Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata
Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from...
Saved in:
Published in | Molecular biology and evolution Vol. 30; no. 2; pp. 435 - 447 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Molecular Biology and Evolution
01.02.2013
Oxford University Press Oxford University Press (OUP) |
Subjects | |
Online Access | Get full text |
ISSN | 0737-4038 1537-1719 1537-1719 |
DOI | 10.1093/molbev/mss246 |
Cover
Abstract | Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems. |
---|---|
AbstractList | Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems. Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems. Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata . In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems. Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems. [PUBLICATION ABSTRACT] |
Author | Ruggiero, Maria-Valeria Castric, Vincent Pauwels, Maxime Roux, Camille Vekemans, Xavier Charlesworth, Deborah |
AuthorAffiliation | 3 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom 1 Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université de Lille, Sciences et Technologies, Villeneuve d’Ascq, France 2 Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Naples, Italy |
AuthorAffiliation_xml | – name: 3 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom – name: 2 Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Naples, Italy – name: 1 Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université de Lille, Sciences et Technologies, Villeneuve d’Ascq, France |
Author_xml | – sequence: 1 givenname: Camille surname: Roux fullname: Roux, Camille – sequence: 2 givenname: Maxime surname: Pauwels fullname: Pauwels, Maxime – sequence: 3 givenname: Maria-Valeria surname: Ruggiero fullname: Ruggiero, Maria-Valeria – sequence: 4 givenname: Deborah surname: Charlesworth fullname: Charlesworth, Deborah – sequence: 5 givenname: Vincent surname: Castric fullname: Castric, Vincent – sequence: 6 givenname: Xavier surname: Vekemans fullname: Vekemans, Xavier email: xavier.vekemans@univ-lille1.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23104079$$D View this record in MEDLINE/PubMed https://hal.science/hal-00860473$$DView record in HAL |
BookMark | eNqNks9rFDEUx4NU7LZ69CoBL3qYNr9n5iJsi1phQXD1HDKZN7ups8mazCz0vzfDbEUXRC9JePm8b_J9712gMx88IPSSkitKan69C30Dh-tdSkyoJ2hBJS8LWtL6DC1Imc-C8OocXaR0TwgVQqln6JxxSgQp6wX6_gUs-AEb3-Klt246r93Gm2GMgEOHb0xvctxv8Bp6sIMLHpsYxswPW8DrYhXsmLDzeBlN49qwTy7hrel7iG6WvcL9QzSDeY6edqZP8OK4X6JvH95_vb0rVp8_frpdrgorqRyKijVGNp0ARqWoG2FVJXhNWaus6iShHXAhieSdqgBkK23NGigVs5QykEzyS_Ru1t2PzQ7ayV80vd5HtzPxQQfj9J833m31Jhw0l6LilGaBt7PA9iTtbrnSU4yQShFR8sPEvjk-FsOPEdKgdy5Z6HPVIIxJU06lyov4D5TlfhEpFcvo6xP0PozR56pNFC0Vl7TK1Kvfjf766mN7M8BnwMaQUoROWzeYqYfZt-s1JXoaIj0PkZ6HKGcVJ1mPwn_jj77CuP8H-hN-3tgn |
CitedBy_id | crossref_primary_10_1111_mec_12521 crossref_primary_10_1016_j_scienta_2021_110141 crossref_primary_10_1186_s13059_017_1365_1 crossref_primary_10_1186_s12864_017_3485_0 crossref_primary_10_1111_mec_13078 crossref_primary_10_1038_hdy_2016_99 crossref_primary_10_1093_molbev_msac048 crossref_primary_10_1111_nph_16434 crossref_primary_10_1093_molbev_msab217 crossref_primary_10_1016_j_heliyon_2023_e20231 crossref_primary_10_1186_s13059_017_1342_8 crossref_primary_10_1371_journal_pone_0107479 crossref_primary_10_1111_jeb_12396 crossref_primary_10_1016_j_gde_2014_08_001 crossref_primary_10_1111_jeb_12372 crossref_primary_10_1038_ncomms10400 crossref_primary_10_1371_journal_pgen_1009477 crossref_primary_10_1111_jeb_13745 crossref_primary_10_3389_fgene_2017_00016 crossref_primary_10_1007_s00497_022_00451_6 crossref_primary_10_1093_g3journal_jkac323 crossref_primary_10_1093_nar_gkt1376 crossref_primary_10_1111_evo_12687 crossref_primary_10_1111_nph_16215 crossref_primary_10_1186_s12862_016_0857_z crossref_primary_10_1111_eva_12933 crossref_primary_10_1038_s41437_020_00388_4 crossref_primary_10_1093_molbev_msad120 crossref_primary_10_1186_s12862_014_0224_x crossref_primary_10_1111_evo_12427 crossref_primary_10_1093_molbev_mst066 crossref_primary_10_1111_evo_12937 crossref_primary_10_1111_mec_15989 crossref_primary_10_1038_hdy_2012_120 crossref_primary_10_1093_molbev_msad122 crossref_primary_10_1111_mec_12957 crossref_primary_10_1016_j_smim_2023_101813 crossref_primary_10_1111_mec_13226 crossref_primary_10_1371_journal_pgen_1005067 crossref_primary_10_1111_jeb_12425 crossref_primary_10_1111_mec_14051 crossref_primary_10_55544_jrasb_2_6_12 crossref_primary_10_1128_microbiolspec_FUNK_0015_2016 crossref_primary_10_1371_journal_pone_0166146 crossref_primary_10_1093_aobpla_plz076 crossref_primary_10_1093_jhered_esae046 crossref_primary_10_1016_j_tpb_2018_07_002 |
Cites_doi | 10.1371/journal.pone.0026872 10.1093/genetics/160.3.1231 10.1017/S0016672300004547 10.1093/genetics/147.3.1389 10.1093/molbev/msp190 10.1093/genetics/120.3.831 10.1111/j.1601-5223.1997.00075.x 10.1093/molbev/msl042 10.1111/j.1420-9101.2006.01178.x 10.1111/j.1420-9101.2004.00699.x 10.1534/genetics.109.102707 10.1534/genetics.105.051938 10.1111/j.1439-0434.2008.01468.x 10.1534/genetics.107.072231 10.1093/molbev/msm092 10.1093/genetics/159.4.1833 10.1017/S0016672300014634 10.1038/nature08927 10.1093/genetics/134.4.1289 10.1093/genetics/137.4.1157 10.1093/bioinformatics/bti584 10.1101/gr.631202 10.1017/S0016672397002954 10.1534/genetics.106.055715 10.1093/genetics/116.1.153 10.1093/bioinformatics/18.2.337 10.1038/sj.hdy.6800724 10.1093/genetics/160.2.765 10.1017/S0016672306008020 10.1073/pnas.87.24.9732 10.1093/genetics/103.3.545 10.1017/S0016672303006347 10.1073/pnas.0909766107 10.1093/genetics/155.2.909 10.1098/rspb.2008.1299 10.1105/tpc.13.3.627 10.1534/genetics.166.1.373 10.1371/journal.pgen.1000168 10.1073/pnas.0701338104 10.1093/genetics/98.2.441 10.1017/S0016672306008287 10.1371/journal.pone.0002411 10.1073/pnas.172203599 10.1093/genetics/124.4.967 10.1038/ng.807 10.1093/molbev/msi035 10.1017/S0016672307008932 10.1371/journal.pgen.1002495 10.1371/journal.pbio.0020286 10.1534/genetics.106.065557 10.1093/genetics/158.1.387 10.1371/journal.pgen.0020064 10.1534/genetics.106.055780 10.1093/bioinformatics/btp187 10.1016/j.cub.2005.08.062 10.1073/pnas.95.21.12398 10.1093/genetics/111.1.147 10.1007/s002510050380 10.1093/genetics/24.4.538 10.1271/bbb.67.622 10.1093/nar/22.22.4673 |
ContentType | Journal Article |
Copyright | The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2012 Copyright Oxford Publishing Limited(England) Feb 2013 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2012 – notice: Copyright Oxford Publishing Limited(England) Feb 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1093/molbev/mss246 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
EndPage | 447 |
ExternalDocumentID | PMC3548311 oai_HAL_hal_00860473v1 2870837871 23104079 10_1093_molbev_mss246 10.1093/molbev/mss246 |
Genre | Journal Article Feature |
GroupedDBID | --- -E4 -~X .2P .GJ .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 53G 5VS 5WA 70D 7X7 AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABQTQ ABSMQ ABTAH ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPRK ACUFI ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADJQC ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFIYH AFOFC AFPKN AFRAH AFULF AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASAOO ATDFG AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HH5 HW0 HZ~ IAO IGS IHR IOX ITC J21 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOYVH NTWIH NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF RNI ROL ROX ROZ RPM RUSNO RW1 RXO RZO TEORI TJP TJX TLC TN5 TOX TR2 VQA W8F WOQ X7H XJT XSW YAYTL YHZ YKOAZ YXANX ZCA ZCG ZKX ZXP ZY4 ~02 ~91 AAYXX BBNVY CITATION 88E 8AO 8FI 8FJ 8G5 ABUWG AEUYN AFKRA AZQEC BENPR BHPHI CCPQU CGR CUY CVF DWQXO ECM EIF FYUFA GNUQQ GUQSH HCIFZ HMCUK M1P M2O M7P NPM PSQYO UKHRP 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC ADXHL PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c515t-82ba5bf4e21549b4c6843912d6c6f501fe345053f68ee5d5c92be762c112e5253 |
IEDL.DBID | TOX |
ISSN | 0737-4038 1537-1719 |
IngestDate | Thu Aug 21 18:45:25 EDT 2025 Fri Sep 12 12:39:32 EDT 2025 Thu Sep 04 21:37:21 EDT 2025 Mon Jul 21 11:40:26 EDT 2025 Fri Sep 19 20:49:17 EDT 2025 Thu Apr 03 07:00:36 EDT 2025 Tue Jul 01 03:45:37 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Fri Feb 07 10:35:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | self-incompatibility recombination balancing selection ancestral polymorphism approximate Bayesian computation |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-82ba5bf4e21549b4c6843912d6c6f501fe345053f68ee5d5c92be762c112e5253 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 PMCID: PMC3548311 These authors contributed equally to this work. Associate editor: Naoki Takebayashi |
ORCID | 0000-0002-4461-4915 0000-0002-4836-4394 |
OpenAccessLink | https://dx.doi.org/10.1093/molbev/mss246 |
PMID | 23104079 |
PQID | 1271763518 |
PQPubID | 36253 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548311 hal_primary_oai_HAL_hal_00860473v1 proquest_miscellaneous_1315613141 proquest_miscellaneous_1273705562 proquest_journals_1271763518 pubmed_primary_23104079 crossref_citationtrail_10_1093_molbev_mss246 crossref_primary_10_1093_molbev_mss246 oup_primary_10_1093_molbev_mss246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Molecular biology and evolution |
PublicationTitleAlternate | Mol Biol Evol |
PublicationYear | 2013 |
Publisher | Society for Molecular Biology and Evolution Oxford University Press Oxford University Press (OUP) |
Publisher_xml | – name: Society for Molecular Biology and Evolution – name: Oxford University Press – name: Oxford University Press (OUP) |
References | (28_37114409) 2007; 176 (15_40745858) 2003; 57 Pauwels (40_22815364) 2006; 19 (64_35932910) 1939; 24 Smith (52_12712804) 1974; 23 (25_35932899) 1988; 120 (63_44336251) 2010; 101 (Suppl 1) Kamau (29_19458768) 2005; 15 Castric (9_31855984) 2008; 4 (31_35932859) 2002; 160 Meagher (39_5844924) 1997; 127 Bechsgaard (4_18187939) 2004; 17 (43_44323035) 2004; 166 (26_35932900) 1987; 116 Goubet (17_42297750) 2012; 8 (56_28528053) 2007; 24 (49_36170077) 2001; 158 (65_18774056) 2005; 22 Kusaba (33_11072202) 2001; 13 (50_44016273) 2001; 159 Hansson (20_22154966) 2006; 87 Roux (46_41198955) 2011; 6 (5_22277247) 2006; 23 (58_19673581) 2002; 99 (18_44323031) 2010; 157 Akey (1_18480166) 2004; 2 Ioerger (27_9260797) 1990; 87 (38_36174635) 2002; 160 (35_42159916) 2009; 183 (41_19383050) 2005; 21 van Oosterhout (61_32562294) 2009; 276 (37_42159918) 1981; 98 (55_44016274) 1998; 47 (57_35351160) 1994; 22 Piertney (42_21889742) 2006; 96 (14_36170068) 2006; 172 (16_36628739) 2000; 155 (62_36170081) 1994; 137 (19_37114408) 2006; 173 Ruggiero (47_30507866) 2008; 90 (11_35821390) 1993; 134 (32_27987502) 2007; 104 (6_38201473) 2010; 107 Ross-Ibarra (45_31291319) 2008; 3 Hu (22_39699205) 2011; 43 Richman (44_18034034) 2003; 82 Hudson (23_16916962) 2002; 18 Shiba (51_17607915) 2003; 67 (34_34511626) 2009; 25 Schierup (48_10489923) 2000; 76 (36_36711074) 2007; 175 (24_35948182) 1985; 111 Wu (66_6184000) 1998; 95 Kawabe (30_22761120) 2006; 88 (8_35932897) 2006; 173 (54_35932906) 1990; 124 Akey (2_17360405) 2002; 12 Charlesworth (12_5871404) 1997; 70 (60_36170080) 1997; 147 Tsuchimatsu (59_37136462) 2010; 464 Charlesworth (13_22112186) 2006; 2 (21_44323032) 2009; 157 (3_35482645) 2009; 26 (53_37677359) 1983; 103 12723613 - Biosci Biotechnol Biochem. 2003 Mar;67(3):622-6 12172007 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11525-30 15149398 - J Evol Biol. 2004 May;17(3):554-61 18289399 - Genet Res (Camb). 2008 Feb;90(1):37-46 16683038 - PLoS Genet. 2006 Apr;2(4):e64 19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64 15525701 - Mol Biol Evol. 2005 Mar;22(3):506-19 17040381 - J Evol Biol. 2006 Nov;19(6):1838-50 17194784 - Genetics. 2007 Mar;175(3):1381-93 18769722 - PLoS Genet. 2008 Aug;4(8):e1000168 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 17683611 - BMC Evol Biol. 2007;7:132 19752218 - Genetics. 2009 Nov;183(3):1105-18 16751668 - Genetics. 2006 Aug;173(4):2165-77 14768893 - Genet Res. 2003 Oct;82(2):89-99 14503614 - Evolution. 2003 Aug;57(8):1707-22 20400945 - Nature. 2010 Apr 29;464(7293):1342-6 11861577 - Genetics. 2002 Feb;160(2):765-77 17404224 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6272-7 4029609 - Genetics. 1985 Sep;111(1):147-64 22069475 - PLoS One. 2011;6(11):e26872 18545707 - PLoS One. 2008;3(6):e2411 6404695 - Genetics. 1983 Mar;103(3):545-55 3147214 - Genetics. 1988 Nov;120(3):831-40 9383079 - Genetics. 1997 Nov;147(3):1389-400 20921408 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8 17249094 - Genetics. 1981 Jun;98(2):441-59 17246937 - Genetics. 1939 Jun;24(4):538-52 12466284 - Genome Res. 2002 Dec;12(12):1805-14 4407212 - Genet Res. 1974 Feb;23(1):23-35 2263623 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732-5 17014743 - Genet Res. 2006 Aug;88(1):45-56 15361935 - PLoS Biol. 2004 Oct;2(10):e286 15020431 - Genetics. 2004 Jan;166(1):373-88 14635837 - J Evol Biol. 2003 May;16(3):363-77 3110004 - Genetics. 1987 May;116(1):153-9 8375663 - Genetics. 1993 Aug;134(4):1289-303 22457631 - PLoS Genet. 2012;8(3):e1002495 16582433 - Genetics. 2006 Jun;173(2):1057-73 9449192 - Genet Res. 1997 Oct;70(2):155-74 16020469 - Bioinformatics. 2005 Sep 15;21(18):3686-7 18986972 - Proc Biol Sci. 2009 Feb 22;276(1657):657-65 16709272 - Genet Res. 2006 Apr;87(2):75-85 21810962 - Plant Physiol. 2011 Oct;157(2):937-46 11251101 - Plant Cell. 2001 Mar;13(3):627-43 10835409 - Genetics. 2000 Jun;155(2):909-19 11333247 - Genetics. 2001 May;158(1):387-99 21478890 - Nat Genet. 2011 May;43(5):476-81 11006635 - Genet Res. 2000 Aug;76(1):63-73 9553149 - Immunogenetics. 1998 May;47(6):430-41 9770498 - Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12398-403 16782760 - Mol Biol Evol. 2006 Sep;23(9):1741-50 17565949 - Genetics. 2007 Aug;176(4):2357-69 19346325 - Bioinformatics. 2009 Jun 1;25(11):1451-2 7982569 - Genetics. 1994 Aug;137(4):1157-65 16094301 - Heredity (Edinb). 2006 Jan;96(1):7-21 2323559 - Genetics. 1990 Apr;124(4):967-78 11847089 - Bioinformatics. 2002 Feb;18(2):337-8 16213826 - Curr Biol. 2005 Oct 11;15(19):1773-8 16489230 - Genetics. 2006 Apr;172(4):2699-704 11779818 - Genetics. 2001 Dec;159(4):1833-44 20421321 - J Hered. 2010 Mar-Apr;101 Suppl 1:S127-34 9420473 - Hereditas. 1997;127(1-2):75-82 11901136 - Genetics. 2002 Mar;160(3):1231-41 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 |
References_xml | – volume: 6 start-page: e26872 issn: 1932-6203 issue: 11 year: 2011 ident: 46_41198955 doi: 10.1371/journal.pone.0026872 – volume: 160 start-page: 1231 issn: 1943-2631 year: 2002 ident: 38_36174635 doi: 10.1093/genetics/160.3.1231 – volume: 76 start-page: 63 issn: 0016-6723 issue: 1 year: 2000 ident: 48_10489923 publication-title: Genetical research doi: 10.1017/S0016672300004547 – volume: 147 start-page: 1389 issn: 1943-2631 year: 1997 ident: 60_36170080 doi: 10.1093/genetics/147.3.1389 – volume: 26 start-page: 2755 issn: 0737-4038 issue: 12 year: 2009 ident: 3_35482645 publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msp190 – volume: 120 start-page: 831 issn: 1943-2631 year: 1988 ident: 25_35932899 doi: 10.1093/genetics/120.3.831 – volume: 127 start-page: 75 issn: 0018-0661 issue: 1-2 year: 1997 ident: 39_5844924 publication-title: Hereditas doi: 10.1111/j.1601-5223.1997.00075.x – volume: 23 start-page: 1741 issn: 0737-4038 issue: 9 year: 2006 ident: 5_22277247 publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msl042 – volume: 19 start-page: 1838 issn: 1010-061X issue: 6 year: 2006 ident: 40_22815364 publication-title: Journal of evolutionary biology doi: 10.1111/j.1420-9101.2006.01178.x – volume: 17 start-page: 554 issn: 1010-061X issue: 3 year: 2004 ident: 4_18187939 publication-title: Journal of evolutionary biology doi: 10.1111/j.1420-9101.2004.00699.x – volume: 183 start-page: 1105 issn: 1943-2631 year: 2009 ident: 35_42159916 doi: 10.1534/genetics.109.102707 – volume: 172 start-page: 2699 issn: 1943-2631 year: 2006 ident: 14_36170068 doi: 10.1534/genetics.105.051938 – volume: 157 start-page: 256 year: 2009 ident: 21_44323032 publication-title: J PHYTOPATHOL doi: 10.1111/j.1439-0434.2008.01468.x – volume: 176 start-page: 2357 issn: 1943-2631 year: 2007 ident: 28_37114409 doi: 10.1534/genetics.107.072231 – volume: 24 start-page: 1596 issn: 0737-4038 issue: 8 year: 2007 ident: 56_28528053 publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msm092 – volume: 159 start-page: 1833 issn: 1943-2631 year: 2001 ident: 50_44016273 doi: 10.1093/genetics/159.4.1833 – volume: 23 start-page: 23 issn: 0016-6723 issue: 1 year: 1974 ident: 52_12712804 publication-title: Genetical research doi: 10.1017/S0016672300014634 – volume: 464 start-page: 1342 issn: 1476-4687 issue: 7293 year: 2010 ident: 59_37136462 publication-title: Nature; Physical Science (London) doi: 10.1038/nature08927 – volume: 134 start-page: 1289 issn: 1943-2631 year: 1993 ident: 11_35821390 doi: 10.1093/genetics/134.4.1289 – volume: 137 start-page: 1157 issn: 1943-2631 year: 1994 ident: 62_36170081 doi: 10.1093/genetics/137.4.1157 – volume: 21 start-page: 3686 issn: 1367-4803 issue: 18 year: 2005 ident: 41_19383050 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti584 – volume: 12 start-page: 1805 issn: 1088-9051 issue: 12 year: 2002 ident: 2_17360405 publication-title: Genome Research doi: 10.1101/gr.631202 – volume: 70 start-page: 155 issn: 0016-6723 issue: 2 year: 1997 ident: 12_5871404 publication-title: Genetical research doi: 10.1017/S0016672397002954 – volume: 173 start-page: 2165 issn: 1943-2631 year: 2006 ident: 8_35932897 doi: 10.1534/genetics.106.055715 – volume: 116 start-page: 153 issn: 1943-2631 year: 1987 ident: 26_35932900 doi: 10.1093/genetics/116.1.153 – volume: 18 start-page: 337 issn: 1367-4803 issue: 2 year: 2002 ident: 23_16916962 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.2.337 – volume: 96 start-page: 7 issn: 0018-067X issue: 1 year: 2006 ident: 42_21889742 publication-title: Heredity doi: 10.1038/sj.hdy.6800724 – volume: 160 start-page: 765 issn: 1943-2631 year: 2002 ident: 31_35932859 doi: 10.1093/genetics/160.2.765 – volume: 87 start-page: 75 issn: 0016-6723 issue: 2 year: 2006 ident: 20_22154966 publication-title: Genetical research doi: 10.1017/S0016672306008020 – volume: 87 start-page: 9732 issn: 0027-8424 issue: 24 year: 1990 ident: 27_9260797 publication-title: PNAS doi: 10.1073/pnas.87.24.9732 – volume: 103 start-page: 545 issn: 1943-2631 year: 1983 ident: 53_37677359 doi: 10.1093/genetics/103.3.545 – volume: 82 start-page: 89 issn: 0016-6723 issue: 2 year: 2003 ident: 44_18034034 publication-title: Genetical research doi: 10.1017/S0016672303006347 – volume: 107 start-page: 18724 issn: 0027-8424 issue: 43 year: 2010 ident: 6_38201473 publication-title: PNAS doi: 10.1073/pnas.0909766107 – volume: 155 start-page: 909 issn: 1943-2631 year: 2000 ident: 16_36628739 doi: 10.1093/genetics/155.2.909 – volume: 276 start-page: 657 issn: 0962-8452 issue: 1657 year: 2009 ident: 61_32562294 publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2008.1299 – volume: 13 start-page: 627 issn: 1040-4651 issue: 3 year: 2001 ident: 33_11072202 publication-title: The Plant Cell Online doi: 10.1105/tpc.13.3.627 – volume: 57 start-page: 1707 issn: 1936-6434 year: 2003 ident: 15_40745858 – volume: 166 start-page: 373 year: 2004 ident: 43_44323035 publication-title: LYRATA GENETICS doi: 10.1534/genetics.166.1.373 – volume: 4 start-page: e1000168 issn: 1553-7390 issue: 8 year: 2008 ident: 9_31855984 doi: 10.1371/journal.pgen.1000168 – volume: 104 start-page: 6272 issn: 0027-8424 issue: 15 year: 2007 ident: 32_27987502 publication-title: PNAS doi: 10.1073/pnas.0701338104 – volume: 98 start-page: 441 issn: 1943-2631 year: 1981 ident: 37_42159918 doi: 10.1093/genetics/98.2.441 – volume: 88 start-page: 45 issn: 0016-6723 issue: 1 year: 2006 ident: 30_22761120 publication-title: Genetical research doi: 10.1017/S0016672306008287 – volume: 3 start-page: e2411 issn: 1932-6203 issue: 6 year: 2008 ident: 45_31291319 doi: 10.1371/journal.pone.0002411 – volume: 99 start-page: 11525 issn: 0027-8424 issue: 17 year: 2002 ident: 58_19673581 publication-title: PNAS doi: 10.1073/pnas.172203599 – volume: 124 start-page: 967 issn: 1943-2631 year: 1990 ident: 54_35932906 doi: 10.1093/genetics/124.4.967 – volume: 43 start-page: 476 issn: 1061-4036 issue: 5 year: 2011 ident: 22_39699205 publication-title: Nature genetics doi: 10.1038/ng.807 – volume: 22 start-page: 506 issn: 0737-4038 issue: 3 year: 2005 ident: 65_18774056 publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msi035 – volume: 90 start-page: 37 issn: 0016-6723 issue: 1 year: 2008 ident: 47_30507866 publication-title: Genetical research doi: 10.1017/S0016672307008932 – volume: 8 start-page: e1002495 issn: 1553-7390 issue: 3 year: 2012 ident: 17_42297750 doi: 10.1371/journal.pgen.1002495 – volume: 2 start-page: e286 issn: 1544-9173 issue: 10 year: 2004 ident: 1_18480166 publication-title: PLoS biology doi: 10.1371/journal.pbio.0020286 – volume: 175 start-page: 1381 issn: 1943-2631 year: 2007 ident: 36_36711074 doi: 10.1534/genetics.106.065557 – volume: 158 start-page: 387 issn: 1943-2631 year: 2001 ident: 49_36170077 doi: 10.1093/genetics/158.1.387 – volume: 2 start-page: e64 issn: 1553-7390 issue: 4 year: 2006 ident: 13_22112186 doi: 10.1371/journal.pgen.0020064 – volume: 173 start-page: 1057 issn: 1943-2631 year: 2006 ident: 19_37114408 doi: 10.1534/genetics.106.055780 – volume: 157 start-page: 937 issn: 0032-0889 year: 2010 ident: 18_44323031 publication-title: Plant Physiology – volume: 25 start-page: 1451 issn: 1367-4803 issue: 11 year: 2009 ident: 34_34511626 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp187 – volume: 15 start-page: 1773 issn: 0960-9822 issue: 19 year: 2005 ident: 29_19458768 publication-title: Current biology : CB doi: 10.1016/j.cub.2005.08.062 – volume: 95 start-page: 12398 issn: 0027-8424 issue: 21 year: 1998 ident: 66_6184000 publication-title: PNAS doi: 10.1073/pnas.95.21.12398 – volume: 111 start-page: 147 issn: 1943-2631 year: 1985 ident: 24_35948182 doi: 10.1093/genetics/111.1.147 – volume: 101 (Suppl 1) start-page: S127 issn: 0022-1503 year: 2010 ident: 63_44336251 publication-title: Journal of Heredity – volume: 47 start-page: 430 issn: 1432-1211 year: 1998 ident: 55_44016274 doi: 10.1007/s002510050380 – volume: 24 start-page: 538 issn: 1943-2631 year: 1939 ident: 64_35932910 doi: 10.1093/genetics/24.4.538 – volume: 67 start-page: 622 issn: 1347-6947 issue: 3 year: 2003 ident: 51_17607915 publication-title: Bioscience, Biotechnology, and Biochemistry doi: 10.1271/bbb.67.622 – volume: 22 start-page: 4673 issn: 0305-1048 issue: 22 year: 1994 ident: 57_35351160 publication-title: Nucleic Acids Research doi: 10.1093/nar/22.22.4673 – reference: 20400945 - Nature. 2010 Apr 29;464(7293):1342-6 – reference: 4407212 - Genet Res. 1974 Feb;23(1):23-35 – reference: 17246937 - Genetics. 1939 Jun;24(4):538-52 – reference: 22457631 - PLoS Genet. 2012;8(3):e1002495 – reference: 2263623 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732-5 – reference: 8375663 - Genetics. 1993 Aug;134(4):1289-303 – reference: 18545707 - PLoS One. 2008;3(6):e2411 – reference: 3147214 - Genetics. 1988 Nov;120(3):831-40 – reference: 16751668 - Genetics. 2006 Aug;173(4):2165-77 – reference: 14768893 - Genet Res. 2003 Oct;82(2):89-99 – reference: 17565949 - Genetics. 2007 Aug;176(4):2357-69 – reference: 2323559 - Genetics. 1990 Apr;124(4):967-78 – reference: 11847089 - Bioinformatics. 2002 Feb;18(2):337-8 – reference: 11901136 - Genetics. 2002 Mar;160(3):1231-41 – reference: 9449192 - Genet Res. 1997 Oct;70(2):155-74 – reference: 9420473 - Hereditas. 1997;127(1-2):75-82 – reference: 19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64 – reference: 15149398 - J Evol Biol. 2004 May;17(3):554-61 – reference: 11006635 - Genet Res. 2000 Aug;76(1):63-73 – reference: 17014743 - Genet Res. 2006 Aug;88(1):45-56 – reference: 16683038 - PLoS Genet. 2006 Apr;2(4):e64 – reference: 11861577 - Genetics. 2002 Feb;160(2):765-77 – reference: 16213826 - Curr Biol. 2005 Oct 11;15(19):1773-8 – reference: 17249094 - Genetics. 1981 Jun;98(2):441-59 – reference: 17404224 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6272-7 – reference: 14503614 - Evolution. 2003 Aug;57(8):1707-22 – reference: 14635837 - J Evol Biol. 2003 May;16(3):363-77 – reference: 18986972 - Proc Biol Sci. 2009 Feb 22;276(1657):657-65 – reference: 21478890 - Nat Genet. 2011 May;43(5):476-81 – reference: 12723613 - Biosci Biotechnol Biochem. 2003 Mar;67(3):622-6 – reference: 19752218 - Genetics. 2009 Nov;183(3):1105-18 – reference: 9383079 - Genetics. 1997 Nov;147(3):1389-400 – reference: 7982569 - Genetics. 1994 Aug;137(4):1157-65 – reference: 9770498 - Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12398-403 – reference: 11333247 - Genetics. 2001 May;158(1):387-99 – reference: 20421321 - J Hered. 2010 Mar-Apr;101 Suppl 1:S127-34 – reference: 6404695 - Genetics. 1983 Mar;103(3):545-55 – reference: 16709272 - Genet Res. 2006 Apr;87(2):75-85 – reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 – reference: 10835409 - Genetics. 2000 Jun;155(2):909-19 – reference: 18289399 - Genet Res (Camb). 2008 Feb;90(1):37-46 – reference: 17040381 - J Evol Biol. 2006 Nov;19(6):1838-50 – reference: 12172007 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11525-30 – reference: 17194784 - Genetics. 2007 Mar;175(3):1381-93 – reference: 17683611 - BMC Evol Biol. 2007;7:132 – reference: 16020469 - Bioinformatics. 2005 Sep 15;21(18):3686-7 – reference: 16782760 - Mol Biol Evol. 2006 Sep;23(9):1741-50 – reference: 15361935 - PLoS Biol. 2004 Oct;2(10):e286 – reference: 19346325 - Bioinformatics. 2009 Jun 1;25(11):1451-2 – reference: 12466284 - Genome Res. 2002 Dec;12(12):1805-14 – reference: 18769722 - PLoS Genet. 2008 Aug;4(8):e1000168 – reference: 20921408 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8 – reference: 22069475 - PLoS One. 2011;6(11):e26872 – reference: 16582433 - Genetics. 2006 Jun;173(2):1057-73 – reference: 3110004 - Genetics. 1987 May;116(1):153-9 – reference: 11251101 - Plant Cell. 2001 Mar;13(3):627-43 – reference: 11779818 - Genetics. 2001 Dec;159(4):1833-44 – reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 – reference: 16489230 - Genetics. 2006 Apr;172(4):2699-704 – reference: 15020431 - Genetics. 2004 Jan;166(1):373-88 – reference: 9553149 - Immunogenetics. 1998 May;47(6):430-41 – reference: 21810962 - Plant Physiol. 2011 Oct;157(2):937-46 – reference: 4029609 - Genetics. 1985 Sep;111(1):147-64 – reference: 16094301 - Heredity (Edinb). 2006 Jan;96(1):7-21 – reference: 15525701 - Mol Biol Evol. 2005 Mar;22(3):506-19 |
SSID | ssj0014466 |
Score | 2.3124564 |
Snippet | Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing... |
SourceID | pubmedcentral hal proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 435 |
SubjectTerms | Arabidopsis - genetics Arabidopsis halleri Boundaries Demography Discoveries Evolution Flowers & plants Gene loci Gene Order Gene polymorphism Genes, Plant Genetic Loci Genetics Genome, Plant Genomes Genomics Life Sciences Linkage disequilibrium Molecular Sequence Data Mutation Polymorphism Polymorphism, Genetic Populations and Evolution Recombination Recombination, Genetic Selection, Genetic Self-incompatibility |
Title | Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23104079 https://www.proquest.com/docview/1271763518 https://www.proquest.com/docview/1273705562 https://www.proquest.com/docview/1315613141 https://hal.science/hal-00860473 https://pubmed.ncbi.nlm.nih.gov/PMC3548311 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagEhIX1EKBpQ8ZVHEidONH4hy3FdUKFThsK-0tcmyHRmyTarNbqf--M3Y2anhf47ETZ-zMN5nxN4QcJU5kSKMUARxVkQCLDnsus5Gz1qpUO8U98fyXr8n0Unyey3n3v6P9TQg_48fXzaJwt8fXbcsEcmuDAcYFffFt3ocLNkHJlKfgEHHVkWn-0ntgfB5fYerj4FjbA3T5c5LkA6tztk2edXCRToJ-d8gjVz8nT0IBybsX5AegPuhIdW3ppPZnG-ms-h7YOmlT0hPMXDRgnujMF7wBLVC9xFJKFJAfnUXnjVm3tKrhFrqobHPTVi31BVaWVRj2I13cwTLRu-Ty7NPF6TTqyidEBkDKKlKs0LIohWNIw1YIkyg8ZstsYpJSjuPScQH4h5eJck5aaTJWOPg2GlCYk0zyl2Srbmr3mtBCaqPGmGJtUiQwBK9WW10qjFrKcWlH5MPmveam4xbHEheLPMS4eR7UkAc1jMj7XvwmkGr8SfAdzLiXQSrs6eQ8x2voi41Fym_jEXkLOvzXQPsbDefdJm3zmIEvC4ArVjBE3wzbC2MmunbN2stwTzjE_iLDY3TDYgGP8iosmv5pED6Dz5yNSDpYToM5DVvq6srTfHNwJnkcv_mP6e2Rp8yX6cA0m32ytVqu3QGApVVx6DfKPSRdE0o |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+and+Ancient+Signature+of+Balancing+Selection+around+the+S-Locus+in+Arabidopsis+halleri+and+A.+lyrata&rft.jtitle=Molecular+biology+and+evolution&rft.au=Roux%2C+Camille&rft.au=Pauwels%2C+Maxime&rft.au=Ruggiero%2C+Maria-Valeria&rft.au=Charlesworth%2C+Deborah&rft.date=2013-02-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.eissn=1537-1719&rft.volume=30&rft.issue=2&rft.spage=435&rft_id=info:doi/10.1093%2Fmolbev%2Fmss246&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2870837871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |