Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review
Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction...
        Saved in:
      
    
          | Published in | Artificial intelligence in medicine Vol. 118; p. 102120 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.08.2021
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0933-3657 1873-2860 1873-2860  | 
| DOI | 10.1016/j.artmed.2021.102120 | 
Cover
| Abstract | Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction.
This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed.
Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results.
The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic.
•Hypoglycaremia is is commonly feared in patients with insulin therapy;•The hypoglycaemia prediction has been addressed as a blood glucose prediction using continuous glucose monitoring systems;•The importance of data- and model-fusion for the predictions;•The potential of Artificial Intelligence and machine learning on hypoglycaemia predictions; | 
    
|---|---|
| AbstractList | Background and aim - Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction.Methods - This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed. Results - Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results. Conclusions - The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic. Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction. This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed. Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results. The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic. Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction.BACKGROUND AND AIMHypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction.This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed.METHODSThis study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed.Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results.RESULTSSixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results.The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic.CONCLUSIONSThe data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic. Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction. This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed. Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results. The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic. •Hypoglycaremia is is commonly feared in patients with insulin therapy;•The hypoglycaemia prediction has been addressed as a blood glucose prediction using continuous glucose monitoring systems;•The importance of data- and model-fusion for the predictions;•The potential of Artificial Intelligence and machine learning on hypoglycaemia predictions;  | 
    
| ArticleNumber | 102120 | 
    
| Author | Pombo, Nuno Megdiche, Imen Garcia, Nuno M. Felizardo, Virginie  | 
    
| Author_xml | – sequence: 1 givenname: Virginie surname: Felizardo fullname: Felizardo, Virginie email: virginie@it.ubi.pt organization: Instituto de Telecomunicações, Covilhã, Portugal – sequence: 2 givenname: Nuno M. surname: Garcia fullname: Garcia, Nuno M. email: ngarcia@di.ubi.pt organization: Instituto de Telecomunicações, Covilhã, Portugal – sequence: 3 givenname: Nuno surname: Pombo fullname: Pombo, Nuno email: ngpombo@ubi.pt organization: Instituto de Telecomunicações, Covilhã, Portugal – sequence: 4 givenname: Imen surname: Megdiche fullname: Megdiche, Imen email: imen.megdiche@irit.fr organization: IRIT, Institut de Recherche en Informatique de Toulouse, Toulouse University, France  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34412843$$D View this record in MEDLINE/PubMed https://hal.science/hal-04321032$$DView record in HAL  | 
    
| BookMark | eNqFkc1uEzEURkeoiKaFN0DIS1hM8M94xkGoUlR-ihSJDaytO_ZN4uAZB9tTlB0PwI435EmYMC2LbrKyZH3nLO65KM760GNRPGd0ziirX-_mEHOHds4pZ-MXZ5w-KmZMNaLkqqZnxYwuhChFLZvz4iKlHaW0qVj9pDgXVcW4qsSs-PUOMpQtJLQE_CZEl7ddItBb0gWLPpEhuX5DrIMWszOJRARP7EiRdYik9SFYsvGDCQn_YdvDPmz8wQB2Dsg-onUmu9CTPz9_kyVJh5Sxg1FFvMsYIQ8RR-mtwx9Pi8dr8Amf3b2XxdcP779c35Srzx8_XS9XpZFM5lK2FUjeKtuYBcOGoWKwNvVaYqugoYBcKSmq1rZ0IQVX3EpgUihYMEMX1IjL4tXk3YLX--g6iAcdwOmb5Uof_2glOKOC37Jx-3La7mP4PmDKunPJoPfQYxiS5rIWFW9opcbpi7vp0I5h_pvvrz0O3kwDE0NKEdfauAzH4-QIzmtG9TGt3ukprT6m1VPaEa4ewPf-E9jVhI0tj0eOOhmHvRmzRDRZ2-BOCd4-EBjvemfAf8PDafwvIhjVKw | 
    
| CitedBy_id | crossref_primary_10_1177_19322968241266821 crossref_primary_10_3390_s22020425 crossref_primary_10_1016_j_bspc_2022_104492 crossref_primary_10_1109_ACCESS_2023_3244712 crossref_primary_10_3389_fpubh_2023_1044059 crossref_primary_10_1109_JBHI_2024_3483999 crossref_primary_10_1109_JBHI_2024_3371108 crossref_primary_10_1016_j_medengphy_2025_104312 crossref_primary_10_1109_ACCESS_2021_3117340 crossref_primary_10_1016_j_asoc_2023_110012 crossref_primary_10_1038_s41598_024_70277_x crossref_primary_10_1016_j_rineng_2024_103681 crossref_primary_10_3390_jcm12041695 crossref_primary_10_1016_j_bspc_2023_105416 crossref_primary_10_3390_s23062957 crossref_primary_10_3934_mbe_2023760 crossref_primary_10_1155_2022_7902418 crossref_primary_10_1016_j_addr_2023_115133 crossref_primary_10_1007_s11517_024_03042_x crossref_primary_10_1007_s12046_024_02657_y crossref_primary_10_3390_bioengineering10040487 crossref_primary_10_2196_47833 crossref_primary_10_2196_41577 crossref_primary_10_1007_s00125_023_06038_8 crossref_primary_10_2139_ssrn_4189444 crossref_primary_10_1177_20552076231203879 crossref_primary_10_1371_journal_pone_0288231 crossref_primary_10_1038_s41597_023_01940_7 crossref_primary_10_1186_s12911_023_02380_4 crossref_primary_10_3390_s22134944 crossref_primary_10_1016_j_bios_2023_115103 crossref_primary_10_1016_j_chemolab_2023_105017 crossref_primary_10_1186_s12911_024_02761_3 crossref_primary_10_1109_JBHI_2023_3348334 crossref_primary_10_1007_s13755_024_00313_7 crossref_primary_10_3390_diagnostics14212427 crossref_primary_10_1016_j_aej_2024_01_021 crossref_primary_10_1109_ACCESS_2023_3237992 crossref_primary_10_14341_DM12840 crossref_primary_10_2478_msr_2024_0011 crossref_primary_10_1016_j_smhl_2024_100457 crossref_primary_10_1016_j_heliyon_2024_e29030 crossref_primary_10_3390_nu16142214  | 
    
| Cites_doi | 10.1016/j.bbe.2018.06.005 10.1016/j.neucom.2019.10.003 10.1177/193229681000400312 10.1016/j.cmpb.2016.07.003 10.1177/1932296816654161 10.1016/j.conengprac.2017.10.013 10.1016/j.bspc.2014.09.012 10.1109/ACCESS.2019.2919184 10.1016/j.artmed.2019.07.007 10.1177/1932296819868727 10.1016/j.bbe.2018.02.005 10.1109/JBHI.2019.2908488 10.1177/193229681300700314 10.1016/j.asoc.2019.105923 10.1016/0141-5425(92)90058-S 10.1002/cnm.2833 10.1109/TCST.2015.2462734 10.1177/1932296818823792 10.3390/diagnostics10050285 10.1002/aic.14288 10.1109/TBME.2020.2975959 10.1007/s10916-017-0788-2 10.1109/TBME.2004.839639 10.1016/j.icte.2016.10.001 10.1089/dia.2015.0413 10.1371/journal.pmed.1000097 10.1088/1757-899X/803/1/012012 10.1007/s41666-019-00059-y 10.1007/s11517-015-1263-1 10.1007/s11517-015-1320-9 10.1186/s13643-016-0384-4 10.1016/j.jdiacomp.2019.107490 10.1177/193229680900300106 10.1371/journal.pmed.1000100 10.1016/j.jdiacomp.2017.04.004 10.1109/JBHI.2018.2840690 10.1089/dia.2007.0302 10.1145/3341105.3374003 10.1016/j.ijmedinf.2019.03.008 10.1109/JBHI.2018.2823763  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC  | 
    
| DOI | 10.1016/j.artmed.2021.102120 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Computer Science  | 
    
| EISSN | 1873-2860 | 
    
| ExternalDocumentID | oai:HAL:hal-04321032v1 34412843 10_1016_j_artmed_2021_102120 S0933365721001135  | 
    
| Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article  | 
    
| GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 1XC  | 
    
| ID | FETCH-LOGICAL-c515t-5b4a52b8d7c91e71e81afc6f5eb8a70ae288534bdb0953282d5a1538a91c090c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0933-3657 1873-2860  | 
    
| IngestDate | Sat Oct 25 06:36:39 EDT 2025 Sun Sep 28 12:03:02 EDT 2025 Mon Jul 21 06:06:21 EDT 2025 Sat Oct 25 04:50:48 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Fri Feb 23 02:42:22 EST 2024 Tue Oct 14 19:30:15 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Diabetics real data Hypoglycaemia or hypoglycemia Blood glucose level Data-based algorithms or models Prediction  | 
    
| Language | English | 
    
| License | Copyright © 2021 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c515t-5b4a52b8d7c91e71e81afc6f5eb8a70ae288534bdb0953282d5a1538a91c090c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4  | 
    
| ORCID | 0000-0002-1331-8662 | 
    
| PMID | 34412843 | 
    
| PQID | 2563427048 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_04321032v1 proquest_miscellaneous_2563427048 pubmed_primary_34412843 crossref_citationtrail_10_1016_j_artmed_2021_102120 crossref_primary_10_1016_j_artmed_2021_102120 elsevier_sciencedirect_doi_10_1016_j_artmed_2021_102120 elsevier_clinicalkey_doi_10_1016_j_artmed_2021_102120  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2021 2021-08-00 20210801 2021-08  | 
    
| PublicationDateYYYYMMDD | 2021-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Artificial intelligence in medicine | 
    
| PublicationTitleAlternate | Artif Intell Med | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Dubosson, Mordvanyuk, Ibáñez, Schumacher (bb0215) 2017 Mirshekarian, Shen, Bunescu, Marling (bb0365) 2019 Ouzzani, Hammady, Fedorowicz, Elmagarmid (bb0105) 2016; 5 Hamdi, Ali, Costanzo, Fnaiech, Moreau, Ginoux (bb0240) 2018; 38 Khan, Masud, Mamun (bb0205) 2017 Georga (bb0135) 2009 Ali, Hamdi, Fnaiech, Costanzo, Fnaiech, Ginoux (bb0235) 2018; 38 Idrissi, Idri, Abnane, Bakkoury (bb0355) 2019; vol. 18 Vehí, Contreras, Oviedo, Biagi, Bertachi (bb0050) 2019 Fox, Ang, Jaiswal, Pop-Busui, Wiens (bb0265) 2018 Misra-Hebert (bb0450) 2020; 34 Dong, Wen, Li, Zhang, Zhang (bb0340) 2019 Li, Daniels, Liu, Herrero, Georgiou (bb0425) 2020; 24 Li, Tuo, Wang (bb0260) 2018 (n.d.) SCImago, “SJR — SCImago Journal & Country Rank [portal].” [Online]. Available J. center for health Research, “Diabetes research in children network (DirecNet).” [Online]. Available Georga, Protopappas, Polyzos, Fotiadis (bb0130) 2015 Midroni, Leimbigler, Baruah, Kolla, Whitehead, Fossat (bb0295) 2018; vol. 2148 Anand, Shin, Memon (bb0400) 2020; 10 Tkachenko, Kriukova, Aleksandrova, Chertov, Renard, Pereverzyev (bb0170) 2016; 134 Chen, Tuo, Wang (bb0375) 2019 Tarín, Teufel, Picó, Bondia, Pfleiderer (bb0060) 2005; 52 Jensen, Dethlefsen, Vestergaard, Hejlesen (bb0385) 2019; 14 Faccioli, Ozaslan, Garcia-Tirado, Breton, Favero (bb0075) 2018 E. H (bb0175) 2020 . Gadaleta, Facchinetti, Grisan, Rossi (bb0325) 2019; 23 Aliberti (bb0330) 2019; 7 Lehmann, Deutsch (bb0055) 1992; 14 Plis, Bunescu, Marling, Shubrook, Schwartz (bb0020) 2014 Tamborlane (bb0440) 2008; 10 bb0465 Efendic, Kirchsteiger, Freckmann, Re (bb0120) 2014 Harman-Boehm, Gal, Raykhman, Naidis, Mayzel (bb0405) 2010; 4 Woldaregay (bb0085) 2019; 98 Schroeder, Xu, Goodrich, Nichols, O’Connor, Steiner (bb0200) 2017; 31 U. Machine Learning Repository (bb0165) Reddy (bb0430) 2012; 66 Novara, Pour, Vincent, Grassi (bb0065) 2016; 24 Vahedi (bb0280) 2018 He, He, Wang (bb0370) 2019 Vu (bb0390) 2019; 2019 Hovorka (bb0035) 2004 Oviedo, Vehí, Calm, Armengol (bb0080) 2017; 33 Georga, Principe, Polyzos, Fotiadis (bb0180) 2016 Koutny, Cioppa, Falco, Tarantino, Scafuri, Krcma (bb0360) 2019 Mhaskar, Pereverzyev, van der Walt (bb0225) 2017; 3, no. July Bertachi, Biagi, Luo, Veh (bb0300) 2018 Oviedo, Contreras, Quirós, Giménez, Conget, Vehi (bb0310) 2019; 126, no. March Man, Rizza, Cobelli (bb0030) 2007; 54 Wilinska, Chassin, Schaller, Schaupp, Pieber, Hovorka (bb0040) 2005; 52 Li, Fernando (bb0160) 2016; 2 Griva, Basualdo (bb0270) 2018 Liberati (bb0095) 2009; 6 Marling, Bunescu (bb0250) 2018 Gu (bb0350) 2017 U. of Virginia (bb0275) bb0335 Botwey, Daskalaki, Diem, Mougiakakou (bb0015) 2014 Li, Liu, Zhu, Herrero, Georgiou (bb0315) 2019 Martinsson, Schliep, Eliasson, Mogren (bb0445) 2020; 4 Kriukova, Shvai, Pereverzyev (bb0195) 2017 W. H. Organization (bb0005) 2014 Chen, Li, Herrero, Zhu, Georgiou (bb0255) 2018; vol. 2148 Daskalaki, Nrøgaard, Zug̈er, Prountzou, Diem, Mougiakakou (bb0110) 2013; 7 Zecchin, Facchinetti, Sparacino, Cobelli (bb0185) 2016; 10 Reddy (bb0220) 2016; 18 Alfian, Syafrudin, Rhee, Anshari, Mustakim, Fahrurrozi (bb0395) 2020; 803 Mirshekarian, Bunescu, Marling, Schwartz (bb0210) 2017 Zhu, Li, Herrero, Chen, Georgiou (bb0245) 2018; vol. 2148 Xie, Wang (bb0305) 2018; vol. 2148 Dave (bb0415) 2020 Kovatchev, Breton, Man, Cobelli (bb0475) 2009; 3 Cescon, Johansson, Renard (bb0145) 2015; 22 Contador, Velasco, Garnica, Hidalgo (bb0410) 2020 Zarkogianni (bb0070) 2015; 53 Hamdi (bb0190) 2017 I. D. Federation (bb0010) 2017 Dasanayake, Seborg, Pinsker, Doyle, Dassau (bb0125) 2015 Hidalgo (bb0420) 2020; 88 Xie, Wang (bb0455) 2020; 67 I. C. London (bb0470) Georga, Protopappas, Polyzos, Fotiadis (bb0140) 2015; 53 Li, Tuo, Wang, Wang (bb0435) 2020; 378 Higgins (bb0100) 2019 Moher (bb0090) 2009; 6 Hidalgo, Colmenar, Kronberger, Winkler, Garnica, Lanchares (bb0025) 2017; 41 Reddy, Resalat, Wilson, Castle, Youssef, Jacobs (bb0380) 2019; 13 Duke (bb0045) 2010 He, Gu, Kong, Zhang, Spanos, Mosalam (bb0345) 2019 F. E. project (bb0150) Stahl, Johansson, Olsson (bb0155) 2016 Yu (bb0285) 2018; 71 Zhao, Dassau, Zisser, Jovanovič, Doyle, Seborg (bb0115) 2014; 60 Yang, Li, Shi, Xie (bb0320) 2019; 23 Contreras, Bertachi, Biagi, Oviedo, Vehí (bb0290) 2018; vol. 2148 Mhaskar (10.1016/j.artmed.2021.102120_bb0225) 2017; 3, no. July Tarín (10.1016/j.artmed.2021.102120_bb0060) 2005; 52 Li (10.1016/j.artmed.2021.102120_bb0160) 2016; 2 Reddy (10.1016/j.artmed.2021.102120_bb0430) 2012; 66 Lehmann (10.1016/j.artmed.2021.102120_bb0055) 1992; 14 Liberati (10.1016/j.artmed.2021.102120_bb0095) 2009; 6 Reddy (10.1016/j.artmed.2021.102120_bb0220) 2016; 18 10.1016/j.artmed.2021.102120_bb0230 Anand (10.1016/j.artmed.2021.102120_bb0400) 2020; 10 Oviedo (10.1016/j.artmed.2021.102120_bb0310) 2019; 126, no. March Tamborlane (10.1016/j.artmed.2021.102120_bb0440) 2008; 10 Fox (10.1016/j.artmed.2021.102120_bb0265) 2018 Gadaleta (10.1016/j.artmed.2021.102120_bb0325) 2019; 23 Reddy (10.1016/j.artmed.2021.102120_bb0380) 2019; 13 Georga (10.1016/j.artmed.2021.102120_bb0135) 2009 Chen (10.1016/j.artmed.2021.102120_bb0255) 2018; vol. 2148 Woldaregay (10.1016/j.artmed.2021.102120_bb0085) 2019; 98 Li (10.1016/j.artmed.2021.102120_bb0425) 2020; 24 Duke (10.1016/j.artmed.2021.102120_bb0045) 2010 Mirshekarian (10.1016/j.artmed.2021.102120_bb0365) 2019 Bertachi (10.1016/j.artmed.2021.102120_bb0300) 2018 Xie (10.1016/j.artmed.2021.102120_bb0455) 2020; 67 Li (10.1016/j.artmed.2021.102120_bb0260) 2018 Contreras (10.1016/j.artmed.2021.102120_bb0290) 2018; vol. 2148 Kriukova (10.1016/j.artmed.2021.102120_bb0195) 2017 Midroni (10.1016/j.artmed.2021.102120_bb0295) 2018; vol. 2148 I. D. Federation (10.1016/j.artmed.2021.102120_bb0010) Hovorka (10.1016/j.artmed.2021.102120_bb0035) 2004 Yu (10.1016/j.artmed.2021.102120_bb0285) 2018; 71 Idrissi (10.1016/j.artmed.2021.102120_bb0355) 2019; vol. 18 Alfian (10.1016/j.artmed.2021.102120_bb0395) 2020; 803 Martinsson (10.1016/j.artmed.2021.102120_bb0445) 2020; 4 Oviedo (10.1016/j.artmed.2021.102120_bb0080) 2017; 33 Khan (10.1016/j.artmed.2021.102120_bb0205) 2017 Vu (10.1016/j.artmed.2021.102120_bb0390) 2019; 2019 Georga (10.1016/j.artmed.2021.102120_bb0180) 2016 Botwey (10.1016/j.artmed.2021.102120_bb0015) 2014 Li (10.1016/j.artmed.2021.102120_bb0435) 2020; 378 Griva (10.1016/j.artmed.2021.102120_bb0270) 2018 Zarkogianni (10.1016/j.artmed.2021.102120_bb0070) 2015; 53 I. C. London (10.1016/j.artmed.2021.102120_bb0470) Cescon (10.1016/j.artmed.2021.102120_bb0145) 2015; 22 Vehí (10.1016/j.artmed.2021.102120_bb0050) 2019 Aliberti (10.1016/j.artmed.2021.102120_bb0330) 2019; 7 Tkachenko (10.1016/j.artmed.2021.102120_bb0170) 2016; 134 Hamdi (10.1016/j.artmed.2021.102120_bb0190) 2017 Dave (10.1016/j.artmed.2021.102120_bb0415) 2020 Efendic (10.1016/j.artmed.2021.102120_bb0120) 2014 Dasanayake (10.1016/j.artmed.2021.102120_bb0125) 2015 Ali (10.1016/j.artmed.2021.102120_bb0235) 2018; 38 Stahl (10.1016/j.artmed.2021.102120_bb0155) 2016 Vahedi (10.1016/j.artmed.2021.102120_bb0280) 2018 Contador (10.1016/j.artmed.2021.102120_bb0410) 2020 Kovatchev (10.1016/j.artmed.2021.102120_bb0475) 2009; 3 Daskalaki (10.1016/j.artmed.2021.102120_bb0110) 2013; 7 Dong (10.1016/j.artmed.2021.102120_bb0340) 2019 U. of Virginia (10.1016/j.artmed.2021.102120_bb0275) F. E. project (10.1016/j.artmed.2021.102120_bb0150) Hamdi (10.1016/j.artmed.2021.102120_bb0240) 2018; 38 Hidalgo (10.1016/j.artmed.2021.102120_bb0420) 2020; 88 Plis (10.1016/j.artmed.2021.102120_bb0020) 2014 Chen (10.1016/j.artmed.2021.102120_bb0375) 2019 Moher (10.1016/j.artmed.2021.102120_bb0090) 2009; 6 Hidalgo (10.1016/j.artmed.2021.102120_bb0025) 2017; 41 W. H. Organization (10.1016/j.artmed.2021.102120_bb0005) 2014 Yang (10.1016/j.artmed.2021.102120_bb0320) 2019; 23 Zhao (10.1016/j.artmed.2021.102120_bb0115) 2014; 60 Koutny (10.1016/j.artmed.2021.102120_bb0360) 2019 U. Machine Learning Repository (10.1016/j.artmed.2021.102120_bb0165) E. H (10.1016/j.artmed.2021.102120_bb0175) 2020 Gu (10.1016/j.artmed.2021.102120_bb0350) 2017 Faccioli (10.1016/j.artmed.2021.102120_bb0075) 2018 Mirshekarian (10.1016/j.artmed.2021.102120_bb0210) 2017 Xie (10.1016/j.artmed.2021.102120_bb0305) 2018; vol. 2148 He (10.1016/j.artmed.2021.102120_bb0345) 2019 Dubosson (10.1016/j.artmed.2021.102120_bb0215) 2017 Man (10.1016/j.artmed.2021.102120_bb0030) 2007; 54 Georga (10.1016/j.artmed.2021.102120_bb0140) 2015; 53 Misra-Hebert (10.1016/j.artmed.2021.102120_bb0450) 2020; 34 Georga (10.1016/j.artmed.2021.102120_bb0130) 2015 Zecchin (10.1016/j.artmed.2021.102120_bb0185) 2016; 10 Jensen (10.1016/j.artmed.2021.102120_bb0385) 2019; 14 Schroeder (10.1016/j.artmed.2021.102120_bb0200) 2017; 31 10.1016/j.artmed.2021.102120_bb0460 Higgins (10.1016/j.artmed.2021.102120_bb0100) 2019 Ouzzani (10.1016/j.artmed.2021.102120_bb0105) 2016; 5 Li (10.1016/j.artmed.2021.102120_bb0315) 2019 He (10.1016/j.artmed.2021.102120_bb0370) 2019 Marling (10.1016/j.artmed.2021.102120_bb0250) 2018 Novara (10.1016/j.artmed.2021.102120_bb0065) 2016; 24 Zhu (10.1016/j.artmed.2021.102120_bb0245) 2018; vol. 2148 Wilinska (10.1016/j.artmed.2021.102120_bb0040) 2005; 52 Harman-Boehm (10.1016/j.artmed.2021.102120_bb0405) 2010; 4  | 
    
| References_xml | – ident: bb0465 article-title: The OhioT1DM dataset – volume: 10 start-page: 310 year: 2008 end-page: 321 ident: bb0440 article-title: JDRF randomized clinical trial to assess the efficacy of real-time continuous glucose monitoring in the management of type 1 diabetes: research design and methods publication-title: Diabetes Technol Ther – volume: 2 start-page: 150 year: 2016 end-page: 154 ident: bb0160 article-title: Smartphone-based personalized blood glucose prediction publication-title: ICT Express – year: 2018 ident: bb0300 article-title: Prediction of blood glucose levels and nocturnal hypoglycemia using physiological models and artificial neural networks – volume: 24 start-page: 1092 year: 2016 end-page: 1100 ident: bb0065 article-title: A nonlinear blind identification approach to modeling of diabetic patients publication-title: IEEE Trans Control Syst Technol – start-page: 706 year: 2019 end-page: 712 ident: bb0365 article-title: LSTMs and neural attention models for blood glucose prediction: comparative experiments on real and synthetic data publication-title: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) – volume: 134 start-page: 179 year: 2016 end-page: 186 ident: bb0170 article-title: Prediction of nocturnal hypoglycemia by an aggregation of previously known prediction approaches: proof of concept for clinical application publication-title: Comput Methods Programs Biomed – volume: 38 start-page: 362 year: 2018 end-page: 372 ident: bb0240 article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm publication-title: Biocybern Biomed Eng – start-page: 1387 year: 2018 end-page: 1395 ident: bb0265 article-title: Deep multi-output forecasting learning to accurately predict blood glucose trajectories publication-title: Proc. ACM SIGKDD int. conf. knowl. discov. data min – volume: 53 start-page: 1305 year: 2015 end-page: 1318 ident: bb0140 article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models publication-title: Med Biol Eng Comput – volume: 23 start-page: 650 year: 2019 end-page: 659 ident: bb0325 article-title: Prediction of adverse glycemic events from continuous glucose monitoring signal publication-title: IEEE J Biomed Health Inform – start-page: 50 year: 2019 end-page: 55 ident: bb0340 article-title: Clu-RNN: a new RNN based approach to diabetic blood glucose prediction publication-title: 2019 IEEE 7th International Conference on Bioinformatics and Computational Biology (ICBCB) – volume: 54 start-page: 1 year: 2007 end-page: 33 ident: bb0030 article-title: Meal simulation of glucose-insulin system publication-title: IEEE Trans Biomed Eng – volume: 803 year: 2020 ident: bb0395 article-title: Blood glucose prediction model for type 1 diabetes based on extreme gradient boosting publication-title: IOP Conf Ser Mater Sci Eng – reference: J. center for health Research, “Diabetes research in children network (DirecNet).” [Online]. Available: – volume: 66 start-page: 37 year: 2012 end-page: 39 ident: bb0430 article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study publication-title: Diabetes Technol Ther – volume: 34 year: 2020 ident: bb0450 article-title: Risk prediction for severe hypoglycemia in a type 2 diabetes population with previous non-severe hypoglycemia publication-title: J Diabetes Complications – volume: 14 start-page: 250 year: 2019 end-page: 256 ident: bb0385 article-title: Prediction of nocturnal hypoglycemia from continuous glucose monitoring data in people with type 1 diabetes: a proof-of-concept study publication-title: J Diabetes Sci Technol – volume: 24 start-page: 603 year: 2020 end-page: 613 ident: bb0425 article-title: Convolutional recurrent neural networks for glucose prediction publication-title: IEEE J Biomed Health Inform – start-page: 2017 year: 2018 end-page: 2022 ident: bb0260 article-title: Chaotic time series analysis approach for prediction blood glucose concentration based on echo state networks publication-title: 2018 Chinese control and decision conference (CCDC) – start-page: 3834 year: 2015 end-page: 3839 ident: bb0125 article-title: Empirical dynamic model identification for blood-glucose dynamics in response to physical activity publication-title: Proc. IEEE conf. decis. control, vol. 54rd IEEE, no. Cdc – start-page: 1 year: 2018 end-page: 6 ident: bb0270 article-title: Evaluating clinical accuracy of models for predicting glycemic behavior for diabetes care publication-title: 2018 Argentine conference on automatic control (AADECA) – start-page: 269 year: 2019 end-page: 274 ident: bb0360 article-title: De-randomized meta-differential evolution for calculating and predicting glucose levels publication-title: 2019 IEEE 32nd international symposium on computer-based medical systems (CBMS) – volume: 2019 start-page: 874 year: 2019 end-page: 882 ident: bb0390 article-title: Predicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizon publication-title: AMIA Ann Symp Proc – start-page: 1 year: 2019 ident: bb0315 article-title: GluNet: a deep learning framework for accurate glucose forecasting publication-title: IEEE J Biomed Health Inform – start-page: 2887 year: 2017 end-page: 2891 ident: bb0210 article-title: Using LSTMs to learn physiological models of blood glucose behavior publication-title: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC) – volume: vol. 2148 start-page: 69 year: 2018 end-page: 73 ident: bb0255 article-title: Dilated recurrent neural network for short-time prediction of glucose concentration publication-title: CEUR workshop proc – volume: 41 year: 2017 ident: bb0025 article-title: Data based prediction of blood glucose concentrations using evolutionary methods publication-title: J Med Syst – volume: 378 start-page: 248 year: 2020 end-page: 259 ident: bb0435 article-title: Prediction of blood glucose concentration for type 1 diabetes based on echo state networks embedded with incremental learning publication-title: Neurocomputing – volume: vol. 18 start-page: 35 year: 2019 end-page: 41 ident: bb0355 article-title: Predicting blood glucose using an LSTM neural network publication-title: Proc. 2019 fed. conf. comput. sci. inf. syst – volume: 38 start-page: 828 year: 2018 end-page: 840 ident: bb0235 article-title: Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network publication-title: Biocybern Biomed Eng – start-page: 3910 year: 2018 end-page: 3913 ident: bb0075 article-title: Black-box model identification of physical activity in type-l diabetes patients publication-title: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC) – year: 2019 ident: bb0100 article-title: “Cochrane handbook for systematic reviews of interventions version 6.0,” Cochrane publication-title: [Online]. Available – start-page: 1494 year: 2014 end-page: 1499 ident: bb0120 article-title: Short-term prediction of blood glucose concentration using interval probabilistic models publication-title: 22nd Mediterranean conference on control and automation – start-page: 1 year: 2017 end-page: 27 ident: bb0350 article-title: SugarMate: non-intrusive blood glucose monitoring with smartphones – volume: 60 start-page: 574 year: 2014 end-page: 584 ident: bb0115 article-title: Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation publication-title: AIChE J – ident: bb0275 article-title: Feasibility of a decision support system to reduce glucose variability in subject with T1DM – volume: 7 start-page: 689 year: 2013 end-page: 698 ident: bb0110 article-title: An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models publication-title: J Diabetes Sci Technol – volume: 23 start-page: 1251 year: 2019 end-page: 1260 ident: bb0320 article-title: An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia publication-title: IEEE J Biomed Health Inform – year: 2014 ident: bb0005 article-title: Global status report on noncommunicable diseases 2014 – volume: vol. 2148 start-page: 91 year: 2018 end-page: 96 ident: bb0290 article-title: Using grammatical evolution to generate short-term blood glucose prediction models publication-title: CEUR workshop proc – start-page: 634 year: 2017 end-page: 638 ident: bb0195 article-title: Application of regularized ranking and collaborative filtering in predictive alarm algorithm for nocturnal hypoglycemia prevention publication-title: Proc. 2017 IEEE 9th int. conf. intell. data acquis. adv. comput. syst. technol. appl. IDAACS 2017, vol. 2, no. September – volume: 33 start-page: 1 year: 2017 end-page: 21 ident: bb0080 article-title: A review of personalized blood glucose prediction strategies for T1DM patients publication-title: Int J Numer Methods Biomed Eng – start-page: 1 year: 2020 end-page: 13 ident: bb0415 article-title: Feature-based machine learning model for real-time hypoglycemia prediction publication-title: J Diabetes Sci Technol – start-page: 25 year: 2017 end-page: 29 ident: bb0215 article-title: Negative results for the prediction of postprandial hypoglycemias from insulin intakes and carbohydrates: analysis and comparison with simulated data – volume: 7 start-page: 69311 year: 2019 end-page: 69325 ident: bb0330 article-title: A multi-patient data-driven approach to blood glucose prediction publication-title: IEEE Access – start-page: 3262 year: 2015 end-page: 3265 ident: bb0130 article-title: Online prediction of glucose concentration in type 1 diabetes using extreme learning machines publication-title: Proc. annu. int. conf. IEEE eng. med. biol. soc. EMBS, vol. 2015-Novem – year: 2018 ident: bb0250 article-title: The OhioT1DM dataset for blood glucose level prediction publication-title: CEUR Workshop Proceedings – ident: bb0470 article-title: Advanced bolus calculator for type 1 diabetes (ABC4D) (ABC4D) – volume: 6 year: 2009 ident: bb0095 article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration publication-title: PLoS Med – start-page: 91 year: 2017 end-page: 95 ident: bb0190 article-title: Artificial neural network for blood glucose level prediction publication-title: 2017 int. conf. smart, monit. control. cities, SM2C 2017 – start-page: 2942 year: 2019 end-page: 2947 ident: bb0370 article-title: Blood glucose concentration prediction based on canonical correlation analysis publication-title: Chinese control conf. CCC, vol. 2019-July – volume: 98 start-page: 109 year: 2019 end-page: 134 ident: bb0085 article-title: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes publication-title: Artif Intell Med – volume: vol. 2148 start-page: 64 year: 2018 end-page: 78 ident: bb0245 article-title: A deep learning algorithm for personalized blood glucose prediction publication-title: CEUR workshop proc – start-page: 35 year: 2014 end-page: 39 ident: bb0020 article-title: A machine learning approach to predicting blood glucose levels for diabetes management publication-title: Mod Artifical Intell Heal Anal – start-page: 1583 year: 2016 end-page: 1588 ident: bb0155 article-title: Predicting nocturnal hypoglycemia using a non-parametric insulin action model publication-title: Proc. - 2015 IEEE int. conf. syst. man, cybern. SMC 2015 – volume: 10 start-page: 1149 year: 2016 end-page: 1160 ident: bb0185 article-title: How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study publication-title: J Diabetes Sci Technol – ident: bb0335 article-title: JDRF continuous glucose monitoring clinical trial – year: 2010 ident: bb0045 article-title: Intelligent diabetes assistant: a telemedicine system for modeling and managing blood glucose – volume: 14 start-page: 235 year: 1992 end-page: 242 ident: bb0055 article-title: A physiological model of glucose-insulin interaction in type 1 diabetes mellitus publication-title: J Biomed Eng – start-page: 392 year: 2017 end-page: 395 ident: bb0205 article-title: Methods to predict blood glucose level for type 2 diabetes patients publication-title: 2017 IEEE region 10 humanitarian technology conference (R10-HTC) – volume: 3, no. July start-page: 1 year: 2017 end-page: 11 ident: bb0225 article-title: A deep learning approach to diabetic blood glucose prediction publication-title: Front Appl Math Stat – start-page: 1 year: 2018 end-page: 5 ident: bb0280 article-title: Predicting glucose levels in patients with type1 diabetes based on physiological and activity data publication-title: Proc. 8th ACM MobiHoc 2018 work. pervasive wirel. healthc. work. mobilehealth 2018 – volume: 53 start-page: 1333 year: 2015 end-page: 1343 ident: bb0070 article-title: Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring publication-title: Med Biol Eng Comput – start-page: 703 year: 2019 end-page: 718 ident: bb0050 article-title: Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning publication-title: Health Informatics J – volume: 52 start-page: 3 year: 2005 end-page: 12 ident: bb0040 article-title: Insulin kinetics in type-1 diabetes: continuous and bolus delivery of rapid acting insulin publication-title: IEEE Trans Biomed Eng – volume: 126, no. March start-page: 1 year: 2019 end-page: 8 ident: bb0310 article-title: Risk-based postprandial hypoglycemia forecasting using supervised learning publication-title: Int J Med Inform – volume: 22 start-page: 99 year: 2015 end-page: 110 ident: bb0145 article-title: Subspace-based linear multi-step predictors in type 1 diabetes mellitus publication-title: Biomed Signal Process Control – volume: 31 start-page: 1158 year: 2017 end-page: 1163 ident: bb0200 article-title: Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: development and external validation of a prediction model publication-title: J Diabetes Complications – reference: (n.d.) SCImago, “SJR — SCImago Journal & Country Rank [portal].” [Online]. Available: – year: 2020 ident: bb0175 article-title: Funded M. AMMODIT, “ChildrenData dataset.” – volume: 6 year: 2009 ident: bb0090 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med – volume: 3 start-page: 44 year: 2009 end-page: 55 ident: bb0475 article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes publication-title: J Diabetes Sci Technol – volume: 52 start-page: 1994 year: 2005 end-page: 2005 ident: bb0060 article-title: Comprehensive pharmacokinetic model of insulin glargine and other insulin formulations – year: 2009 ident: bb0135 article-title: Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system publication-title: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society: engineering the future of biomedicine, EMBC 2009 – reference: . – volume: 18 start-page: 487 year: 2016 end-page: 493 ident: bb0220 article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study publication-title: Diabetes Technol Ther – volume: vol. 2148 start-page: 97 year: 2018 end-page: 102 ident: bb0305 article-title: Benchmark machine learning approaches with classical time series approaches on the blood glucose level prediction challenge publication-title: CEUR workshop proc – ident: bb0150 article-title: DIAdvisor, “personal glucose predictive diabetes advisor” – volume: 4 start-page: 583 year: 2010 end-page: 595 ident: bb0405 article-title: Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors publication-title: J Diabetes Sci Technol – volume: 88 year: 2020 ident: bb0420 article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and bagging publication-title: Appl Soft Comput J – year: 2017 ident: bb0010 article-title: IDF Diabetes Atlas 8th edition – volume: vol. 2148 start-page: 79 year: 2018 end-page: 84 ident: bb0295 article-title: Predicting glycemia in type 1 diabetes patients: experiments with XGBoost publication-title: CEUR workshop proc – start-page: 1 year: 2019 ident: bb0345 article-title: CausalBG: causal recurrent neural network for the blood glucose inference with IoT platform publication-title: IEEE Internet Things J – start-page: 3000 year: 2019 end-page: 3005 ident: bb0375 article-title: A prediction method for blood glucose based on grey wolf optimization evolving kernel extreme learning machine publication-title: Chinese control conf. CCC, vol. 2019-July – start-page: 5897 year: 2016 end-page: 5900 ident: bb0180 article-title: Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters publication-title: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) – start-page: 529 year: 2020 end-page: 536 ident: bb0410 article-title: Profiled glucose forecasting using genetic programming and clustering publication-title: Proc ACM Symp Appl Comput – ident: bb0165 article-title: Diabetes data set – volume: 71 start-page: 129 year: 2018 end-page: 141 ident: bb0285 article-title: Model-fusion-based online glucose concentration predictions in people with type 1 diabetes publication-title: Control Eng Pract – start-page: 4843 year: 2014 end-page: 4846 ident: bb0015 article-title: Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events publication-title: 2014 36th annu. int. conf. IEEE eng. med. biol. soc. EMBC 2014 – year: 2004 ident: bb0035 article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes publication-title: Physiological measurement – volume: 4 start-page: 1 year: 2020 end-page: 18 ident: bb0445 article-title: Blood glucose prediction with variance estimation using recurrent neural networks publication-title: J Healthc Informatics Res – volume: 5 start-page: 1 year: 2016 end-page: 10 ident: bb0105 article-title: Rayyan-a web and mobile app for systematic reviews publication-title: Syst Rev – volume: 10 start-page: 1 year: 2020 end-page: 22 ident: bb0400 article-title: Adaptive boosting based personalized glucose monitoring system (PGMS) for non-invasive blood glucose prediction with improved accuracy publication-title: Diagnostics – volume: 67 start-page: 3101 year: 2020 end-page: 3124 ident: bb0455 article-title: Benchmarking machine learning algorithms on blood glucose prediction for type i diabetes in comparison with classical time-series models publication-title: IEEE Trans Biomed Eng – volume: 13 start-page: 919 year: 2019 end-page: 927 ident: bb0380 article-title: Prediction of hypoglycemia during aerobic exercise in adults with type 1 diabetes publication-title: J Diabetes Sci Technol – start-page: 634 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0195 article-title: Application of regularized ranking and collaborative filtering in predictive alarm algorithm for nocturnal hypoglycemia prevention – volume: 38 start-page: 828 issue: 4 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0235 article-title: Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.06.005 – volume: 378 start-page: 248 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0435 article-title: Prediction of blood glucose concentration for type 1 diabetes based on echo state networks embedded with incremental learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.003 – year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0100 article-title: “Cochrane handbook for systematic reviews of interventions version 6.0,” Cochrane – start-page: 706 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0365 article-title: LSTMs and neural attention models for blood glucose prediction: comparative experiments on real and synthetic data – start-page: 1 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0415 article-title: Feature-based machine learning model for real-time hypoglycemia prediction publication-title: J Diabetes Sci Technol – start-page: 25 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0215 – start-page: 3910 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0075 article-title: Black-box model identification of physical activity in type-l diabetes patients – start-page: 1583 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0155 article-title: Predicting nocturnal hypoglycemia using a non-parametric insulin action model – volume: 4 start-page: 583 issue: 3 year: 2010 ident: 10.1016/j.artmed.2021.102120_bb0405 article-title: Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors publication-title: J Diabetes Sci Technol doi: 10.1177/193229681000400312 – volume: 134 start-page: 179 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0170 article-title: Prediction of nocturnal hypoglycemia by an aggregation of previously known prediction approaches: proof of concept for clinical application publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.07.003 – start-page: 4843 year: 2014 ident: 10.1016/j.artmed.2021.102120_bb0015 article-title: Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events – volume: 3, no. July start-page: 1 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0225 article-title: A deep learning approach to diabetic blood glucose prediction publication-title: Front Appl Math Stat – volume: 10 start-page: 1149 issue: 5 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0185 article-title: How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study publication-title: J Diabetes Sci Technol doi: 10.1177/1932296816654161 – start-page: 1 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0270 article-title: Evaluating clinical accuracy of models for predicting glycemic behavior for diabetes care – year: 2004 ident: 10.1016/j.artmed.2021.102120_bb0035 article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes – start-page: 2942 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0370 article-title: Blood glucose concentration prediction based on canonical correlation analysis – ident: 10.1016/j.artmed.2021.102120_bb0275 – volume: 71 start-page: 129 issue: April 2017 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0285 article-title: Model-fusion-based online glucose concentration predictions in people with type 1 diabetes publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2017.10.013 – start-page: 50 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0340 article-title: Clu-RNN: a new RNN based approach to diabetic blood glucose prediction – start-page: 3000 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0375 article-title: A prediction method for blood glucose based on grey wolf optimization evolving kernel extreme learning machine – volume: 22 start-page: 99 year: 2015 ident: 10.1016/j.artmed.2021.102120_bb0145 article-title: Subspace-based linear multi-step predictors in type 1 diabetes mellitus publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.09.012 – start-page: 91 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0190 article-title: Artificial neural network for blood glucose level prediction – volume: 7 start-page: 69311 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0330 article-title: A multi-patient data-driven approach to blood glucose prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919184 – year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0250 article-title: The OhioT1DM dataset for blood glucose level prediction – start-page: 3834 year: 2015 ident: 10.1016/j.artmed.2021.102120_bb0125 article-title: Empirical dynamic model identification for blood-glucose dynamics in response to physical activity – volume: 98 start-page: 109 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0085 article-title: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.07.007 – start-page: 1 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0350 – volume: 14 start-page: 250 issue: 2 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0385 article-title: Prediction of nocturnal hypoglycemia from continuous glucose monitoring data in people with type 1 diabetes: a proof-of-concept study publication-title: J Diabetes Sci Technol doi: 10.1177/1932296819868727 – volume: 38 start-page: 362 issue: 2 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0240 article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.02.005 – volume: 52 start-page: 1994 issue: 12 year: 2005 ident: 10.1016/j.artmed.2021.102120_bb0060 article-title: Comprehensive pharmacokinetic model of insulin glargine and other insulin formulations – year: 2014 ident: 10.1016/j.artmed.2021.102120_bb0005 – volume: 24 start-page: 603 issue: 2 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0425 article-title: Convolutional recurrent neural networks for glucose prediction publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2908488 – volume: 54 start-page: 1 issue: 10 year: 2007 ident: 10.1016/j.artmed.2021.102120_bb0030 article-title: Meal simulation of glucose-insulin system publication-title: IEEE Trans Biomed Eng – volume: 7 start-page: 689 issue: 3 year: 2013 ident: 10.1016/j.artmed.2021.102120_bb0110 article-title: An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models publication-title: J Diabetes Sci Technol doi: 10.1177/193229681300700314 – volume: 88 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0420 article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and bagging publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.105923 – ident: 10.1016/j.artmed.2021.102120_bb0150 – start-page: 5897 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0180 article-title: Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters – volume: vol. 2148 start-page: 97 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0305 article-title: Benchmark machine learning approaches with classical time series approaches on the blood glucose level prediction challenge – volume: 14 start-page: 235 year: 1992 ident: 10.1016/j.artmed.2021.102120_bb0055 article-title: A physiological model of glucose-insulin interaction in type 1 diabetes mellitus publication-title: J Biomed Eng doi: 10.1016/0141-5425(92)90058-S – volume: vol. 2148 start-page: 64 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0245 article-title: A deep learning algorithm for personalized blood glucose prediction – volume: vol. 2148 start-page: 91 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0290 article-title: Using grammatical evolution to generate short-term blood glucose prediction models – volume: 33 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0080 article-title: A review of personalized blood glucose prediction strategies for T1DM patients publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.2833 – start-page: 2887 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0210 article-title: Using LSTMs to learn physiological models of blood glucose behavior – volume: 66 start-page: 37 issue: 0 year: 2012 ident: 10.1016/j.artmed.2021.102120_bb0430 article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study publication-title: Diabetes Technol Ther – year: 2009 ident: 10.1016/j.artmed.2021.102120_bb0135 article-title: Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system – volume: 24 start-page: 1092 issue: 3 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0065 article-title: A nonlinear blind identification approach to modeling of diabetic patients publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2015.2462734 – start-page: 1387 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0265 article-title: Deep multi-output forecasting learning to accurately predict blood glucose trajectories – start-page: 392 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0205 article-title: Methods to predict blood glucose level for type 2 diabetes patients – volume: 13 start-page: 919 issue: 5 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0380 article-title: Prediction of hypoglycemia during aerobic exercise in adults with type 1 diabetes publication-title: J Diabetes Sci Technol doi: 10.1177/1932296818823792 – volume: 10 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0400 article-title: Adaptive boosting based personalized glucose monitoring system (PGMS) for non-invasive blood glucose prediction with improved accuracy publication-title: Diagnostics doi: 10.3390/diagnostics10050285 – volume: 60 start-page: 574 issue: 2 year: 2014 ident: 10.1016/j.artmed.2021.102120_bb0115 article-title: Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation publication-title: AIChE J doi: 10.1002/aic.14288 – volume: 67 start-page: 3101 issue: 11 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0455 article-title: Benchmarking machine learning algorithms on blood glucose prediction for type i diabetes in comparison with classical time-series models publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2020.2975959 – volume: 41 issue: 9 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0025 article-title: Data based prediction of blood glucose concentrations using evolutionary methods publication-title: J Med Syst doi: 10.1007/s10916-017-0788-2 – volume: 52 start-page: 3 issue: 1 year: 2005 ident: 10.1016/j.artmed.2021.102120_bb0040 article-title: Insulin kinetics in type-1 diabetes: continuous and bolus delivery of rapid acting insulin publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.839639 – volume: 2 start-page: 150 issue: 4 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0160 article-title: Smartphone-based personalized blood glucose prediction publication-title: ICT Express doi: 10.1016/j.icte.2016.10.001 – start-page: 35 year: 2014 ident: 10.1016/j.artmed.2021.102120_bb0020 article-title: A machine learning approach to predicting blood glucose levels for diabetes management publication-title: Mod Artifical Intell Heal Anal – start-page: 3262 year: 2015 ident: 10.1016/j.artmed.2021.102120_bb0130 article-title: Online prediction of glucose concentration in type 1 diabetes using extreme learning machines – volume: 18 start-page: 487 issue: 8 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0220 article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study publication-title: Diabetes Technol Ther doi: 10.1089/dia.2015.0413 – volume: vol. 18 start-page: 35 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0355 article-title: Predicting blood glucose using an LSTM neural network – volume: 6 issue: 7 year: 2009 ident: 10.1016/j.artmed.2021.102120_bb0090 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med doi: 10.1371/journal.pmed.1000097 – volume: 2019 start-page: 874 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0390 article-title: Predicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizon publication-title: AMIA Ann Symp Proc – volume: 803 issue: 1 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0395 article-title: Blood glucose prediction model for type 1 diabetes based on extreme gradient boosting publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/803/1/012012 – volume: 4 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0445 article-title: Blood glucose prediction with variance estimation using recurrent neural networks publication-title: J Healthc Informatics Res doi: 10.1007/s41666-019-00059-y – year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0300 – volume: 53 start-page: 1305 issue: 12 year: 2015 ident: 10.1016/j.artmed.2021.102120_bb0140 article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models publication-title: Med Biol Eng Comput doi: 10.1007/s11517-015-1263-1 – ident: 10.1016/j.artmed.2021.102120_bb0165 – volume: 53 start-page: 1333 issue: 12 year: 2015 ident: 10.1016/j.artmed.2021.102120_bb0070 article-title: Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring publication-title: Med Biol Eng Comput doi: 10.1007/s11517-015-1320-9 – start-page: 1 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0345 article-title: CausalBG: causal recurrent neural network for the blood glucose inference with IoT platform publication-title: IEEE Internet Things J – volume: vol. 2148 start-page: 69 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0255 article-title: Dilated recurrent neural network for short-time prediction of glucose concentration – ident: 10.1016/j.artmed.2021.102120_bb0010 – volume: vol. 2148 start-page: 79 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0295 article-title: Predicting glycemia in type 1 diabetes patients: experiments with XGBoost – ident: 10.1016/j.artmed.2021.102120_bb0460 – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.artmed.2021.102120_bb0105 article-title: Rayyan-a web and mobile app for systematic reviews publication-title: Syst Rev doi: 10.1186/s13643-016-0384-4 – volume: 34 issue: 1 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0450 article-title: Risk prediction for severe hypoglycemia in a type 2 diabetes population with previous non-severe hypoglycemia publication-title: J Diabetes Complications doi: 10.1016/j.jdiacomp.2019.107490 – volume: 3 start-page: 44 issue: 1 year: 2009 ident: 10.1016/j.artmed.2021.102120_bb0475 article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes publication-title: J Diabetes Sci Technol doi: 10.1177/193229680900300106 – volume: 6 issue: 7 year: 2009 ident: 10.1016/j.artmed.2021.102120_bb0095 article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration publication-title: PLoS Med doi: 10.1371/journal.pmed.1000100 – volume: 31 start-page: 1158 issue: 7 year: 2017 ident: 10.1016/j.artmed.2021.102120_bb0200 article-title: Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: development and external validation of a prediction model publication-title: J Diabetes Complications doi: 10.1016/j.jdiacomp.2017.04.004 – start-page: 2017 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0260 article-title: Chaotic time series analysis approach for prediction blood glucose concentration based on echo state networks – start-page: 1 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0315 article-title: GluNet: a deep learning framework for accurate glucose forecasting publication-title: IEEE J Biomed Health Inform – volume: 23 start-page: 1251 issue: 3 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0320 article-title: An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2840690 – start-page: 269 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0360 article-title: De-randomized meta-differential evolution for calculating and predicting glucose levels – volume: 10 start-page: 310 issue: 4 year: 2008 ident: 10.1016/j.artmed.2021.102120_bb0440 article-title: JDRF randomized clinical trial to assess the efficacy of real-time continuous glucose monitoring in the management of type 1 diabetes: research design and methods publication-title: Diabetes Technol Ther doi: 10.1089/dia.2007.0302 – start-page: 529 year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0410 article-title: Profiled glucose forecasting using genetic programming and clustering publication-title: Proc ACM Symp Appl Comput doi: 10.1145/3341105.3374003 – year: 2020 ident: 10.1016/j.artmed.2021.102120_bb0175 – ident: 10.1016/j.artmed.2021.102120_bb0470 – volume: 126, no. March start-page: 1 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0310 article-title: Risk-based postprandial hypoglycemia forecasting using supervised learning publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2019.03.008 – volume: 23 start-page: 650 issue: 2 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0325 article-title: Prediction of adverse glycemic events from continuous glucose monitoring signal publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2823763 – start-page: 1494 year: 2014 ident: 10.1016/j.artmed.2021.102120_bb0120 article-title: Short-term prediction of blood glucose concentration using interval probabilistic models – ident: 10.1016/j.artmed.2021.102120_bb0230 – year: 2010 ident: 10.1016/j.artmed.2021.102120_bb0045 – start-page: 1 year: 2018 ident: 10.1016/j.artmed.2021.102120_bb0280 article-title: Predicting glucose levels in patients with type1 diabetes based on physiological and activity data – start-page: 703 year: 2019 ident: 10.1016/j.artmed.2021.102120_bb0050 article-title: Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning publication-title: Health Informatics J  | 
    
| SSID | ssj0007416 | 
    
| Score | 2.5603132 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present... Background and aim - Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it...  | 
    
| SourceID | hal proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 102120 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Blood Glucose Blood glucose level Computer Science Data-based algorithms or models Databases, Factual Diabetes Mellitus - diagnosis Diabetes Mellitus - epidemiology Diabetics real data Humans Hypoglycaemia or hypoglycemia Hypoglycemia - chemically induced Hypoglycemia - diagnosis Hypoglycemia - epidemiology Prediction  | 
    
| Title | Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365721001135 https://dx.doi.org/10.1016/j.artmed.2021.102120 https://www.ncbi.nlm.nih.gov/pubmed/34412843 https://www.proquest.com/docview/2563427048 https://hal.science/hal-04321032  | 
    
| Volume | 118 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkRAXHuW1PKoBcQ27ju1NclwVquXRXqBSb5bjOLtBaXa1myL1gvgB3PiH_BJmYicVEqiIY6JMYmXsmc_JN98w9tLmFhOpySPrqCSnlDJKcduMh3mmjJmmqaBC4aPj6fxEvjtVpzvsoK-FIVpliP0-pnfROpwZh7c5XlfV-CPtxcVU4RaGcI2gQnMpE-pi8OrrJc2DEEentydERFf35XMdxwvvhzkHd4kxJw0DTl2__5yeri2JJ_k3ENolo8M77FZAkTDzA73Ldlyzx273HRogLNg9duMo_Dq_x76_Nq2JKGkVYOrFalO1y7MtmKaArhvOFogCvwD_MbayW0A4WQMxSAGBLXQMdwgM985sebFeLeoLa9xZZWC9oUeRm-Hntx8wg0uNaKgH7WbwpTL32cnhm08H8yi0YogsAp42Urk0Ks7TIrEZdwl3KTelnZbK5alJJsbFKeZ9mRc56dfhNq5QhmKpybidZBMrHrDdZtW4RwwUOsSJOOOpKaUqC2PROJaFVAkvS5uNmOg9oG3QKad2GbXuCWmftfebJr9p77cRiwartdfpuOJ61TtX9zWoGDU1JpIr7JLB7rd5-g-WL3AODYMjWe_57IOmcySLSMKGX_iIPe-nmMZ1Tj9vTONW51uNK0rIOMGAO2IP_dwb7iUQ0yLMEI__e3BP2E068szGp2y33Zy7Z4i22ny_W0777Prs7fv58S9IKCoP | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RQIuPMorPAfE1ST27sb2MSpUAZJeaKXeVuv1OjFynShxkXpB_ABu_EN-CTN-VUigIo5xPPbKszvzjf3NtwCvbWIpkZrEs45bcjIpvYjKZvqZxMqYcRQJbhSeH42nJ_LDqTrdgYOuF4ZplW3sb2J6Ha3bI8P2aQ7XeT78xLW4GCsqYRjXCLUL16QKQq7A3ny95Hkw5KgF94Tw-PSuf64medEFKelQmRj4LGLg87bff85Pu0smSv4NhdbZ6PAO3GphJE6akd6FHVfuw-1uiwZsV-w-XJ-3387vwfe3pjIeZ60UTbFYbfJqebZFU6ZYb4ezRebAL7B5G5vbLRKeLJAppEjIFmuKO7YU99psebFeLYoLa9xZbnC94Vuxn_Hntx84wUuRaCx68WZsemXuw8nhu-ODqdfuxeBZQjyVpxJpVJBEaWhj34W-i3yT2XGmXBKZcGRcEFHil0masIAd1XGpMhxMTezbUTyy4gHslavSPQJU5BAngtiPTCZVlhpLxoFMpQr9LLPxAETnAW1boXLeL6PQHSPts278ptlvuvHbALzeat0IdVxxvuqcq7smVAqbmjLJFXZhb_fbRP0Hy1c0h_rBsa73dDLTfIx1EVnZ8Is_gJfdFNO00PnrjSnd6nyraUkJGYQUcQfwsJl7_bUEgVrCGeLxfw_uBdyYHs9nevb-6OMTuMn_NDTHp7BXbc7dM4JeVfK8Xlq_AOsKK6Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-based+algorithms+and+models+using+diabetics+real+data+for+blood+glucose+and+hypoglycaemia+prediction+%E2%80%93+A+systematic+literature+review&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Felizardo%2C+Virginie&rft.au=Garcia%2C+Nuno&rft.au=Pombo%2C+Nuno&rft.au=Megdiche%2C+Imen&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=0933-3657&rft.volume=118&rft_id=info:doi/10.1016%2Fj.artmed.2021.102120&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04321032v1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |