Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata

Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 30; no. 2; pp. 435 - 447
Main Authors Roux, Camille, Pauwels, Maxime, Ruggiero, Maria-Valeria, Charlesworth, Deborah, Castric, Vincent, Vekemans, Xavier
Format Journal Article
LanguageEnglish
Published United States Society for Molecular Biology and Evolution 01.02.2013
Oxford University Press
Oxford University Press (OUP)
Subjects
Online AccessGet full text
ISSN0737-4038
1537-1719
1537-1719
DOI10.1093/molbev/mss246

Cover

Abstract Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.
AbstractList Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.
Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.
Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata . In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.
Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems. [PUBLICATION ABSTRACT]
Author Ruggiero, Maria-Valeria
Castric, Vincent
Pauwels, Maxime
Roux, Camille
Vekemans, Xavier
Charlesworth, Deborah
AuthorAffiliation 3 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
1 Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université de Lille, Sciences et Technologies, Villeneuve d’Ascq, France
2 Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Naples, Italy
AuthorAffiliation_xml – name: 3 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
– name: 2 Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Naples, Italy
– name: 1 Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université de Lille, Sciences et Technologies, Villeneuve d’Ascq, France
Author_xml – sequence: 1
  givenname: Camille
  surname: Roux
  fullname: Roux, Camille
– sequence: 2
  givenname: Maxime
  surname: Pauwels
  fullname: Pauwels, Maxime
– sequence: 3
  givenname: Maria-Valeria
  surname: Ruggiero
  fullname: Ruggiero, Maria-Valeria
– sequence: 4
  givenname: Deborah
  surname: Charlesworth
  fullname: Charlesworth, Deborah
– sequence: 5
  givenname: Vincent
  surname: Castric
  fullname: Castric, Vincent
– sequence: 6
  givenname: Xavier
  surname: Vekemans
  fullname: Vekemans, Xavier
  email: xavier.vekemans@univ-lille1.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23104079$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00860473$$DView record in HAL
BookMark eNqNks9rFDEUx4NU7LZ69CoBL3qYNr9n5iJsi1phQXD1HDKZN7ups8mazCz0vzfDbEUXRC9JePm8b_J9712gMx88IPSSkitKan69C30Dh-tdSkyoJ2hBJS8LWtL6DC1Imc-C8OocXaR0TwgVQqln6JxxSgQp6wX6_gUs-AEb3-Klt246r93Gm2GMgEOHb0xvctxv8Bp6sIMLHpsYxswPW8DrYhXsmLDzeBlN49qwTy7hrel7iG6WvcL9QzSDeY6edqZP8OK4X6JvH95_vb0rVp8_frpdrgorqRyKijVGNp0ARqWoG2FVJXhNWaus6iShHXAhieSdqgBkK23NGigVs5QykEzyS_Ru1t2PzQ7ayV80vd5HtzPxQQfj9J833m31Jhw0l6LilGaBt7PA9iTtbrnSU4yQShFR8sPEvjk-FsOPEdKgdy5Z6HPVIIxJU06lyov4D5TlfhEpFcvo6xP0PozR56pNFC0Vl7TK1Kvfjf766mN7M8BnwMaQUoROWzeYqYfZt-s1JXoaIj0PkZ6HKGcVJ1mPwn_jj77CuP8H-hN-3tgn
CitedBy_id crossref_primary_10_1111_mec_12521
crossref_primary_10_1016_j_scienta_2021_110141
crossref_primary_10_1186_s13059_017_1365_1
crossref_primary_10_1186_s12864_017_3485_0
crossref_primary_10_1111_mec_13078
crossref_primary_10_1038_hdy_2016_99
crossref_primary_10_1093_molbev_msac048
crossref_primary_10_1111_nph_16434
crossref_primary_10_1093_molbev_msab217
crossref_primary_10_1016_j_heliyon_2023_e20231
crossref_primary_10_1186_s13059_017_1342_8
crossref_primary_10_1371_journal_pone_0107479
crossref_primary_10_1111_jeb_12396
crossref_primary_10_1016_j_gde_2014_08_001
crossref_primary_10_1111_jeb_12372
crossref_primary_10_1038_ncomms10400
crossref_primary_10_1371_journal_pgen_1009477
crossref_primary_10_1111_jeb_13745
crossref_primary_10_3389_fgene_2017_00016
crossref_primary_10_1007_s00497_022_00451_6
crossref_primary_10_1093_g3journal_jkac323
crossref_primary_10_1093_nar_gkt1376
crossref_primary_10_1111_evo_12687
crossref_primary_10_1111_nph_16215
crossref_primary_10_1186_s12862_016_0857_z
crossref_primary_10_1111_eva_12933
crossref_primary_10_1038_s41437_020_00388_4
crossref_primary_10_1093_molbev_msad120
crossref_primary_10_1186_s12862_014_0224_x
crossref_primary_10_1111_evo_12427
crossref_primary_10_1093_molbev_mst066
crossref_primary_10_1111_evo_12937
crossref_primary_10_1111_mec_15989
crossref_primary_10_1038_hdy_2012_120
crossref_primary_10_1093_molbev_msad122
crossref_primary_10_1111_mec_12957
crossref_primary_10_1016_j_smim_2023_101813
crossref_primary_10_1111_mec_13226
crossref_primary_10_1371_journal_pgen_1005067
crossref_primary_10_1111_jeb_12425
crossref_primary_10_1111_mec_14051
crossref_primary_10_55544_jrasb_2_6_12
crossref_primary_10_1128_microbiolspec_FUNK_0015_2016
crossref_primary_10_1371_journal_pone_0166146
crossref_primary_10_1093_aobpla_plz076
crossref_primary_10_1093_jhered_esae046
crossref_primary_10_1016_j_tpb_2018_07_002
Cites_doi 10.1371/journal.pone.0026872
10.1093/genetics/160.3.1231
10.1017/S0016672300004547
10.1093/genetics/147.3.1389
10.1093/molbev/msp190
10.1093/genetics/120.3.831
10.1111/j.1601-5223.1997.00075.x
10.1093/molbev/msl042
10.1111/j.1420-9101.2006.01178.x
10.1111/j.1420-9101.2004.00699.x
10.1534/genetics.109.102707
10.1534/genetics.105.051938
10.1111/j.1439-0434.2008.01468.x
10.1534/genetics.107.072231
10.1093/molbev/msm092
10.1093/genetics/159.4.1833
10.1017/S0016672300014634
10.1038/nature08927
10.1093/genetics/134.4.1289
10.1093/genetics/137.4.1157
10.1093/bioinformatics/bti584
10.1101/gr.631202
10.1017/S0016672397002954
10.1534/genetics.106.055715
10.1093/genetics/116.1.153
10.1093/bioinformatics/18.2.337
10.1038/sj.hdy.6800724
10.1093/genetics/160.2.765
10.1017/S0016672306008020
10.1073/pnas.87.24.9732
10.1093/genetics/103.3.545
10.1017/S0016672303006347
10.1073/pnas.0909766107
10.1093/genetics/155.2.909
10.1098/rspb.2008.1299
10.1105/tpc.13.3.627
10.1534/genetics.166.1.373
10.1371/journal.pgen.1000168
10.1073/pnas.0701338104
10.1093/genetics/98.2.441
10.1017/S0016672306008287
10.1371/journal.pone.0002411
10.1073/pnas.172203599
10.1093/genetics/124.4.967
10.1038/ng.807
10.1093/molbev/msi035
10.1017/S0016672307008932
10.1371/journal.pgen.1002495
10.1371/journal.pbio.0020286
10.1534/genetics.106.065557
10.1093/genetics/158.1.387
10.1371/journal.pgen.0020064
10.1534/genetics.106.055780
10.1093/bioinformatics/btp187
10.1016/j.cub.2005.08.062
10.1073/pnas.95.21.12398
10.1093/genetics/111.1.147
10.1007/s002510050380
10.1093/genetics/24.4.538
10.1271/bbb.67.622
10.1093/nar/22.22.4673
ContentType Journal Article
Copyright The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2012
Copyright Oxford Publishing Limited(England) Feb 2013
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2012
– notice: Copyright Oxford Publishing Limited(England) Feb 2013
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1093/molbev/mss246
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
MEDLINE - Academic


Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-1719
EndPage 447
ExternalDocumentID PMC3548311
oai_HAL_hal_00860473v1
2870837871
23104079
10_1093_molbev_mss246
10.1093/molbev/mss246
Genre Journal Article
Feature
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29M
2WC
4.4
48X
53G
5VS
5WA
70D
7X7
AAFWJ
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABSMQ
ABTAH
ABXVV
ABZBJ
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPRK
ACUFI
ACUTO
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADJQC
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFIYH
AFOFC
AFPKN
AFRAH
AFULF
AFXEN
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASAOO
ATDFG
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
BTRTY
BVRKM
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLIZI
FOTVD
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HH5
HW0
HZ~
IAO
IGS
IHR
IOX
ITC
J21
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOYVH
NTWIH
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RHF
RNI
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
RZO
TEORI
TJP
TJX
TLC
TN5
TOX
TR2
VQA
W8F
WOQ
X7H
XJT
XSW
YAYTL
YHZ
YKOAZ
YXANX
ZCA
ZCG
ZKX
ZXP
ZY4
~02
~91
AAYXX
BBNVY
CITATION
88E
8AO
8FI
8FJ
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
CCPQU
CGR
CUY
CVF
DWQXO
ECM
EIF
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
M1P
M2O
M7P
NPM
PSQYO
UKHRP
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
ADXHL
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c515t-82ba5bf4e21549b4c6843912d6c6f501fe345053f68ee5d5c92be762c112e5253
IEDL.DBID TOX
ISSN 0737-4038
1537-1719
IngestDate Thu Aug 21 18:45:25 EDT 2025
Fri Sep 12 12:39:32 EDT 2025
Thu Sep 04 21:37:21 EDT 2025
Mon Jul 21 11:40:26 EDT 2025
Fri Sep 19 20:49:17 EDT 2025
Thu Apr 03 07:00:36 EDT 2025
Tue Jul 01 03:45:37 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Fri Feb 07 10:35:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords self-incompatibility
recombination
balancing selection
ancestral polymorphism
approximate Bayesian computation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-82ba5bf4e21549b4c6843912d6c6f501fe345053f68ee5d5c92be762c112e5253
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMCID: PMC3548311
These authors contributed equally to this work.
Associate editor: Naoki Takebayashi
ORCID 0000-0002-4461-4915
0000-0002-4836-4394
OpenAccessLink https://dx.doi.org/10.1093/molbev/mss246
PMID 23104079
PQID 1271763518
PQPubID 36253
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3548311
hal_primary_oai_HAL_hal_00860473v1
proquest_miscellaneous_1315613141
proquest_miscellaneous_1273705562
proquest_journals_1271763518
pubmed_primary_23104079
crossref_citationtrail_10_1093_molbev_mss246
crossref_primary_10_1093_molbev_mss246
oup_primary_10_1093_molbev_mss246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Molecular biology and evolution
PublicationTitleAlternate Mol Biol Evol
PublicationYear 2013
Publisher Society for Molecular Biology and Evolution
Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Society for Molecular Biology and Evolution
– name: Oxford University Press
– name: Oxford University Press (OUP)
References (28_37114409) 2007; 176
(15_40745858) 2003; 57
Pauwels (40_22815364) 2006; 19
(64_35932910) 1939; 24
Smith (52_12712804) 1974; 23
(25_35932899) 1988; 120
(63_44336251) 2010; 101 (Suppl 1)
Kamau (29_19458768) 2005; 15
Castric (9_31855984) 2008; 4
(31_35932859) 2002; 160
Meagher (39_5844924) 1997; 127
Bechsgaard (4_18187939) 2004; 17
(43_44323035) 2004; 166
(26_35932900) 1987; 116
Goubet (17_42297750) 2012; 8
(56_28528053) 2007; 24
(49_36170077) 2001; 158
(65_18774056) 2005; 22
Kusaba (33_11072202) 2001; 13
(50_44016273) 2001; 159
Hansson (20_22154966) 2006; 87
Roux (46_41198955) 2011; 6
(5_22277247) 2006; 23
(58_19673581) 2002; 99
(18_44323031) 2010; 157
Akey (1_18480166) 2004; 2
Ioerger (27_9260797) 1990; 87
(38_36174635) 2002; 160
(35_42159916) 2009; 183
(41_19383050) 2005; 21
van Oosterhout (61_32562294) 2009; 276
(37_42159918) 1981; 98
(55_44016274) 1998; 47
(57_35351160) 1994; 22
Piertney (42_21889742) 2006; 96
(14_36170068) 2006; 172
(16_36628739) 2000; 155
(62_36170081) 1994; 137
(19_37114408) 2006; 173
Ruggiero (47_30507866) 2008; 90
(11_35821390) 1993; 134
(32_27987502) 2007; 104
(6_38201473) 2010; 107
Ross-Ibarra (45_31291319) 2008; 3
Hu (22_39699205) 2011; 43
Richman (44_18034034) 2003; 82
Hudson (23_16916962) 2002; 18
Shiba (51_17607915) 2003; 67
(34_34511626) 2009; 25
Schierup (48_10489923) 2000; 76
(36_36711074) 2007; 175
(24_35948182) 1985; 111
Wu (66_6184000) 1998; 95
Kawabe (30_22761120) 2006; 88
(8_35932897) 2006; 173
(54_35932906) 1990; 124
Akey (2_17360405) 2002; 12
Charlesworth (12_5871404) 1997; 70
(60_36170080) 1997; 147
Tsuchimatsu (59_37136462) 2010; 464
Charlesworth (13_22112186) 2006; 2
(21_44323032) 2009; 157
(3_35482645) 2009; 26
(53_37677359) 1983; 103
12723613 - Biosci Biotechnol Biochem. 2003 Mar;67(3):622-6
12172007 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11525-30
15149398 - J Evol Biol. 2004 May;17(3):554-61
18289399 - Genet Res (Camb). 2008 Feb;90(1):37-46
16683038 - PLoS Genet. 2006 Apr;2(4):e64
19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64
15525701 - Mol Biol Evol. 2005 Mar;22(3):506-19
17040381 - J Evol Biol. 2006 Nov;19(6):1838-50
17194784 - Genetics. 2007 Mar;175(3):1381-93
18769722 - PLoS Genet. 2008 Aug;4(8):e1000168
17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
17683611 - BMC Evol Biol. 2007;7:132
19752218 - Genetics. 2009 Nov;183(3):1105-18
16751668 - Genetics. 2006 Aug;173(4):2165-77
14768893 - Genet Res. 2003 Oct;82(2):89-99
14503614 - Evolution. 2003 Aug;57(8):1707-22
20400945 - Nature. 2010 Apr 29;464(7293):1342-6
11861577 - Genetics. 2002 Feb;160(2):765-77
17404224 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6272-7
4029609 - Genetics. 1985 Sep;111(1):147-64
22069475 - PLoS One. 2011;6(11):e26872
18545707 - PLoS One. 2008;3(6):e2411
6404695 - Genetics. 1983 Mar;103(3):545-55
3147214 - Genetics. 1988 Nov;120(3):831-40
9383079 - Genetics. 1997 Nov;147(3):1389-400
20921408 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8
17249094 - Genetics. 1981 Jun;98(2):441-59
17246937 - Genetics. 1939 Jun;24(4):538-52
12466284 - Genome Res. 2002 Dec;12(12):1805-14
4407212 - Genet Res. 1974 Feb;23(1):23-35
2263623 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732-5
17014743 - Genet Res. 2006 Aug;88(1):45-56
15361935 - PLoS Biol. 2004 Oct;2(10):e286
15020431 - Genetics. 2004 Jan;166(1):373-88
14635837 - J Evol Biol. 2003 May;16(3):363-77
3110004 - Genetics. 1987 May;116(1):153-9
8375663 - Genetics. 1993 Aug;134(4):1289-303
22457631 - PLoS Genet. 2012;8(3):e1002495
16582433 - Genetics. 2006 Jun;173(2):1057-73
9449192 - Genet Res. 1997 Oct;70(2):155-74
16020469 - Bioinformatics. 2005 Sep 15;21(18):3686-7
18986972 - Proc Biol Sci. 2009 Feb 22;276(1657):657-65
16709272 - Genet Res. 2006 Apr;87(2):75-85
21810962 - Plant Physiol. 2011 Oct;157(2):937-46
11251101 - Plant Cell. 2001 Mar;13(3):627-43
10835409 - Genetics. 2000 Jun;155(2):909-19
11333247 - Genetics. 2001 May;158(1):387-99
21478890 - Nat Genet. 2011 May;43(5):476-81
11006635 - Genet Res. 2000 Aug;76(1):63-73
9553149 - Immunogenetics. 1998 May;47(6):430-41
9770498 - Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12398-403
16782760 - Mol Biol Evol. 2006 Sep;23(9):1741-50
17565949 - Genetics. 2007 Aug;176(4):2357-69
19346325 - Bioinformatics. 2009 Jun 1;25(11):1451-2
7982569 - Genetics. 1994 Aug;137(4):1157-65
16094301 - Heredity (Edinb). 2006 Jan;96(1):7-21
2323559 - Genetics. 1990 Apr;124(4):967-78
11847089 - Bioinformatics. 2002 Feb;18(2):337-8
16213826 - Curr Biol. 2005 Oct 11;15(19):1773-8
16489230 - Genetics. 2006 Apr;172(4):2699-704
11779818 - Genetics. 2001 Dec;159(4):1833-44
20421321 - J Hered. 2010 Mar-Apr;101 Suppl 1:S127-34
9420473 - Hereditas. 1997;127(1-2):75-82
11901136 - Genetics. 2002 Mar;160(3):1231-41
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
References_xml – volume: 6
  start-page: e26872
  issn: 1932-6203
  issue: 11
  year: 2011
  ident: 46_41198955
  doi: 10.1371/journal.pone.0026872
– volume: 160
  start-page: 1231
  issn: 1943-2631
  year: 2002
  ident: 38_36174635
  doi: 10.1093/genetics/160.3.1231
– volume: 76
  start-page: 63
  issn: 0016-6723
  issue: 1
  year: 2000
  ident: 48_10489923
  publication-title: Genetical research
  doi: 10.1017/S0016672300004547
– volume: 147
  start-page: 1389
  issn: 1943-2631
  year: 1997
  ident: 60_36170080
  doi: 10.1093/genetics/147.3.1389
– volume: 26
  start-page: 2755
  issn: 0737-4038
  issue: 12
  year: 2009
  ident: 3_35482645
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msp190
– volume: 120
  start-page: 831
  issn: 1943-2631
  year: 1988
  ident: 25_35932899
  doi: 10.1093/genetics/120.3.831
– volume: 127
  start-page: 75
  issn: 0018-0661
  issue: 1-2
  year: 1997
  ident: 39_5844924
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1997.00075.x
– volume: 23
  start-page: 1741
  issn: 0737-4038
  issue: 9
  year: 2006
  ident: 5_22277247
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msl042
– volume: 19
  start-page: 1838
  issn: 1010-061X
  issue: 6
  year: 2006
  ident: 40_22815364
  publication-title: Journal of evolutionary biology
  doi: 10.1111/j.1420-9101.2006.01178.x
– volume: 17
  start-page: 554
  issn: 1010-061X
  issue: 3
  year: 2004
  ident: 4_18187939
  publication-title: Journal of evolutionary biology
  doi: 10.1111/j.1420-9101.2004.00699.x
– volume: 183
  start-page: 1105
  issn: 1943-2631
  year: 2009
  ident: 35_42159916
  doi: 10.1534/genetics.109.102707
– volume: 172
  start-page: 2699
  issn: 1943-2631
  year: 2006
  ident: 14_36170068
  doi: 10.1534/genetics.105.051938
– volume: 157
  start-page: 256
  year: 2009
  ident: 21_44323032
  publication-title: J PHYTOPATHOL
  doi: 10.1111/j.1439-0434.2008.01468.x
– volume: 176
  start-page: 2357
  issn: 1943-2631
  year: 2007
  ident: 28_37114409
  doi: 10.1534/genetics.107.072231
– volume: 24
  start-page: 1596
  issn: 0737-4038
  issue: 8
  year: 2007
  ident: 56_28528053
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msm092
– volume: 159
  start-page: 1833
  issn: 1943-2631
  year: 2001
  ident: 50_44016273
  doi: 10.1093/genetics/159.4.1833
– volume: 23
  start-page: 23
  issn: 0016-6723
  issue: 1
  year: 1974
  ident: 52_12712804
  publication-title: Genetical research
  doi: 10.1017/S0016672300014634
– volume: 464
  start-page: 1342
  issn: 1476-4687
  issue: 7293
  year: 2010
  ident: 59_37136462
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/nature08927
– volume: 134
  start-page: 1289
  issn: 1943-2631
  year: 1993
  ident: 11_35821390
  doi: 10.1093/genetics/134.4.1289
– volume: 137
  start-page: 1157
  issn: 1943-2631
  year: 1994
  ident: 62_36170081
  doi: 10.1093/genetics/137.4.1157
– volume: 21
  start-page: 3686
  issn: 1367-4803
  issue: 18
  year: 2005
  ident: 41_19383050
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti584
– volume: 12
  start-page: 1805
  issn: 1088-9051
  issue: 12
  year: 2002
  ident: 2_17360405
  publication-title: Genome Research
  doi: 10.1101/gr.631202
– volume: 70
  start-page: 155
  issn: 0016-6723
  issue: 2
  year: 1997
  ident: 12_5871404
  publication-title: Genetical research
  doi: 10.1017/S0016672397002954
– volume: 173
  start-page: 2165
  issn: 1943-2631
  year: 2006
  ident: 8_35932897
  doi: 10.1534/genetics.106.055715
– volume: 116
  start-page: 153
  issn: 1943-2631
  year: 1987
  ident: 26_35932900
  doi: 10.1093/genetics/116.1.153
– volume: 18
  start-page: 337
  issn: 1367-4803
  issue: 2
  year: 2002
  ident: 23_16916962
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.2.337
– volume: 96
  start-page: 7
  issn: 0018-067X
  issue: 1
  year: 2006
  ident: 42_21889742
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800724
– volume: 160
  start-page: 765
  issn: 1943-2631
  year: 2002
  ident: 31_35932859
  doi: 10.1093/genetics/160.2.765
– volume: 87
  start-page: 75
  issn: 0016-6723
  issue: 2
  year: 2006
  ident: 20_22154966
  publication-title: Genetical research
  doi: 10.1017/S0016672306008020
– volume: 87
  start-page: 9732
  issn: 0027-8424
  issue: 24
  year: 1990
  ident: 27_9260797
  publication-title: PNAS
  doi: 10.1073/pnas.87.24.9732
– volume: 103
  start-page: 545
  issn: 1943-2631
  year: 1983
  ident: 53_37677359
  doi: 10.1093/genetics/103.3.545
– volume: 82
  start-page: 89
  issn: 0016-6723
  issue: 2
  year: 2003
  ident: 44_18034034
  publication-title: Genetical research
  doi: 10.1017/S0016672303006347
– volume: 107
  start-page: 18724
  issn: 0027-8424
  issue: 43
  year: 2010
  ident: 6_38201473
  publication-title: PNAS
  doi: 10.1073/pnas.0909766107
– volume: 155
  start-page: 909
  issn: 1943-2631
  year: 2000
  ident: 16_36628739
  doi: 10.1093/genetics/155.2.909
– volume: 276
  start-page: 657
  issn: 0962-8452
  issue: 1657
  year: 2009
  ident: 61_32562294
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2008.1299
– volume: 13
  start-page: 627
  issn: 1040-4651
  issue: 3
  year: 2001
  ident: 33_11072202
  publication-title: The Plant Cell Online
  doi: 10.1105/tpc.13.3.627
– volume: 57
  start-page: 1707
  issn: 1936-6434
  year: 2003
  ident: 15_40745858
– volume: 166
  start-page: 373
  year: 2004
  ident: 43_44323035
  publication-title: LYRATA GENETICS
  doi: 10.1534/genetics.166.1.373
– volume: 4
  start-page: e1000168
  issn: 1553-7390
  issue: 8
  year: 2008
  ident: 9_31855984
  doi: 10.1371/journal.pgen.1000168
– volume: 104
  start-page: 6272
  issn: 0027-8424
  issue: 15
  year: 2007
  ident: 32_27987502
  publication-title: PNAS
  doi: 10.1073/pnas.0701338104
– volume: 98
  start-page: 441
  issn: 1943-2631
  year: 1981
  ident: 37_42159918
  doi: 10.1093/genetics/98.2.441
– volume: 88
  start-page: 45
  issn: 0016-6723
  issue: 1
  year: 2006
  ident: 30_22761120
  publication-title: Genetical research
  doi: 10.1017/S0016672306008287
– volume: 3
  start-page: e2411
  issn: 1932-6203
  issue: 6
  year: 2008
  ident: 45_31291319
  doi: 10.1371/journal.pone.0002411
– volume: 99
  start-page: 11525
  issn: 0027-8424
  issue: 17
  year: 2002
  ident: 58_19673581
  publication-title: PNAS
  doi: 10.1073/pnas.172203599
– volume: 124
  start-page: 967
  issn: 1943-2631
  year: 1990
  ident: 54_35932906
  doi: 10.1093/genetics/124.4.967
– volume: 43
  start-page: 476
  issn: 1061-4036
  issue: 5
  year: 2011
  ident: 22_39699205
  publication-title: Nature genetics
  doi: 10.1038/ng.807
– volume: 22
  start-page: 506
  issn: 0737-4038
  issue: 3
  year: 2005
  ident: 65_18774056
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msi035
– volume: 90
  start-page: 37
  issn: 0016-6723
  issue: 1
  year: 2008
  ident: 47_30507866
  publication-title: Genetical research
  doi: 10.1017/S0016672307008932
– volume: 8
  start-page: e1002495
  issn: 1553-7390
  issue: 3
  year: 2012
  ident: 17_42297750
  doi: 10.1371/journal.pgen.1002495
– volume: 2
  start-page: e286
  issn: 1544-9173
  issue: 10
  year: 2004
  ident: 1_18480166
  publication-title: PLoS biology
  doi: 10.1371/journal.pbio.0020286
– volume: 175
  start-page: 1381
  issn: 1943-2631
  year: 2007
  ident: 36_36711074
  doi: 10.1534/genetics.106.065557
– volume: 158
  start-page: 387
  issn: 1943-2631
  year: 2001
  ident: 49_36170077
  doi: 10.1093/genetics/158.1.387
– volume: 2
  start-page: e64
  issn: 1553-7390
  issue: 4
  year: 2006
  ident: 13_22112186
  doi: 10.1371/journal.pgen.0020064
– volume: 173
  start-page: 1057
  issn: 1943-2631
  year: 2006
  ident: 19_37114408
  doi: 10.1534/genetics.106.055780
– volume: 157
  start-page: 937
  issn: 0032-0889
  year: 2010
  ident: 18_44323031
  publication-title: Plant Physiology
– volume: 25
  start-page: 1451
  issn: 1367-4803
  issue: 11
  year: 2009
  ident: 34_34511626
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp187
– volume: 15
  start-page: 1773
  issn: 0960-9822
  issue: 19
  year: 2005
  ident: 29_19458768
  publication-title: Current biology : CB
  doi: 10.1016/j.cub.2005.08.062
– volume: 95
  start-page: 12398
  issn: 0027-8424
  issue: 21
  year: 1998
  ident: 66_6184000
  publication-title: PNAS
  doi: 10.1073/pnas.95.21.12398
– volume: 111
  start-page: 147
  issn: 1943-2631
  year: 1985
  ident: 24_35948182
  doi: 10.1093/genetics/111.1.147
– volume: 101 (Suppl 1)
  start-page: S127
  issn: 0022-1503
  year: 2010
  ident: 63_44336251
  publication-title: Journal of Heredity
– volume: 47
  start-page: 430
  issn: 1432-1211
  year: 1998
  ident: 55_44016274
  doi: 10.1007/s002510050380
– volume: 24
  start-page: 538
  issn: 1943-2631
  year: 1939
  ident: 64_35932910
  doi: 10.1093/genetics/24.4.538
– volume: 67
  start-page: 622
  issn: 1347-6947
  issue: 3
  year: 2003
  ident: 51_17607915
  publication-title: Bioscience, Biotechnology, and Biochemistry
  doi: 10.1271/bbb.67.622
– volume: 22
  start-page: 4673
  issn: 0305-1048
  issue: 22
  year: 1994
  ident: 57_35351160
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/22.22.4673
– reference: 20400945 - Nature. 2010 Apr 29;464(7293):1342-6
– reference: 4407212 - Genet Res. 1974 Feb;23(1):23-35
– reference: 17246937 - Genetics. 1939 Jun;24(4):538-52
– reference: 22457631 - PLoS Genet. 2012;8(3):e1002495
– reference: 2263623 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732-5
– reference: 8375663 - Genetics. 1993 Aug;134(4):1289-303
– reference: 18545707 - PLoS One. 2008;3(6):e2411
– reference: 3147214 - Genetics. 1988 Nov;120(3):831-40
– reference: 16751668 - Genetics. 2006 Aug;173(4):2165-77
– reference: 14768893 - Genet Res. 2003 Oct;82(2):89-99
– reference: 17565949 - Genetics. 2007 Aug;176(4):2357-69
– reference: 2323559 - Genetics. 1990 Apr;124(4):967-78
– reference: 11847089 - Bioinformatics. 2002 Feb;18(2):337-8
– reference: 11901136 - Genetics. 2002 Mar;160(3):1231-41
– reference: 9449192 - Genet Res. 1997 Oct;70(2):155-74
– reference: 9420473 - Hereditas. 1997;127(1-2):75-82
– reference: 19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64
– reference: 15149398 - J Evol Biol. 2004 May;17(3):554-61
– reference: 11006635 - Genet Res. 2000 Aug;76(1):63-73
– reference: 17014743 - Genet Res. 2006 Aug;88(1):45-56
– reference: 16683038 - PLoS Genet. 2006 Apr;2(4):e64
– reference: 11861577 - Genetics. 2002 Feb;160(2):765-77
– reference: 16213826 - Curr Biol. 2005 Oct 11;15(19):1773-8
– reference: 17249094 - Genetics. 1981 Jun;98(2):441-59
– reference: 17404224 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6272-7
– reference: 14503614 - Evolution. 2003 Aug;57(8):1707-22
– reference: 14635837 - J Evol Biol. 2003 May;16(3):363-77
– reference: 18986972 - Proc Biol Sci. 2009 Feb 22;276(1657):657-65
– reference: 21478890 - Nat Genet. 2011 May;43(5):476-81
– reference: 12723613 - Biosci Biotechnol Biochem. 2003 Mar;67(3):622-6
– reference: 19752218 - Genetics. 2009 Nov;183(3):1105-18
– reference: 9383079 - Genetics. 1997 Nov;147(3):1389-400
– reference: 7982569 - Genetics. 1994 Aug;137(4):1157-65
– reference: 9770498 - Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12398-403
– reference: 11333247 - Genetics. 2001 May;158(1):387-99
– reference: 20421321 - J Hered. 2010 Mar-Apr;101 Suppl 1:S127-34
– reference: 6404695 - Genetics. 1983 Mar;103(3):545-55
– reference: 16709272 - Genet Res. 2006 Apr;87(2):75-85
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 10835409 - Genetics. 2000 Jun;155(2):909-19
– reference: 18289399 - Genet Res (Camb). 2008 Feb;90(1):37-46
– reference: 17040381 - J Evol Biol. 2006 Nov;19(6):1838-50
– reference: 12172007 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11525-30
– reference: 17194784 - Genetics. 2007 Mar;175(3):1381-93
– reference: 17683611 - BMC Evol Biol. 2007;7:132
– reference: 16020469 - Bioinformatics. 2005 Sep 15;21(18):3686-7
– reference: 16782760 - Mol Biol Evol. 2006 Sep;23(9):1741-50
– reference: 15361935 - PLoS Biol. 2004 Oct;2(10):e286
– reference: 19346325 - Bioinformatics. 2009 Jun 1;25(11):1451-2
– reference: 12466284 - Genome Res. 2002 Dec;12(12):1805-14
– reference: 18769722 - PLoS Genet. 2008 Aug;4(8):e1000168
– reference: 20921408 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8
– reference: 22069475 - PLoS One. 2011;6(11):e26872
– reference: 16582433 - Genetics. 2006 Jun;173(2):1057-73
– reference: 3110004 - Genetics. 1987 May;116(1):153-9
– reference: 11251101 - Plant Cell. 2001 Mar;13(3):627-43
– reference: 11779818 - Genetics. 2001 Dec;159(4):1833-44
– reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
– reference: 16489230 - Genetics. 2006 Apr;172(4):2699-704
– reference: 15020431 - Genetics. 2004 Jan;166(1):373-88
– reference: 9553149 - Immunogenetics. 1998 May;47(6):430-41
– reference: 21810962 - Plant Physiol. 2011 Oct;157(2):937-46
– reference: 4029609 - Genetics. 1985 Sep;111(1):147-64
– reference: 16094301 - Heredity (Edinb). 2006 Jan;96(1):7-21
– reference: 15525701 - Mol Biol Evol. 2005 Mar;22(3):506-19
SSID ssj0014466
Score 2.3124564
Snippet Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 435
SubjectTerms Arabidopsis - genetics
Arabidopsis halleri
Boundaries
Demography
Discoveries
Evolution
Flowers & plants
Gene loci
Gene Order
Gene polymorphism
Genes, Plant
Genetic Loci
Genetics
Genome, Plant
Genomes
Genomics
Life Sciences
Linkage disequilibrium
Molecular Sequence Data
Mutation
Polymorphism
Polymorphism, Genetic
Populations and Evolution
Recombination
Recombination, Genetic
Selection, Genetic
Self-incompatibility
Title Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata
URI https://www.ncbi.nlm.nih.gov/pubmed/23104079
https://www.proquest.com/docview/1271763518
https://www.proquest.com/docview/1273705562
https://www.proquest.com/docview/1315613141
https://hal.science/hal-00860473
https://pubmed.ncbi.nlm.nih.gov/PMC3548311
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagEhIX1EKBpQ8ZVHEidONH4hy3FdUKFThsK-0tcmyHRmyTarNbqf--M3Y2anhf47ETZ-zMN5nxN4QcJU5kSKMUARxVkQCLDnsus5Gz1qpUO8U98fyXr8n0Unyey3n3v6P9TQg_48fXzaJwt8fXbcsEcmuDAcYFffFt3ocLNkHJlKfgEHHVkWn-0ntgfB5fYerj4FjbA3T5c5LkA6tztk2edXCRToJ-d8gjVz8nT0IBybsX5AegPuhIdW3ppPZnG-ms-h7YOmlT0hPMXDRgnujMF7wBLVC9xFJKFJAfnUXnjVm3tKrhFrqobHPTVi31BVaWVRj2I13cwTLRu-Ty7NPF6TTqyidEBkDKKlKs0LIohWNIw1YIkyg8ZstsYpJSjuPScQH4h5eJck5aaTJWOPg2GlCYk0zyl2Srbmr3mtBCaqPGmGJtUiQwBK9WW10qjFrKcWlH5MPmveam4xbHEheLPMS4eR7UkAc1jMj7XvwmkGr8SfAdzLiXQSrs6eQ8x2voi41Fym_jEXkLOvzXQPsbDefdJm3zmIEvC4ArVjBE3wzbC2MmunbN2stwTzjE_iLDY3TDYgGP8iosmv5pED6Dz5yNSDpYToM5DVvq6srTfHNwJnkcv_mP6e2Rp8yX6cA0m32ytVqu3QGApVVx6DfKPSRdE0o
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+and+Ancient+Signature+of+Balancing+Selection+around+the+S-Locus+in+Arabidopsis+halleri+and+A.+lyrata&rft.jtitle=Molecular+biology+and+evolution&rft.au=Roux%2C+Camille&rft.au=Pauwels%2C+Maxime&rft.au=Ruggiero%2C+Maria-Valeria&rft.au=Charlesworth%2C+Deborah&rft.date=2013-02-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.eissn=1537-1719&rft.volume=30&rft.issue=2&rft.spage=435&rft_id=info:doi/10.1093%2Fmolbev%2Fmss246&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2870837871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon