27_2
  article-title: Mutations in the mitochondrial ATP synthase gamma subunit suppress a slow-growth phenotype of yme1 yeast lacking mitochondrial DNA
  publication-title: Genetics
  doi: 10.1093/genetics/140.2.435
– volume: 99
  start-page: 15983
  year: 2002
  ident: e_1_3_4_5_2
  article-title: AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.252625599
– volume: 14
  start-page: 539
  year: 2009
  ident: e_1_3_4_19_2
  article-title: Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01290.x
– volume: 7
  start-page: 562
  year: 2012
  ident: e_1_3_4_39_2
  article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
– volume: 8
  start-page: 1017
  year: 2001
  ident: e_1_3_4_14_2
  article-title: TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00386-0
– volume: 11
  start-page: R86
  year: 2010
  ident: e_1_3_4_38_2
  article-title: Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-8-r86
– volume: 18
  start-page: 6273
  year: 1998
  ident: e_1_3_4_26_2
  article-title: Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.11.6273
– volume: 450
  start-page: 736
  year: 2007
  ident: e_1_3_4_4_2
  article-title: mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
  publication-title: Nature
  doi: 10.1038/nature06322
– volume: 342
  start-page: 1524
  year: 2013
  ident: e_1_3_4_8_2
  article-title: mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome
  publication-title: Science
  doi: 10.1126/science.1244360
– volume: 31
  start-page: 357
  year: 1989
  ident: e_1_3_4_24_2
  article-title: Fluorescence microscopy methods for yeast
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(08)61620-9
– volume: 14
  start-page: 5939
  year: 1995
  ident: e_1_3_4_32_2
  article-title: REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1995.tb00282.x
– volume: 257
  start-page: 13056
  year: 1982
  ident: e_1_3_4_11_2
  article-title: Import of proteins into mitochondria. Yeast cells grown in the presence of carbonyl cyanide m-chlorophenylhydrazone accumulate massive amounts of some mitochondrial precursor polypeptides
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)33621-4
– volume: 276
  start-page: 36460
  year: 2001
  ident: e_1_3_4_31_2
  article-title: Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
  publication-title: J Biol Chem
– volume-title: Methods in Yeast Genetics
  year: 1997
  ident: e_1_3_4_34_2
– volume: 51
  start-page: 440
  year: 2010
  ident: e_1_3_4_2_2
  article-title: Mitochondrial DNA mutations in disease and aging
  publication-title: Environ Mol Mutagen
  doi: 10.1002/em.20586
– volume: 137
  start-page: 1247
  year: 2009
  ident: e_1_3_4_12_2
  article-title: Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.014
– volume: 12
  start-page: 4946
  year: 1992
  ident: e_1_3_4_16_2
  article-title: Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae
  publication-title: Mol Cell Biol
– volume: 147
  start-page: 699
  year: 1999
  ident: e_1_3_4_41_2
  article-title: Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape
  publication-title: J Cell Biol
  doi: 10.1083/jcb.147.4.699
– volume: 194
  start-page: 197
  year: 2000
  ident: e_1_3_4_9_2
  article-title: The petite mutation in yeasts: 50 years on
  publication-title: Int Rev Cytol
  doi: 10.1016/S0074-7696(08)62397-9
– volume: 3
  start-page: rs4
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2001182
– volume: 122
  start-page: 19
  year: 1989
  ident: e_1_3_4_35_2
  article-title: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/122.1.19
– volume: 40
  start-page: D700
  year: 2012
  ident: e_1_3_4_40_2
  article-title: Saccharomyces Genome Database: The genomics resource of budding yeast
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1029
– volume: 63
  start-page: 35
  year: 2008
  ident: e_1_3_4_1_2
  article-title: Prevalence of mitochondrial DNA disease in adults
  publication-title: Ann Neurol
  doi: 10.1002/ana.21217
– volume: 273
  start-page: 22983
  year: 1998
  ident: e_1_3_4_10_2
  article-title: Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.36.22983
– volume: 12
  start-page: 297
  year: 2001
  ident: e_1_3_4_20_2
  article-title: Genome-wide responses to mitochondrial dysfunction
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.12.2.297
– volume: 2
  start-page: 102
  year: 2011
  ident: e_1_3_4_21_2
  article-title: Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan
  publication-title: Front Genet
– volume: 44
  start-page: 101
  year: 2009
  ident: e_1_3_4_3_2
  article-title: Somatic mtDNA mutations and aging—facts and fancies
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2008.05.006
– volume: 14
  start-page: 115
  year: 1998
  ident: e_1_3_4_36_2
  article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
– volume: 16
  start-page: 268
  year: 2010
  ident: e_1_3_4_7_2
  article-title: Therapeutic prospects for mitochondrial disease
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2010.04.007
– volume: 6
  start-page: 1896
  year: 2007
  ident: e_1_3_4_28_2
  article-title: Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M700098-MCP200
– volume: 52
  start-page: 323
  year: 1970
  ident: e_1_3_4_37_2
  article-title: The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide
  publication-title: J Mol Biol
– volume: 108
  start-page: 6349
  year: 2011
  ident: e_1_3_4_25_2
  article-title: Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1102758108
– volume: 13
  start-page: 2408
  year: 2008
  ident: e_1_3_4_6_2
  article-title: SNF1/AMPK pathways in yeast
  publication-title: Front Biosci
  doi: 10.2741/2854
– volume: 36
  start-page: 51
  year: 2009
  ident: e_1_3_4_15_2
  article-title: Alpha4 is an essential regulator of PP2A phosphatase activity
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.09.025
– volume: 70
  start-page: 440
  year: 2006
  ident: e_1_3_4_18_2
  article-title: Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00049-05
– volume: 4
  start-page: 2087
  year: 1985
  ident: e_1_3_4_22_2
  article-title: Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1985.tb03896.x
– volume: 194
  start-page: 285
  year: 2013
  ident: e_1_3_4_23_2
  article-title: Defects associated with mitochondrial DNA damage can be mitigated by increased vacuolar pH in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.113.149708
– reference: 11486005 - J Biol Chem. 2001 Sep 28;276(39):36460-6
– reference: 19371376 - Genes Cells. 2009 May;14(5):539-54
– reference: 10562274 - J Cell Biol. 1999 Nov 15;147(4):699-706
– reference: 2476649 - Methods Cell Biol. 1989;31:357-435
– reference: 12444247 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15983-7
– reference: 20544884 - Environ Mol Mutagen. 2010 Jun;51(5):440-50
– reference: 8846786 - EMBO J. 1995 Dec 1;14(23):5939-46
– reference: 11179416 - Mol Biol Cell. 2001 Feb;12(2):297-308
– reference: 23502676 - Genetics. 2013 May;194(1):285-90
– reference: 19818709 - Mol Cell. 2009 Oct 9;36(1):51-60
– reference: 1328868 - Mol Cell Biol. 1992 Nov;12(11):4946-59
– reference: 17886296 - Ann Neurol. 2008 Jan;63(1):35-9
– reference: 21464305 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6349-54
– reference: 9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80
– reference: 17981722 - Front Biosci. 2008;13:2408-20
– reference: 9483801 - Yeast. 1998 Jan 30;14(2):115-32
– reference: 18585880 - Exp Gerontol. 2009 Jan-Feb;44(1-2):101-5
– reference: 11741537 - Mol Cell. 2001 Nov;8(5):1017-26
– reference: 14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12
– reference: 7498726 - Genetics. 1995 Jun;140(2):435-42
– reference: 22303396 - Front Genet. 2012 Jan 10;2:102
– reference: 10494627 - Int Rev Cytol. 2000;194:197-238
– reference: 8649382 - Mol Cell Biol. 1996 Jun;16(6):2744-55
– reference: 20556877 - Trends Mol Med. 2010 Jun;16(6):268-76
– reference: 21215441 - Cell. 2011 Jan 21;144(2):227-39
– reference: 2659436 - Genetics. 1989 May;122(1):19-27
– reference: 9722521 - J Biol Chem. 1998 Sep 4;273(36):22983-9
– reference: 3905388 - EMBO J. 1985 Aug;4(8):2087-92
– reference: 5485912 - J Mol Biol. 1970 Sep 14;52(2):323-35
– reference: 6290491 - J Biol Chem. 1982 Nov 10;257(21):13056-61
– reference: 18046414 - Nature. 2007 Nov 29;450(7170):736-40
– reference: 16760309 - Microbiol Mol Biol Rev. 2006 Jun;70(2):440-9
– reference: 20738864 - Genome Biol. 2010;11(8):R86
– reference: 22110037 - Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5
– reference: 22383036 - Nat Protoc. 2012 Mar;7(3):562-78
– reference: 19563757 - Cell. 2009 Jun 26;137(7):1247-58
– reference: 14504216 - Genetics. 2003 Sep;165(1):35-45
– reference: 17761666 - Mol Cell Proteomics. 2007 Nov;6(11):1896-906
– reference: 24231806 - Science. 2013 Dec 20;342(6165):1524-8
– reference: 21177495 - Sci Signal. 2010;3(153):rs4
SSID ssj0009580
Score 2.250854
Snippet Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore,...
The mitochondrion harbors a genome inherited from its prokaryotic ancestor. Damage to mtDNA causes severe consequences for the cell. Disease-causing mtDNA...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1473
SubjectTerms AMP-activated protein kinase
biogenesis
Biological Sciences
Biosynthesis
Cell growth
cellular microenvironment
DNA Damage
DNA, Mitochondrial - genetics
Electrochemistry
Enzymes
Flow Cytometry
Fluorescence
Genes
Genetic mutation
Genomes
Kinases
mammals
Mitochondria
Mitochondrial DNA
mitochondrial genome
Mutation
Phenotypes
Phosphatases
Phosphoprotein Phosphatases - genetics
Phosphoprotein Phosphatases - metabolism
protein transport
Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Sequence Deletion
Signal transduction
transcription (genetics)
Transcriptome
viability
Yeast
Yeasts
Title Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae
URI https://www.jstor.org/stable/23769069
http://www.pnas.org/content/111/4/1473.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24474773
https://www.proquest.com/docview/1494990560
https://www.proquest.com/docview/1492716525
https://www.proquest.com/docview/1512333942
https://www.proquest.com/docview/1803113438
https://pubmed.ncbi.nlm.nih.gov/PMC3910629
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2ceGCGDBWGMhIHIailCV24uZYNtiEoJq0TdotcmyXVrRJtbZIcOIf5H_iPSdxkrFNwKWqEtdx-76-H_b33iPkNTht4MRH2k-MNj7XJvPRLPiZHjAjheZK4X7H51F8csE_XkaXGxu_Wqyl9Srrqx835pX8j1ThGsgVs2T_QbJuUrgA70G-8AoShte_kvGRwdLZpcenkBZ99c1g2n-BLSy9xaRYLiZyBXYKzwaQfwFvtCkJHLKSS00_n8NfG1Rhrm0bj6PR0NNyjoQemOlMKszOKubfkb-lLDV4OZUdFtGps4TLmncwqjcah03aSqVLlp7vnY6aJsjHeGD_Lr76aubeMYTvi1nDGh6ZbJqB9lmvZmt3zW75e8O-90kql2x0iISBo76HXnl7OyNACkydHt6qBl6uzK2prcFDsKq8zLvum1Jpg8_jx7xsO-q0eqXDp-09C6ujA142T_nDeIC2w47HuVz2AxZg0m89SadM9zXz6UiNGErxFGffJPdCAa5cvXnkakAPyoyo6ivUlaYEe3vtoR0naXMsi5otiyV4YehN4dB1Vm_LTTp_SB5U8Q0dlmDdJhsmf0S261-Y7ldlzt88Jj9r9NJiTB16aYVe2kYvrdFLK_TSBr0U0Us76KWAXlqil8JMHfTSBr1PyMWH9-eHJ37VD8RX4HWvfCzdqIU0mc5kolk8wN4KiYGYOlChZsxmQosDoaOEjxNuZMJUxiODIYxJeMR2yFZe5GaX0EyFmQiM4oNIchngabtQKo7HAVhwrpMe6dcCSFVVLB97tsxSS9oQLEUxpI3EemTffWBR1om5feguSDSVX8CKpxdnIdZ4RL4ABC49smPF7KZAzlpyEMN6ntpZ3NQOaz2yV0MhrVQTPMzWnILY5qBHXrnbYDjwNFDmpljbMaEI4iiM7hgD4QBjLOHhHWMG4BcEjLMBLtIisFk-54ILXKToYNMNwOL23Tv5dGKL3DOIY-IweXbrF39O7jf6Y49sra7W5gUECKvspf3b_Qb1gxO3
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+conserved+protein+phosphatases+reverses+defects+associated+with+mitochondrial+DNA+damage+in+Saccharomyces+cerevisiae&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=G%C3%B6rkem+Garipler&rft.au=Nebibe+Mutlu&rft.au=Nathan+A.+Lack&rft.au=Cory+D.+Dunn&rft.date=2014-01-28&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=4&rft.spage=1473&rft_id=info:doi/10.1073%2Fpnas.1312399111&rft.externalDBID=n%2Fa&rft.externalDocID=111_4_1473
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif