Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review

Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 118; p. 102120
Main Authors Felizardo, Virginie, Garcia, Nuno M., Pombo, Nuno, Megdiche, Imen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2021
Elsevier
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2021.102120

Cover

Abstract Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction. This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed. Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results. The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic. •Hypoglycaremia is is commonly feared in patients with insulin therapy;•The hypoglycaemia prediction has been addressed as a blood glucose prediction using continuous glucose monitoring systems;•The importance of data- and model-fusion for the predictions;•The potential of Artificial Intelligence and machine learning on hypoglycaemia predictions;
AbstractList Background and aim - Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction.Methods - This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed. Results - Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results. Conclusions - The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic.
Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction. This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed. Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results. The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic.
Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction.BACKGROUND AND AIMHypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction.This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed.METHODSThis study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed.Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results.RESULTSSixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results.The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic.CONCLUSIONSThe data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic.
Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present a systematic review on the currently available prediction algorithms and models for hypoglycaemia (or hypoglycemia in US English) prediction. This study aims to systematically review the literature on data-based algorithms and models using diabetics real data for hypoglycaemia prediction. Five electronic databases were screened for studies published from January 2014 to June 2020: ScienceDirect, IEEE Xplore, ACM Digital Library, SCOPUS, and PubMed. Sixty-three eligible studies were retrieved that met the inclusion criteria. The review identifies the current trend in this topic: most of the studies perform short-term predictions (82.5%). Also, the review pinpoints the inputs and shows that information fusion is relevant for hypoglycaemia prediction. Regarding data-based models (80.9%) and hybrid models (19.1%) different predictive techniques are used: Artificial neural network (22.2%), ensemble learning (27.0%), supervised learning (20.6%), statistic/probabilistic (7.9%), autoregressive (7.9%), evolutionary (6.4%), deep learning (4.8%) and adaptative filter (3.2%). Artificial Neural networks and hybrid models show better results. The data-based models for blood glucose and hypoglycaemia prediction should be able to provide a good balance between the applicability and performance, integrating complementary data from different sources or from different models. This review identifies trends and possible opportunities for research in this topic. •Hypoglycaremia is is commonly feared in patients with insulin therapy;•The hypoglycaemia prediction has been addressed as a blood glucose prediction using continuous glucose monitoring systems;•The importance of data- and model-fusion for the predictions;•The potential of Artificial Intelligence and machine learning on hypoglycaemia predictions;
ArticleNumber 102120
Author Pombo, Nuno
Megdiche, Imen
Garcia, Nuno M.
Felizardo, Virginie
Author_xml – sequence: 1
  givenname: Virginie
  surname: Felizardo
  fullname: Felizardo, Virginie
  email: virginie@it.ubi.pt
  organization: Instituto de Telecomunicações, Covilhã, Portugal
– sequence: 2
  givenname: Nuno M.
  surname: Garcia
  fullname: Garcia, Nuno M.
  email: ngarcia@di.ubi.pt
  organization: Instituto de Telecomunicações, Covilhã, Portugal
– sequence: 3
  givenname: Nuno
  surname: Pombo
  fullname: Pombo, Nuno
  email: ngpombo@ubi.pt
  organization: Instituto de Telecomunicações, Covilhã, Portugal
– sequence: 4
  givenname: Imen
  surname: Megdiche
  fullname: Megdiche, Imen
  email: imen.megdiche@irit.fr
  organization: IRIT, Institut de Recherche en Informatique de Toulouse, Toulouse University, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34412843$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04321032$$DView record in HAL
BookMark eNqFkc1uEzEURkeoiKaFN0DIS1hM8M94xkGoUlR-ihSJDaytO_ZN4uAZB9tTlB0PwI435EmYMC2LbrKyZH3nLO65KM760GNRPGd0ziirX-_mEHOHds4pZ-MXZ5w-KmZMNaLkqqZnxYwuhChFLZvz4iKlHaW0qVj9pDgXVcW4qsSs-PUOMpQtJLQE_CZEl7ddItBb0gWLPpEhuX5DrIMWszOJRARP7EiRdYik9SFYsvGDCQn_YdvDPmz8wQB2Dsg-onUmu9CTPz9_kyVJh5Sxg1FFvMsYIQ8RR-mtwx9Pi8dr8Amf3b2XxdcP779c35Srzx8_XS9XpZFM5lK2FUjeKtuYBcOGoWKwNvVaYqugoYBcKSmq1rZ0IQVX3EpgUihYMEMX1IjL4tXk3YLX--g6iAcdwOmb5Uof_2glOKOC37Jx-3La7mP4PmDKunPJoPfQYxiS5rIWFW9opcbpi7vp0I5h_pvvrz0O3kwDE0NKEdfauAzH4-QIzmtG9TGt3ukprT6m1VPaEa4ewPf-E9jVhI0tj0eOOhmHvRmzRDRZ2-BOCd4-EBjvemfAf8PDafwvIhjVKw
CitedBy_id crossref_primary_10_1177_19322968241266821
crossref_primary_10_3390_s22020425
crossref_primary_10_1016_j_bspc_2022_104492
crossref_primary_10_1109_ACCESS_2023_3244712
crossref_primary_10_3389_fpubh_2023_1044059
crossref_primary_10_1109_JBHI_2024_3483999
crossref_primary_10_1109_JBHI_2024_3371108
crossref_primary_10_1016_j_medengphy_2025_104312
crossref_primary_10_1109_ACCESS_2021_3117340
crossref_primary_10_1016_j_asoc_2023_110012
crossref_primary_10_1038_s41598_024_70277_x
crossref_primary_10_1016_j_rineng_2024_103681
crossref_primary_10_3390_jcm12041695
crossref_primary_10_1016_j_bspc_2023_105416
crossref_primary_10_3390_s23062957
crossref_primary_10_3934_mbe_2023760
crossref_primary_10_1155_2022_7902418
crossref_primary_10_1016_j_addr_2023_115133
crossref_primary_10_1007_s11517_024_03042_x
crossref_primary_10_1007_s12046_024_02657_y
crossref_primary_10_3390_bioengineering10040487
crossref_primary_10_2196_47833
crossref_primary_10_2196_41577
crossref_primary_10_1007_s00125_023_06038_8
crossref_primary_10_2139_ssrn_4189444
crossref_primary_10_1177_20552076231203879
crossref_primary_10_1371_journal_pone_0288231
crossref_primary_10_1038_s41597_023_01940_7
crossref_primary_10_1186_s12911_023_02380_4
crossref_primary_10_3390_s22134944
crossref_primary_10_1016_j_bios_2023_115103
crossref_primary_10_1016_j_chemolab_2023_105017
crossref_primary_10_1186_s12911_024_02761_3
crossref_primary_10_1109_JBHI_2023_3348334
crossref_primary_10_1007_s13755_024_00313_7
crossref_primary_10_3390_diagnostics14212427
crossref_primary_10_1016_j_aej_2024_01_021
crossref_primary_10_1109_ACCESS_2023_3237992
crossref_primary_10_14341_DM12840
crossref_primary_10_2478_msr_2024_0011
crossref_primary_10_1016_j_smhl_2024_100457
crossref_primary_10_1016_j_heliyon_2024_e29030
crossref_primary_10_3390_nu16142214
Cites_doi 10.1016/j.bbe.2018.06.005
10.1016/j.neucom.2019.10.003
10.1177/193229681000400312
10.1016/j.cmpb.2016.07.003
10.1177/1932296816654161
10.1016/j.conengprac.2017.10.013
10.1016/j.bspc.2014.09.012
10.1109/ACCESS.2019.2919184
10.1016/j.artmed.2019.07.007
10.1177/1932296819868727
10.1016/j.bbe.2018.02.005
10.1109/JBHI.2019.2908488
10.1177/193229681300700314
10.1016/j.asoc.2019.105923
10.1016/0141-5425(92)90058-S
10.1002/cnm.2833
10.1109/TCST.2015.2462734
10.1177/1932296818823792
10.3390/diagnostics10050285
10.1002/aic.14288
10.1109/TBME.2020.2975959
10.1007/s10916-017-0788-2
10.1109/TBME.2004.839639
10.1016/j.icte.2016.10.001
10.1089/dia.2015.0413
10.1371/journal.pmed.1000097
10.1088/1757-899X/803/1/012012
10.1007/s41666-019-00059-y
10.1007/s11517-015-1263-1
10.1007/s11517-015-1320-9
10.1186/s13643-016-0384-4
10.1016/j.jdiacomp.2019.107490
10.1177/193229680900300106
10.1371/journal.pmed.1000100
10.1016/j.jdiacomp.2017.04.004
10.1109/JBHI.2018.2840690
10.1089/dia.2007.0302
10.1145/3341105.3374003
10.1016/j.ijmedinf.2019.03.008
10.1109/JBHI.2018.2823763
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1016/j.artmed.2021.102120
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
ExternalDocumentID oai:HAL:hal-04321032v1
34412843
10_1016_j_artmed_2021_102120
S0933365721001135
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ID FETCH-LOGICAL-c515t-5b4a52b8d7c91e71e81afc6f5eb8a70ae288534bdb0953282d5a1538a91c090c3
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Sat Oct 25 06:36:39 EDT 2025
Sun Sep 28 12:03:02 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
Sat Oct 25 04:50:48 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Fri Feb 23 02:42:22 EST 2024
Tue Oct 14 19:30:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Diabetics real data
Hypoglycaemia or hypoglycemia
Blood glucose level
Data-based algorithms or models
Prediction
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-5b4a52b8d7c91e71e81afc6f5eb8a70ae288534bdb0953282d5a1538a91c090c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
ORCID 0000-0002-1331-8662
PMID 34412843
PQID 2563427048
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04321032v1
proquest_miscellaneous_2563427048
pubmed_primary_34412843
crossref_citationtrail_10_1016_j_artmed_2021_102120
crossref_primary_10_1016_j_artmed_2021_102120
elsevier_sciencedirect_doi_10_1016_j_artmed_2021_102120
elsevier_clinicalkey_doi_10_1016_j_artmed_2021_102120
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
2021-08
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dubosson, Mordvanyuk, Ibáñez, Schumacher (bb0215) 2017
Mirshekarian, Shen, Bunescu, Marling (bb0365) 2019
Ouzzani, Hammady, Fedorowicz, Elmagarmid (bb0105) 2016; 5
Hamdi, Ali, Costanzo, Fnaiech, Moreau, Ginoux (bb0240) 2018; 38
Khan, Masud, Mamun (bb0205) 2017
Georga (bb0135) 2009
Ali, Hamdi, Fnaiech, Costanzo, Fnaiech, Ginoux (bb0235) 2018; 38
Idrissi, Idri, Abnane, Bakkoury (bb0355) 2019; vol. 18
Vehí, Contreras, Oviedo, Biagi, Bertachi (bb0050) 2019
Fox, Ang, Jaiswal, Pop-Busui, Wiens (bb0265) 2018
Misra-Hebert (bb0450) 2020; 34
Dong, Wen, Li, Zhang, Zhang (bb0340) 2019
Li, Daniels, Liu, Herrero, Georgiou (bb0425) 2020; 24
Li, Tuo, Wang (bb0260) 2018
(n.d.) SCImago, “SJR — SCImago Journal & Country Rank [portal].” [Online]. Available
J. center for health Research, “Diabetes research in children network (DirecNet).” [Online]. Available
Georga, Protopappas, Polyzos, Fotiadis (bb0130) 2015
Midroni, Leimbigler, Baruah, Kolla, Whitehead, Fossat (bb0295) 2018; vol. 2148
Anand, Shin, Memon (bb0400) 2020; 10
Tkachenko, Kriukova, Aleksandrova, Chertov, Renard, Pereverzyev (bb0170) 2016; 134
Chen, Tuo, Wang (bb0375) 2019
Tarín, Teufel, Picó, Bondia, Pfleiderer (bb0060) 2005; 52
Jensen, Dethlefsen, Vestergaard, Hejlesen (bb0385) 2019; 14
Faccioli, Ozaslan, Garcia-Tirado, Breton, Favero (bb0075) 2018
E. H (bb0175) 2020
.
Gadaleta, Facchinetti, Grisan, Rossi (bb0325) 2019; 23
Aliberti (bb0330) 2019; 7
Lehmann, Deutsch (bb0055) 1992; 14
Plis, Bunescu, Marling, Shubrook, Schwartz (bb0020) 2014
Tamborlane (bb0440) 2008; 10
bb0465
Efendic, Kirchsteiger, Freckmann, Re (bb0120) 2014
Harman-Boehm, Gal, Raykhman, Naidis, Mayzel (bb0405) 2010; 4
Woldaregay (bb0085) 2019; 98
Schroeder, Xu, Goodrich, Nichols, O’Connor, Steiner (bb0200) 2017; 31
U. Machine Learning Repository (bb0165)
Reddy (bb0430) 2012; 66
Novara, Pour, Vincent, Grassi (bb0065) 2016; 24
Vahedi (bb0280) 2018
He, He, Wang (bb0370) 2019
Vu (bb0390) 2019; 2019
Hovorka (bb0035) 2004
Oviedo, Vehí, Calm, Armengol (bb0080) 2017; 33
Georga, Principe, Polyzos, Fotiadis (bb0180) 2016
Koutny, Cioppa, Falco, Tarantino, Scafuri, Krcma (bb0360) 2019
Mhaskar, Pereverzyev, van der Walt (bb0225) 2017; 3, no. July
Bertachi, Biagi, Luo, Veh (bb0300) 2018
Oviedo, Contreras, Quirós, Giménez, Conget, Vehi (bb0310) 2019; 126, no. March
Man, Rizza, Cobelli (bb0030) 2007; 54
Wilinska, Chassin, Schaller, Schaupp, Pieber, Hovorka (bb0040) 2005; 52
Li, Fernando (bb0160) 2016; 2
Griva, Basualdo (bb0270) 2018
Liberati (bb0095) 2009; 6
Marling, Bunescu (bb0250) 2018
Gu (bb0350) 2017
U. of Virginia (bb0275)
bb0335
Botwey, Daskalaki, Diem, Mougiakakou (bb0015) 2014
Li, Liu, Zhu, Herrero, Georgiou (bb0315) 2019
Martinsson, Schliep, Eliasson, Mogren (bb0445) 2020; 4
Kriukova, Shvai, Pereverzyev (bb0195) 2017
W. H. Organization (bb0005) 2014
Chen, Li, Herrero, Zhu, Georgiou (bb0255) 2018; vol. 2148
Daskalaki, Nrøgaard, Zug̈er, Prountzou, Diem, Mougiakakou (bb0110) 2013; 7
Zecchin, Facchinetti, Sparacino, Cobelli (bb0185) 2016; 10
Reddy (bb0220) 2016; 18
Alfian, Syafrudin, Rhee, Anshari, Mustakim, Fahrurrozi (bb0395) 2020; 803
Mirshekarian, Bunescu, Marling, Schwartz (bb0210) 2017
Zhu, Li, Herrero, Chen, Georgiou (bb0245) 2018; vol. 2148
Xie, Wang (bb0305) 2018; vol. 2148
Dave (bb0415) 2020
Kovatchev, Breton, Man, Cobelli (bb0475) 2009; 3
Cescon, Johansson, Renard (bb0145) 2015; 22
Contador, Velasco, Garnica, Hidalgo (bb0410) 2020
Zarkogianni (bb0070) 2015; 53
Hamdi (bb0190) 2017
I. D. Federation (bb0010) 2017
Dasanayake, Seborg, Pinsker, Doyle, Dassau (bb0125) 2015
Hidalgo (bb0420) 2020; 88
Xie, Wang (bb0455) 2020; 67
I. C. London (bb0470)
Georga, Protopappas, Polyzos, Fotiadis (bb0140) 2015; 53
Li, Tuo, Wang, Wang (bb0435) 2020; 378
Higgins (bb0100) 2019
Moher (bb0090) 2009; 6
Hidalgo, Colmenar, Kronberger, Winkler, Garnica, Lanchares (bb0025) 2017; 41
Reddy, Resalat, Wilson, Castle, Youssef, Jacobs (bb0380) 2019; 13
Duke (bb0045) 2010
He, Gu, Kong, Zhang, Spanos, Mosalam (bb0345) 2019
F. E. project (bb0150)
Stahl, Johansson, Olsson (bb0155) 2016
Yu (bb0285) 2018; 71
Zhao, Dassau, Zisser, Jovanovič, Doyle, Seborg (bb0115) 2014; 60
Yang, Li, Shi, Xie (bb0320) 2019; 23
Contreras, Bertachi, Biagi, Oviedo, Vehí (bb0290) 2018; vol. 2148
Mhaskar (10.1016/j.artmed.2021.102120_bb0225) 2017; 3, no. July
Tarín (10.1016/j.artmed.2021.102120_bb0060) 2005; 52
Li (10.1016/j.artmed.2021.102120_bb0160) 2016; 2
Reddy (10.1016/j.artmed.2021.102120_bb0430) 2012; 66
Lehmann (10.1016/j.artmed.2021.102120_bb0055) 1992; 14
Liberati (10.1016/j.artmed.2021.102120_bb0095) 2009; 6
Reddy (10.1016/j.artmed.2021.102120_bb0220) 2016; 18
10.1016/j.artmed.2021.102120_bb0230
Anand (10.1016/j.artmed.2021.102120_bb0400) 2020; 10
Oviedo (10.1016/j.artmed.2021.102120_bb0310) 2019; 126, no. March
Tamborlane (10.1016/j.artmed.2021.102120_bb0440) 2008; 10
Fox (10.1016/j.artmed.2021.102120_bb0265) 2018
Gadaleta (10.1016/j.artmed.2021.102120_bb0325) 2019; 23
Reddy (10.1016/j.artmed.2021.102120_bb0380) 2019; 13
Georga (10.1016/j.artmed.2021.102120_bb0135) 2009
Chen (10.1016/j.artmed.2021.102120_bb0255) 2018; vol. 2148
Woldaregay (10.1016/j.artmed.2021.102120_bb0085) 2019; 98
Li (10.1016/j.artmed.2021.102120_bb0425) 2020; 24
Duke (10.1016/j.artmed.2021.102120_bb0045) 2010
Mirshekarian (10.1016/j.artmed.2021.102120_bb0365) 2019
Bertachi (10.1016/j.artmed.2021.102120_bb0300) 2018
Xie (10.1016/j.artmed.2021.102120_bb0455) 2020; 67
Li (10.1016/j.artmed.2021.102120_bb0260) 2018
Contreras (10.1016/j.artmed.2021.102120_bb0290) 2018; vol. 2148
Kriukova (10.1016/j.artmed.2021.102120_bb0195) 2017
Midroni (10.1016/j.artmed.2021.102120_bb0295) 2018; vol. 2148
I. D. Federation (10.1016/j.artmed.2021.102120_bb0010)
Hovorka (10.1016/j.artmed.2021.102120_bb0035) 2004
Yu (10.1016/j.artmed.2021.102120_bb0285) 2018; 71
Idrissi (10.1016/j.artmed.2021.102120_bb0355) 2019; vol. 18
Alfian (10.1016/j.artmed.2021.102120_bb0395) 2020; 803
Martinsson (10.1016/j.artmed.2021.102120_bb0445) 2020; 4
Oviedo (10.1016/j.artmed.2021.102120_bb0080) 2017; 33
Khan (10.1016/j.artmed.2021.102120_bb0205) 2017
Vu (10.1016/j.artmed.2021.102120_bb0390) 2019; 2019
Georga (10.1016/j.artmed.2021.102120_bb0180) 2016
Botwey (10.1016/j.artmed.2021.102120_bb0015) 2014
Li (10.1016/j.artmed.2021.102120_bb0435) 2020; 378
Griva (10.1016/j.artmed.2021.102120_bb0270) 2018
Zarkogianni (10.1016/j.artmed.2021.102120_bb0070) 2015; 53
I. C. London (10.1016/j.artmed.2021.102120_bb0470)
Cescon (10.1016/j.artmed.2021.102120_bb0145) 2015; 22
Vehí (10.1016/j.artmed.2021.102120_bb0050) 2019
Aliberti (10.1016/j.artmed.2021.102120_bb0330) 2019; 7
Tkachenko (10.1016/j.artmed.2021.102120_bb0170) 2016; 134
Hamdi (10.1016/j.artmed.2021.102120_bb0190) 2017
Dave (10.1016/j.artmed.2021.102120_bb0415) 2020
Efendic (10.1016/j.artmed.2021.102120_bb0120) 2014
Dasanayake (10.1016/j.artmed.2021.102120_bb0125) 2015
Ali (10.1016/j.artmed.2021.102120_bb0235) 2018; 38
Stahl (10.1016/j.artmed.2021.102120_bb0155) 2016
Vahedi (10.1016/j.artmed.2021.102120_bb0280) 2018
Contador (10.1016/j.artmed.2021.102120_bb0410) 2020
Kovatchev (10.1016/j.artmed.2021.102120_bb0475) 2009; 3
Daskalaki (10.1016/j.artmed.2021.102120_bb0110) 2013; 7
Dong (10.1016/j.artmed.2021.102120_bb0340) 2019
U. of Virginia (10.1016/j.artmed.2021.102120_bb0275)
F. E. project (10.1016/j.artmed.2021.102120_bb0150)
Hamdi (10.1016/j.artmed.2021.102120_bb0240) 2018; 38
Hidalgo (10.1016/j.artmed.2021.102120_bb0420) 2020; 88
Plis (10.1016/j.artmed.2021.102120_bb0020) 2014
Chen (10.1016/j.artmed.2021.102120_bb0375) 2019
Moher (10.1016/j.artmed.2021.102120_bb0090) 2009; 6
Hidalgo (10.1016/j.artmed.2021.102120_bb0025) 2017; 41
W. H. Organization (10.1016/j.artmed.2021.102120_bb0005) 2014
Yang (10.1016/j.artmed.2021.102120_bb0320) 2019; 23
Zhao (10.1016/j.artmed.2021.102120_bb0115) 2014; 60
Koutny (10.1016/j.artmed.2021.102120_bb0360) 2019
U. Machine Learning Repository (10.1016/j.artmed.2021.102120_bb0165)
E. H (10.1016/j.artmed.2021.102120_bb0175) 2020
Gu (10.1016/j.artmed.2021.102120_bb0350) 2017
Faccioli (10.1016/j.artmed.2021.102120_bb0075) 2018
Mirshekarian (10.1016/j.artmed.2021.102120_bb0210) 2017
Xie (10.1016/j.artmed.2021.102120_bb0305) 2018; vol. 2148
He (10.1016/j.artmed.2021.102120_bb0345) 2019
Dubosson (10.1016/j.artmed.2021.102120_bb0215) 2017
Man (10.1016/j.artmed.2021.102120_bb0030) 2007; 54
Georga (10.1016/j.artmed.2021.102120_bb0140) 2015; 53
Misra-Hebert (10.1016/j.artmed.2021.102120_bb0450) 2020; 34
Georga (10.1016/j.artmed.2021.102120_bb0130) 2015
Zecchin (10.1016/j.artmed.2021.102120_bb0185) 2016; 10
Jensen (10.1016/j.artmed.2021.102120_bb0385) 2019; 14
Schroeder (10.1016/j.artmed.2021.102120_bb0200) 2017; 31
10.1016/j.artmed.2021.102120_bb0460
Higgins (10.1016/j.artmed.2021.102120_bb0100) 2019
Ouzzani (10.1016/j.artmed.2021.102120_bb0105) 2016; 5
Li (10.1016/j.artmed.2021.102120_bb0315) 2019
He (10.1016/j.artmed.2021.102120_bb0370) 2019
Marling (10.1016/j.artmed.2021.102120_bb0250) 2018
Novara (10.1016/j.artmed.2021.102120_bb0065) 2016; 24
Zhu (10.1016/j.artmed.2021.102120_bb0245) 2018; vol. 2148
Wilinska (10.1016/j.artmed.2021.102120_bb0040) 2005; 52
Harman-Boehm (10.1016/j.artmed.2021.102120_bb0405) 2010; 4
References_xml – ident: bb0465
  article-title: The OhioT1DM dataset
– volume: 10
  start-page: 310
  year: 2008
  end-page: 321
  ident: bb0440
  article-title: JDRF randomized clinical trial to assess the efficacy of real-time continuous glucose monitoring in the management of type 1 diabetes: research design and methods
  publication-title: Diabetes Technol Ther
– volume: 2
  start-page: 150
  year: 2016
  end-page: 154
  ident: bb0160
  article-title: Smartphone-based personalized blood glucose prediction
  publication-title: ICT Express
– year: 2018
  ident: bb0300
  article-title: Prediction of blood glucose levels and nocturnal hypoglycemia using physiological models and artificial neural networks
– volume: 24
  start-page: 1092
  year: 2016
  end-page: 1100
  ident: bb0065
  article-title: A nonlinear blind identification approach to modeling of diabetic patients
  publication-title: IEEE Trans Control Syst Technol
– start-page: 706
  year: 2019
  end-page: 712
  ident: bb0365
  article-title: LSTMs and neural attention models for blood glucose prediction: comparative experiments on real and synthetic data
  publication-title: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– volume: 134
  start-page: 179
  year: 2016
  end-page: 186
  ident: bb0170
  article-title: Prediction of nocturnal hypoglycemia by an aggregation of previously known prediction approaches: proof of concept for clinical application
  publication-title: Comput Methods Programs Biomed
– volume: 38
  start-page: 362
  year: 2018
  end-page: 372
  ident: bb0240
  article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm
  publication-title: Biocybern Biomed Eng
– start-page: 1387
  year: 2018
  end-page: 1395
  ident: bb0265
  article-title: Deep multi-output forecasting learning to accurately predict blood glucose trajectories
  publication-title: Proc. ACM SIGKDD int. conf. knowl. discov. data min
– volume: 53
  start-page: 1305
  year: 2015
  end-page: 1318
  ident: bb0140
  article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models
  publication-title: Med Biol Eng Comput
– volume: 23
  start-page: 650
  year: 2019
  end-page: 659
  ident: bb0325
  article-title: Prediction of adverse glycemic events from continuous glucose monitoring signal
  publication-title: IEEE J Biomed Health Inform
– start-page: 50
  year: 2019
  end-page: 55
  ident: bb0340
  article-title: Clu-RNN: a new RNN based approach to diabetic blood glucose prediction
  publication-title: 2019 IEEE 7th International Conference on Bioinformatics and Computational Biology (ICBCB)
– volume: 54
  start-page: 1
  year: 2007
  end-page: 33
  ident: bb0030
  article-title: Meal simulation of glucose-insulin system
  publication-title: IEEE Trans Biomed Eng
– volume: 803
  year: 2020
  ident: bb0395
  article-title: Blood glucose prediction model for type 1 diabetes based on extreme gradient boosting
  publication-title: IOP Conf Ser Mater Sci Eng
– reference: J. center for health Research, “Diabetes research in children network (DirecNet).” [Online]. Available:
– volume: 66
  start-page: 37
  year: 2012
  end-page: 39
  ident: bb0430
  article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study
  publication-title: Diabetes Technol Ther
– volume: 34
  year: 2020
  ident: bb0450
  article-title: Risk prediction for severe hypoglycemia in a type 2 diabetes population with previous non-severe hypoglycemia
  publication-title: J Diabetes Complications
– volume: 14
  start-page: 250
  year: 2019
  end-page: 256
  ident: bb0385
  article-title: Prediction of nocturnal hypoglycemia from continuous glucose monitoring data in people with type 1 diabetes: a proof-of-concept study
  publication-title: J Diabetes Sci Technol
– volume: 24
  start-page: 603
  year: 2020
  end-page: 613
  ident: bb0425
  article-title: Convolutional recurrent neural networks for glucose prediction
  publication-title: IEEE J Biomed Health Inform
– start-page: 2017
  year: 2018
  end-page: 2022
  ident: bb0260
  article-title: Chaotic time series analysis approach for prediction blood glucose concentration based on echo state networks
  publication-title: 2018 Chinese control and decision conference (CCDC)
– start-page: 3834
  year: 2015
  end-page: 3839
  ident: bb0125
  article-title: Empirical dynamic model identification for blood-glucose dynamics in response to physical activity
  publication-title: Proc. IEEE conf. decis. control, vol. 54rd IEEE, no. Cdc
– start-page: 1
  year: 2018
  end-page: 6
  ident: bb0270
  article-title: Evaluating clinical accuracy of models for predicting glycemic behavior for diabetes care
  publication-title: 2018 Argentine conference on automatic control (AADECA)
– start-page: 269
  year: 2019
  end-page: 274
  ident: bb0360
  article-title: De-randomized meta-differential evolution for calculating and predicting glucose levels
  publication-title: 2019 IEEE 32nd international symposium on computer-based medical systems (CBMS)
– volume: 2019
  start-page: 874
  year: 2019
  end-page: 882
  ident: bb0390
  article-title: Predicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizon
  publication-title: AMIA Ann Symp Proc
– start-page: 1
  year: 2019
  ident: bb0315
  article-title: GluNet: a deep learning framework for accurate glucose forecasting
  publication-title: IEEE J Biomed Health Inform
– start-page: 2887
  year: 2017
  end-page: 2891
  ident: bb0210
  article-title: Using LSTMs to learn physiological models of blood glucose behavior
  publication-title: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– volume: vol. 2148
  start-page: 69
  year: 2018
  end-page: 73
  ident: bb0255
  article-title: Dilated recurrent neural network for short-time prediction of glucose concentration
  publication-title: CEUR workshop proc
– volume: 41
  year: 2017
  ident: bb0025
  article-title: Data based prediction of blood glucose concentrations using evolutionary methods
  publication-title: J Med Syst
– volume: 378
  start-page: 248
  year: 2020
  end-page: 259
  ident: bb0435
  article-title: Prediction of blood glucose concentration for type 1 diabetes based on echo state networks embedded with incremental learning
  publication-title: Neurocomputing
– volume: vol. 18
  start-page: 35
  year: 2019
  end-page: 41
  ident: bb0355
  article-title: Predicting blood glucose using an LSTM neural network
  publication-title: Proc. 2019 fed. conf. comput. sci. inf. syst
– volume: 38
  start-page: 828
  year: 2018
  end-page: 840
  ident: bb0235
  article-title: Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network
  publication-title: Biocybern Biomed Eng
– start-page: 3910
  year: 2018
  end-page: 3913
  ident: bb0075
  article-title: Black-box model identification of physical activity in type-l diabetes patients
  publication-title: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– year: 2019
  ident: bb0100
  article-title: “Cochrane handbook for systematic reviews of interventions version 6.0,” Cochrane
  publication-title: [Online]. Available
– start-page: 1494
  year: 2014
  end-page: 1499
  ident: bb0120
  article-title: Short-term prediction of blood glucose concentration using interval probabilistic models
  publication-title: 22nd Mediterranean conference on control and automation
– start-page: 1
  year: 2017
  end-page: 27
  ident: bb0350
  article-title: SugarMate: non-intrusive blood glucose monitoring with smartphones
– volume: 60
  start-page: 574
  year: 2014
  end-page: 584
  ident: bb0115
  article-title: Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation
  publication-title: AIChE J
– ident: bb0275
  article-title: Feasibility of a decision support system to reduce glucose variability in subject with T1DM
– volume: 7
  start-page: 689
  year: 2013
  end-page: 698
  ident: bb0110
  article-title: An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models
  publication-title: J Diabetes Sci Technol
– volume: 23
  start-page: 1251
  year: 2019
  end-page: 1260
  ident: bb0320
  article-title: An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia
  publication-title: IEEE J Biomed Health Inform
– year: 2014
  ident: bb0005
  article-title: Global status report on noncommunicable diseases 2014
– volume: vol. 2148
  start-page: 91
  year: 2018
  end-page: 96
  ident: bb0290
  article-title: Using grammatical evolution to generate short-term blood glucose prediction models
  publication-title: CEUR workshop proc
– start-page: 634
  year: 2017
  end-page: 638
  ident: bb0195
  article-title: Application of regularized ranking and collaborative filtering in predictive alarm algorithm for nocturnal hypoglycemia prevention
  publication-title: Proc. 2017 IEEE 9th int. conf. intell. data acquis. adv. comput. syst. technol. appl. IDAACS 2017, vol. 2, no. September
– volume: 33
  start-page: 1
  year: 2017
  end-page: 21
  ident: bb0080
  article-title: A review of personalized blood glucose prediction strategies for T1DM patients
  publication-title: Int J Numer Methods Biomed Eng
– start-page: 1
  year: 2020
  end-page: 13
  ident: bb0415
  article-title: Feature-based machine learning model for real-time hypoglycemia prediction
  publication-title: J Diabetes Sci Technol
– start-page: 25
  year: 2017
  end-page: 29
  ident: bb0215
  article-title: Negative results for the prediction of postprandial hypoglycemias from insulin intakes and carbohydrates: analysis and comparison with simulated data
– volume: 7
  start-page: 69311
  year: 2019
  end-page: 69325
  ident: bb0330
  article-title: A multi-patient data-driven approach to blood glucose prediction
  publication-title: IEEE Access
– start-page: 3262
  year: 2015
  end-page: 3265
  ident: bb0130
  article-title: Online prediction of glucose concentration in type 1 diabetes using extreme learning machines
  publication-title: Proc. annu. int. conf. IEEE eng. med. biol. soc. EMBS, vol. 2015-Novem
– year: 2018
  ident: bb0250
  article-title: The OhioT1DM dataset for blood glucose level prediction
  publication-title: CEUR Workshop Proceedings
– ident: bb0470
  article-title: Advanced bolus calculator for type 1 diabetes (ABC4D) (ABC4D)
– volume: 6
  year: 2009
  ident: bb0095
  article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration
  publication-title: PLoS Med
– start-page: 91
  year: 2017
  end-page: 95
  ident: bb0190
  article-title: Artificial neural network for blood glucose level prediction
  publication-title: 2017 int. conf. smart, monit. control. cities, SM2C 2017
– start-page: 2942
  year: 2019
  end-page: 2947
  ident: bb0370
  article-title: Blood glucose concentration prediction based on canonical correlation analysis
  publication-title: Chinese control conf. CCC, vol. 2019-July
– volume: 98
  start-page: 109
  year: 2019
  end-page: 134
  ident: bb0085
  article-title: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes
  publication-title: Artif Intell Med
– volume: vol. 2148
  start-page: 64
  year: 2018
  end-page: 78
  ident: bb0245
  article-title: A deep learning algorithm for personalized blood glucose prediction
  publication-title: CEUR workshop proc
– start-page: 35
  year: 2014
  end-page: 39
  ident: bb0020
  article-title: A machine learning approach to predicting blood glucose levels for diabetes management
  publication-title: Mod Artifical Intell Heal Anal
– start-page: 1583
  year: 2016
  end-page: 1588
  ident: bb0155
  article-title: Predicting nocturnal hypoglycemia using a non-parametric insulin action model
  publication-title: Proc. - 2015 IEEE int. conf. syst. man, cybern. SMC 2015
– volume: 10
  start-page: 1149
  year: 2016
  end-page: 1160
  ident: bb0185
  article-title: How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study
  publication-title: J Diabetes Sci Technol
– ident: bb0335
  article-title: JDRF continuous glucose monitoring clinical trial
– year: 2010
  ident: bb0045
  article-title: Intelligent diabetes assistant: a telemedicine system for modeling and managing blood glucose
– volume: 14
  start-page: 235
  year: 1992
  end-page: 242
  ident: bb0055
  article-title: A physiological model of glucose-insulin interaction in type 1 diabetes mellitus
  publication-title: J Biomed Eng
– start-page: 392
  year: 2017
  end-page: 395
  ident: bb0205
  article-title: Methods to predict blood glucose level for type 2 diabetes patients
  publication-title: 2017 IEEE region 10 humanitarian technology conference (R10-HTC)
– volume: 3, no. July
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0225
  article-title: A deep learning approach to diabetic blood glucose prediction
  publication-title: Front Appl Math Stat
– start-page: 1
  year: 2018
  end-page: 5
  ident: bb0280
  article-title: Predicting glucose levels in patients with type1 diabetes based on physiological and activity data
  publication-title: Proc. 8th ACM MobiHoc 2018 work. pervasive wirel. healthc. work. mobilehealth 2018
– volume: 53
  start-page: 1333
  year: 2015
  end-page: 1343
  ident: bb0070
  article-title: Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring
  publication-title: Med Biol Eng Comput
– start-page: 703
  year: 2019
  end-page: 718
  ident: bb0050
  article-title: Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning
  publication-title: Health Informatics J
– volume: 52
  start-page: 3
  year: 2005
  end-page: 12
  ident: bb0040
  article-title: Insulin kinetics in type-1 diabetes: continuous and bolus delivery of rapid acting insulin
  publication-title: IEEE Trans Biomed Eng
– volume: 126, no. March
  start-page: 1
  year: 2019
  end-page: 8
  ident: bb0310
  article-title: Risk-based postprandial hypoglycemia forecasting using supervised learning
  publication-title: Int J Med Inform
– volume: 22
  start-page: 99
  year: 2015
  end-page: 110
  ident: bb0145
  article-title: Subspace-based linear multi-step predictors in type 1 diabetes mellitus
  publication-title: Biomed Signal Process Control
– volume: 31
  start-page: 1158
  year: 2017
  end-page: 1163
  ident: bb0200
  article-title: Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: development and external validation of a prediction model
  publication-title: J Diabetes Complications
– reference: (n.d.) SCImago, “SJR — SCImago Journal & Country Rank [portal].” [Online]. Available:
– year: 2020
  ident: bb0175
  article-title: Funded M. AMMODIT, “ChildrenData dataset.”
– volume: 6
  year: 2009
  ident: bb0090
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med
– volume: 3
  start-page: 44
  year: 2009
  end-page: 55
  ident: bb0475
  article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes
  publication-title: J Diabetes Sci Technol
– volume: 52
  start-page: 1994
  year: 2005
  end-page: 2005
  ident: bb0060
  article-title: Comprehensive pharmacokinetic model of insulin glargine and other insulin formulations
– year: 2009
  ident: bb0135
  article-title: Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system
  publication-title: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society: engineering the future of biomedicine, EMBC 2009
– reference: .
– volume: 18
  start-page: 487
  year: 2016
  end-page: 493
  ident: bb0220
  article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study
  publication-title: Diabetes Technol Ther
– volume: vol. 2148
  start-page: 97
  year: 2018
  end-page: 102
  ident: bb0305
  article-title: Benchmark machine learning approaches with classical time series approaches on the blood glucose level prediction challenge
  publication-title: CEUR workshop proc
– ident: bb0150
  article-title: DIAdvisor, “personal glucose predictive diabetes advisor”
– volume: 4
  start-page: 583
  year: 2010
  end-page: 595
  ident: bb0405
  article-title: Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors
  publication-title: J Diabetes Sci Technol
– volume: 88
  year: 2020
  ident: bb0420
  article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and bagging
  publication-title: Appl Soft Comput J
– year: 2017
  ident: bb0010
  article-title: IDF Diabetes Atlas 8th edition
– volume: vol. 2148
  start-page: 79
  year: 2018
  end-page: 84
  ident: bb0295
  article-title: Predicting glycemia in type 1 diabetes patients: experiments with XGBoost
  publication-title: CEUR workshop proc
– start-page: 1
  year: 2019
  ident: bb0345
  article-title: CausalBG: causal recurrent neural network for the blood glucose inference with IoT platform
  publication-title: IEEE Internet Things J
– start-page: 3000
  year: 2019
  end-page: 3005
  ident: bb0375
  article-title: A prediction method for blood glucose based on grey wolf optimization evolving kernel extreme learning machine
  publication-title: Chinese control conf. CCC, vol. 2019-July
– start-page: 5897
  year: 2016
  end-page: 5900
  ident: bb0180
  article-title: Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters
  publication-title: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– start-page: 529
  year: 2020
  end-page: 536
  ident: bb0410
  article-title: Profiled glucose forecasting using genetic programming and clustering
  publication-title: Proc ACM Symp Appl Comput
– ident: bb0165
  article-title: Diabetes data set
– volume: 71
  start-page: 129
  year: 2018
  end-page: 141
  ident: bb0285
  article-title: Model-fusion-based online glucose concentration predictions in people with type 1 diabetes
  publication-title: Control Eng Pract
– start-page: 4843
  year: 2014
  end-page: 4846
  ident: bb0015
  article-title: Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events
  publication-title: 2014 36th annu. int. conf. IEEE eng. med. biol. soc. EMBC 2014
– year: 2004
  ident: bb0035
  article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes
  publication-title: Physiological measurement
– volume: 4
  start-page: 1
  year: 2020
  end-page: 18
  ident: bb0445
  article-title: Blood glucose prediction with variance estimation using recurrent neural networks
  publication-title: J Healthc Informatics Res
– volume: 5
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0105
  article-title: Rayyan-a web and mobile app for systematic reviews
  publication-title: Syst Rev
– volume: 10
  start-page: 1
  year: 2020
  end-page: 22
  ident: bb0400
  article-title: Adaptive boosting based personalized glucose monitoring system (PGMS) for non-invasive blood glucose prediction with improved accuracy
  publication-title: Diagnostics
– volume: 67
  start-page: 3101
  year: 2020
  end-page: 3124
  ident: bb0455
  article-title: Benchmarking machine learning algorithms on blood glucose prediction for type i diabetes in comparison with classical time-series models
  publication-title: IEEE Trans Biomed Eng
– volume: 13
  start-page: 919
  year: 2019
  end-page: 927
  ident: bb0380
  article-title: Prediction of hypoglycemia during aerobic exercise in adults with type 1 diabetes
  publication-title: J Diabetes Sci Technol
– start-page: 634
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0195
  article-title: Application of regularized ranking and collaborative filtering in predictive alarm algorithm for nocturnal hypoglycemia prevention
– volume: 38
  start-page: 828
  issue: 4
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0235
  article-title: Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.06.005
– volume: 378
  start-page: 248
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0435
  article-title: Prediction of blood glucose concentration for type 1 diabetes based on echo state networks embedded with incremental learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.003
– year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0100
  article-title: “Cochrane handbook for systematic reviews of interventions version 6.0,” Cochrane
– start-page: 706
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0365
  article-title: LSTMs and neural attention models for blood glucose prediction: comparative experiments on real and synthetic data
– start-page: 1
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0415
  article-title: Feature-based machine learning model for real-time hypoglycemia prediction
  publication-title: J Diabetes Sci Technol
– start-page: 25
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0215
– start-page: 3910
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0075
  article-title: Black-box model identification of physical activity in type-l diabetes patients
– start-page: 1583
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0155
  article-title: Predicting nocturnal hypoglycemia using a non-parametric insulin action model
– volume: 4
  start-page: 583
  issue: 3
  year: 2010
  ident: 10.1016/j.artmed.2021.102120_bb0405
  article-title: Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229681000400312
– volume: 134
  start-page: 179
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0170
  article-title: Prediction of nocturnal hypoglycemia by an aggregation of previously known prediction approaches: proof of concept for clinical application
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.07.003
– start-page: 4843
  year: 2014
  ident: 10.1016/j.artmed.2021.102120_bb0015
  article-title: Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events
– volume: 3, no. July
  start-page: 1
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0225
  article-title: A deep learning approach to diabetic blood glucose prediction
  publication-title: Front Appl Math Stat
– volume: 10
  start-page: 1149
  issue: 5
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0185
  article-title: How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296816654161
– start-page: 1
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0270
  article-title: Evaluating clinical accuracy of models for predicting glycemic behavior for diabetes care
– year: 2004
  ident: 10.1016/j.artmed.2021.102120_bb0035
  article-title: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes
– start-page: 2942
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0370
  article-title: Blood glucose concentration prediction based on canonical correlation analysis
– ident: 10.1016/j.artmed.2021.102120_bb0275
– volume: 71
  start-page: 129
  issue: April 2017
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0285
  article-title: Model-fusion-based online glucose concentration predictions in people with type 1 diabetes
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2017.10.013
– start-page: 50
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0340
  article-title: Clu-RNN: a new RNN based approach to diabetic blood glucose prediction
– start-page: 3000
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0375
  article-title: A prediction method for blood glucose based on grey wolf optimization evolving kernel extreme learning machine
– volume: 22
  start-page: 99
  year: 2015
  ident: 10.1016/j.artmed.2021.102120_bb0145
  article-title: Subspace-based linear multi-step predictors in type 1 diabetes mellitus
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.09.012
– start-page: 91
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0190
  article-title: Artificial neural network for blood glucose level prediction
– volume: 7
  start-page: 69311
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0330
  article-title: A multi-patient data-driven approach to blood glucose prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919184
– year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0250
  article-title: The OhioT1DM dataset for blood glucose level prediction
– start-page: 3834
  year: 2015
  ident: 10.1016/j.artmed.2021.102120_bb0125
  article-title: Empirical dynamic model identification for blood-glucose dynamics in response to physical activity
– volume: 98
  start-page: 109
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0085
  article-title: Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 1 diabetes
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.07.007
– start-page: 1
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0350
– volume: 14
  start-page: 250
  issue: 2
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0385
  article-title: Prediction of nocturnal hypoglycemia from continuous glucose monitoring data in people with type 1 diabetes: a proof-of-concept study
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296819868727
– volume: 38
  start-page: 362
  issue: 2
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0240
  article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.02.005
– volume: 52
  start-page: 1994
  issue: 12
  year: 2005
  ident: 10.1016/j.artmed.2021.102120_bb0060
  article-title: Comprehensive pharmacokinetic model of insulin glargine and other insulin formulations
– year: 2014
  ident: 10.1016/j.artmed.2021.102120_bb0005
– volume: 24
  start-page: 603
  issue: 2
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0425
  article-title: Convolutional recurrent neural networks for glucose prediction
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2908488
– volume: 54
  start-page: 1
  issue: 10
  year: 2007
  ident: 10.1016/j.artmed.2021.102120_bb0030
  article-title: Meal simulation of glucose-insulin system
  publication-title: IEEE Trans Biomed Eng
– volume: 7
  start-page: 689
  issue: 3
  year: 2013
  ident: 10.1016/j.artmed.2021.102120_bb0110
  article-title: An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229681300700314
– volume: 88
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0420
  article-title: Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and bagging
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.105923
– ident: 10.1016/j.artmed.2021.102120_bb0150
– start-page: 5897
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0180
  article-title: Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters
– volume: vol. 2148
  start-page: 97
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0305
  article-title: Benchmark machine learning approaches with classical time series approaches on the blood glucose level prediction challenge
– volume: 14
  start-page: 235
  year: 1992
  ident: 10.1016/j.artmed.2021.102120_bb0055
  article-title: A physiological model of glucose-insulin interaction in type 1 diabetes mellitus
  publication-title: J Biomed Eng
  doi: 10.1016/0141-5425(92)90058-S
– volume: vol. 2148
  start-page: 64
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0245
  article-title: A deep learning algorithm for personalized blood glucose prediction
– volume: vol. 2148
  start-page: 91
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0290
  article-title: Using grammatical evolution to generate short-term blood glucose prediction models
– volume: 33
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0080
  article-title: A review of personalized blood glucose prediction strategies for T1DM patients
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.2833
– start-page: 2887
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0210
  article-title: Using LSTMs to learn physiological models of blood glucose behavior
– volume: 66
  start-page: 37
  issue: 0
  year: 2012
  ident: 10.1016/j.artmed.2021.102120_bb0430
  article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study
  publication-title: Diabetes Technol Ther
– year: 2009
  ident: 10.1016/j.artmed.2021.102120_bb0135
  article-title: Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system
– volume: 24
  start-page: 1092
  issue: 3
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0065
  article-title: A nonlinear blind identification approach to modeling of diabetic patients
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2015.2462734
– start-page: 1387
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0265
  article-title: Deep multi-output forecasting learning to accurately predict blood glucose trajectories
– start-page: 392
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0205
  article-title: Methods to predict blood glucose level for type 2 diabetes patients
– volume: 13
  start-page: 919
  issue: 5
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0380
  article-title: Prediction of hypoglycemia during aerobic exercise in adults with type 1 diabetes
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296818823792
– volume: 10
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0400
  article-title: Adaptive boosting based personalized glucose monitoring system (PGMS) for non-invasive blood glucose prediction with improved accuracy
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10050285
– volume: 60
  start-page: 574
  issue: 2
  year: 2014
  ident: 10.1016/j.artmed.2021.102120_bb0115
  article-title: Online prediction of subcutaneous glucose concentration for type 1 diabetes using empirical models and frequency-band separation
  publication-title: AIChE J
  doi: 10.1002/aic.14288
– volume: 67
  start-page: 3101
  issue: 11
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0455
  article-title: Benchmarking machine learning algorithms on blood glucose prediction for type i diabetes in comparison with classical time-series models
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2020.2975959
– volume: 41
  issue: 9
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0025
  article-title: Data based prediction of blood glucose concentrations using evolutionary methods
  publication-title: J Med Syst
  doi: 10.1007/s10916-017-0788-2
– volume: 52
  start-page: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.artmed.2021.102120_bb0040
  article-title: Insulin kinetics in type-1 diabetes: continuous and bolus delivery of rapid acting insulin
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.839639
– volume: 2
  start-page: 150
  issue: 4
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0160
  article-title: Smartphone-based personalized blood glucose prediction
  publication-title: ICT Express
  doi: 10.1016/j.icte.2016.10.001
– start-page: 35
  year: 2014
  ident: 10.1016/j.artmed.2021.102120_bb0020
  article-title: A machine learning approach to predicting blood glucose levels for diabetes management
  publication-title: Mod Artifical Intell Heal Anal
– start-page: 3262
  year: 2015
  ident: 10.1016/j.artmed.2021.102120_bb0130
  article-title: Online prediction of glucose concentration in type 1 diabetes using extreme learning machines
– volume: 18
  start-page: 487
  issue: 8
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0220
  article-title: Clinical safety and feasibility of the advanced bolus calculator for type 1 diabetes based on case-based reasoning: a 6-week nonrandomized single-arm pilot study
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2015.0413
– volume: vol. 18
  start-page: 35
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0355
  article-title: Predicting blood glucose using an LSTM neural network
– volume: 6
  issue: 7
  year: 2009
  ident: 10.1016/j.artmed.2021.102120_bb0090
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000097
– volume: 2019
  start-page: 874
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0390
  article-title: Predicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizon
  publication-title: AMIA Ann Symp Proc
– volume: 803
  issue: 1
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0395
  article-title: Blood glucose prediction model for type 1 diabetes based on extreme gradient boosting
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/803/1/012012
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0445
  article-title: Blood glucose prediction with variance estimation using recurrent neural networks
  publication-title: J Healthc Informatics Res
  doi: 10.1007/s41666-019-00059-y
– year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0300
– volume: 53
  start-page: 1305
  issue: 12
  year: 2015
  ident: 10.1016/j.artmed.2021.102120_bb0140
  article-title: Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-015-1263-1
– ident: 10.1016/j.artmed.2021.102120_bb0165
– volume: 53
  start-page: 1333
  issue: 12
  year: 2015
  ident: 10.1016/j.artmed.2021.102120_bb0070
  article-title: Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-015-1320-9
– start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0345
  article-title: CausalBG: causal recurrent neural network for the blood glucose inference with IoT platform
  publication-title: IEEE Internet Things J
– volume: vol. 2148
  start-page: 69
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0255
  article-title: Dilated recurrent neural network for short-time prediction of glucose concentration
– ident: 10.1016/j.artmed.2021.102120_bb0010
– volume: vol. 2148
  start-page: 79
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0295
  article-title: Predicting glycemia in type 1 diabetes patients: experiments with XGBoost
– ident: 10.1016/j.artmed.2021.102120_bb0460
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.artmed.2021.102120_bb0105
  article-title: Rayyan-a web and mobile app for systematic reviews
  publication-title: Syst Rev
  doi: 10.1186/s13643-016-0384-4
– volume: 34
  issue: 1
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0450
  article-title: Risk prediction for severe hypoglycemia in a type 2 diabetes population with previous non-severe hypoglycemia
  publication-title: J Diabetes Complications
  doi: 10.1016/j.jdiacomp.2019.107490
– volume: 3
  start-page: 44
  issue: 1
  year: 2009
  ident: 10.1016/j.artmed.2021.102120_bb0475
  article-title: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229680900300106
– volume: 6
  issue: 7
  year: 2009
  ident: 10.1016/j.artmed.2021.102120_bb0095
  article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000100
– volume: 31
  start-page: 1158
  issue: 7
  year: 2017
  ident: 10.1016/j.artmed.2021.102120_bb0200
  article-title: Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: development and external validation of a prediction model
  publication-title: J Diabetes Complications
  doi: 10.1016/j.jdiacomp.2017.04.004
– start-page: 2017
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0260
  article-title: Chaotic time series analysis approach for prediction blood glucose concentration based on echo state networks
– start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0315
  article-title: GluNet: a deep learning framework for accurate glucose forecasting
  publication-title: IEEE J Biomed Health Inform
– volume: 23
  start-page: 1251
  issue: 3
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0320
  article-title: An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2840690
– start-page: 269
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0360
  article-title: De-randomized meta-differential evolution for calculating and predicting glucose levels
– volume: 10
  start-page: 310
  issue: 4
  year: 2008
  ident: 10.1016/j.artmed.2021.102120_bb0440
  article-title: JDRF randomized clinical trial to assess the efficacy of real-time continuous glucose monitoring in the management of type 1 diabetes: research design and methods
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2007.0302
– start-page: 529
  year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0410
  article-title: Profiled glucose forecasting using genetic programming and clustering
  publication-title: Proc ACM Symp Appl Comput
  doi: 10.1145/3341105.3374003
– year: 2020
  ident: 10.1016/j.artmed.2021.102120_bb0175
– ident: 10.1016/j.artmed.2021.102120_bb0470
– volume: 126, no. March
  start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0310
  article-title: Risk-based postprandial hypoglycemia forecasting using supervised learning
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.03.008
– volume: 23
  start-page: 650
  issue: 2
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0325
  article-title: Prediction of adverse glycemic events from continuous glucose monitoring signal
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2823763
– start-page: 1494
  year: 2014
  ident: 10.1016/j.artmed.2021.102120_bb0120
  article-title: Short-term prediction of blood glucose concentration using interval probabilistic models
– ident: 10.1016/j.artmed.2021.102120_bb0230
– year: 2010
  ident: 10.1016/j.artmed.2021.102120_bb0045
– start-page: 1
  year: 2018
  ident: 10.1016/j.artmed.2021.102120_bb0280
  article-title: Predicting glucose levels in patients with type1 diabetes based on physiological and activity data
– start-page: 703
  year: 2019
  ident: 10.1016/j.artmed.2021.102120_bb0050
  article-title: Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning
  publication-title: Health Informatics J
SSID ssj0007416
Score 2.5603132
SecondaryResourceType review_article
Snippet Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it is relevant to present...
Background and aim - Hypoglycaemia prediction play an important role in diabetes management being able to reduce the number of dangerous situations. Thus, it...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102120
SubjectTerms Algorithms
Artificial Intelligence
Blood Glucose
Blood glucose level
Computer Science
Data-based algorithms or models
Databases, Factual
Diabetes Mellitus - diagnosis
Diabetes Mellitus - epidemiology
Diabetics real data
Humans
Hypoglycaemia or hypoglycemia
Hypoglycemia - chemically induced
Hypoglycemia - diagnosis
Hypoglycemia - epidemiology
Prediction
Title Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365721001135
https://dx.doi.org/10.1016/j.artmed.2021.102120
https://www.ncbi.nlm.nih.gov/pubmed/34412843
https://www.proquest.com/docview/2563427048
https://hal.science/hal-04321032
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkRAXHuW1PKoBcQ27ju1NclwVquXRXqBSb5bjOLtBaXa1myL1gvgB3PiH_BJmYicVEqiIY6JMYmXsmc_JN98w9tLmFhOpySPrqCSnlDJKcduMh3mmjJmmqaBC4aPj6fxEvjtVpzvsoK-FIVpliP0-pnfROpwZh7c5XlfV-CPtxcVU4RaGcI2gQnMpE-pi8OrrJc2DEEentydERFf35XMdxwvvhzkHd4kxJw0DTl2__5yeri2JJ_k3ENolo8M77FZAkTDzA73Ldlyzx273HRogLNg9duMo_Dq_x76_Nq2JKGkVYOrFalO1y7MtmKaArhvOFogCvwD_MbayW0A4WQMxSAGBLXQMdwgM985sebFeLeoLa9xZZWC9oUeRm-Hntx8wg0uNaKgH7WbwpTL32cnhm08H8yi0YogsAp42Urk0Ks7TIrEZdwl3KTelnZbK5alJJsbFKeZ9mRc56dfhNq5QhmKpybidZBMrHrDdZtW4RwwUOsSJOOOpKaUqC2PROJaFVAkvS5uNmOg9oG3QKad2GbXuCWmftfebJr9p77cRiwartdfpuOJ61TtX9zWoGDU1JpIr7JLB7rd5-g-WL3AODYMjWe_57IOmcySLSMKGX_iIPe-nmMZ1Tj9vTONW51uNK0rIOMGAO2IP_dwb7iUQ0yLMEI__e3BP2E068szGp2y33Zy7Z4i22ny_W0777Prs7fv58S9IKCoP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RQIuPMorPAfE1ST27sb2MSpUAZJeaKXeVuv1OjFynShxkXpB_ABu_EN-CTN-VUigIo5xPPbKszvzjf3NtwCvbWIpkZrEs45bcjIpvYjKZvqZxMqYcRQJbhSeH42nJ_LDqTrdgYOuF4ZplW3sb2J6Ha3bI8P2aQ7XeT78xLW4GCsqYRjXCLUL16QKQq7A3ny95Hkw5KgF94Tw-PSuf64medEFKelQmRj4LGLg87bff85Pu0smSv4NhdbZ6PAO3GphJE6akd6FHVfuw-1uiwZsV-w-XJ-3387vwfe3pjIeZ60UTbFYbfJqebZFU6ZYb4ezRebAL7B5G5vbLRKeLJAppEjIFmuKO7YU99psebFeLYoLa9xZbnC94Vuxn_Hntx84wUuRaCx68WZsemXuw8nhu-ODqdfuxeBZQjyVpxJpVJBEaWhj34W-i3yT2XGmXBKZcGRcEFHil0masIAd1XGpMhxMTezbUTyy4gHslavSPQJU5BAngtiPTCZVlhpLxoFMpQr9LLPxAETnAW1boXLeL6PQHSPts278ptlvuvHbALzeat0IdVxxvuqcq7smVAqbmjLJFXZhb_fbRP0Hy1c0h_rBsa73dDLTfIx1EVnZ8Is_gJfdFNO00PnrjSnd6nyraUkJGYQUcQfwsJl7_bUEgVrCGeLxfw_uBdyYHs9nevb-6OMTuMn_NDTHp7BXbc7dM4JeVfK8Xlq_AOsKK6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-based+algorithms+and+models+using+diabetics+real+data+for+blood+glucose+and+hypoglycaemia+prediction+%E2%80%93+A+systematic+literature+review&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Felizardo%2C+Virginie&rft.au=Garcia%2C+Nuno&rft.au=Pombo%2C+Nuno&rft.au=Megdiche%2C+Imen&rft.date=2021-08-01&rft.pub=Elsevier&rft.issn=0933-3657&rft.volume=118&rft_id=info:doi/10.1016%2Fj.artmed.2021.102120&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04321032v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon